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(57) Abstract

 Transform techniques for transforming numerical signal data into a transform domain and subsequent reconstruc-
tion, for purposes such as compression (bandwidth reduction) for communication or storage. The subject transforms in-
volve several defined basis functions which operate on input data points. The basis functions of the invention are essential-
ly weighting functions such that terms and coefficients (in the transform domain) calculated in accordance with the basis
functions are each a particularly weighted average of the values of a selected consecutive plurality of input data points. An
important basis function is a triangular weighting function. Successive terms and coefficients generated in accordance with
each of the defined basis functions are calculated from successive consecutive pluralities of the input data points, with
overlap of input data points depending on the particular basis function. The transforms are organized into a plurality of
bands or levels N. Band N is the highest, and Band 1 the lowest. The bands or levels are significant for two different rea-
sons: (1) Coefficients are output from the transform process for each band; and (2) In the preferred fast calculation meth-
ods the bands represent successive stages of calculation. For forward transformation, calculation begins with the highest
band, Band N, and works down. For inverse transformation (reconstruction), calculation begins with the lowest band,
Band 1 and works up. Results of processing in each band are then employed as inputs for processing in the next lower
band until the last band is reached. Many of the calculated coefficients have zero values, and there is also disclosed an effi-
cient coding technique which permits the iransmission of only the non-zero coefficients.
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TRIANGLE AND PYRAMID SIGNAL
TRANSFORMS AND APPARATUS

BACKGROUND OF THE INVENTION

 The present invention relates to methods and
apparatus for transforming numerical signal data into a
transform domain where certain processing steps can be taken,
and for subsequent reconstruction (inverse transform) into the
original domain to yield a replica of the original data.
Frequently the da;a is video data, and the signals are video
signals. .
Signal transforms have been employed to obtain a
variety of beneficial results. Important uses in the past have
been compression for transmission or storage (also referred to
as bandwidth reduction), enhancement for restoration in some
sense, detection of some certain phenomenon (e.g., motion
detection, edge detection, or center-of-gravity detection),
tracking of some certain phenomenon, noise reduction or
stripping, and image analysis in general. Prior transforms
include the Fourier (with‘attendant Sine and Cosine
transforms), the Haar, the Hadamard, the Slant, block Fourier
and Cosine transforms, block Hadamard transform, and the
Karhunen-Loeve or Hotelling transform.

By the present invention new transforms are
provided, herein termed the Triangle Transform (for one
dimension) and the Pyramid’Transform (for two dimensions). The
subject Triangle and Pyramid transforms herein disclosed are
intended for the purposes briefly identified above, and possess
several desirable and useful characteristics individually and

in combination not possessed by other tramsforms. These

‘Triangle and Pyramid transforms are discussed largely as they

relate to one- and two-dimensional signal compression for

transmission or storage.
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BRIEF DESCRIPTiON OF THE DRAWINGS

While the novel features of the invention are set
forth with particularity in the appended claims, the invention,
both as to organization and content, will be better understood
and appreciated, along with other objects and features thereof,
from the following detailed description taken in conjunction
with the drawings, in which:

FIG. 1 is a generalized block diagram representation
of the coding (forward transform) and subsequent decoding
(inverse transform Or'reconstruction) of a signalj;

FIG. 2A illustrates the weighting envelope of a
single B-function in accordance with the invention; i

FIG. 2B illustrates the manner in which successive
B-function terms overlap;

FIG. 2C illustrates a B-function weighting envelope
for another case in accordance with the invention;

FIG. 3 illustrates the manner in which B-function
terms are successively derived in a fast calculation method in
accordance with the invention; )

FIG. 4A shows the weighting envelope shape for a
Band N D-function coefficient;

' FIG. 4B shows the weighting envelope shape for a
Band N-1 D~function coefficient;
.FIG. 5A illustrates the weighting envelope shape for
a Band N S~function weighting envélope in accordance with the
invention; . .

FIG. 5B illustrates the envelope shape of a Band N-1
S-function weighting envelope in accordance with the
invention;

FIG. 6 illustrates the weighting envelope shape of a
Band N SM-function in accordance Wiﬁh the invention;

FIG. 7 illustrates the envelope shape for a Band N

SN-function in accordance with the invention;
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FIG. 8A is a diagram showing one form of transform
organization wherein two D-function coefficients are generated
for each four input samples;

FIG. 8B illustrates another organization in accor-
dance with the invention wherein one D~function coefficient
and one S-function coefficient in Band N is employed for every
four input samples;

FIG. 8C illustrates overlapping envelopes for
B-function terms in accordance with the invention;

FIG. 9 is a signal flow diagram for a signal
decimation process for the forward triangle transformation as
implemented within one processing block; ‘

FIG. 10A illustrates overlapping envelopes for
multiple D- and SM-functions in Band N;

FIG. 10B shows the alignment of overlapping
envelopes of triangular D-functions in Band N-1, together with

D- and SN-functions;
FIG. 11 illustrates connections to a single

decimator block;
FIG. 12 illustrates how the FIG. 11 decimator blocks

may be interconnected;

FIG. 13 illustrates how a single decimator block,
such as that of FIG. 11, may be employed in combination with a
memory to allow the same processing block to perform repeated
operations in successive stages of processing;

FIG. 14 shows the weighting envelope shape of an
H-function in accordance with the invention;

FIG. 15 shows the weighting envelope shape of an
I~function in accordance with the invention;

FIG. 16 is a signal flow diagram of a forward
transform including calculations for the H and L functions;

FIG. 17 is a flow chart illustrating eight princ1pa1
processing steps for a two-dimensional inverse transform

(reconstruction);
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FIG. 18 is a diagram illustrating the map coding
process for two-dimensional processing;

FIGS. 19A, 19B, 19C, 19D and 19E are diagrams
illustrating transform treatment for five separate edge cases;

FIG. 20 is a block diagram of a forward transfofmer
in accordance with a specific embodiment of the invention;

FIGS. 21A&B, 22A&B, and 23A&B are data flow diagrams
for various modes of the FIG. 20 processor;

FIGS. 24A, 24B, 24C and 24D illustrate individual
processors of an overall two-dimensional reconstruction
processor in accordance with the invention;

FIGS. 25 and 26 are data flow diagrams for two modes
of operation of the'processor depicted in FIG. 24A;

, FIGS. 27A&B, 28 and 29 are data flow diagrams for
three different modes of operation of the FIG. 24B processor;

FIGS. 30, 31, and 32 are data flow diagrams for
three modes of operation of the FIG. 24C processor;

FIGS. 33A&B, 34A&B, and 35 are data flow diagrams
for three different modes of operation of the FIG. 24D
Processor;

FIG. 36 is a block diagram of apparatus for
advantageous map coding of coefficients resulting from
transformatlon of color images by means of an "OR“ technique;

FIG. 37 is a block diagram of apparatus for
advanteous map coding of coefficients resulting from
transformations of color images by means of a Monochrome
Signaling technique; and

FIG. 38 is a block diagram of apparatus for reducing
the resolution of color image transforms in an acceptable

mannere.

COMPARISON OF THE SUBJECT TRIANGLE AND PYRAMID
TRANSFORMS WITH PRIOR ART TRANSFORMS

1t is believed that the subject transforms will be

better appreciated in view of the following general comparison
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with various prior art transforms. The comparison below is
with reference to the accompanying FIG. 1, which is a block
diagram representation of the coding and subsequent decoding of
a signal in the context of a communication system, or a storage
and retrieval system.

In FIG. 1, the input signal, be it one- or
multi-dimensional, is sampled, digitized and transferred to a
forward transform device 32, where a reversible transformation
process'is performed on it. The object of the operation is to
create a new representation of the signal such that the
resulting elements are more independent of each other. As
such, many of the new elements tend to represent change in the
input signal amplitude and are close to or equal to zero in the
neighborhoods of little signal amplitude change. The new
transformed elements around zero value represent redundancies
in the original signal. For practical signals arising from
conventional acoustic or image sources, a high degree of this
redundancy usually exists..

Following the forward transform device 32 is a
quantizer 34 which groups elements of the transformed signals
into ; smaller number of discrete levels. Elements from the
transform device 32 having nearly equal amplitudes are given
the same value by the quantizer 34. Quantizing is a
non-reversible process, and is performed to reduce the amount
of representation required by the transformed signal elements.
This redﬁction process can be carried only as far as the re-
sulting distortion of the reconstructed signal can be toler-—
ated. The degree of coarseness of the quantization which can
be performed for a given acceptable output signal is a measure
of the utility of the particular transformation process.

Usually, a coefficient coder 36 is provided
following the quantizer 34 to reduce the required
representation of the elements issuing from the quantizer 36

still further. Advantage may be taken of two phenomena. The
first is that the amplitude distribution of the coefficient
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elements coming from the quantizer 34 is very peaked around
zero amplitude and decays quite rapidly for larger amplitudes.

For this type of distribution it is said that the signal

1Y

entropy, expressed as the average number of bits required to
represent anramplitude, is less than the number of bits
representing the coefficients before coding. This is a useful _
situation which results from many transformation processes.

The coefficient coder 36 maps the various amplitudes of the
coefficients into variable length words such as by well known
Huffman coding or other variable-length technique so that the
amount of data transferred to a transmission channel or storage
medium 38 is less than that entering the coefficient coder 36,
and hopefully close to the actual average coefficient signal
entropy.

The second phenomenon is that a larger percentage of
the elements issuing from the quantizer 36 actually have zero
value. Another operation performed by the coefficient coder 36.
is removing coefficients which have zero amplitude from output
data stored or sent to a subsequent receiver. These zero values
can be inserted at a receiver, so long as sufficient overhead
mapping data is transmitted to indicate where they go, or more
usually where they don't go. Since there are many more zero
values than non-zero values a techmique such as run-length
coding can be used to efficiently indicate the number of zeroes
between non-zero coefficients which are the only ones actually
transmitted.

It should be noted that a mapping technique
different from this for use with the subject Triangle and

Ll

Pyramid Transforms is disclosed hereinbelow.

The tranémission channel or storage medium 38
receives from the coefficient coder 36 coefficients which have
non-zero values in coded form and a map which indicates their
placemenﬁ. The process of the coefficient coder 36 is
reversible, and the inverse operation is performed by a

coefficient recovery device 40.
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The coefficient recovery device 40 converts the
variable length coefficients back into fixed length format and
inserts the zeroes back into the signal at the correct
locations as determined by the accompanying map. These
coefficients are then input to a reconstruction transformer 42
which effects the inverse operation of the forward transformer
32. This results in an output signal which is a replica of the
input signal. The difference between input and output signals
is ideally the result of only the non-reversible operation of
the quantizer 34. The other elements of the system are assumed
to be transparent so as not to produce any difference in input
and output signals by their own actions.

The behavior of the Triangle and Pyramid transforms
will now be discussed in relation to that of prior art

transforms. Bases for comparison include the following

attributes:

(1) 7Nature and harshness of the perceived output
signal distortion as a result of transform coefficient
quantization;

(2) Graceful degradation of the output signal when
higher order frequency or sequency coefficients are omitted

from the recomstruction;
(3) Simplicity of implementation and calculation;

and

(4) Compression efficiency.

The first attribute, the nature and degree of the
distortion produced in the output signal as a result of the
quantization operation, depends considerably on the type of
transformation device employed. However, some distortions are
far less acceptable than others, depending on the application.
Calculation of mean-square—error between input and output
signals is tractible for some transforms, but often forms a

rather poor measure of perceived distortion by a human observer
of an acoustic or image signal. Relative to human observers
distortions can usefully be divided into two categories. The
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first category concerns errors introduced in the process of
reproducing a signal portion which involves considerable
change. The second category concerns errors introduced in the
process of reproducing a signal portion which involves little
perceived change. Errors in the first category are much more
tolerable than those of the second category. This masking
effect of errors by a signal portion undergoing change is well
documented in the literature relative to audio and video
signals. The conclusion as it relates to a particular
transformer device is to somehow have any distortion which
occurs happen in a signal area where change in the signal
naturally occurs, and not in a relatively smooth area of the
signal. A smooth signal is better defined from a perception
standpoint as one whose first derivitive is constant over an
interval rather than whose amplitude is constant over the
interval. It is therefore desirable that the transformer mini-
mize distortion in signal portions which contain linear ramps.

The perceived distortion in the output signal-is
generally less if the first derivitive of the distortion is
minimized. Distortion-induced low amplitude changes in the
output signal are much more noticeable in an audio or video
signal if they are abrupt (high value of first derivitive) than
if they occur over a longer period of time (or space in a two
dimensional image). The audio result of an abrupt change can
be a "pop" noise, and a video result can be an artifact edge.
It is therefore desirable that the basis functions used in the
transform be smooth functions not containing discontinuities.
For a digital transform working with sampled data this requires
that the envelope of the'samples be smooth.

These desired qualities in performance can be
translated into more technical type requirements for a
transform, three of which are summarized: First, concentrating

the larger errors near locations of greater signal activity
without introduction of errors of similar magnitude in other

signal areas of small activity can be accomplished through use
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of a transform employing finite duraticn basis functionms. Each
of these functions extend only over a portion of the signal
space, as contrasted with transforms whose basis functions all
extend over the complete range of the signal space. A prior art
example of the type employing finite basis functions is the
Haar transform. Examples of the transforms extend over the
complete range of signal space are the Cosine and Hadamard
transforms. Second, the transform should carry signal areas of
constant slope with a small number of low frequency or low
sequency basis functions, without requiring many high frequency
or high sequency basis function components. Third, in order to
avoid artificial discontinuities in an output signal
reconstructed from transform coefficients which have been
subjected to some quantizing action subsequent to forward
transformation, the transform should avoid use of discontinuous
basis functions in the aforementioned envelope sense.

The Haar transform is a finite duration transform,
but cannot concentrate an input signal having a comstant slope
into a few low sequency coefficients. Also undesirable is its
use of discontinuous basis functions. The Slant transform
contains a constant slope component as one of its basis
functions, but a majority of its other basis functions contain
discontinuities. Also, it is not a finite duration transform
type as all of its basis functions are defined over all of the
signal space. The Cosine transform achieves the goal of smooth
basis functions, but it is not a finite duration type, nor does
it contain a basis function component dedicated to carrying a
constant slope signal area. It will be shown that the subject
Triangle and Pyramid transforms possess all three performance
attributes. Before showing this, however, other desirable
characteristics of a transform are stated as further basis for
comparison of prior art tramsforms and the subject invention.

The second attribute for comparison is that of

graceful degradation of the output signal when higher
frequency, or higher sequency, coefficients are omitted, or
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their inclusion delayed in time from the reconstruction of the
output signal in the case of images. When this situation
arises it is often better to have some approximation of the
output signal than none at all. This is particularly true of
5 images in motion where a less distinct image, or sometimes a
less distinct portion of the image which contains the motion is
quite acceptable to the human observer. Since most transforms
have some natural ordering to the coefficients on the basis of
frequency of sequency, when it is necessary to limit the rate
10 at which coefficients must be transmitted to the miximum rate
the transmission channel can accomodate, it is desirable to
omit coefficients of higher order. When this operation occurs,
the resulting image should degrade by losing some definitiom,
but not become noticeably contaminated by discontinuities and
15 edges related to the nature of the transform's basis functions.
The Cosine function does moderately well at achieving this goal
because it employs the smooth cosine functions of various
'frequencies to reconstruct the output signal. It unfortunately
introduces an amount of distortion into smooth signal areas
20 similar to the amount it introduces into areas of much
activity. However, the distortion is relatively smooth and
without discontinuities. The Hadamard, Hzar and Slant
transforms, however, require the higher order terms to fill in
discontinuities created by lower order terms. When the higher
25 order terms are omitted, artificial discontinuities result.
The subject Triangle and Pyramid transforms achieve a smooth
degradation since the recomstruction degrades to a linear
interpolation of lower order smooth functions in the absence of ®
higher order coefficients.
30 The third attribute of a transform listed above for .
comparison purposes is the ease of its implementation, which
relates directly to its cost. Three technical factors relating
to ease of implementation are:
(a) Existence of a "fast calculation” method for

35 the transform;
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(b) A high degree of sparseness in the required
calculations to minimize the number of terms which must be
calculated in the forward and reconstruction transforms; and

(¢) Freedom from requirements for non-trivial
multiplications.

The phrase "fast calculation™ method refers to am
efficient organization of the calculations such that some of
the calculations performed to obtain initial results are
additionally useful as partial calculations in obtaining
subsequent results. Fast calculation methods are known for the
Cosine, Hadamard, Harr and Slant transforms, as well as for
some others. The present invention includes a fast method for
calculation of the Triangle and Pyramid transforms.

The Haar transform is the only one of the

‘aforementioned prior art transforms possessing a sparse matrix.

The others have all their basis functions defined over the
complete span of the signal. A To get around this considerable
problem, most prior art transforms are "blocked” so as to limit
the span of the functions to separate sub-spaces. Each
sub-space then has all of its basis functions defined over the
entire sub-space. Although this greatly reduces the number of
points over which a transform must be calculated, it does this
at the expense of introducing artificial boundaries at the
sub-space edges which can cause discontinuities or edges. This
occurs even in the Cosine transform which, in the absence of
"blocking” does not have any tendency to produce edges. The
Triangle and Pyramid transforms are naturally sparse like the
Haar transform, and yet avoid recourse to blocking.
Multiplications have historically been more
difficult to implement than additions and subtractioms,
requiring either more time, more hardware, more expensive
hardware, or some combination of these. Although this gap has

narrowed due to advances in integrated circuit technology,
multiplications, other than by powers of two which are readily

accomplished by left or right shift operations in digital
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hardware, are to be avoided where possible. The Cosine
transform as usually calculated involves mon-trivial
multiplications, as does the Slant transform. The Hadamard
transform can be calculated without multiplications, as can the

5 Haar transform. The subject Triangle and Pyramid transforms,
in the'preferred embodiments, require only trivial
multiplications by powers of two.

The fourth attribute of a transform as listed above

for comparison purposes relates to the efficiency of

10 satisfactory representation of a signal with the smallest
number of resulting non-zero value coefficients. This implies
high energy compéction into a small number of terms. As stated
previously, "satisfactory" representation is difficult to
quantify, when it relates to results perceived by human senses.

15 However, certain comparisons can be made. The first term in
virtuall& all transforms represents the average value of all
the input samples so that the other terms need only represent
departures from that average value. In practice a transform is
often blocked so as to limit the number of calculations. Each

20 block must therefore have its own average value term which may
detract somewhat from the efficiency. However, if the size of
the block is comparable to the extent of the correlation of the
data in the signal, then the efficiency is not seriously
compromised.” Some trade-off may be necessary, however, between

25 calculation efficiency and transform efficiemcy. With the
Triangle and Pyramid Transforms the size of an area over which
each local average value is determined is readily selected by
the designer for a particular application by varying the number
of decimations of the signal data and has a relatively minor

30 effect on the required number of calculations. Next, of
considerable value in achieving high efficiency is the ability'
to represent a constant slope in the input data with-the least
aumber of terms. This is especially true of image data and to

varying degrees with other data. The Haar and Hadamard

35 transforms, for example, are poor in this regard in that most
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coefficients have non-zero values for a constant slope of the
input data. The Cosine transform requires a few terms to make
an approximation to a constant slope. The Slant transform has
a single term dedicated to a constant slope and is therefore

5 quite efficient in this regard. The Triangle and Pyramid
transforms result in coefficients with exactly zero value for
all signal areas where the slope of the input samples is
constant. Very good efficiency is therefore achieved in this
regard.

10
SUMMARY OF THE INVENTION

Briefly, and in accordance with an overall concept

of the invention, the subject transforms involve several
defined basis functions which operate on input data points

15 P(i). The basis functions of the invention are essentially
weighting functions such that terms and coefficients (in the
transform domain) calculated in accordance with the basis
functions are éach a particularly weighted average of the
values of a selected consecutive plurality of input data

20 points. Successive terms and coefficients generated in .
accordance with each of the defined basis functions are
calculated from successive consecutive pluralities of the input
data points, with overlap of input data points depending on the
particu;ar basis function.

25 In accordance with a further concept of the
invention, the transforms are organized into a plurality of
bands or levels N. Band N is the highest, and Band 1 the
lowest. The bands or levels are sigﬁificant for two different
reasons: (1) Coefficients are output from the transform

30 process for each band; and (2) In the preferred fast
calculation methods the bands represent successive stages of
calculation. For forward transformation, calculation begins
with the highest band, Band N, and works down. For inverse
transformation (reconstruction), calculation begins with the

35 lowest band, Band 1, and works up. Results of processing in
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each band are then employed as inputs for processing in the
next lower band until the last band is reached.

More particularly, there is defined a "B-function”

Ty

which is a weighting function with an envelope shaped as a
triangle for a one-dimensional transform, and as a pyramid for

a two-dimensional transform. For Band 1 a continous stream of

(v

B-function terms are calculated and output, with each
B-function term in the one-dimensional case being a
triangularly-weighted average of 2N+l - 1 consecutive input
data points, where N is the nuﬁber of bands or levels in the
system. The consecutive pluralities of input data points
contributing to successive B-function terms overlap by -
one-half; Since the one-dimensional weighting function is
triangular, for N=1 the B-function is a 1/4, 1/2, 1/4 -
weighting function. For N=2, the B-function is a 1/16, 1/8,
3/16, 1/4, 3/16, 1/8, 1/16 weighting function. '

. As a simple example of a two-dimensional B-function,
the pyramid weighting function is as follows for a three-by-
three matrix of input.data points to yield a single B-function

term:

Y 1 L
16 8 16
1 L 1
8 4 8
1 L L '
16 8 16

"In actual two-dimensional implementation, a streamsof

B-function terms for Band 1 are generéted and output, with

overlap of the input data points contributing to each
B-function term for Band 1 such that the beginning data point

SUREA;
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for each ensuing successive B-function term for Band 1 shifts
ahead by ol input data points in one or the other or both of
the two directions of the two-dimensional set of input data
points. Each term for Band 1 may be defined as a

pyramid-weighted average of the values of a square array of

input data points, with each side of the sqaure containing

2N+l - 1 consecutive input data points.

In the fast calculation approach, each B-function
calculation requires only three input points, weighted 1/4,
1/2, 1/4. The B-function terms for Band N only are calculated
from actual input sample points. The B-function terms for all
lower bands are calculated from the B-terms from the next
higher band. Only those from Band 1 are output.

In accordance with a further overall concept of the
invention, coefficients are generated and outputted for each
band as predetermined functions defined as weighted averages of
selected consecutive pluralities of .input data points. The
number of input data points contributing to each coefficient is
the least for Band N, and increases by powers of two for each
successive band below Baﬁd N. The predetermined functions are
selected so as to enable reconstruction of the values of the
input data points as a build-up from Band 1 upwards of linear
interpolation between B-function terms for Band 1, with
departures from linear interpolation being indicated by
non-zero coefficients for Bands 1 through N. The build up
process begins with Band 1, and works upward through Band N.

One of the predetermined functions is a D-function,
which is a -1/4, +1/2, -1/4 - weighting function according to
which coefficients are generated from input sample points for
Band N, and from B-terms for the next higher band for all band
below Band N. ,

An S-function, which is a -1/2, 0, +1/2 - weighting
function is defined, and similarly operates on input sample
points and next higher band B-terms to generate coeffiéients.
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To provide the useful property of generating
zero-value coefficients for any sequence of input samples with
constant slope, the S—-function may be "normalized” to produce

an SN-function.

.

In the transform domain, the local average value of

the input signal is carried by B-function terms, and the

5

D~function and S—-function, or alternatively the D-function and
SN~-function, coefficients carry sufficient additional
information to permit exact recomnstruction.

For transform processing of a two-dimensional set of
input data points, a Band N transform is performed
independently on each row, and the intermediate results
(B-terms and selected combination of D, S, SN, H and L-type
coefficients) are ordered by horizontal position. A second
Band-N transform is performed on each resulting column of the
array of intermediate results. The combined results of these
two operations are: (1) a set of two-dimensional output
coefficients which require no further processing in other
bands, and (2) a two-dimensional array of intermediate B-type
data points which are subsequently input to two dimensional
processing in Band N-1. The number of data points input to
Band N~1 is one fourth that of the original number of the
two-dimensional set of input data points. The same sequence of
two sets of one dimensional transforms are performed at each
Band in like manner. At Band 1, transformation is complete,
and two-dimensional coefficients and pyramid-weighted average

terms are output as band 1 results.

5

Another significant aspect of the subject
transforms, mentioned above, is the continuous overlapping of

input data points cdntributing to the weighting calculations

N

for various terms and coefficients. As a result, it is not
possible to associate a fixed number of specific coefficients
in the transform domain with a like number of specific input
samples. However, this aspéct gives the éubject Triangle and

Pyramid transforms much of their strength and utility. .
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It is not necessary to calculate all possible terms
and coefficients for each of the bands. Rather, many can be
omitted, leading to various possible organizationms, and still
permit reconstruction. The B-function terms for Band 1 are
always calculated, based on successive overlapping pluralities
of input sample points. Also, there must be two coefficients
calculated in the highest band, Baﬁd N, for every four imput
samples. It is preferred to calculate, for Band N, one D-
coefficient and one overlapping S-type coefficient. For Band
N-1, there must be two coefficients for each eight input sample
points. For Band N-2, there must be two coefficients for each
sixteen input sample points, and so on.

For reconstructibﬁ (inverse transférm) the processes
are reversed, and the original data points are determined
through simple algebraic manipulation.

However, when coefficients are roughly quantized or
eliminated as part of the transmission or storage process
between the'forward'and inverse transform processes,
objectionable errors can result. For this situation,
alternative algebraic expressions are déveloped, which provide
a smoothing action through an interpolation process.
Accordingly, an important aspect of the invention is
satisfactory reconstruction even in the presence of rough
quantization, oOr elimination of certain coefficients. This
involves the generation and use of carry-up coefficients from
higher or lower bands.

Another aspect of the invention is the manner in
which zero-valued coefficients are treated for efficient
transmission, taking advantage of the probabilities of
occurrence relationships between various coefficients which
result from the finite length of the basis functions and the
layering of coefficients in multiple bands. In particular, a
local length can be associated with each function. In a
certain locality a high level of signal activity may produce

non-zero value coefficients in multiple bands where the parti-
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cular basis functions with non-zero values align with this
signal activity. If there are gradual edges in the activity
only the lower bands may produce non-zero coefficients; if
there are steep edges then the higher bands as well as the
lower bands will produce non-zero coefficients. Existence of
non-zero lower band coefficients does not carry with it a high
probability of higher band coefficients; existence of higher .
band coefficients does, however carry with it a high probabi-
lity of the existence of lower band non-zero coefficients in
spatially aligned locations. This aspect for naturally occurr-
ing signals such as acoustic and image signals is utilized in
minimizing the amount of overhead map data which must accompany
the non-zero coefficient data for reconstruction purposes.

Further, the subject mapping tectmiques provide
additional efficiency when applied to color images represented
by three video signals such as "Y", "I" and "Q" employed in

standard broadcast practice. The "Y" signal is the equivalent

‘of a monochrome signal which can be transformed by the subject
- Pyramid Transform. The "I" and "Q" signals are

color-difference signals. In one specific techniqﬁe, called
the "OR" technique, a single map word is caused to exist in a
processing block by a corresponding non-zero coefficient in the
transformed "Y" signal, or the "I" signal, or the "Q" signal.

The result then is that coefficients from all three signals are

transmitted in response to the information contained in the

common map. In another specific techlmique, called the
"Monochrome-signalling” technique, map data are produced only
in respone to non-zero value coefficients from the "y signal.
an-éero values of coefficients of "I" and "Q" signals not
corresponding to a non-zero value coéfficient from the "Y"
signal are simply discarded. There is no extra map data
required for the color coefficients, only the coefficien:s

themselves. The color portion of the picture is thereby
transmitted very efficiently without need for any additional
mapping overhead. Another advantage of this latter technique
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is the ability to remove noise in the color portion of the
video signal introduced by various means including passage
through a video tape recorder.

The map coding techniques of the present invention,
while developed specifically for the subject Triangle and
Pyramid transforms, are also applicable to other transforms
having a hierarchial structure, as explained more fully
hereinafter.

Still another aspect of the invention is the
development of standardized processing blocks for the forward
and inverse transforms. These standardized processing blocks
are arranged adjacent one another within each band, and above

and below one other for higher and lower bands.

DETAILED DESCRIPTION OF THE INVENTION
The subject.Triangle and Pyramid transforms are

described hereinbelow initially from a conceptual or functional
standpoint, followed by a description of exemplary apparatus

for practicing the invention.

Forward Triangle and
~ Pyramid Transform Concepts

The transforms herein described relate to signals

which can either be assumed infinite in length for practical
purposes, or of specific finite length with attendant edges
such as an image. In either case, the signals comprise a
series of input data points, P(i), P(i+l), P(i+2), etc. For a
one-dimensional signal, the input data points are successive
discrete samples, such as sampled values at successive equal
intervals of time. For an exemplary two-dimensional signal
comprising an image, the input data points are picture
elements, commonly termed pizels. The subject Triangle
Transform is a one-dimensional transform. The Pyramid
Transform is a closely related two-dimensional transform. The

transforms are first described as they operate on interior -
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portions of a signal away from edges, and are then described as
they operate near edges.

The subject transforms are organized into a number
of bands or levels N, where N is an integer greater than zero.
Band N is herein considered the highest band, and Band 1 the
lowest. The number N can be chosen for a particular
application within broad limits depending on aspects of the
signal such as correlation length, and the intended purpose,
such as bandwidth reduction, noise stripping, etc.

The transforms operate on the input data points and,
for each band, output a set of coefficients (in the transform
domain). Additionally, basis function terms (in the transform
domain) are preferably generated for each band. However, ocnly
the basis function terms for the lowest band, i.e. Band 1, are
output, those for higher bands being used as intermediate
values during calculation of the coefficients and terms. Not
only do "band" or "level” refer to entities for which
coefficients and terms are genmerated, but they refer as well to
successive stages in a preferred approach to calculation. In
the preferred "fast" calculation methods, calculation proceeds
in stages beginning with calculations for the highest band
(Band N) operating on the actual input data points. Not only

 are coefficients for Band N output after this initial

calculation, but the base function terms for Band N are then
employed as the "input” points (although no longer actual input
data points) for the next stage, that of the next lower band,
Band N-1. The process continues until calculations for Band 1
are complete.

Tn all cases, no matter which band, each of the
generated coefficients or terms is simply a weighted average of
the magnitudes of a selected consecutive plurality of the
actual input data points. As such, the basis functions of the
subject Triangle and Pyramid transforms may be viewed as
weighting functions which span a consecutive plurality of input
data points, and the coefficients and terms are calculated by

)
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purely arithmetic operations. The number of input data points
which go into the weighted averagés defining each of the terms
and coefficients are smallest for the highest band (Band N),
and increase in number approximately by powers of two for each
successive lower band. Although each term and coefficient for
each band can be expressed by means of an arithmetic expression
as a function of the actual input data points, such would
represent a relatively impractical direct calculation for all
bands below Band N, with difficulty increasing rapidly for the
lower bands. Instead, the terms and coefficients for each
lower band are generally expressed herein only as rather simple
functions of the results of calculation for the immediately
preceeding higher band. The actual calculations in the
preferred embodiments proceed accordingly. However, for
{llustrative purposes herein, expressions for some lower bands
are developed as functions of the actual input data points.

Coefficients of the highest band (Band N) having the
shortest length basis functions generally occupy a Fourier
frequency spectrum concentrated in the upper one-half of the
spectrum of the input signal. ("Leﬁgth" refers to the number
of input data points spanned by the basis function.) Basis
functions in Band N-1 span twice the length as those of the
highest band N, and have their spectral energy concentrated
from one-fourth to one-half of the totél spectrum of the input
signal. In each successive lower band the basis functions have
twice the span as the next higher band.

The number of input data points contributing to the
basis functions for the lowest band (Band 1) is a functiom of
N, and is equal to (2M1 - 1). E.g., if N =5, then 63
input data points, weighted according to the basis functiom,

contribute to each term output for Band 1. The value of N thus

has an upper limit determined by the length of the signal if it
is of finite duration, or by the user with a knowledge of
intended application and nature of the signal such as the
natural correlation length. If N is chosen so large that the

-
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length of the basis functions for the lowest band (Band 1)
exceed the signal corfelation length, efficiencies gained in
bandwidth reduction do not become any greater, and the primary
result is more calculations than necessary.

The specific basis functions of the subject Triangle
and Pyramid transforms will now be defined, considering first
those for one-dimensional input signals.

A primary basis function is herein termed a
"B"-function. This is a weighting function with an envelope
shaped as a triangle for a one-dimensional transform, and as a
pyramid for a two-dimensional transform. The names employed
herein for the subject Triangle and Pyramid transforms derive
from the B-function envelope shape. The summation of weights
represented by the triangle and the pyramid are both unity.
The envelopes of the B-functions are continuous even functioms,
with piecewise continuous first derivatives.

For the lowest band, Band 1, a stream of B-functiomn
terms are calculated and output. Each B-function term is a
triangularly-weighted average of the magnitudes of a
consecutive plurality of input data points. The consecutive
pluralities of input data points contributing to respective
successive B-function terms overlap a selected amount. A
typical example is 507% overlap.

For nomenclature purposes, the B-function terms are
given a two-part subscript, with the first subscript part
indicating the band number, and the second subscript part
indicating the particular one of the B terms in the output
stream. For example, successive B-function terms for the
highest band, Band N, are denoted B(N,j), B(N,j+l), B(N,j+2),
and so on, where j is an arbitary reference in the transform
domain. While all B-function terms are calculated in the fast
process, oniy those for Band 1 are actually output, i.e.,
B(1,3j), B(1,j+1), B(1,j+2), and so on.

For the simplest case of only one band, N=l. Then

the B terms are defined as follows:
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. i i+
B(1,j4m) = P(l-ZZm) + P(122m+l) + P(i+im+2)’

where m = 0, 1, 2, 3, etc.
More particularly, the first three B terms are:

P(1) + P(i+l) + P(i+2)

B(1,3) == . L
B(1,j+1) = P(i+2) + P(§+3) + P(§+4)’ and
5 B(1,j+2) = P(izl’) + P(i"z'-”) + P(i-z6).

With reference to FIG. 2A, the envelope of a single
B-function term, that of B(1l,j), where N=1, above is shown.

As may be seen the envelope shape is triangular.
With reference to FIG. 2B, the manner in which

10 successive B-function terms overlap for Band 1, where N=1, is

aepicted.
For the general case, where N is any positive

1dteger, the B-terms output from the lowest band, Band 1, are

as follows (for 50% overlap):

1%p(i4m*2") . 2#p(i4m*2" 1) | 3*P(i4m*2 +2)
N

15 B(L,j+m) =
’ N N 4
Mepimrz 2 o1 3xp(i+m*2 2 1-4)
N 4N
2*P(1+m*2N+2N+1 -3) l*P(1+m*2N+2N+1 2)
b
4N N
’ - x e ;’{Trgg_.i
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where m = 0, 1, 2, 3, etc; and the asterisk symbol (*) denotes
multiplication.

From the above, it can be seen that the number of
1nput points or samples contributing to the weighted average
comprising each B-function term is equal to 211, The
weight assigned to all other input sample points is zero. The
beginning P(i) data point shifts ahead by 2¥ for each
successive B(1l,j) term, assuming 50% overlap.

As one specific example, if N=2, then there are
(23-1) = 7 input points contributing to each B-function term

in . a triangularly-weighted average as follows:
B(1,3) = $:2(1) + 2p(i+1) + 3 p(i+2) |
’ 16 16 16

+ -‘l‘—ép(i+3) + %P(i“;) + %P(:HS) + %6-?(1%)

The B-function weighting'envelope of this particular
B(1,j), where N=2, is depicted in FIG. 2C.

As another specific example, if N=5 (for a five band
system) the triangle for each B;nd 1 B-function spans (26-1) =
63 non-zero input sample points, with individual weights or

amplitudes as follows:

. 3
B(1,3) = 1024P(l) + 10241’(”1) *oogaE AF2) + et

30

1024 -P(i+31) [the

—=P(i+29) + —=-P(i+30) + -

1024 1024

2
1024

31
1024

30

—=P(i+32) + 10974

center] + ——==P(E+33) + cee + =

P(i+61) + P(1+62)

1024

From the foregoing expression for just a single
B-function term in a five band system, it can be appreciated
that direct calculation of the B-terms in a multi-band system
would be a time-consuming or hardware-consuming task, without
even considering the various coefficients, discussed in detail

hereinbelow, calculated for each band. The present invention,

it §)
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however, provides a fast calculation approach where B-function
terms are calculated for all bands, beginning with Band N, and
employed as intermediate results. B-terms for lower bands are
calculated from the B-terms calculated for the immediately
preceeding band. The actual input sample points are not
needed. Significantly, each calculation of a B term requires
only three input terms to be averaged in a simple 1/4, 1/2, 1/4
weighting calculation. Although the B-terms calculated as
intermediate results are not actually output, they aid
significantly in rapidly calculating a stream of final (Band 1)
B~terms, and also in calculating coefficients for the various
bands, as hereinafter described.

Specifically, For the fast calcqlation method, the
B-function terms are defined next.

The B-function terms for Band N are the only ones

calculated directly from input sample points, and are as

follows:

. P(i+2m P(i+2m+1 P(i+2m+2
Oy, o) = O PO | PGAIND),
where m = 0, 1, 2, 3, etc.

The B-function terms for all lower bands are
calculated, not from input sample points, but rather from the B

terms from the next higher band, as” follows:

B(n, j+m) = B(n+lzj+2m) + B(n-+l, ?2+2m+1) + B(n+l, 2+2m+2)’

4

where n = N-1, N~2, «e., 3, 2, 1; and m = 0, 1, 2, 3, etc.
Substitution will show that the results of the fast
calculation approach described immediately above are identical
to the results of the more cumbersome direct calculation
approach involving non-trivial multiplications initially

described. For example, assuming a two-band system where N=2,

then, for the highest band:

_ P(i) . P(i+1) | P(i+2)
= 5 + 5 + A
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P(i+2) | P(i+3) | P(i+4)

B(N:j+l) = A 5 A , and
B(N, j+2) = P(2+4) + P(z+5) + P(2+61. .

For the next lower band, which in this case is Band

1 since N is only 2:

5 B(r-1,9) = 2D 4 BONIHL) | BOLIH2),

Substitution then yields:

B(N-1,3) = ]i—6-P(i) + -§—6P(i+l) + i—é-P(i+2) +

4 . 3 _,. 2 . 1_,.
TEP(1+3) + iEP(1+4) + iEP(1+5) + IEP(1+6)

which is identical to the previous direct example of B(1l,3j),
10 where N=2.
With reference now to FIG. 3, the manner in which
B-function terms are successively derived is shown in
diagrammatic fashion. FIG. 3 depicts which points and terms s
contribute to the various lower-band terms by means of brackets
15 but, for clarity of illustration, does not depict the 1/4, 1/2,
1/4 weighting sequence assigned to the three points within each
bracket. The FIG. 3 example is for a four-band system, wherein
each B-function term in Band 1 is a triangulafly-weighted aver-
age of (23-1) = 31 input data points, designated P(1l) through
20 P(31). For the highest band, Band 4, it can be seen that
fifteen B terms are calculated, B(4,1) through B(4,15). The

N

input data points P(i) are overlapped by one in the sampling
for each successive B-term B(4,j) in Band 4. For the next .
' lower band, Band 3, only seven B terms are calculated, B(3,1)
25 through B(3,7). The B-terms B(4,j) in Band 4 are overlapped by
one in the sampling for each successive B-term B(3,j) in Band

3. The process continues in the same manner, with only three
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B-terms calculated for Band 2, and ome B tem for Band 1,
B(1,1).

Although not illustrated in FIG. 3, it will be
apprgciated that the next successive B-temm for Band 1, B(1,2),
is the triangularly-weighted average of three B~terms in Band
2, B(2,3), B(2,4) and B(2,5) (not shown), and as such is the
triangularly-weighted average of 31 input data points P(17)
through P(47) (not shown). As stated previously, for 50%
overlap, the beginning P(i) data point shifts ahead 2N for
each successive B(l,j) term. For N=4, 2N = 16.

To conclude, the B-function temms which are output
are each a triangularly weighted average of a consecutive ‘
plurality of input sample points. For a given number of data
input points in a stream, far fewer B-function terms are output,
with the number of B terms decreasing by powers of two as
additional bands are added to the system. Any local average
value of the input signal is carried by the B terms in the
transform .domain, but the Band 1 B-function terms above do not
carry sufficient detail to pemmit recomstruction. In the

Fourier semse, the frequency spectrum of the B~functions lies
F

principally in the range of from zero to a value —Eﬁi, where
2
Flax 18 one-half the sample frequency, and N is the number of

bands in the system. (The input signal is assumed to be band
limited from zero to Emax')

To permit reconmstruction, at least one additional
basis function must be employed since the B-terms alone are not
sufficient. The next basis function is herein termed a "D"
function. D-function coefficients are generated for each band,
beginning with Band N, and are immediately output, without
contributing to calculations for lower bands. For Band N, the
actual input data points P(i) are sampled and appropriately
weighted to generate the D-coefficients. For all lower bands,
beginning with Band N-1, the B-terms from the next higher band
are sampled and appropriately weighted to generate the

- etdTaT T
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D-coefficients. The D-function may also be viewed as a
weighting function.

Specifically, the D-function is a -1/4, +1/2, -1/4
weighting function. The envelope shape for a Band N D-function
is shown in FIG. 4A.

The D-function coefficients for Band N are the only

Ul

(1}

ones calculated directly from input sample points, and are as

follows:

_ P(i+2m) + P(i+2m+l) _ P(i+2m+2)
4 2 % E]

where m = 0, 1, 2, 3 etc.

D(N, j+m) =

For all lower bands the D-function cbefficients are
calculated from the B-terms from the next higher band, as

follows:

D(a, i) = - B(n+lzj+2m) L B(oHl, %+2m1) _ B(tri-l,z+2m+2),

where n = N=1, N2, eee, 3, 2, 1; and m = 0, 1, 2, 3, etc.

While the D-function coefficients for all bands
below Band N are defined above in terms of the B-function temms
for the next higher band, direct expressions in terms of the
actual input data points can be derived, although entirely
unnecessary for the fast calculation methods.

Nevertheless, for purposes of illustration, a
D-coefficient for Band N-1 is developed next below, and the
envelope shape depicted in FIG. 4B.

First:

. i 3(N, i+ i+
D(N-1,3) = - B(]»Z:J) + B(N:% 1) - B(st 2)_

Substituting the previously-developed expressions for B(N,3i),

B(N, j+l), and B(N,j+2) yields: , , .
D(N-1,1)= = ‘1‘% P(1) - —3 1 B(itl) + 17 P(1+2)
+—}; P(i+3) +rp B(i+4) — 2(i45)

- 1—6- P(i+6),

30 as shown in FIG. 4B.
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Comparing FIGS. 4A and 4B, it can be seen that the
envelope shape is the same in both cases. The FIG. 4B
envelope for Band N-1 has twice the length and half the maximum
height compared to the FIG. 4A envelope for Band N.

Properties of the D-function are that it is a
continuous even function having a first derivative which is
piecewise continuous. The average value of the D-function is

zero. Further, the D-function has the useful property that its

coefficients are zero for any sequence of input signal samples

with constant slope.

As pointed out in the definitional expressions
above, it is not necessary to calculate all possible
D-coefficents in the preferred embodiments. For example, the

first two D-coefficients actually calculated

for Band N are:

DN, = - P(Z) . 9(5;-1) _ P(i+2)’ and

DN, +1) = = P(i4+2) . P(J'2.+3) ] P(i-ZA) .

For reconstrﬁction in the absence of quantizatioﬁ
such as is introduced by the FIG. 1 quantizer 34, the Band 1
B-function terms and the D-function coefficients (inclu@ing all
such m-values) for all bands, Band N through Band 1, are
completely sufficient. The original signal can be exactly
reproduced. However, quantization is essential for any
practical digital communication system, which is the primary
field of application intended.

To add further strength to the subject Triangle and
Pyramid transforms, a class of basis functioms, herein termed
"§"-functions, is defined. Coefficients for these functions
are also generated for each band, beginning with Band N, and

are immediately output without contributing to calculations for
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lower bands. S-coefficients are generated from appropriately
weighted samples of the actual input data points for Band N,

and of B-~terms from the next higher band for all lower bands

[¥))

beginning with Band N-1.

With the inclusion of S-coefficients, for

(

reconstruction it is sufficient to have all Band 1 B-function
terms, and just odd-m D-coefficients and odd-m S-coefficients,
defined next.

- Specifically, the S-function is a -1/2, 0, +1/2
weighting function. The envelope shape for a Band N S-function
is shown in FIG. 54, and that for a Band N-1 S-function is
shown in FIG. 5B.

The S-function coefficients for Band N are defimed in

terms of input sample points as follows:

_ P(i+2m) . P(i+2mt2)

S(N, j+m) = 5 5 ,

where m = 0,1,2,3, etc.
The S-function coefficients for all lower bands are
defined in terms of preceeding band B-function term as

follows:

S(n,jtm) =

_ B(o+l, j+2m) + B(n+l, j+2m+2) .
2 2 ?

where n = N-1, N-2, .2, 3, 2, 1 and m = 0, 1, 2, 3, etc.

A useful property, which the S-function however
lacks, is that of generating coefficients of zero value for a
sequence of input sample points having a constant slope. To
provide this property, the S-function may be "normalized”. Two
normalized S-functions are defined herein, "SM" and "SN", and
both are odd functions. The SN-function is prefered due to
advantages which accrue in the calculations for both the
forward and inverse (reconstruction) transforms.

FIG. 6 depicts the envelope shape of the SM-function
for Band N. The SM-function does have the useful property of

generating zero-value coefficientsfor any sequence of input

- -
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samples with constant slope. The SM-function envelope spans
one and one-half times the number of sample points as the
S-function envelope. The envelope shapes for successive lower
bands have twice the length, and one-half the height of the
respective preceeding bands.

To compute an SM—function coefficient requires the
calculation of By~type terms which would not otherwise be
calculated because they involve the overlap of different input
points. These By-type terms are, for Band N:

.\ _ P(i+2m+l) . P(i+2mt+2) . P(i+2m+3)
Bx<N,J+m) - /A + 2 + A s

where m = 0, 1, 2, 3, etc.
For all bands below Band N they are:

B(j+2mtl) . B(j+2mt2) . B(jt+2m+3)
4 2 4

where n = N=1, N-2, ... 3, 2, l; and m = 0, 1, 2, 3, etc.

Bx(n ,jtm) =

As a specific illustration, the first two regular
B-terms are formed from P(i), P(i+l) and P(i+2); and P(i+2),
P(i+3), and P(i+4). P(i+2) is overlapped. However, the first
two By-terms are formed from P(i+l), P(i+2), and P(i+3), and
P(i+3), P(i+4), and P(i+5). P(i+3) is overlapped.

The SM-function for any band is defined as:

Bx(n,j+m+l) Bk(n,j+m)
sM(n,j+m) = S(n,j+m) - 5 + 5

where n = N, N-1, N-2, <o 3, 2, ; and m = 1, 2, 3, etc.

. FIG. 7 depicts the envelope shape of the preferred
SN-function for Band N. The SN-function also has the useful
property of generating zero-value coefficients for any sequence
of input samples with comstant slope. The SN-function spans
twice the number of input sample points as the S-function. The
envelope shapes for lower bands also have twice the length and
one-half the height as for preceeding bands.

The SN-function for any band is defined as:

B(n, j+m=-1) _ B(n, j+m+l)
A A ’

SN(n,j+m) = S(n,j+m) +
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where n = N, N-1, N~2, ... 3, 2, 1; and m = 1, 2, 3, etc., with
odd values of m being sufficient.

Additional functions in accordance with the

"

invention, specifically "H" and "L” functions, are defined
hereinbelow in the context of a specific implementation.

From the foregoing definitions and discussion, it

o

can be seen that any local average value of the input signal is
carried exclusively by the B function terms in the transform
domain, and not by coefficients from the D, S, SM, or SN
functions. It is possible to define an additional average-
value term which is subtracted from all of the B-terms, but this
is not necessary and often not desirable as much of the
attractiveness of the subject Triangle & Pyramid transforms is
in the finite duration of all the component functions. Also,
the B-function terms must carry the constant slope information
as well, since none of the D, SM, or SN coefficients has a -
non-zero value for signal points having a constant slope.
" When carried to a second dimension, the Triangle
transform becomes the Pyramid transform. This extension may be
contrasted with the extension from one to two dimensions for
many othér transforms.,
More particularly, the usual extension from one to

two dimensions for many transforms is to first perform a

complete one-dimensional transform on each row of elements in a

two-dimensional array, and to order the results by row and rank

(e.g. frequency, sequency, etc.). Then a complete second one-

dimensional transform is performed on each of the columms

resulting from the ordered one dimensional row transforms. 2
The extension from the one dimensional Triangle

Transform to the two dimension Pyramid Transform differs , s

considerably with important beneficial results. First, there

are significantly fewer calculations which must be performed in

realiziﬁg the Pyramid Transform. Second, the Pyramid Transform

may be calculated in pieces or sections in a flow which

progresses as the input data from the signal flows into the

SUBSTITUTE SHEET

e 0, b



WO 85/05205 PCT/US84/00687

10

15

20

25

30

- 33 -

transform device. A beneficial consequence of this is the
reduced internal storage memory capacity necessary, as in most
cases the first coefficlents may be output soon after the first
data samples become available and far sooner than the final
input data samples become available. In many other transforms
it is necessary to artificially separate the input data into
blocks to realize this computational advantage with the
resulting limitation that artifact edges may be generated in
the reconstructed replica of the signal at the edges of the
blocks. A related, major advantage of the Pyramid transform
over many other two-dimensional transforms is that, when
implemented as described next below, the number of calculations
decreases by a factor of four for each successive band.

For the Pyramid Transform, a sequence, as now
described, is repeated a number of times equal to the number of
bands selected for use in the transform. A partial transform
in one dimension comprising those steps mnecessary to output the

coefficients and B-type terms for a single band is first

. performed on each row of elements (e.g. horizontal row) in a

two-dimensional array. The results of this first transform
process of each row are ordered in a row themselves by type
(e.g. B, D, Sn, Hor L) and position. A second partial
transform in one dimension comprising those steps necessary to
output the coefficients and B-type terms for a single band is
next performed on each colum of the ordered results of
previously transformed horizontal data. The result is a
two-dimensional forward transform of a single band.

The results of this sequence are outputs of two
categories:

(1) Two-dimensional coefficients assigned to the
band §ust processed which require no additional calculations;
and '

(2) B-function terms with a pyramid-weighted

average of a selected two-dimensional array of input samples
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which form the two-dimensional array of data samples which are
input to transform processing in the next lower band.

Of the outputs resulting from each successive group

(3

of sixteen input data samples and the aforementioned processing
sequence, there are four pyramid-weighted average terms and a

minimum of twelve coefficients. The number of data samples in

W

the two-dimensional array available for transformation in the
next lower band is therefore one-fourth that of the number
available to the band just completed.

The aforementioned processing sequence is next
repeated for the next lower band, as a result of which a
minimum of twelve coefficients and a group of four pyramid
weighted terms are issued. As before, the two dimensional
coefficients are output, requiring no further processing, and
the pyramid-weighted terms become the input data samples to the
next lower band. The processing sequence continues until Band
1 transformation is complete, at which point both thé
two—dimensional coefficients and the pyramid-weighted average
terms are output as Band 1 results.

The subject transforms can be organized in a
plurality of ways, within some restrictions. Various
combinations of the aforementioned functions can be used in a
number of bands. 7

Returning to the single dimension case, there must
be two coefficients in the hiéhest band, Band N, for each four
input samples. One possible method, as depicted in’ FIG. 84, is
to use two D coefficients for each four input samples. In this
case the weighting envelope of each D-coefficient overlaps that ¢
of an adjacent D-coefficient by 50%.

_Another method, depicted in FIG. 8B, is to use omne »
D-coefficient term and one of the S-type coefficients in Band N
for every four input samples. In FIG. 8B, the "D" amnd "S" type
functions are located so their centers lie on the same sample.

Other combinations, such as two "S” functions, and a

“D" and "S" function which alternate are also possible. The
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preferred embodiment of the subject invention employs a "D"
type and an overlapping coefficient of one of the "S§" types,
which leads to a more robust recomstruction of the signal.

In Band N-1 of the preferred embodiment, there must
be two coefficients of one -of the aforementioned combinations
of D and S types for each eight input samples. For Band N-2
there must be two coefficients for each sixteen input samples,
and so forth., In addition to these coefficients in Band N down
through Band 1, there must be two B-type terms for each pair of
Band 1 coefficients. The envelopes for these B-type functions
are shown in FIG. 8C, and may be seen to overlap each other by
50%. In general, for interior signal areas the minimum number
of coefficients plus B-function terms are equal to the number
of input samples from the signal on the average. It is not
possible to associate a fixed number of specific coefficients
directly with a like number of specific input samples due to
the continuous overlapping nature of the transforms. This is
in contrast with most prior art transforms, but gives the
transform much of its strength and utility.

By way of brief summary, the following are five
combinations sufficient for recomnstruction, given in groups of

four data samples:
(1) Two B-terms and two D-coefficients, with D's

for all values of m;
(2) Two B-terms and two S-coefficients, with S's

for all values of m;

(3) Two B-terms, one D-coefficient, and one
S-coefficient, with D's and S's for odd values only of m;

(4) Two B-terms, one D-coefficient, and one
SN-coefficient for odd values only of m; and

(5) (Presently preferred) Two B-terms, one
H-coefficient, one L-coefficient, and a D carry-up (described

hereinafter) from the next lower band.

As mentioned several times above, the subject

invention includes a fast tecmique for performing the
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calculations of the Triangle and Pyramid transforms resulting
in a device of considerable. simplicity relative to a device for
performing direct calculations. Whereas the direct
implementation obviously requires multiplications by other than
powers of two, the fast method requires only power-of-two
multiplications which can be accomplished by simple shift
operations in the digital hardware implementation. There is
also mu