[45] July 4, 1972

[54]	LIQUID TRANSFER APPARATUS WITH
	PRESSURE-SENSITIVE AUTOMATIC
	SHUT-OFF NOZZLE

[72]	Inventors:	Jay V. Calisher, Montebello; Ross E. Bur-
		bick, Bellflower, both of Calif.

[73]	Assignee:	E. B. Wiggins Inc., Los Angeles, C	Calif.
------	-----------	------------------------------------	--------

[22]	Filed:	Oct. 29, 1969
[21]	Appl. No.:	872,148

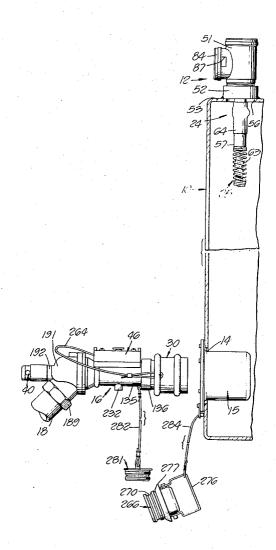
		•
[52]	U.S. Cl	141/198, 137/202, 141/40,
		141/226, 141/349

[51]	Int. Cl	 B67d 5/372

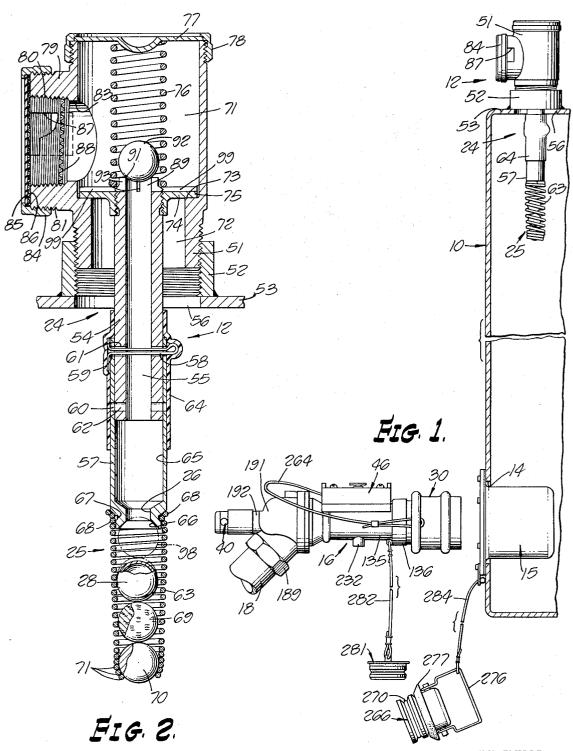
[31]	int Cl	B67a 5/3/2
[58]	Field of Search	141/192–229, 285–310,

141/348-350, 39, 40, 41, 42, 43; 137/202, 587, 588; 220/86; 222/566

[56]	References Cited
	UNITED STATES PATENTS


3,458,085 7/1969	Clemenson	137/202
3,563,263 2/1971	Benson	137/202
2,646,817 7/1953	Cox et al	137/202 X

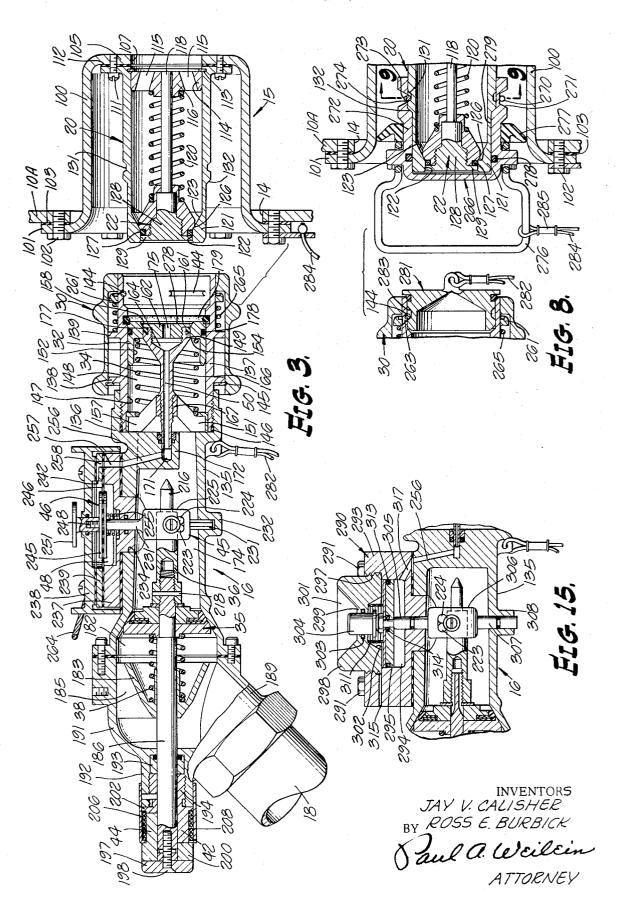
Primary Examiner—Houston S. Bell, Jr. Attorney-Paul A. Weilein

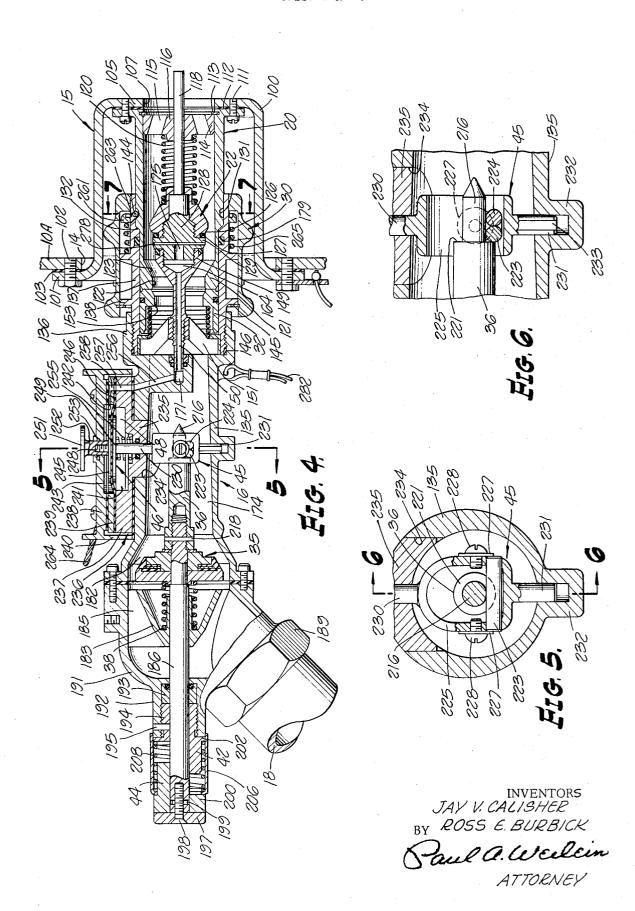

ABSTRACT

A vented tank has a receptacle fitting at its fill port that mates with a nozzle on the end of a supply hose. Both the receptacle fitting and the nozzle have normally closed valves which open in response to mating of the two parts. The nozzle fitting is equipped with a normally closed snap acting valve which is cocked open during the filling operation and snaps closed in response to abrupt rise in back pressure. During the filling operation a tank vent is open but closes in response to rise in the liquid level and thereby creates the back pressure. The tank vent also closes automatically if the tank is turned over.

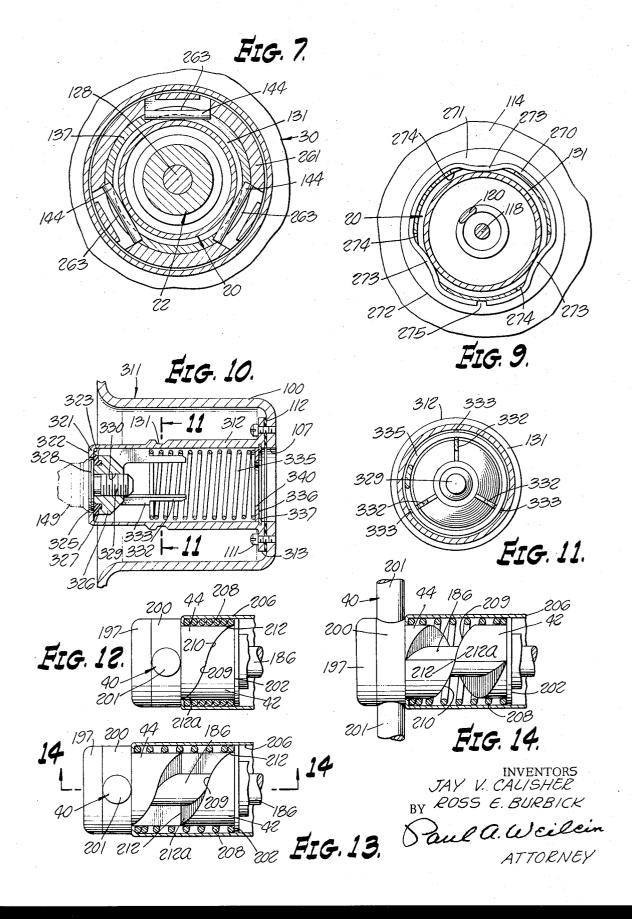
14 Claims, 15 Drawing Figures

SHEET 1 OF 4


INVENTORS


JAY V. CALISHER

BY ROSS E. BURBICK


Paul a. Wellein ATTORNEY

SHEET 2 OF 4

SHEET 4 OF 4

LIQUID TRANSFER APPARATUS WITH PRESSURE-SENSITIVE AUTOMATIC SHUT-OFF NOZZLE

BACKGROUND OF THE INVENTION

The invention relates to apparatus for establishing closed system liquid transfer to liquid storage tanks. The tanks may be the fuel tanks of helicopters and other aircraft or the tanks of road building or other fuel consuming vehicles and equipment needing a rapid resupply of uncontaminated liquids.

Fire hazard and contamination are predominant problems in resupply of liquids, particularly highly volatile fuels. Present apparatuses for filling tanks permit volatile vapor to escape, endangering the equipment. The possibility of contamination exists during fuel transfer due to open lines. In both military and commercial usage a rapid transfer of fuel from a supply to the tank is desired-to save equipment down time and manpower-and high pressure transfer lines are used. However, it is presently necessary even in combat zones to shut off the motors of helicopters being refueled because dust caused by the 20 whirling blades may enter the fuel system, and escaping vapor from the fuel supply is likely to ignite when drawn upwardly by the blade motion around the hot exhaust of the engines.

Road building and heavy construction equipment conventionally has top-filling liquid tanks, accessible only by climbing 25 on the equipment. Liquid and vapor escape from the open tank filler tube, adding to fire and climbing hazards. Contaminants have direct access into the tank. Nozzle discharge ends transfer dirt acquired during careless handling into the tank. The inventive apparatus disclosed herein fills tanks from their 30 lower end, has closed communication between tank and nozzle, and is quickly coupled and uncoupled.

SUMMARY OF THE INVENTION

The invention contemplates apparatus for closed system 35 liquid transfer comprising quickly connecting and disconnecting liquid supply nozzle and tank nozzle receptacle fitting, each with a self-closing valve which opens when the nozzle and fitting are joined. Latch means lock the nozzle and receptacle fitting together in leak-proof fashion. A shut-off valve in the nozzle controls nozzle flow. A spring-loaded latch holds the valve open, but may be released manually. A valve body in the fitting communicates with the tank interior. Valve opening means on the body and on the nozzle open the self-closing valves on coupling for liquid flow from the nozzle through the body into the tank. A tank vent with a float valve inhibits escape of all tank air displaced by incoming liquid. Fluid-actuated pressure-sensitive means on the nozzle linked to the shutoff valve latch respond to increased tank pressure as tank air is compressed to release the latch and close the nozzle. A fluid passage extends from the tank through the valve body and the nozzle to the fluid-actuated pressure-sensitive means. Preferably, the passage is confined within the valve body and the nozzle barrel.

Closed liquid transfer apparatus obviates both fire hazard and contamination by eliminating liquid and vapor escape and preventing dust, dirt, and other contaminants from entering the vehicle tank.

It is therefore an object of the invention to provide ap- 60 paratus which establishes a closed fueling system to overcome the hazards of fire, accident, and contamination.

It is a further object of the invention to provide such apparatus having a nozzle and a receptacle fitting each with a self-closing valve to eliminate vapor loss, liquid leakage and 65 contamination when the two system components are unconnected.

It is a further object of the invention to provide a nozzle and a receptacle fitting in which connection one to the other automatically opens the self-closing valves to provide a liquid path 70 from the nozzle through the receptacle fitting.

A further object of the invention is to provide apparatus wherein a liquid level-controlled vent closes to pressurize the tank upon the liquid level in the tank reaching a certain desired level such that the increased tank pressure may be 75 supply hose 18. In FIGS. 1 and 3 the nozzle is separated from

sensed to automatically close the supply nozzle responsive to the pressure imposed upon the liquid within the tank.

It is a still further object of the invention to provide a nozzle compatible with a self-closing receptacle fitting wherein the shut-off valve of the nozzle has a latch which may be manually overcome or be overcome responsive to a sudden pressure increase in the tank.

It is a further object of the invention to provide closed system apparatus for refueling wherein a manual control may be actuated to open the nozzle shut-off valve; wherein manual movement of a simple plunger closes the valve, and wherein automatic fluid-actuated pressure-responsive means related to tank liquid level closes the shut-off valve.

The apparatus of the invention thus provides for quickdisconnect closed liquid transfer wherein no vapor or liquid loss occurs during the connecting, disconnecting, or liquid transfer stages, wherein the flow of liquid automatically terminates upon the liquid reaching a certain level in the tank, and wherein no contaminants may enter the tank either during liquid transfer or prior to or after disconnecting the nozzle and receiver of the apparatus.

The preferred vent of the invention not only serves to preclude escape of tank air after the liquid level reaches a certain point, but also guards against liquid spillage due to tank sloshing and has safeguards against overpressurization of the tank. Additionally, vent shut-off means preclude loss of liquid should the tank be overturned or perilously canted either accidentally or deliberately.

These and other advantages of the invention are apparent from the following detailed description and drawings, wherein like parts have been given like reference characters.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a fragmentary elevation, partly in section, showing the tank, vent, receiver, and nozzle of the invention, prior to joining of the nozzle and receptacle fitting;

FIG. 2 is a longitudinal section showing the preferred vent of the invention installed in a tank which is fragmentarily illustrated:

FIG. 3 is a longitudinal section of the unjoined nozzle and tank receptacle fitting of the invention;

FIG. 4 is a similar section of the nozzle and receptacle fitting joined together in condition for liquid transfer;

FIG. 5 is a fragmentary transverse section taken along line 5-5 of FIG. 4:

FIG. 6 is a fragmentary section taken along line 6-6 of

FIG. 7 is a fragmentary transverse section taken along line 7-7 of FIG. 4, showing details of the latch means for securing the nozzle to the receptacle fitting;

FIG. 8 is a fragmentary section showing the dirt shields of the receptacle fitting and nozzle in place;

FIG. 9 is a fragmentary sectional elevation similar to FIG. 7 showing the dirt skirt latching means;

FIG. 10 is a fragmentary sectional elevation showing an alternate tank receptacle fitting;

FIG. 11 is a transverse section taken along line 11-11 of FIG. 10:

FIG. 12 is a fragmentary elevation, partly in section, of the manual control handle for the nozzle shut-off valve;

FIG. 13 is similar to FIG. 12 with the handle shown in an alternate position;

FIG. 14 is a fragmentary section taken along line 14-14 of FIG. 13: and

FIG. 15 is a fragmentary section illustrating an alternate pressure sensitive latch release means.

DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 shows a tank 10 with a vent 12 and with a fill opening 14 equipped with a receptacle fitting 15. FIG. 1 further shows a nozzle generally designated 16 on the end of a flexible the receptacle fitting and FIG. 4 shows how the nozzle and receptacle fitting mate for a filling operation.

The principal parts of the illustrated structure include: a cylindrical valve body 20 inside the receptacle fitting 15 which houses a normally closed valve member 22; a vent valve as- 5 sembly 24 including a float valve 25 incorporated in the vent structure, the float valve having an outlet port 26 that is normally opened but is closed by a float valve ball 28; means including a longitudinal movable lock sleeve 30 on the nozzle 16 to releasably connect the nozzle to the valve body 20 in the receptacle fitting 15; a sleeve valve 32 incorporated in the nozzle 16 and normally held in closed position by a spring 34, the sleeve valve of the nozzle and the valve member 22 of the receptacle fitting both being shifted to their open positions in 15 response to mating of the nozzle with the receptacle fitting; a normally closed shut-off valve incorporated in the nozzle structure, the shut-off valve including a poppet valve member 35 that has an axial extension 36 and is biased to closed position by a spring 38; manually operable means including a T- 20 shaped handle 40 and a pair of cams 42 and 44 to shift the poppet valve member to open position in opposition to the spring 38; a latch generally designated 45 that automatically engages the axial extension 36 of the poppet valve member when the poppet valve member is manually shifted to its open 25position; and a fluid-actuated pressure sensing means generally designated 46 to release the latch in response to abrupt rise in back pressure, the back pressure being transmitted to an actuating chamber 48 of the fluid pressure 30 metallic valve ball 92 seats. A plurality of radial slots 93 in the responsive means through an axial fluid passage 50 in the noz-

STRUCTURAL DETAILS

The Vent

As shown in FIG. 2, tank vent body 51 of the vent 12 is fixed by a threaded collar 52 to a top wall 53 of the liquid tank 10. A hollow valve stem 54 with an axial passage 55 extends downwardly from the body of the vent through a vent port 56 in the tank wall 53. The valve stem supports the float valve 25, including a telescoping stem extension 57 fastened to the stem itself by a cotter pin 58. The extension has a pair of parallel holes 59,60 spaced longitudinally of the extension. The stem has a pair of parallel spaced holes 61, 62, the former of which 45receives cotter pin 58.

The extension supports a helical wire valve ball cage 63. Assuming a fixed position for the valve stem, the vertical position of the extension and the cage may be changed by aligning the various holes in the extension with different holes of the valve 50

A plastic sleeve 64, preferably heat shrunk about the stem and extension, seals the stem and extension holes and maintains the cotter pin in place.

The valve stem extension terminates in the valve port 26, 55 which is of lesser diameter than the bore 65 of the extension. A frusto-conical surface 66 guides and seats the float ball in the port. An exterior extension annulus 67 receives the end turns 68 of the helical spring which defines the valve ball cage 63. Three spheres: the valve ball 28, a flotation ball 69, and a weighted ball 70 are in the cage. Several bottom turns 71 of the cage are of reduced diameter such that they retain the spheres stacked within the cage. The cage helix is of sufficient lead to leave an interval between the turns such that liquid and air may flow through the cage.

Upper ball 28 has a hard outer surface to maintain sealing contact with the surface 66. Preferably, the ball is hollow aluminum. Flotation ball 69, preferably of cork, insures sufficient flotation of valve ball 28 to effectively close port 26 when the 70 liquid level rises within the tank. Weighted ball 70, preferably of steel, has a safety function. Should the tank 10 be inverted or nearly inverted, the weight of ball 70 thrusts balls 28 and 69 toward port 26 such that ball 28 seals the port and precludes loss of liquid through the inverted vent.

Other hazards besides inversion may threaten the tank, such as over-pressurization, failure of cut-off and liquid sloshing. The invention therefore affords apparatus to overcome such hazards, such as auxiliary safety valves. External vent body 51 has cylindrical walls defining an upper chamber 71 and a lower chamber 72. The lower chamber is of smaller diameter than the upper chamber, and their juncture forms an annular shoulder 73. A flanged collar 74 is threadedly engaged with the upper end of valve stem 54. The collar flange 75 seats upon shoulder 73, supporting the valve stem, the extension, and the cage within the vent body and the tank. A compression spring 76 urges the flange into sealed contact with the shoulder, but can open if the level of liquid rises beyond opening **56**.

Chamber 71 is closed by a cap 77 held in place by a threaded sleeve 78 engaged with the top of the vent body.

A boss 79 extends horizontally from one side of vent body 51. The boss has internal threads 80 and external threads 81. The internal threads are in a vent passage 83 connecting with the chamber 71. A threaded collar 84 threadedly engaged with the boss retains a rupturable diaphragm 85 and a backup screen 86 across the outer opening of the vent passage 83. Diametrically opposed slots 87 at the outer end of the boss vent the vent body. The slots taper from the exit of the passage 83 to the juncture of the boss 79 with the vent body 51. A screen 88 within passage 83 inhibits contamination should the diaphragm 85 be ruptured.

The upper end 89 of stem 54 has a port 91 against which a upper end 89 communicate between passage 55 and chamber 71 of the vent body. Therefore, when port 26 is open, there is a venting path from the interior of the tank through passages 65, 55, chamber 71 and passage 83 to vents 87. If the displaced volume of air is greater than the capacity of the slots 93, the weighted ball 92 is raised by the air pressure from its port 91 to increase the volume of air exchange. Should the pressure within the tank rise dangerously after the valve ball 28 closes, the flange 75 may be displaced from its seat against the pressure of the spring 76 and establish a second air passage through chamber 72, chamber 71, and passage 83. This second vent passage, as previously mentioned, also obviates the overpressurization of the tank should the automatic shut off valve fail or be inadvertently overridden by the manual nozzle control. In such case fluid rising through the vent past valve flange 75 fills chamber 71 and ruptures diaphragm 85, spilling out of the vent body to quickly relieve pressure which might damage the tank.

In case the tank is inverted, spring 76 still biases the valve flange 75 closed but the passageway 55 would conduct fluid into the vent body and thence through the vent openings 87. Float ball 28 would normally, under inverted conditions, move away from the port 26. However, weighted ball 70, urged by gravity, biases the float ball into closed position shown by dotted lines 98 against the port 26, precluding leakage of liquid through the vent body.

Should a sudden fluid surge fill chamber 71 with liquid, a plurality of grooves 99 in the flange conduct the liquid to the radial slots 93 of the valve stem and the liquid returns to the tank through valve stem passage 55, substantially reducing any chances of liquid escape through vents 87. The Receptacle Fitting

Turning now to FIGS. 3 and 4, the receptacle fitting 15 has a flanged cylinder 100 concave with respect to the tank. A receiver flange 101 is secured to a vertical tank wall 10A by a plurality of fasteners 102. A gasket 103 between the flange and the wall effectively seals about the tank filling port 14. A back wall 105 of the cylinder 100 has an opening 107. The cylinder is otherwise open to atmosphere such that the only entry to the tank is through the opening 107.

The flanged valve body 20 is secured to the wall within the cylinder by screws 111. A gasket 112 seals about the opening 107 between the flanged body and the back wall. A valve body 75 C-ring 113 backs a support ring 114 in the valve body. The support ring has a plurality of webs 115 which suspend a central boss 116. A valve stem 118 slidable axially in the boss 116 supports the valve member 22. A compression spring 120 urges the valve to closed position against a port ring 121 having an inner cylindrical surface 122 joined to a conical surface 123 to define a valve port. Valve member 22 has a conical shoulder 126 and a resilient gasket 127 mounted between the shoulder and a stepped head portion 128 of stem 118. Valve member 22 is threadedly engaged with head portion 128. The head portion terminates exteriorly in a disk 129. The valve stem and head are movable axially within the receiver away from valve port surfaces 122 and 123 in response to connection with the nozzle 16.

An annular groove 131 intermediate the exterior and internal ends of the valve body is adapted to receive the lock means of the nozzle when the nozzle and receptacle fitting are connected. A sloping shoulder 132 on the valve body exterior cooperates with lock means on the nozzle. The Nozzle

The nozzle 16, adapted to combine with the receptacle fitting, has a barrel 135 terminating in an enlarged collar 136 with which a barrel extension 137 is threadedly engaged. Spaced ribs 138, 139 on the extension support the previously mentioned lock actuating sleeve 30 which contains a plurality 25 of chordal lock pins 144 adapted to lodge in recess 131 of the receptacle fitting valve body when the nozzle and fitting are joined in the position of FIG. 4. A C-ring 145 retains the sleeve on the extension. The barrel extension also contains the sleeve valve 32 of the nozzle.

The barrel extension is hermetically sealed with respect to the barrel by a gasket 146 lodged between the inner wall of the barrel collar and the outer wall of the inner end of the barrel extension. An inner extension wall 147 defines a cylindrical cavity 148 containing the sleeve valve 32 and its cooperating 35 valve head 149. At the upstream edge of the cavity is a valve stem spider 151. Sleeve valve 32 lies between the spider and the lock pins 144 and has a cylindrical wall 152 which reduces to a valve port wall 153 defining an annular shoulder 154 against which the compression spring 34 thrusts. The other 40 end of the spring contacts a plurality of webs 157 of the spider 151. The spring resists upstream displacement of the sleeve valve away from sealing contact with the valve head 149, thus constituting a normally closed valve at the discharge end of the nozzle 16.

The sleeve valve port flares outwardly in a frustoconical chamber 158 in which the valve head flange 161 normally resides. The valve head flange has an inner boss 162 threadedly engaged within the valve head 149 in a threaded hole 164. The hole connects to the fluid passage 50 which extends upstream through a valve head stem 166. The valve head stem extends upstream through a central boss 167 of the spider 151, with which it is threadedly engaged. Upstream of the spider the stem is sealed in a fluid conducting bore 171 within a web 172 extending into a flow passage 174 of the noz-

The valve head flange 161 opens exteriorly through a central passage 175 which connects passage 50 with atmosphere when the nozzle is uncoupled. The flange also retains an Oring 177 which seals between the sleeve valve and the valve head, closing cavity 148. The sleeve valve is similarly sealed with respect to the cylindrical cavity 148 of the barrel extension by an O-ring 178.

Just downstream of the valve head flange the barrel exten- 65 side is secured by a screw such as screw 228. sion has an O-ring 179. When the nozzle and receptacle fitting are coupled, O-ring 179 coacts with the valve body to seal the joinder of the two elements, effecting a closed liquid transfer system.

In FIG. 3 the nozzle exit is closed because of the seal 70 between sleeve valve 32 and the valve head 149. Therefore, no flow can take place from passages 174 and 148. The upstream portion of passageway 174 is also sealed by the manually openable nozzle shut-off valve member 35. Passageway 174 is enlarged in a conical port 182 within which 75 The Pressure Sensing Unit

the shut-off valve is confined. A spider 183 within a liquid entry chamber 185 supports an upstream valve stem portion 186, threadedly engaged with valve extension 36. The compression spring 38 urges valve member 35 closed against the port 182. A hose coupling 189 enters the nozzle body at an angle to the axis of the valve stem from the supply hose 18.

An enlarged nozzle body portion 191 has a small axial hollow boss 192. A sealing element 193 precludes leakage from the body around the valve stem portion 186. The inner end 194 of the previously mentioned cam 42 is threadedly engaged within boss 192 adjacent to sealing element 193. A pin 195 through a wall of the boss into the element precludes relative motion between the boss and the cam 42.

Stem portion 186 terminates in a handle retainer which is secured to the stem by a screw 198 and fixed by a pin 199. Cam 44 is rotatably mounted on the stem and has an external collar 200 from which handles 201 extend, as shown in FIG. 14, to define the T-handle 40. The T-handle is the means whereby valve member 35 is opened against the closing bias of spring 38 and liquid source pressure to provide flow of liquid from the supply line 18 through the nozzle. However, since the delivery rate of the illustrative nozzle can be from 65-150 gallons or more per minute, the liquid pressure against the rear of valve member 35 is considerable. In order to ease manual opening of the valve, the cams 42, 44 on the valve stem are provided to give mechanical leverage to the operator of the Thandle. FIGS. 12-14 illustrate the camming elements which aid moving the shut-off valve between the closed position of 30 FIG. 3 and the open position shown in FIG. 4.

FIG. 12 illustrates fragmentarily the valve stem portion 186 passing through the fixed cam 42 and a spring flange 202 on the cam. An outer shroud 206 riding on boss 192 shields a compression spring 208 which surrounds the cams and thrusts against fixed cam spring flange 202 to bias the cam 44 outwardly.

The cams have inner faces 209, 210. In the closed position of the shut-off valve the inner faces 209,210 of the cams are abutted. FIG. 13 illustrates in a similar view the open valve position of the cams after 180° clockwise rotation of the Thandle 40.

An extreme cam point 212 of cam 44 advances along cam surface 209 of the fixed cam 42 to the point 212a of FIG. 13. This relationship of the cams is shown in plan section in FIG. 14. Valve stem portion 186 is thus moved leftwardly as shown in FIG. 4, carrying the valve member 35 away from the valving surface 182 against both the bias of the liquid under pressure and of the spring 38. The shroud 206 migrates with the cam 44 and covers the extended spring 208 during its extension.

If the T-handle were released at this point, the combined forces of spring 38 and the supply of fluid pressure would immediately close valve 35. Therefore, the invention has latch means for the shut-off valve to keep valve 35 open for liquid 55 flow through the nozzle and the receptacle fitting into the tank. The downstream end of axial extension 36 has a latch tip 216. A pin 218 extends through the extension and the stem portion 186 to fix them against relative rotation. The latch tip is cylindrical with a diameter less than the diameter of extension 36 such that a transverse shoulder 221 is defined.

A pair of latch pins 223, 224 extend transversely of a latch stirrup 225 beneath the latch tip 216. On each side of the stirrup a washer 227 overlies the external ends of the pins to retain them rotatably within the stirrup. The washer on each

In order to stabilize the stirrup in carrying the pins between latched and unlatched positions, the stirrup has oppositely extending shafts 230, 231. Lower shaft 231 extends into the aperture of a nozzle barrel boss 232. The lower shaft may have a flat 233 to provide a pressure relief channel between the shaft 231 and the cavity wall of barrel boss 232. The nozzle barrel also has an upper aperture 234 in which a depending cylindrical boss 235 of the fluid-actuated pressure sensing unit 46 seats.

The sensing unit includes a housing 236 enclosing chamber 48 which comprises a lower chamber case 237 to which the boss 235 is attached, a top case plate 238, and an intermediate case disc 239. The case plate 238 may have a protective skirt surround 240. The lower chamber case has a cylindrical cavity 241 which, together with an aperture 242 of the intermediate disc and an opening 243 in the top case, define the sensing chamber 48 in which a wall 245 is movable. A flexible diaphragm 246 secured between the intermediate disc and the lower chamber case suspends the wall 245 for movement in 10 the chamber.

Upper shaft 230 of the stirrup terminates in a threaded post 248 about which the movable wall 245 is secured. The wall is secured between a shaft shoulder 249 and an internally threaded manual button 251 whose shank 252 passes through the top of case plate 238 into the sensing chamber. An O-ring 253 seals the shank and case plate interface. A biasing spring 255 thrusts upwardly against the moving wall 245 from its base on the lower chamber case 237. The chamber 48 is connected to the fluid conducting bore 171 of the nozzle by fluid duct segment 256 in the nozzle, segment 257 in the lower chamber case, and segment 258 in the intermediate case disc. The upper surface of the moving wall is thus exposed to fluid pressure communicated through the duct, the bore and fluid passage 50 from the normally closed valve of the nozzle.

Since the wall is mechanically secured to an extension of the latch stirrup, any motion of the moving wall is communicated to the latch pins 223, 224. In the position shown in FIG. 3, the latch stirrup 225 and its pins have been moved from latched 30 position and bear against the periphery of extension 36. The shut-off valve 35 of the nozzle is closed, as is the normally closed valve head 149 of the nozzle. In FIG. 4 the latch pins bear against the periphery of the latch tip 216 under the urging of the bias spring 255. This condition is achieved by 35 manipulation of the T-handle 40 to withdraw the shut-off valve 35 from the valve seat 182 against the bias of liquid pressure and spring 38.

Even when the shut-off valve 35 is open, no flow takes place through the nozzle unless self-closing sleeve valve 32 is opened by the joinder of the nozzle to the receptacle fitting. FIG. 4 illustrates this latter condition. The nozzle has been inserted into cylinder 100 of the fitting such that the lock pins 144 of the nozzle lodge in the annular groove 131 of the valve body. The chordal attitude of the pins 144 when in locked position is shown in FIG. 7, in which three pins lodge in the annular groove. The pins are retained by a retaining collar 261 which overlies the outer ends of the pins, preventing their migration up the slotted ramp 263 in which each pin lies within the nozzle extension 137. The pins are unlocked by moving the lock actuating sleeve 30 axially along the nozzle barrel by means of a lanyard 264. Such axial movement of the sleeve 30 overcomes a lock spring 265, and moves the retaining collar 261 to free the slot for upward migration of the pins 55 out of the annular groove 131.

FIGS. 8 and 9 show an alternate locking arrangement applied to a dust plug 266 in which a discontinuous spring ring 270 lies in a groove 271 of a plug barrel 272 of the dust plug 266. Peripherally spaced concave arcuate indentations 273 of the spring ring are depressed through radially spaced slots 274 of the plug barrel such that they protrude into the annular groove 131 of the valve body 20. Since the lock ring is discontinuous at 275, a sharp pull on a plug handle 276 expands the ring as the plug is pulled axially away from the valve body, such that the arcuate indentations 273 may migrate from the groove 131. The plug has a resilient annular skirt 277 which sealingly engages cylinder 100 and an O-ring 278 in internal plug wall 279 to seal between the plug and the valve body 20. The O-ring acts as a secondary seal should the valve 22 be damaged and as a shock absorber to combat wear between the plug and the valve body due to vibration of the equipment using the tank.

While the chordal pin locks of FIG. 7 are the presently preferred means for achieving locked orientation between the 75

nozzle and the receptacle fitting, many different types of locks may be used within the scope of the invention. Prior patents such as the U.S. Pat. No. to Torres, No. 2,888,278 issued May 26, 1959 and U.S. Pat. Nos. 2,409,650 and 2,425,500 issued to E.B. Wiggins on Oct. 22, 1946 and Aug. 12, 1947, respectively, illustrate lock arrangements which permit ready assembly and disassembly of cylindrical mating parts such as the nozzle and the receptacle fitting of the present invention.

In order to make automatic the opening of the normally closed valves of each of the nozzle and the receptacle fitting, means is provided on each to axially displace the valve member of the other when the nozzle and the fitting are connected. By the time the lock pins 144 lock within the annular groove of the receptacle fitting, the valves of the receptacle fitting and nozzle are open. The port ring 121 of the valve body contacts sleeve valve 32 as the nozzle and fitting are joined, displacing the sleeve valve axially away from valve head 149 against the bias of spring 34. The valve member 22 of the valve body 20 is similarly displaced axially away from valve ports 122, 123 against spring 120 by the thrust of nozzle valve head 149 which is fixed within the nozzle. In this condition valve member 22 of the valve body and valve head 149 of the nozzle are abutted along a plane transverse to the axis of movement of the valves. This relationship is maintained by the lock pins 144 until lock actuating sleeve 30 is moved to release the lock pins.

With the orientation of FIG. 4 achieved, fuel flows from 0 hose 18 through the nozzle past shut-off valve 35 and the web 172 in the nozzle barrel 135 and through the valve aperture defined by port wall 153 into the valve body through valve ports 122, 123 and into the tank through the opening 107. The flow may be manually determinated by pressure upon manual button 251, unseating the latch such that valve 35 snaps closed while the nozzle and receptacle fitting are still coupled. While in the latched condition, T-handle 40 is inoperative, being free to turn about the valve stem portion 186 in a limited arc without affecting the position of shut-off valve 35.

Under normal conditions button 251 is not utilized. Instead, the operator couples the nozzle and the receptacle fitting and manipulates T-handle 40 to open the shut-off valve. Since the nozzle and fitting are firmly locked by pins 144 and sealed against leakage by O-rings 179 and 178, the operator may leave the nozzle to attend to other duties or couple other supply nozzles to other tanks, depending upon the fluid-actuated pressure sensing means 46 of the nozzle to terminate flow when the liquid is being transferred reaches the proper level within the tank.

As the level rises in the tank, the float balls of the vent 12 ascend in the cage until ball 28 achieves the broken line position 98, closing port 26 of the vent. Since the delivery rate of the nozzle is high, the level rises rapidly, compressing the air now trapped in the tank. The air continues to be compressed and the pressure imposed upon the advancing liquid interface increases. This pressure is transmitted through the liquid into the valve body 20 through opening 107 and around the valve member 22 to a groove 278 in the flange face 161 of nozzle valve head 149. The groove crosses passage 175. There is therefore communication through fluid passage 50 and bore 171 and through the fluid duct segments 256, 257, 258 to the pressure sensitive chamber 48 above movable wall 245.

The pressure is transmitted through the fluid occupying the ducts. Normally liquid in the ducts and passage drains as the nozzle is moved from one receptacle fitting to another, leaving air as the passage fluid.

Spring 255 is calibrated to resist displacement of the wall 245 within the sensing chamber until the transmitted pressure reaches a certain level. Thereafter, the wall moves in the chamber to reduce the volume of the chamber and displace the latch pins, releasing the shut-off valve for closure.

When the operator wishes to remove the nozzle after the tank has been filled, he draws lanyard 264 away from the tank, causing lock actuating sleeve 30 to release the lock pins 144

and the nozzle is then withdrawn from the receptacle fitting. Upon withdrawal of the nozzle, the springs 120 and 34 immediately close the normally closed valves 32, 22 of the nozzle and fitting, preventing further liquid or vapor transfer from either the tank or the nozzle.

It is desired to protect the discharge end of the nozzle and the receptacle fitting against contamination while they are disconnected. A dust plug 281 which is attached to the nozzle by a line 282 is shown in FIG. 8 in the barrel extension of the nozzle where it is secured by the nozzle lock pins 144. The pins seat in a plug annulus 283 and the plug is locked and unlocked with respect to the nozzle in the same manner that the nozzle and receptacle fitting are joined and unjoined.

Previously described dust plug 266 for the receptacle fitting has the handle 276 attached to the fitting by a securing cord 284 and a tab 285.

It may be desirable to simplify the path of the pressure sensing duct between the nozzle fluid passage 50 and the pressure sensing chamber. Therefore, another preferred embodiment of the invention has the configuration shown fragmentarily in FIG. 15. In that figure nozzle 16 has a pressure sensing unit 290 secured to the nozzle barrel 135 by fasteners 291. The sensing unit comprises chamber case 293 which has a chamber 294 in which a movable wall 295 reciprocates. 25 Chamber 294 has a threaded portion 297 which receives a threaded plug 298. The plug has a central web 299 separating oppositely oriented conical hollows 301, 302. An O-ring 303 within the web seals a guide shaft 304 which rests on the upper end of the upper shaft 305 of a latch stirrup 306. A lower shaft 30 307 extends from the stirrup through a nozzle boss 308. Like the stirrup of the previously described embodiment, the stirrup 306 supports roll pins 223, 224, which rest alternatively against the shank of the valve extension 36 or in latch position on the latch tip 216.

The wall 295 is operatively secured to the stirrup by the guide shaft 304 and is biased toward the valve extension by a compression spring 311 housed in the conical hollow 302 of the plug 298. The wall is suitably sealed against leakage by exterior O-ring 313 and interior O-ring 314. The chamber space 40 above the wall is vented to atmosphere through duct 315.

The web of the nozzle barrel contains a fluid duct segment 256 which connects with a duct segment 317 opening directly into the sensing chamber 294 below the wall 295.

The embodiment of FIG. 15 affords a pressure sensing unit which is easily assembled and maintained. The pressure duct is shorter and the assembly of the unit simpler than one in which a diaphragm must be anchored within the casing.

In operation the sensing unit and latch of FIG. 15 are similar but opposite to the previously described embodiment, the stirrup being inverted since the moving wall responds oppositely with respect to the illustrated orientation than from the previously described embodiment. Manual inward pressure on lower guide shaft 307 also releases the latch.

The alternate embodiment shown in part in FIGS. 10 and 11, wherein a receptacle fitting 311 of differing configuration has a cylinder 100 within which a flanged valve body is secured is somewhat similar to the previous embodiments. The cylinder has a rear aperture 107 communicating to the interior of the tank (not shown). A valve body flange 313 is secured against a gasket 112 by bolts 111. The external periphery of the tube has a lock annulus 131 for receiving the lock pins of a lock device upon the mating nozzle.

The exterior end of the valve body has an inward flange 321 with parallel external and internal surfaces 322, 323, respectively. External surface 322 is adapted to thrust against valve head 149 (shown in broken lines) of the nozzle to open the normally closed valve 32 of the nozzle. Internal surface 323 surrounds a valve port 325 and a seated valve head 326 thrusts 70 against that surface. An effective seal is achieved by means of a shaped resilient gasket 327 carried by the head. The gasket is retained on the head by an exterior flange 328 secured to the valve body by a threaded shank 329 within a threaded bore 330 of the head.

A plurality of radially spaced vanes 332 extend from the valve head. The vane spacing is best shown with respect to FIG. 11. Each vane has an axially extending contact surface 333 which seats against the inner wall of the valve body and guides the valve head in its axial reciprocation. The downstream end of each flange is reduced in radial extent to receive one end of a compression spring 335 which urges the valve head closed. The compression spring thrusts against a retaining ring 336 backed by a split ring 337 seated in the valve body. Ring 336 has an inner wall 340 which defines a port which is effective to meter the maximum delivery rate of the liquid. By altering the diameter of wall 340 the tank entry orifice can act to meter flow.

In FIG. 10 the valve head 149 of the nozzle is in the position when the nozzle is initially joined to the receptacle fitting and prior to achieving the locked position. As the nozzle advances along the valve body toward locked position, valve head 149 thrusts the valve head 326 away from the valve seat 323 against the bias of spring 335, opening the valve body for liquid flow. When the valve 326 is in open position, a pressure path exists from the tank through the valve body to the grooved face of the nozzle valve head 149, from which point the fluid passage and ducts transmit fluid pressure to the sensing means on the nozzle in the manner previously described.

Each of the illustrative embodiments affords apparatus whereby liquid may be transferred from a source to a tank at a rapid delivery rate without the dangers of escaping vapor or liquid and without contamination of the liquid supplied. The components of the apparatus disconnect easily and once joined, need no attendant during filling since the nozzle is supported by the receptacle fitting and is automatically cut off when the proper liquid level within the tank is reached.

We claim:

50

1. In an apparatus for filling a tank with liquid wherein the tank has a fill port, the combination comprising a receptacle fitting in the fill port of the tank, a nozzle to releasably engage the receptacle fitting, said nozzle being in connection with a source of fluid under relatively high pressure, means to raise the pressure of the interior of the tank abruptly to substantially the pressure of the source in response to the rise of the volume of liquid in the tank to a predetermined magnitude, means to sense the abrupt rise in pressure in the tank, and a shut-off valve responsive to the sensing means to cut flow through the nozzle.

2. Apparatus in accordance with claim 1 wherein the means to raise the pressure in the tank includes a vent opening in the tank, and float-operated valve means to close the vent opening.

3. Apparatus in accordance with claim 2wherein the floatoperated valve means includes a cage adjacent saidopening, and a buoyant valve member in the cage to float upwardly to close the vent opening.

4. Apparatus in accordance with claim 3 further including a body of higher specific gravity than the fluid positioned in the cage at a normal position below the buoyant valve member to serve as a weight to urge the buoyant valve member to closed position in the event that the tank is turned over.

5. Apparatus for filling a tank with liquid wherein the tank has a fill port, the combination comprising a liquid supply nozzle, a receptacle fitting in the fill port opening into the tank, a self-closing shut-off valve in the nozzle for controlling nozzle flow, a latch for holding the shut-off valve in open position; a normally closed valve in the flow path of the nozzle; releasable coupling means adapted to join the nozzle and the receptacle fitting for liquid interchange therebetween; a second normally closed valve adapted to open and close said receptacle fitting; valve opening means on the receptacle fitting adapted to open the normally closed valve of a coupled nozzle; valve opening means on the nozzle adapted to open the normally closed valve of the coupled receptacle fitting; a tank vent including a vent opening; means responsive to liquid level for closing the vent opening to increase tank pressure; and fluid-actuated

pressure sensing means on the nozzle responsive to increased tank pressure for releasing the shut-off valve latch.

- 6. Apparatus in accordance with claim 5 wherein the liquid level responsive means comprises float-operated valve means.
- 7. Apparatus in accordance with claim 6 wherein the floatoperated valve means includes a cage adjacent said opening, a buoyant valve member in the cage to float upwardly to close the vent opening.
- 8. Apparatus in accordance with claim 7 wherein the floatoperated valve means includes a body of higher specific gravity than the fluid positioned in the cage at a normal position below the valve member to serve as a weight to urge the buoyant valve member to closed position in the event that the tank is turned over.
- 9. Apparatus in accordance with claim 5 wherein the fluidactuated pressure sensing means to release the latch includes a chamber with a movable wall, said movable wall being operatively connected to said latch; and means to bias the wall to contract the chamber whereby a rise in pressure within the chamber displaces the wall to overcome the bias and release 20 the latch.
- 10. Apparatus in accordance with claim 9 wherein said movable wall comprises a piston.

- 11. Apparatus in accordance with claim 10 wherein said movable wall comprises a diaphragm.
- 12. Apparatus in accordance with claim 9 further comprising manually operable means to release the latch.
- 13. Apparatus in accordance with claim 10 wherein the manually operable means to release the latch comprises an exteriorly extending button operatively connected to said movable wall.
- 14. Apparatus for filling a tank with liquid wherein the tank has a fill port, the combination comprising a liquid supply nozzle, a receptacle fitting in the fill port opening into the tank, releasable coupling means adapted to join the nozzle and the receptacle fitting for liquid interchange therebetween, valve means including a self-closing shut-off valve in the nozzle for controlling flow through said nozzle and said receptacle fitting, a latch for holding the shut-off valve in open position, a tank vent including a vent opening, means responsive to liquid level for closing the vent opening to increase tank pressure; and fluid-actuated pressure sensing means on the nozzle responsive to increased tank pressure for releasing the shut-off valve latch.

25

30

35

40

45

50

55

60

65

70