US 20170090807A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0090807 A1

Gupta et al. 43) Pub. Date: Mar. 30, 2017
(54) TECHNOLOGIES FOR MANAGING (52) US. CL
CONNECTED DATA ON PERSISTENT CPC ... GO6F 3/0631 (2013.01); GOGF 3/0604
MEMORY-BASED SYSTEMS (2013.01); GO6F 3/0683 (2013.01)
(71) Applicants: Vishakha Gupta, Beaverton, OR (US);
Alain Kagi, Portland, OR (US); Philip
Lantz, Cornelius, OR (US); 67 ABSTRACT
Subramanya Dulloor, Santa Clara, CA
Us) Managing connected data, such as a graph data store,
(72) Tnventors: Vishakha Gupta, Beaverton, OR (US); includes a computing device with persistent memory and
Alain Kagi, Portfand, OR ([jS); Philip, volatile memory. The computing device stores a graph data
Lantz, Cornelius, OR (US); store with a plurality of nodes and edges in persistent
Subrz;manya Dl;llOOI‘ Sant’a Clara. CA memory. Each of the edges defines the relationship between
(US) ’ ’ at least two of the nodes. The nodes and edges may contain
tags and properties containing additional information. In
(21) Appl. No.: 14/866,941 response to a search request query, the computing device
) generates an iterator object stored in volatile memory with
(22) Filed: Sep. 26, 2015 a reference to one or more nodes and/or edges in the graph
L. . . data store. The split between volatile and persistent memory
Publication Classification allocation could be used for other objects, such as allocators
(51) Imt. ClL and transactions. Other embodiments are described and
GO6F 3/06 (2006.01) claimed.
g
=]
BEl|5
NODES EDGE SETS
EDGE LISTS /302 EDGES
et o
2 PERSON EDGELT |~ DESTINATION m
_bradjones@... EDGE T~ = SOuRGE
304 T DESTINATION |
T r TAG
=== sent=23/11...
T EGELST L JSOIRE |1 | | :
208 [PERSON EDGE +—n1n SOURCE
DESTINATION
\ | palen70@... 30 e
J—’ o= TAG RECEIVED-...
T o O N e L T S N T
OTOGELST | |] A6 GE fpp
Ht Bl a0g-/| BSHUEL_ - FSTRATTON} -
INVOICE PAY..” mesr - — T
[0G| M
IN EDGE LIST EDGE LIST Y
0 \\ 107 EDGE] SOURCE
206 [KEYWORD 3 (T3 [ESTINATION
__HONEY Jale G
—1TAG P \l
EDGELIST i~/ SOURCE L 18
{]N EDGE llSTT EDGE LA SOURCE
210 [KEVWORD LT DETINATION M ITJAEéﬂNATION
__[DHINQUENT EDGE T b :
DESTINATION
EDGE MM

Patent Application Publication = Mar. 30,2017 Sheet 1 of 5 US 2017/0090807 A1

100 COMPUTING DEVICE
e 102
PROCESSOR(S) I
104 | |
o S 106
SUBSYSTEM ON-DIE CACHES |/
114 1
_ EXTERNAL MEMORY 1/98
STORAGE CONTROLLER(S) ||
116 0
i
RS VOLATILE
— PERIPHERALS MEMORY | 1
118
' 112
1O NETWORK PERSISTENT J
ADAPTER MEMORY BB
FIG. 1
202 06
T T T T 204 e
- {0
y 212 ~ / S 214 /,, N
// Tag: person \ / Tag: email // Tag: keyword
/ Tag: sent/ keyword |
‘\ Property: address= Property: | Property: id=7.492 f’roperty: keyword=
\ brad.jones@live.com [gent= ~ \ Property: subject= . “money

53/12/2001 . invoice payment’
216 -~/

Property:
received=

200" / Tag: person /' Tag: keyword
Property: address=
\ palen70@hotmail.com

\
L

Property: keyword=
. "delinquent”’

AN

FIG. 2

Patent Application Publication = Mar. 30,2017 Sheet 2 of 5 US 2017/0090807 A1
Sla
=)
2Es
A
NODES EDGE SETS
1 EEEE LISTS 302 i EDGES
(O W .
OUTEDGELISTE | | T
207 [PERSON EDGE IST [~ DESTINATION - i
_[brodjones@... EDGE T =] SOURCE
- 1 DESTINATION
e r TAG
> ot N sent=23/12...
b OGENST J[S00RE 11 | |
208 [PERSON EDGE —n— SOURCE
DESTINATION
_[pelen70@... 30 e
J-'uu»_— TG RECEIVED=..
Woeelst P | | LDGELST {SOURGE g | | g5/
OUTEGELST |] JAG EDGE AR
204 [FWAL 308—/|EDGELIST (o R RATION 114
/91 TAG PVeN
EDGE
YINOICEPAY.." | | EDGELIST
TG
IN EDGE LIST f meErST [ro0URCE AL i
0 i a0 EDGE v SOURCE
206 |KEYWORD MM DESTINATION
__| MONEY sl TAG
= /1 P]
EDGE LIST SOURCE 18
IN EDGE LIST EDGE A S TS0UREE
0 [[V] DESTINATION
. W17 B
\ DESTINATION P |
EDGE I WV, Ve Wy

FIG. 3

Patent Application Publication = Mar. 30,2017 Sheet 3 of 5 US 2017/0090807 A1

- 400
402 COMPUTING SYSTEM
i
API
S 404 a 406
GRAPH DATA STORE
TRANSACTION MANAGEMENT
NODES STRING TABLE MODULE
412 418
EDGES PROPERTIES T 408
414 420
INDICES TRANSACTION LOG
416

— 410
{

ALLOCATOR MODULE

FIG. 4

ITERATOR OBJECT IN VOLATILE MEMORY

500 —.

R N

\ Lazy evaluation
/
\

/ /—next—b—next—ﬁ\ 508
/ | 504 ot
(502 N
< Y <

508 —._

NODE TABLE IN PERSISTENT MEMORY

FIG. 5

Patent Application Publication

Mar. 30,2017 Sheet 4 of 5

RECEIVE REQUEST TO ADD
NEW NODE?

Yes

v

ALLOCATE NEW NODE OBJECT OF
FIXED SIZE IN PERSISTENT MEMORY

606

SIZE OF PROPERTIES
AND/OR TAGS FIT WITHIN NODE
OBJECT?

Yes

v

608

STORE PROPERTIES AND/OR TAGS
ASSOCIATED WITH NODE IN FIXED
SIZE NODE OBJECT

616

610

No—p

ALLOCATE CHUNK IN
PERSISTENT MEMORY SIZED TO
ACCOMMODATE PROPERTIES
AND/OR TAGS THAT DO NOT FIT
INTO NODE OBJECT

A 4

612

STORE PORTION OF
PROPERTIES AND/OR TAGS
THAT FIT IN FIXED SIZE NODE
OBJECT

A 4

614

UPDATE ALLOCATION STATUS

FIG. 6

STORE REMAINDER OF
PROPERTIES AND/OR TAGS IN
CHUNK

US 2017/0090807 A1

Patent Application Publication = Mar. 30,2017 Sheet 5 of 5 US 2017/0090807 A1

702
. SEARCH REQUEST QUERY No—
RECEIVED?
Yes
704 y
EVALUATE SEARCH QUERY 700
A
\ 4
TRAVERSE GRAPH DATA STORE

SEARCHING FOR DATA RESPONSIVE
T TO QUERY

v

RETURN ITERATOR OBJECT IN
VOLATILE MEMORY CONTAINING A
708 | REFERENCE TO THE FIRST ITEM IN
—-| GRAPH DATA IN PERSISTENT
MEMORY THAT MATCHES THE QUERY

710

USER NEEDS ADDITIONAL
GRAPH DATA THAT SATISFIES
QUERY?

No:

No Yes

v

712

e FOLLOW NEXT POINTER OF
ITERATOR OBJECT TO FETCH NEXT
GRAPH DATA IN PERSISTENT
MEMORY

I 716

LAST POINTER? Yes—b(CLOSE ITERATOR OBJECT)

FIG. 7

US 2017/0090807 Al

TECHNOLOGIES FOR MANAGING
CONNECTED DATA ON PERSISTENT
MEMORY-BASED SYSTEMS

BACKGROUND

[0001] Queries for neighbors, friends-of-friends connec-
tions, paths between nodes or other interesting patterns have
grown tremendously important on today’s ever evolving
datasets. Graph-based databases (or data stores) have the
potential to bring the important ACID (Atomicity, Consis-
tency, Isolation, Durability) properties associated with trans-
actions to a data organization that treats relationships as a
first-class concept. For example, unknown or non-obvious
relationships between nodes can be identified.

[0002] New persistent memory technologies, such as
memristors and phase change memory, offer a byte-address-
able interface and memory access latencies that are compa-
rable to those of volatile memory, such as dynamic random-
access memory (DRAM). These persistent memory
technologies may have a profound influence on organized
data storage due to the availability of faster persistent
storage and larger main memories. However, none of the
existing graph-based databases support a completely in-
memory database model.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The concepts described herein are illustrated by
way of example and not by way of limitation in the accom-
panying figures. For simplicity and clarity of illustration,
elements illustrated in the figures are not necessarily drawn
to scale. Where considered appropriate, reference labels
have been repeated among the figures to indicate corre-
sponding or analogous elements.

[0004] FIG. 1 is a simplified block diagram of at least one
embodiment of a computing device for managing connected
data;

[0005] FIGS. 2 and 3 are a simplified block diagrams of an
illustrative graph data store that may be generated and/or
managed by the computing device of FIG. 1;

[0006] FIG. 4 is a simplified block diagram of at least one
embodiment of an environment of the computing device of
FIG. 1,

[0007] FIG. 5 is a simplified flow diagram of at least one
embodiment in which an interactor object includes pointers
to a graph data store;

[0008] FIG. 6 is a simplified flow diagram of at least one
embodiment of a method for generating and/or modifying a
graph data store that may be executed by the computing
device of FIGS. 1 and 4; and

[0009] FIG. 7 is a simplified flow diagram of at least one
embodiment of a method for responding to a search request
that may be executed by the computer system of FIGS. 1 and
4.

DETAILED DESCRIPTION OF THE DRAWINGS

[0010] While the concepts of the present disclosure are
susceptible to various modifications and alternative forms,
specific embodiments thereof have been shown by way of
example in the drawings and will be described herein in
detail. It should be understood, however, that there is no
intent to limit the concepts of the present disclosure to the
particular forms disclosed, but on the contrary, the intention

Mar. 30, 2017

is to cover all modifications, equivalents, and alternatives
consistent with the present disclosure and the appended
claims.

[0011] References in the specification to “one embodi-
ment,” “an embodiment,” “an illustrative embodiment,” etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may or may not necessarily include that par-
ticular feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same embodi-
ment. Further, when a particular feature, structure, or char-
acteristic is described in connection with an embodiment, it
is submitted that it is within the knowledge of one skilled in
the art to effect such feature, structure, or characteristic in
connection with other embodiments whether or not explic-
itly described. Additionally, it should be appreciated that
items included in a list in the form of “at least one A, B, and
C” can mean (A); (B); (C); (A and B); (A and C); (B and C);
or (A, B, and C). Similarly, items listed in the form of “at
least one of A, B, or C” can mean (A); (B); (C); (A and B);
(A and C); (B and C); or (A, B, and C).

[0012] The disclosed embodiments may be implemented,
in some cases, in hardware, firmware, software, or any
combination thereof. The disclosed embodiments may also
be implemented as instructions carried by or stored on a
transitory or non-transitory machine-readable (e.g., com-
puter-readable) storage medium, which may be read and
executed by one or more processors. A machine-readable
storage medium may be embodied as any storage device,
mechanism, or other physical structure for storing or trans-
mitting information in a form readable by a machine (e.g.,
a volatile or non-volatile memory, a media disc, or other
media device).

[0013] Inthe drawings, some structural or method features
may be shown in specific arrangements and/or orderings.
However, it should be appreciated that such specific arrange-
ments and/or orderings may not be required. Rather, in some
embodiments, such features may be arranged in a different
manner and/or order than shown in the illustrative figures.
Additionally, the inclusion of a structural or method feature
in a particular figure is not meant to imply that such feature
is required in all embodiments and, in some embodiments,
may not be included or may be combined with other
features.

[0014] Referring now to FIG. 1, an illustrative computing
device 100 for managing connected data, such as a graph
data store, includes at least one processor 102, an [/O
subsystem 104, at least one on-die cache 106, and a memory
controller 108 to control a volatile memory 110 and a
persistent memory 112. In use, as described below, an entire
graph data store is stored in the persistent memory 112. The
graph data store includes a plurality of nodes and edges that
define relationships between the nodes. In some embodi-
ments, the nodes and/or edges each includes a unique
identifier. The computing device 100 is configured to add,
delete, and/or read nodes and/or edges (and other data) in the
graph data store. The computing device 100 is also config-
ured to generate an iterator object in response to a search
request query. The iterator object includes pointers (or
references) to nodes and/or edges in the graph data store that
are responsive to the search request. The iterator object is
stored in the volatile memory 110 and accesses the graph
data store in the persistent memory based on the pointers of

US 2017/0090807 Al

the iterator object. The terms “pointers™ and “references” are
broadly intended to encompass any reference to a value in
memory.

[0015] The computing device 100 may be embodied as
any type of device capable of performing the functions
described herein. For example, the computing device 100
may be embodied as, without limitation, a computer, a
workstation, a server computer, a laptop computer, a note-
book computer, a tablet computer, a smartphone, a mobile
computing device, a desktop computer, a distributed com-
puting system, a multiprocessor system, a consumer elec-
tronic device, a smart appliance, and/or any other computing
device capable of executing software code segments. As
shown in FIG. 1, the illustrative computing device 100
includes the processor 102, the I/O subsystem 104, the
on-die cache 106, and the memory controller 108 to control
volatile memory 110 and persistent memory 112. Of course,
the computing device 100 may include other or additional
components, such as those commonly found in a worksta-
tion (e.g., various input/output devices), in other embodi-
ments. For example, the computing device 100 may include
an external storage 114, peripherals 116, and/or a network
adapter 118. Additionally, in some embodiments, one or
more of the illustrative components may be incorporated in,
or otherwise form a portion of, another component. For
example, the memory 110, 112 or portions thereof, may be
incorporated in the processor 102 in some embodiments.
[0016] The processor 102 may be embodied as any type of
processor capable of performing the functions described
herein. For example, the processor may be embodied as a
single or multi-core processor(s), digital signal processor,
microcontroller, or other processor or processing/controlling
circuit. The volatile memory 110 and persistent memory 112
may be embodied as any type of volatile memory and
persistent memory, respectively, capable of performing the
functions described herein. Volatile memory 110 contrasts
with persistent memory 112 in that the persistent memory
112 does not lose content when power is lost. In operation,
the volatile memory 110 and persistent member 112 may
store various data and software used during operation of the
computing device 100 such as operating systems, applica-
tions, programs, libraries, and drivers. The memory 110, 112
is communicatively coupled to the processor 102 via the
memory bus using memory control(s) 108, which may be
embodied as circuitry and/or components to facilitate input/
output operations with the processor 102, the memory 110,
112, and other components of the computing device 100.
[0017] The I/O subsystem 104 may be embodied as, or
otherwise include, memory controller hubs, input/output
control hubs, firmware devices, communication links (i.e.,
point-to-point links, bus links, wires, cables, light guides,
printed circuit board traces, etc.) and/or other components
and subsystems to facilitate the input/output operations. In
some embodiments, the I/O subsystem 104 may form a
portion of a system-on-a-chip (SoC) and be incorporated,
along with the processor 102, the memory 110, 112, and
other components of the computing device 100, on a single
integrated circuit chip.

[0018] An external storage device 114 may be coupled to
the processor 102 with the 1/O subsystem 104. The external
storage device 114 may be embodied as any type of device
or devices configured for short-term or long-term storage of
data such as, for example, memory devices and circuits,
memory cards, hard disk drives, solid-state drives, or other

Mar. 30, 2017

data storage devices. Unlike existing systems, however, one
or more embodiments contemplate that computing device
100 would not include any external storage 114 and that a
graph database and all other data needed by computing
device 100 would be stored on the persistent memory 112 on
the memory bus instead of the external storage 114.
[0019] The computing device 100 may also include
peripherals 116. The peripherals 116 may include any num-
ber of additional input/output devices, interface devices,
and/or other peripheral devices. By way of example only, the
peripheral 116 may include a display that could be embodied
as any type of display capable of displaying digital infor-
mation such as a liquid crystal display (LCD), a light
emitting diode (LED), a plasma display, a cathode ray tube
(CRT), or other type of display device.

[0020] The computing device 100 illustratively includes a
network adapter 118, which may be embodied as any
communication circuit, device, or collection thereof, capable
of enabling communications between the computing device
100 and other remote devices over a computer network (not
shown). The network adapter 118 may be configured to use
any one or more communication technology (e.g., wired or
wireless communications) and associated protocols (e.g.,
Ethernet, Bluetooth®, Wi-Fi®, WiMAX, etc.) to effect such
communication.

[0021] Referring to FIG. 2, an illustrative embodiment is
shown with an example graph data store 200, which may be
stored in persistent memory 112. The graph data store 200
includes a plurality of nodes (also called vertices) that are
connected with a plurality of edges that establish relation-
ships between the nodes. The graph data store 200 is shown
for purposes of example only. Although the graph data store
200 shown includes five nodes and four edges for purposes
of example, one skilled in the art should understand that
more or less nodes and/or edges could be used depending on
the data set. In some circumstances, for example, millions of
nodes and/or edges (or more) could be provided in a graph
data store.

[0022] As shown, the example graph data store 200
includes a first node 202, a second node 204, a third node
206, a fourth node 208, and a fifth node 210 and a first edge
212, a second edge 214, a third edge 216, and a fourth edge
218. Each node and edge of the graph data store 200 has an
associated tag that can be used for classification. For
example, the classification could identify entity types, docu-
ment types, or other attribute types of a node and/or edge. In
the example shown, the first and fourth nodes 202, 208 are
associated with the tag “person,” the second node 204 with
the tag “email,” and the third and fifth nodes 206, 210 with
the tag “keyword.” Likewise, the first edge 212 is associated
with the tag “sent,” the second and fourth edges 214, 218
with the tag “keyword,” and the third edge 208 with the tag
“person.” In cases where usage does not require a tag, a
default tag could be used. In some embodiments, the tag may
be a short string.

[0023] In addition to and distinct from tags, one or more
properties may be associated with the nodes and/or edges of
the graph data store 200. A property is illustratively embod-
ied as a key-value pair, in which the key is a short string and
the value is one of a plurality of pre-defined types. By way
of example only, the predefined property types may include
Booleans, integers, floats, strings, times, and/or blobs (i.e.,
arbitrary strings of bits). In some embodiments, all pre-
defined types, with the exception of blobs, are orderable. In

US 2017/0090807 Al

the example shown, the first node 202 is associated with the
property key “address” and has a value of “brad.jones@live.
com.” As shown, the second node 204 is associated with two
properties. The first property has a key of “id” and a value
of “7482” and a second property key of “subject” and a
value of “invoice payment.” Likewise, the edges of the
graph data store 200 may include one or more properties.
For example, the first edge 212 includes a property key of
“sent” and a value of “23/12/2001.” By way of another
example, the third edge 216 includes the property key
“received” and a value of “23/12/2001.”

[0024] FIG. 3 illustratively shows an example layout of
the graph data store 200 in persistent memory 112. In this
example, the tags and properties associated with nodes 202,
204, 206, 208 are stored in node objects within the node
table. The nodes 202, 204, 206, 208 include an in and/or out
edge list that points to an edge list 300; however, in some
embodiments, the edges could be undirected. As shown, for
example, node 202 includes an out edge list pointer to an
edge list 302 associated with edge 212. By way of another
example, node 208 includes an in edge list pointer to an edge
list 304 associated with 216. As shown, node 204 includes
both an in edge list pointer and an out edge list pointer. The
in edge list pointer points to an edge list 306 associated with
edge 212. The out edge list point points to an edge list 308
associated with edge 216. Node 206, in the example shown,
includes an in edge list pointer that points to an edge list 310
associated with edge 214. Additionally, node 210 includes
an in edge list pointer that points to an edge list 312
associated with edge 218. The edge lists 302, 304, 306, 308,
310, 312 include pointers to edge tags. In the example
shown, edge lists 310, 312 include a pointer to edge tag
“keyword.” Edge lists 304, 308 include pointers to edge tag
“to.” Additionally, edge lists 302, 306 include pointers to the
edge tag “sent.” In some embodiments, an intermediate data
structure could be used called a tag-sorted edgeset 314 to
speed up neighbor lookups in particular and graph traversal
in general. Tag-sorted edgesets collate edge information
with identical tags to allow efficient iteration over related
edges. In addition, the edge-sets may contain source/desti-
nation node information to allow efficient accessing of
neighbor nodes.

[0025] Referring now to FIG. 4, in the illustrative embodi-
ment, the computing device 100 establishes an environment
400 during operation. The illustrative environment 400
includes an API 402, a graph data store 404, a transaction
management module 406, a transaction log 408, and an
allocator module 410. The graph data store 404 illustratively
includes a plurality of nodes 412, a plurality of edges 414,
tag-based and/or property-based indices 416, a string table
418, and a plurality of properties 420 associated with the
nodes 412 and/or edges 414. The various modules of the
environment 400 may be embodied as hardware, firmware,
software, or a combination thereof. As such, in some
embodiments, one or more of the modules of the environ-
ment 400 may be embodied as circuitry or collection of
electrical devices (e.g., transaction management circuitry
406 and/or allocator circuitry 410). It should be appreciated
that, in such embodiments, one or more of the transaction
management circuitry 406 and/or the allocator circuitry 410
may form a portion of one or more of the processor 102, the
1/0O subsystem 104, the memory 110, 112, the external
storage 114, the network adapter 118, and/or other compo-
nents of the computing device 100. Additionally, in some

Mar. 30, 2017

embodiments, one or more of the illustrative modules may
form a portion of another module and/or one or more of the
illustrative modules may be independent of one another.
[0026] As shown, the environment 400 includes an API
402 through which programs may interact with the graph
data store 404. For example, the API 402 may be used as an
interface by a program to add (or create), read, remove
(delete) and/or modify the nodes 412, edges 414, indices
416, string table 418 and/or properties 420 of the graph data
store 400. The transaction management module 406 man-
ages transactions with the graph data store 400 and updates
the transaction log 408 so that the state of the data store is
consistent at transaction boundaries and can be recovered if
a failure occurs within a transaction.

[0027] The allocator module 410 is configured to manage
allocations or partitions in the persistent memory 112 for the
various entities (e.g., nodes, edges, properties). The allocator
module 410 chooses the data structure sizes and layout to be
cache-efficient, organizes data and logs to be streaming and
prefetch friendly, and avoids unnecessary writes to persis-
tent memory 112 because the write bandwidth is lower than
that of volatile memory 110. In some embodiments, the
allocator module 410 stores nodes 408 and edges 410 in one
or more tables with fixed-size objects. To maximize storage
utilization inside each node or edge element, the properties
of these entities are stored inline in a best-fit manner. For
example, the properties of entities could be stored in-line to
maximize storage. For properties that exceed the amount of
space available within a node or edge object, the allocator
module 410 allocates separate chunks that are also filled in
a best-fit manner. Despite the space-efficient layout, these
properties are accessible directly, without the need to “dese-
rialize” them into an accessible format, as is the case with
other compact data storage options or disk-based storage
options.

[0028] Based on current projections, the persistent
memory 112 will be slower than volatile memory 110 for
read and write, and will have limited durability, meaning the
probability of failure increases after some large number of
writes. In one embodiment, the data structures, such as
iterator objects, allocator objects, and transaction objects,
can be split between volatile memory 110 and persistent
memory 112 to optimize wear and access times. For
example, the allocator module 410 could include statistics
and the actual persistent memory areas that it manages.
Since the statistics are updated quite frequently with each
allocation/de-allocation and also since they are primarily
used internally rather than part of the user data, this data can
be stored in volatile memory 110 and perhaps a checkpoint
to this data in the allocator header could be stored in
persistent memory 112 if required.

[0029] In some embodiments, the API 402 provides an
interface through which the graph data store 404 can be
searched. In the illustrative embodiment, the API 402 is
configured to return an iterator object in response to a search
request on the graph data store 404. An illustrative iterator
object 500 is shown in FIG. 5. The iterator object 500
includes a reference to data in the graph data store 404. For
example, the iterator object 500 could include a first pointer
502 that points to the first node in the graph data store 404
that matches the search query. If the user requests additional
data that satisfies the query, the API 402 could be used to
advance the iterator object 500 to the next node matching the
query. As shown, a second pointer 504 illustrates the iterator

US 2017/0090807 Al

object 500 having been advanced by the API 402 to the next
pointer, which points to the next node matching the query. A
third pointer 506 illustrates the iterator object 500 having
been advanced, yet again, to the next node matching the
query. This process would continue with the iterator object
500 advancing to the next pointer as the user requests
additional matches in the graph data store 404 using the API
402. The iterator object 500 is stored in volatile memory 110
and maintains its volatile state, such as the next pointer, for
speed of access, but points to the actual graph data (such as
nodes or properties) of the graph data store 404 in persistent
memory 112, which is accessed as the iterator object 500
progresses. Although FIG. 5 illustratively shows pointers
502 of the iterator object 500 pointing to data in a node table
508, the pointers could point to any data in the graph data
store 404 in other embodiments. As shown, a program
searching the graph data store 404 through the API 402, will
be returned an iterator object 500 that can be examined by
the program one element at a time (next pointer to next
pointer). In that sense, the queries are evaluated lazily and
follow the “next” pointers only when requested by the user
causing a data fetch. Since the entire graph data store 404 is
stored in directly-accessible persistent memory 112, serial-
izing and de-serializing data can be avoided, unlike existing
graph stores, which use disks for making data persistent, and
managed languages that do not provide a way to access data
from buffer caches without creating temporary objects that
reside in memory.

[0030] Referring now to FIG. 6, in use, the computing
device 100 may execute a method 600 to create a new entity,
such as a node and/or edge in the graph data store 404.
Although the method 600 is directed to the creation of a new
node, the method 600 may also be used to create, delete
and/or update other entities in the graph data store 404. In
the example shown, the node being created is associated
with properties; however, nodes and edges need not neces-
sarily be associated with properties and/or tags. In the
example embodiment shown, the method 600 begins with
block 602 in which the computing device 100 determines
whether a request has been received, such as through the API
402, to create a new node. If a new request is received, the
method 600 advances to block 604 in which the computing
device 100 creates a new node object of a fixed size in
persistent memory 112. Subsequently, in block 606, the
computing device 100 evaluates the size of the properties
and/or tags (and any other data) associated with the new
node to determine whether this data will fit within the fixed
size of the node object. If the size of the properties and/or
tags associated with the new node will fit within the new
node object, the method 600 advances to block 608 in which
the properties and/or tags are stored within the new node
object. Alternatively, if the size of the properties and/or tags
associated with the new node exceeds the size of the node
object, the method 600 advances to block 610 in which the
computing device 100 allocates a chunk in persistent
memory. Subsequently, in block 612, the computing device
100 stores the portions of the properties and/or tags that will
fit in the fixed sized node object. Additionally, in block 614,
the computing device 100 stores the remainder of properties
and/or tags in the allocated chunk of persistent memory. The
method 600 will next advance to block 616 in which the
allocation status is updated since the operation was com-
pleted successtully. This is consistent with ACID principles

Mar. 30, 2017

since a failure would not result in inconsistent data, but
would be reverted without an update to the allocation status.
[0031] Referring now to FIG. 7, in use, the computing
device 100 may also execute a method 700 for performing
a search on the graph data store 404. The method 700 begins
with block 702 in which the computing device 100 deter-
mines whether a search query has been received. The search
query may be received via the API 402 from a requesting
computing device, service, program, and/or other source. If
a search request query has been received, the method 700
advances to block 704 in which the computing device 100
evaluates the search query. For example, the computing
device 100 may parse the search query to prepare for
searching of the graph data store 404. Subsequently, in block
706, the computing device 100 traverses the graph data store
404 to find data responsive to the search query. In block 708,
in response to locating data responsive to the search query,
the computing device 100 generates and returns an iterator
object stored in volatile memory 110 that includes a refer-
ence to the first item in the graph data store 404 in persistent
memory 112 that matches the query. As such, in block 710,
the computing device 100 may receive a user request for
additional graph data that matches the query. If the user
requests this additional graph data, the method 700 advances
to block 712 in which the computing device 100 fetches the
graph data associated with the next reference in the iterator
object. Subsequently, in block 714, the computing device
100 determines whether the last data responsive to the query
has been reached. If not, the method loops back to block 710
in which the computing device 100 determines whether
another user request for graph data associated with the next
pointer in the iterator object has been received. If, however,
the last data responsive to the query has been reached, the
method 700 advances to block 716.

[0032] It should be appreciated that, in some embodi-
ments, any one or more of the methods described herein may
be embodied as various instructions stored on a computer-
readable media, which may be executed by the processor
102, a peripheral device 116, and/or other components of the
computing device 100 to cause the computing device 100 to
perform the corresponding method. The computer-readable
media may be embodied as any type of media capable of
being read by the computing device 100 including, but not
limited to, the memory 110, 112, the external storage 114, a
local memory or cache 106 of the processor 102, other
memory or data storage devices of the computing device
100, portable media readable by a peripheral device 116 of
the computing device 100, and/or other media.

EXAMPLES

[0033] Illustrative examples of the technologies disclosed
herein are provided below. An embodiment of the technolo-
gies may include any one or more, and any combination of,
the examples described below.

[0034] Example 1 includes computing device comprising
at least one processor; at least one memory controller to
access a volatile memory device and a persistent memory
device on a memory bus, the persistent memory device
having stored therein a graph data store including a plurality
of'nodes relationally arranged with a plurality of edges, each
of the plurality of edges defining a relationship between at
least two of the plurality of nodes, the volatile memory
device having stored therein a plurality of instructions that,
when executed by the processor, causes the processor to in

US 2017/0090807 Al

response to an operation on the graph data store, partition
data between the volatile memory device and the persistent
memory device to minimize writes on the persistent memory
device.

[0035] Example 2 includes the subject matter of Example
1, and wherein at least a portion of the nodes are associated
with at least one tag representing a classification of the node.
[0036] Example 3 includes the subject matter of any of
Example 1 or 2, and wherein at least a portion of the edges
are associated with at least one tag representing a classifi-
cation of the edge.

[0037] Example 4 includes the subject matter of any of
Examples 1-3, and wherein the graph data store includes a
tag sorted edge set to collate edges and associated nodes
with identical tags.

[0038] Example 5 includes the subject matter of any of
Examples 1-4, and wherein at least a portion of the nodes are
associated with at least one property in the form of a
key-value pair.

[0039] Example 6 includes the subject matter of any of
Examples 1-5, and wherein at least a portion of the edges are
associated with at least one property in the form of a
key-value pair.

[0040] Example 7 includes the subject matter of any of
Examples 1-6, and wherein the plurality of instructions
further cause the processor to organize the nodes and/or
edges of the graph data store in the persistent memory device
as fixed size objects.

[0041] Example 8 includes the subject matter of any of
Examples 1-7, and wherein the plurality of instructions
further cause the processor to store at least one property
and/or tag associated with a node and/or edge in-line in the
fixed-size object representing the node and/or edge.

[0042] Example 9 includes the subject matter of any of
Examples 1-8, and wherein the plurality of instructions
further cause the processor to allocate, in response to the
property and/or tag associated with the node and/or edge
exceeding the size of the fixed-size object, a chunk of the
persistent memory device separate from the fixed-size
object.

[0043] Example 10 includes the subject matter of any of
Examples 1-9, and wherein the plurality of instructions
further cause the processor, in response to a search request
query, to generate an iterator object stored on the volatile
memory device that includes a reference to one or more
nodes and/or edges in the graph data store on the persistent
memory device.

[0044] Example 11 includes the subject matter of any of
Examples 1-10, and wherein the plurality of instructions
further cause the processor to advance the iterator object to
directly access nodes and/or edges of the graph data store in
response to a request for an additional match to the search
query.

[0045] Example 12 includes the subject matter of any of
Examples 1-11, and wherein the processor stores an alloca-
tor on the volatile memory device, the allocator comprising
one or more memory addresses of the graph data store in the
persistent memory device.

[0046] Example 13 includes the subject matter of any of
Examples 1-12, and wherein the processor stores a portion
of a transaction object on volatile memory and a portion of
the transaction object on persistent memory such that writes
to persistent memory are minimized while still maintaining

Mar. 30, 2017

the atomicity, consistency, isolation, durability (“ACID”)
properties of the graph data store.

[0047] Example 14 includes a method for managing a
graph data store on a persistent memory device. The method
includes storing, on a persistent memory device, a graph
data store comprising a plurality of nodes and a plurality of
edges, each of the plurality of edges defining a relationship
between at least two of the plurality of nodes; managing a
operation on the graph data store by storing a first portion of
resulting data on a volatile memory device and a second
portion of the resulting data on the persistent memory device
to minimize writes on the persistent memory device.
[0048] Example 15 includes the subject matter of Example
14, further including allocating, by a computing device, a
fixed size object on a persistent memory device to each of
the plurality of nodes and edges.

[0049] Example 16 includes the subject matter of any of
Example 14 or 15, and further including evaluating, by a
computing device, a search request query on the graph data
store; and generating, by a computing device, an iterator
object including a reference to one or more nodes and/or
edges in the graph data store in response to the search
request query, wherein the iterator object is stored on a
volatile memory device

[0050] Example 17 includes the subject matter of any of
Examples 14-16, and wherein the computing device man-
ages the operation by partitioning the first portion and the
second portion of resulting data to minimize writes to the
persistent memory device.

[0051] Example 18 includes the subject matter of any of
Examples 14-17, and further including storing at least one
property and/or tag associated with a node and/or edge
in-line in a fixed-size object.

[0052] Example 19 includes the subject matter of any of
Examples 14-18, and wherein responsive to the property
and/or tag associated with the node and/or edge exceeding
the size of the fixed-size object, allocating a chunk of the
persistent memory device separate from the fixed-size
object.

[0053] Example 20 includes the subject matter of any of
Examples 14-19, and wherein responsive to a search request
query on the graph data store, further comprising storing an
iterator that is an output to the search request query in a
volatile memory device, the iterator including a reference to
one or more nodes and/or edges in the graph data store on
the persistent memory device.

[0054] Example 21 includes the subject matter of any of
Examples 14-20, and further including advancing the itera-
tor to directly access nodes and/or edges of the graph data
store in response to a request for an additional match to the
search query.

[0055] Example 22 includes the subject matter of any of
Examples 14-21, and wherein at least a portion of the nodes
are associated with at least one tag representing a classifi-
cation of the node.

[0056] Example 23 includes the subject matter of any of
Examples 14-22, and wherein at least a portion of the edges
are associated with at least one tag representing a classifi-
cation of the edge.

[0057] Example 24 includes the subject matter of any of
Examples 14-23, and wherein the graph data store includes
a tag sorted edge set to collate edges with identical tags to
allow efficient iteration over related edges.

US 2017/0090807 Al

[0058] Example 25 includes the subject matter of any of
Examples 14-24, and, wherein at least a portion of the nodes
are associated with at least one property in the form of a
key-value pair.

[0059] Example 26 includes the subject matter of any of
Examples 14-25, and wherein at least a portion of the edges
are associated with at least one property in the form of a
key-value pair.

[0060] Example 27 includes one or more machine read-
able storage media comprising a plurality of instructions
stored thereon that in response to being executed result in a
computing device performing the method of any of
Examples 14-26.

[0061] Example 28 includes a computing device compris-
ing means for storing, on a persistent memory device, a
graph data store comprising a plurality of nodes and a
plurality of edges, each of the plurality of edges defining a
relationship between at least two of the plurality of nodes;
and means for managing a operation on the graph data store
by storing a first portion of resulting data on a volatile
memory device and a second portion of the resulting data on
the persistent memory device to minimize writes on the
persistent memory device.

[0062] Example 29 includes the subject matter of Example
28, and further including means for allocating a fixed size
object on a persistent memory device to each of the plurality
of nodes and edges.

[0063] Example 30 includes the subject matter of
Examples 28 or 29, and further including means for evalu-
ating a search request query on the graph data store; and
means for generating an iterator object including a reference
to one or more nodes and/or edges in the graph data store in
response to the search request query, wherein the iterator
object is stored on a volatile memory device

[0064] Example 31 includes the subject matter of any of
Examples 28-30, and further including means for managing
the operation by partitioning the first portion and the second
portion of resulting data to minimize writes to the persistent
memory device.

[0065] Example 32 includes the subject matter of any of
Examples 28-31, and further including means for storing at
least one property and/or tag associated with a node and/or
edge in-line in a fixed-size object.

[0066] Example 33 includes the subject matter of any of
Examples 28-32, and further including means for allocating,
responsive to the property and/or tag associated with the
node and/or edge exceeding the size of the fixed-size object,
a chunk of the persistent memory device separate from the
fixed-size object.

[0067] Example 34 includes the subject matter of any of
Examples 28-33, and further including means for storing,
responsive to a search request query on the graph data store,
an iterator that is an output to the search request query in a
volatile memory device, the iterator including a reference to
one or more nodes and/or edges in the graph data store on
the persistent memory device.

[0068] Example 35 includes the subject matter of any of
Examples 28-34, and further including means for advancing
the iterator to directly access nodes and/or edges of the graph
data store in response to a request for an additional match to
the search query.

Mar. 30, 2017

[0069] Example 36 includes the subject matter of any of
Examples 28-35, and wherein at least a portion of the nodes
are associated with at least one tag representing a classifi-
cation of the node.

[0070] Example 37 includes the subject matter of any of
Examples 28-36, and wherein at least a portion of the edges
are associated with at least one tag representing a classifi-
cation of the edge.

[0071] Example 38 includes the subject matter of any of
Examples 28-37, and wherein the graph data store includes
a tag sorted edge set to collate edges with identical tags to
allow efficient iteration over related edges.

[0072] Example 39 includes the subject matter of any of
Examples 28-38, and wherein at least a portion of the nodes
are associated with at least one property in the form of a
key-value pair.

[0073] Example 40 includes the subject matter of any of
Examples 28-39, and wherein at least a portion of the edges
are associated with at least one property in the form of a
key-value pair.

1. A computing device comprising:

at least one processor;

at least one memory controller to access a volatile

memory device and a persistent memory device on a
memory bus, the persistent memory device having
stored therein a graph data store including a plurality of
nodes relationally arranged with a plurality of edges,
each of the plurality of edges defining a relationship
between at least two of the plurality of nodes, the
volatile memory device having stored therein a plural-
ity of instructions that, when executed by the processor,
causes the processor to:

in response to an operation on the graph data store,

partition data between the volatile memory device and
the persistent memory device to minimize writes on the
persistent memory device.

2. The computing device of claim 1, wherein at least a
portion of the nodes are associated with at least one tag
representing a classification of the node.

3. The computing device of claim 1, wherein at least a
portion of the edges are associated with at least one tag
representing a classification of the edge.

4. The computing device of claim 3, wherein the graph
data store includes a tag sorted edge set to collate edges and
associated nodes with identical tags.

5. The computing device of claim 1, wherein at least a
portion of the nodes are associated with at least one property
in the form of a key-value pair.

6. The computing device of claim 1, wherein at least a
portion of the edges are associated with at least one property
in the form of a key-value pair.

7. The computing device of claim 1, wherein the plurality
of instructions further cause the processor to organize the
nodes and/or edges of the graph data store in the persistent
memory device as fixed size objects.

8. The computing device of claim 7, wherein the plurality
of instructions further cause the processor to store at least
one property and/or tag associated with a node and/or edge
in-line in the fixed-size object representing the node and/or
edge.

9. The computing device of claim 8, wherein the plurality
of instructions further cause the processor to allocate, in
response to the property and/or tag associated with the node

US 2017/0090807 Al

and/or edge exceeding the size of the fixed-size object, a
chunk of the persistent memory device separate from the
fixed-size object.

10. One or more machine readable storage media com-
prising a plurality of instructions stored thereon that, when
executed, cause a computing device to:

store, on a persistent memory device, a graph data store

comprising a plurality of nodes and a plurality of edges,
each of the plurality of edges defining a relationship
between at least two of the plurality of nodes;
manage an operation on the graph data store by storing a
first portion of resulting data on a volatile memory
device and a second portion of the resulting data on the
persistent memory device to minimize writes on the
persistent memory device.
11. The one or more machine readable storage media of
claim 10, wherein the plurality of instructions further cause
the computing device to manage the operation by partition-
ing the first portion and the second portion of resulting data
to minimize writes to the persistent memory device.
12. The one or more machine readable storage media of
claim 10, wherein the plurality of instructions further cause
the computing device to:
storie at least one property and/or tag associated with a
node and/or edge in-line in a fixed-size object; and

allocate, responsive to the property and/or tag associated
with the node and/or edge exceeding the size of the
fixed-size object, a chunk of the persistent memory
device separate from the fixed-size object.

13. The one or more machine readable storage media of
claim 10, wherein at least a portion of the nodes are
associated with at least one tag representing a classification
of the node.

14. The one or more machine readable storage media of
claim 10, wherein at least a portion of the edges are
associated with at least one tag representing a classification
of the edge.

15. The one or more machine readable storage media of
claim 14, wherein the graph data store includes a tag sorted
edge set to collate edges with identical tags to allow efficient
iteration over related edges.

16. The one or more machine readable storage media of
claim 10, wherein at least a portion of the nodes are
associated with at least one property in the form of a
key-value pair.

Mar. 30, 2017

17. The one or more machine readable storage media of
claim 10, wherein at least a portion of the edges are
associated with at least one property in the form of a
key-value pair.
18. A method for managing a graph data store on a
persistent memory device, the method comprising:
storing, on a persistent memory device, a graph data store
comprising a plurality of nodes and a plurality of edges,
each of the plurality of edges defining a relationship
between at least two of the plurality of nodes; and

managing a operation on the graph data store by storing
a first portion of resulting data on a volatile memory
device and a second portion of the resulting data on the
persistent memory device to minimize writes on the
persistent memory device.

19. The method of claim 18, wherein the computing
device manages the operation by partitioning the first por-
tion and the second portion of resulting data to minimize
writes to the persistent memory device.

20. The method of claim 18, further comprising:

storing at least one property and/or tag associated with a
node and/or edge in-line in a fixed-size object; and
allocating, responsive to the property and/or tag associ-
ated with the node and/or edge exceeding the size of the
fixed-size object, a chunk of the persistent memory
device separate from the fixed-size object.
21. The method of claim 18, wherein at least a portion of
the nodes are associated with at least one tag representing a
classification of the node.

22. The method of claim 18, wherein at least a portion of
the edges are associated with at least one tag representing a
classification of the edge.

23. The method of claim 22, wherein the graph data store
includes a tag sorted edge set to collate edges with identical
tags to allow efficient iteration over related edges.

24. The method of claim 18, wherein at least a portion of
the nodes are associated with at least one property in the
form of a key-value pair.

25. The method of claim 18, wherein at least a portion of
the edges are associated with at least one property in the
form of a key-value pair.

#* #* #* #* #*

