发明名称
分布式光伏发电系统低压反孤岛装置

摘要
本发明公开了一种分布式光伏发电系统的低压反孤岛装置，通过接入电阻扰动负载，触发并网逆变器欠压保护动作，破坏分布式光伏发电系统的非计划孤岛运行，保护系统设备和相关人员的安全。本发明适用于各种容量等级的分布式光伏发电系统，具有壁挂式和落地式两种设计形式，可接入的位置为配变低压母线，380V 配电分支箱和 220V/380V 用户配电箱。
1. 分布式光伏发电系统低压反孤岛装置，其特征在于：包括柜体及安装在其内的操作开关，扰动负载和断路器延时保护器件；所述操作开关通过馈电线缆接入分布式光伏发电系统；所述操作开关与扰动负载通过电缆串联；所述断路器延时保护器件接入断路器跳闸线圈；

所述操作开关为低压反孤岛装置的开断设备；
所述扰动负载是指投入后改变分布式光伏发电孤岛系统的功率平衡，破坏非计划孤岛运行的电子元件；
所述断路器延时保护器件设定延时时间值，如果操作开关投入的时间超过设定值，断路器自动跳闸，操作开关自动断开；
所述装置适用于各种容量等级的分布式光伏发电系统，可接入的位置为变配低压母线，380V 配电分支箱和 220V/380V 用户配电箱。

2. 根据权利要求 1 所述的分布式光伏发电系统低压反孤岛装置，其特征在于：
所述扰动负载为电阻，投入后引起分布式光伏发电系统欠压保护动作。

3. 根据权利要求 2 所述的分布式光伏发电系统低压反孤岛装置，其特征在于；所述扰动负载电阻 R_s 的计算模型为：

\[
\begin{align*}
R_s &= \frac{P_o}{P_{inv}} \left(\frac{U_o}{U_o - U} - 1 \right) \\
U &= 85\% U_n
\end{align*}
\]

其中 P_{inv} 为当分布式光伏处于孤岛运行时，光伏逆变器的输出功率，U_o 为此时的电压，U 为投入阻性低压反孤岛装置后，光伏逆变器的输出的电压，U_n 为接入配电网系统的标称电压。

4. 根据权利要求 2 所述的分布式光伏发电系统低压反孤岛装置，其特征在于；所述扰动负载电阻有 3 台。

5. 根据权利要求 2 所述的分布式光伏发电系统低压反孤岛装置，其特征在于；所述断路器延时保护器件设定的延时时间值为 1s。

6. 根据权利要求 2 所述的分布式光伏发电系统低压反孤岛装置，其特征在于；所述装置有壁挂式和落地式两种设计形式；所述壁挂式的柜体四角设有挂孔，可使低压反孤岛装置挂于墙上；所述落地式柜体底部设有支架，可使低压反孤岛装置立于地面上。

7. 根据权利要求 1 所述的分布式光伏发电系统低压反孤岛装置，其特征在于；所述装置内还配置电压表和温湿度控制器，所述电压表与电网相连，显示电网线电压。

8. 根据权利要求 1 所述的分布式光伏发电系统低压反孤岛装置，其特征在于；所述装置设有闭锁装置；所述闭锁装置采用电气互锁，实现并网进线断路器与专用操作开关联锁。

9. 根据权利要求 1 所述的分布式光伏发电系统低压反孤岛装置，其特征在于；所述扰动负载为电感，投入后引起分布式光伏发电系统过频保护动作。

10. 根据权利要求 1 所述的分布式光伏发电系统低压反孤岛装置，其特征在于；所述扰动负载为电容，投入后引起分布式光伏发电系统欠频保护动作。
分布式光伏发电系统低压反孤岛装置

技术领域
[0001] 本发明涉及一种分布式光伏发电系统低压反孤岛装置，属于光伏发电系统领域。

背景技术
[0002] 分布式光伏发电大多属于用户侧并网，出力与负荷就近平衡，存在孤岛效应问题，孤岛效应是指电网失压时，分布式电源（包括光伏）系统仍保持对失压电网中的某一部分线路继续供电的状态，如图 2 所示，当电力检修人员在维护与分布式光伏发电相关线路或设备时，一旦分布式光伏发电的防孤岛保护功能失效，将给电力检修人员的现场安全作业等工作带来隐患。
[0003] 当前，国内外还没有为电力检修人员设计的专用反孤岛装置，在分布式光伏发电系统中，采用功能上起到类似低压反孤岛装置作用的方案即电网端孤岛检测方法和基于逆变器的防孤岛保护方案。
[0004] 电网端孤岛检测方法的两种实现技术为：传输断路器跳闸信号和电力线路载波通信。
[0005] （1）传输断路器跳闸信号检测孤岛
[0006] 该技术通过监控所有分布式光伏与电网之间的断路器和自动重合闸的状态，当发现有开关操作使变电站母线断路，即通过中央处理算法确定孤岛范围，跳出分布式光伏和负载之间的断路器。对于拓扑结构固定，自动重合闸数量有限的变电站，每个监控端（自动重合闸）的信号可以直接送给分布式光伏，可避免采用中央处理运算。
[0007] 该技术的主要缺点是对于多重网络拓扑，需要 1 个中央算法处理；当自动重合闸和配电网的拓扑结构发生变化时，运算算法需要最新的配电网拓扑信息；同时，该技术还需要通信支持，对于无线电和电话线不能覆盖的分布式光伏发电系统将产生较高的费用。
[0008] （2）电力线路载波通信检测孤岛
[0009] 该技术采用输电线路传输信号，该方法采用连接在变电站母线二次侧的信号发生器不断地给所有的配电线路发送信号，每个分布式光伏设备装设信号接收器，如果接收器没有检测到该信号，则说明变电站和该分布式光伏设备之间的任何一个断路器可能跳闸，则分布式光伏发电系统处于孤岛状态。
[0010] 该技术的主要缺点是信号发生器为中压设备，需通过 1 个低压变压器来连接且必须安装于变电站，且审批和安装都较复杂，如果分布式光伏发电系统密度较低，则导致成本较高；同时，通信信号的选取困难，由于电力载波信道的有限性，不易被电网公司所采用，而且信号发生器发出的孤岛检测信号可能对其他电力线路载波通信造成干扰。
[0011] 基于逆变器的防孤岛效应保护方案分为被动式防孤岛保护方案和主动式防孤岛保护方案两种。
[0012] （1）被动式防孤岛保护
[0013] 通过检测配电网与分布式光伏在公共耦合点的参数，包括电压、频率、相位、功率、谐波等，来判断有无孤岛的发生，当该处的参数波动超过设定值时，逆变器自动与电网断
开。由于这类方法只是采取监控手段，并不改变逆变器输出的参数，所以对电网无干扰，输出电能质量无影响。
[0014] 被动检测法一般只能在发电出力与负载不匹配程度较大时才能有效，而当光伏发电系统输出的功率与本地负载的功率接近时，由于断电后公共耦合点的电压和频率变化很小，此类方法就会失效。
[0015] （2）主动式孤岛保护
[0016] 主动式孤岛效应检测是通过对逆变器某些输出，如频率、相位、电压等施加偏移量进行观测，判断逆变器是否处于孤岛状态。此类方法检测快速、准确性会相对提高，甚至有些方法在多台逆变器并联运行的系统中也能准确检测，但是会影响输出功率因数，给电网注入谐波，影响供电的质量，适用于输出电压波形质量要求不高，同时检测速度要求较快的场合。
[0017] 在下列情况时候，主动式孤岛检测无法正常工作：
[0018] 1、本地负载的品质因数较大，可能导致扰动无法按照标准要求及时断开；
[0019] 2、由于设计、生产、使用中存在的意外情况或者人为失误，导致主动式孤岛检测的软硬件失效，无法完成保护功能。
[0020] 根据上述分析，分布式光伏并网逆变器在不良情况下不能及时检测到孤岛的隐患，致使分布式发电系统进入非计划孤岛运行。将给电力检修人员的现场安全作业等工作带来隐患。

发明内容
[0021] 为了解决现有技术的不足，本发明提供一种分布式光伏发电系统低压反孤岛装置，通过投入扰动负载，改变分布式光伏发电孤岛系统的功率平衡，破坏非计划孤岛运行，保护系统设备和相关人员的安全。
[0022] 本发明是通过如下的技术方案来实现：
[0023] 分布式光伏发电系统低压反孤岛装置，包括柜体及安装在其内的操作开关，扰动负载和断路器延时保护器件；所述操作开关通过进线电缆接入分布式光伏发电系统；所述操作开关与扰动负载通过电缆串联；所述断路器延时保护器件接入断路器跳闸线圈；所述操作开关为低压反孤岛装置的开关设备；
[0024] 所述扰动负载是指投入后改变分布式光伏发电孤岛系统的功率平衡，破坏非计划孤岛运行的电子原件；
[0025] 所述断路器延时保护器件设定延时时间值，如果操作开关投入的时间超过设定值，断路器自动跳闸，操作开关自动断开；
[0026] 所述装置适用于各种容量等级的分布式光伏发电系统，可接入的位置为配变低压母线，380V 配电分支箱和 220V/380V 用户配电箱；
[0027] 前述扰动负载为电阻，投入后引起分布式光伏发电系统欠压保护动作。
[0028] 前述扰动负载 R 的计算模型为：

\[
R_s = \frac{U_0^2}{P_{inv}} \times \left(\frac{U_0}{U_0 - U} - 1 \right)
\]

U < 85%U_n

其中 P_{im} 为当前单线电容的输出功率，U_0 为此时的电压，U 为接入低压电容的电压，U_n 为接入电网系统的标称电压。

前述装置具有壁挂式和落地式两种设计形式，所述壁挂式具有设置有支撑卡，可使低压电容装置安装于墙上，所述落地式具有设置有支架，可使低压电容装置立于地面上。

前述装置具有控制单元和温湿度控制器，所述控制单元与电网相连，显示电网线电压。

前述装置还设有闭锁装置，所述闭锁装置采用电气互锁，实现当并网进线断路器与专用操作开关联锁。

前述装置为电容变速，投入后引起分布式光伏发电系统过频保护动作。

前述装置为电容变速，投入后引起分布式光伏发电系统欠频保护动作。

与现有技术相比，本发明的有益效果为：

（1）当电力检修人员在工作与分布式光伏发电相关线路或测试时，低压电容装置可以有效切断分布式光伏发电的孤岛运行，确保电力检修工作人员的人身安全；

（2）能够适应分布式光伏接入配变低压母线，接入 380V 配电分支箱、接入 220V/380V 用户配电箱等典型形式；

（3）低压电容装置投入不会对分布式光伏发电系统设备、用电负荷以及低压熔断器等带来危害。

附图说明

图 1 为基于本发明的阻性低压电容装置示意图；
图 2 为分布式光伏发电系统的阻性电容装置示意图；
图 3 为本发明低压电容装置在分布式光伏接入配变低压母线时的安装位置示意图；
图 4 为本发明低压电容装置在分布式光伏接入 380V 配电分支箱时的安装位置示意图；
图 5 为本发明低压电容装置在分布式光伏接入 220V/380V 用户配电箱时的安装位置示意图；
图 6 为投入阻性低压电容装置的分布式光伏发育弧阴系统等效模型示意图；
图 7 为本发明壁挂式阻性低压电容装置的结构示意图；
图 8 为本发明壁挂式阻性低压电容装置的结构示意图；
图 9 为基于本发明的感性低压电容装置示意图；
图 10 为基于本发明的容性低压电容装置示意图；
图 6 中，符号分别指代：
PCC——公共耦合点，即公共供电网络中电气与特定用户装置距离最近的点；
R——负载；L——电感；C——电容；R_s——扰动负载；
[0055] I_{inv}——光伏逆变器的输出电流；I_{load}——负载电流；

[0056] P_{load}——电网正常时负载的有功功率；Q_{load}——电网正常时负载的无功功率；

[0057] P_{grid}——电网消纳的光伏发电有功功率；Q_{grid}——电网消纳的光伏发电无功功率。

具体实施方式

[0058] 下面结合附图和具体实施方式，对本发明进行进一步的阐述。

[0059] 本发明的分布式光伏发电系统低压反孤岛装置主要由断路器及安装在其上的操作开关，#动负载和断路器延时保护自件等构成，操作开关与动负载串联，断路器延时保护器件接入断路器跳间线圈，动负载是指投入后改变分布式光伏发电系统功率平衡，破坏非计划孤岛运行的电子元件。

[0060] 低压反孤岛装置一般安装在分布式光伏发电系统送出线路电网侧，在电力人员检修与分布式光伏发电相关的线路或设备时使用，本装置适用于各种容量等级的分布式光伏发电系统。

[0061] 如图3所示，分布式光伏接入配变低压母线时，电气检修人员要对图3中的线路L1进行维护时，分布式光伏自身不会发生孤岛效应，但在检修配变变压器时，分布式光伏发电可能会同配变低压母线其他负荷之间发生孤岛效应，因此，应在图3中的a点配变低压母线旁安装低压反孤岛装置。

[0062] 如图4所示，分布式光伏接入380V配电分支箱时，电力检修人员要对图4中的线路L1进行维护时，分布式光伏发电存在发生孤岛效应的可能，被检修线路L1存在带电可能，危害检修人员的人身安全，因此，为破坏该分布式光伏发电的孤岛运行，应在图4中的a点安装低压反孤岛装置。

[0063] 此外，当电力检修要对图4中的配变变压器进行检修时，如果低压母线下端存在多路分布式光伏，也可在图4中的b点安装大容量的低压反孤岛装置，通过直接一次性投入该大容量的专用操作开关，破坏所有可能存在的孤岛运行，同时也可节省安装空间和成本。

[0064] 如图5所示，分布式光伏接入220V/380V用户配电箱时，电力检修人员要对图5中的线路L1进行维护时，分布式光伏发电存在发生孤岛效应的可能，被检修线路L1存在带电可能，危害检修人员的人身安全，但接入220V/380V用户配电分支箱的分布式光伏，检修线路L1时，涉及用户的直接供电，一般用户将直接参与，因此，可通过停止分布式光伏发电的方式终止可能存在的孤岛运行。

[0065] 但电力检修人员要对图5中的线路220V/380V用户配电分支箱进行维护时，如果分支箱接入的分布式光伏与负荷之间匹配，可能发生孤岛效应，此时，可按分支箱的容量，在a点220V/380V配电分支箱旁配置适合的低压反孤岛装置。

[0066] 考虑大容量低压反孤岛装置具备向下覆盖能力，选取三个容量的低压反孤岛装置作为典型设计，对应的参数如下表1所示。

[0067] 表1 三种规格低压反孤岛装置设计参数
适用于分布式光伏

<table>
<thead>
<tr>
<th>额定容量（Kw）</th>
<th>过渡电阻值（Ω）</th>
<th>承受电流（A）</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1.16</td>
<td>189.39</td>
</tr>
<tr>
<td>1000</td>
<td>0.58</td>
<td>378.79</td>
</tr>
<tr>
<td>2000</td>
<td>0.29</td>
<td>757.58</td>
</tr>
</tbody>
</table>

[0069] 如图 1 所示，本实施例中采用电阻 R_s 作为扰动负载，触发分布式光伏发电系统欠压保护动作，破坏分布式光伏发电系统的非计划孤岛运行，QF 为操作开关。

[0070] 扰动负载电阻 R_s 的计算模型为：

[0071] 由于分布式光伏发电可等效成一个受控电流源，且在投入低压反孤岛装置后，可近似等效成一个恒流源。此外，通过分析光伏并网逆变器孤岛运行机理，只要投入的低压反孤岛装置扰动负载足够大，逆变器将会立即检测到电压或频率异常，触发保护动作。因此，在分析低压反孤岛装置的计算模型时，可近似认为投入低压反孤岛装置前后，分布式光伏发电输出的电流保持不变。

[0072] 如图 6 所示，当分布式光伏处于孤岛运行时，光伏逆变器的输出功率 P_{inv} 与负载 R 匹配，假设此时的电压为 U_o，电流为 I_{inv}，则有，

$$ I_{inv} = \frac{U_o}{R} \quad (1) $$

$$ P_{inv} = \frac{U_o^2}{R} \quad (2) $$

[0073] 投入阻性低压反孤岛装置 R_s 后，假设逆变器输出的电压即跌落后的电压为 U，因 I_{inv} 在投入 R_s 前后瞬间不变，则有，

$$ I_{inv} = \frac{U}{R} + \frac{U}{R_s} \quad (3) $$

[0074] 联立式（1）、（2）与（3）得，

$$ R_s = \frac{U_o^2}{P_{inv}} \times \left(\frac{U_o}{U_o - U} - 1 \right) \quad (4) $$

[0075] 根据式（4），阻性低压反孤岛装置的阻值可以通过式分布式光伏接入电压、接入容量、跌落后的电压计算得出，投入阻性低压反孤岛装置后，将引起系统电压降，即可使分布式光伏发电欠压保护。

[0076] 根据标准对逆变器电压保护动作的要求，投入阻性低压反孤岛装置后的跌落电压 U 至少应满足：

$$ U < 85\%U_n \quad (5) $$

[0077] 式中，U_n 为接入配电网系统的标称电压，阻性低压反孤岛装置的计算模型为：

$$ R_s = \frac{U_o^2}{P_{inv}} \times \left(\frac{U_o}{U_o - U} - 1 \right) \quad (6) $$

[0078] 从式（6）可知，当分布式光伏发电出力 P_{inv} 与跌落电压 U 确定后，即可得到阻性
低压反孤岛装置过渡电阻值，此外，U 的跌落越深，需要配置的过渡电阻负载越大，电阻值越小。

[0085] 操作开关作为低压反孤岛装置的开断设备，其型式依据主要有：
[0086] 1）低压反孤岛装置的接入电压等级，已确定最高为 380V；
[0087] 2）低压反孤岛装置投入瞬间的最大电流；
[0088] 3）其他常规开关的技术要求。
[0089] 低压反孤岛装置投入后，如未及时破坏孤岛，可能给扰动负载带来危害，因此，对
操作开关施加延时保护设计，在断路器跳间线圈接入断路器延时保护器件；为防止低压反
孤岛装置与公共连接点或其他相关开关，因操作顺序有误带来的安全危害，基于本发明的
阻性低压反孤岛装置还设计了电气互锁，实现并网进线断路器与专用操作开关联锁。
[0090] 图 7 和图 8 为适用于 500kW 及以下光伏发电系统的阻性低压反孤岛装置，有壁挂
式和落地式两种设计形式，其内部配置相同，内部配置操作开关 2 一台，操作开关 2 通过进
线电缆 4 接入分布式光伏发电系统，操作开关 2 安装在安装板 1 上，通过电缆 5 与扰动负载
电阻 3 相串联，扰动负载电阻 3 有 3 台，固定在安装支架 6 上，中间继电器 8，时间继电器 10
与熔断器 11 通过接线端子 14 连接构成断路器延时保护装置，接入断路器跳间线圈，延时时间
设定为 1s，当操作开关投入的时间超过 1s 时，断路器自动跳闸，操作开关自动断开，以保
护扰动负载，安装板 1 上还安装有电压表 7，温度控制器 9，带灯按钮 12 和标签框 13，电压
表 7 与电网相连，显示电网线电压。壁挂式柜体的四角设有挂孔 15，可使低压反孤岛装置挂
于墙上，落地式柜体底部设有支架 16，可使低压反孤岛装置立于地面上。
[0091] 基于本发明的阻性低压反孤岛装置的工作过程为：当检修人员在维护与分布式光
伏发电相关的线路或设备时，发现分布式光伏发电系统非计划孤岛运行，可以拉动在该线
路配变低压侧母线、380V 配电分支箱、220V/380V 用户配电箱等处接入的低压反孤岛装置
的操作开关，此时低压反孤岛装置将扰动负载接入分布式光伏发电系统中，触发光伏并网
逆变器的欠压保护，光伏并网逆变器停止工作，破坏了分布式光伏发电系统的非计划孤岛
运行。
[0092] 如图 9 和图 10 所示，本发明还可以使用电感 Lo 或电容 Co 作为扰动负载，投入后，
引起分布式光伏发电系统过欠频保护动作，破坏非计划孤岛运行。
[0093] 以上显示和描述了本发明的基本原理和具体的实施方式，本行业的技术人员应该
了解，本发明不受上述实施例的限制，在不脱离本发明精神和范围的前提下，本发明还会有
各种变化和改进，这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围
由所附的权利要求书及其等效物界定。
图 8

图 9

图 10