

[54] **BELL CRANK TYPE OPERATING MEANS FOR SIMULTANEOUSLY ACTUATING INTERLOCKED PAIR OF ELECTRICAL SWITCHES**

[75] Inventor: **Charles L. Burns, Frankfort, Ind.**

[73] Assignee: **P. R. Mallory & Co., Inc., Indianapolis, Ind.**

[22] Filed: **Jan. 31, 1972**

[21] Appl. No.: **222,218**

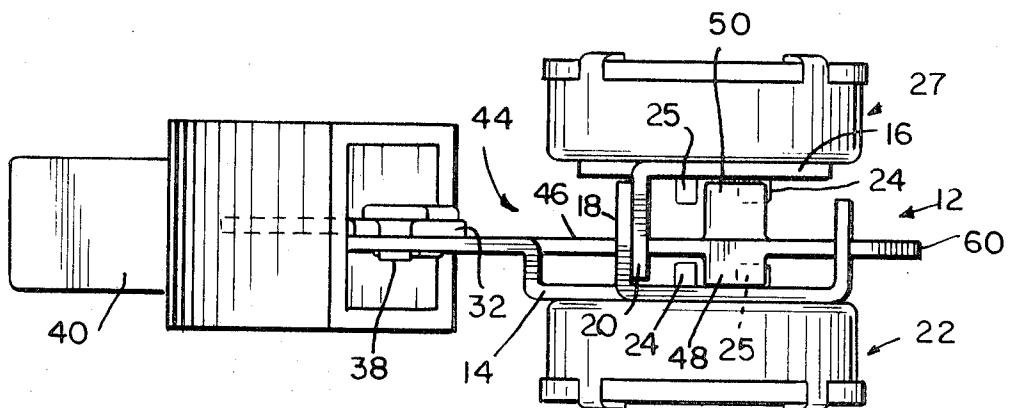
[52] U.S. Cl. **200/50 C**, **200/17 R**, **200/18**

[51] Int. Cl. **H01h 9/26**, **H01h 3/46**

[58] Field of Search **200/4, 16 B, 16 C, 200/16 D, 17 R, 18, 50 C, 172 R, 172 A**

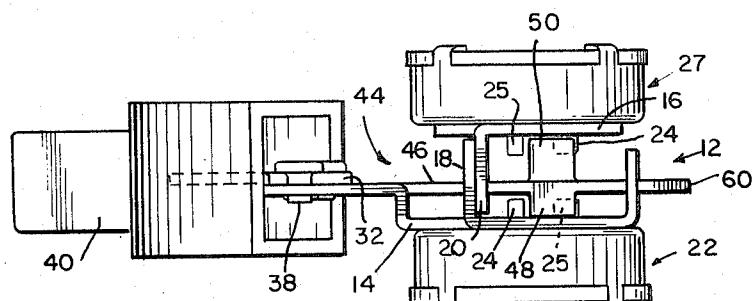
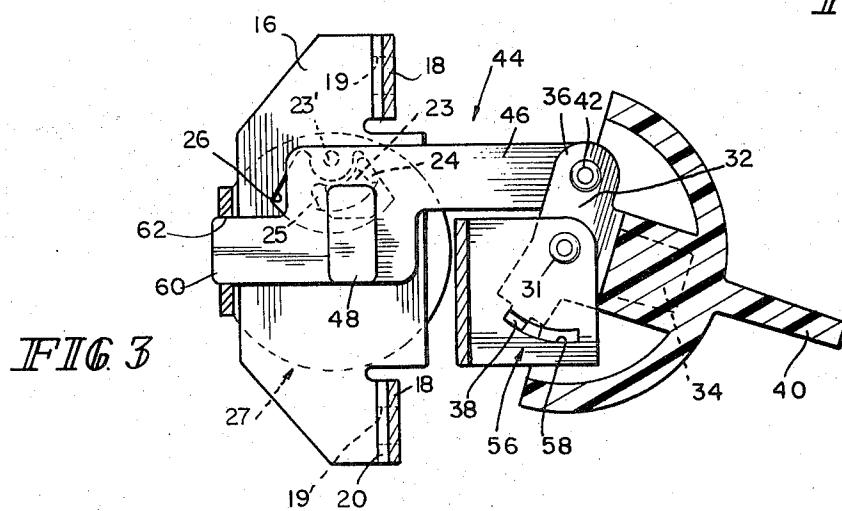
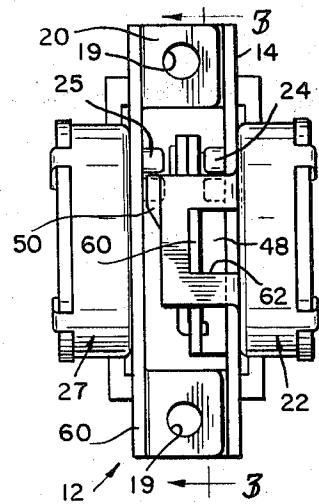
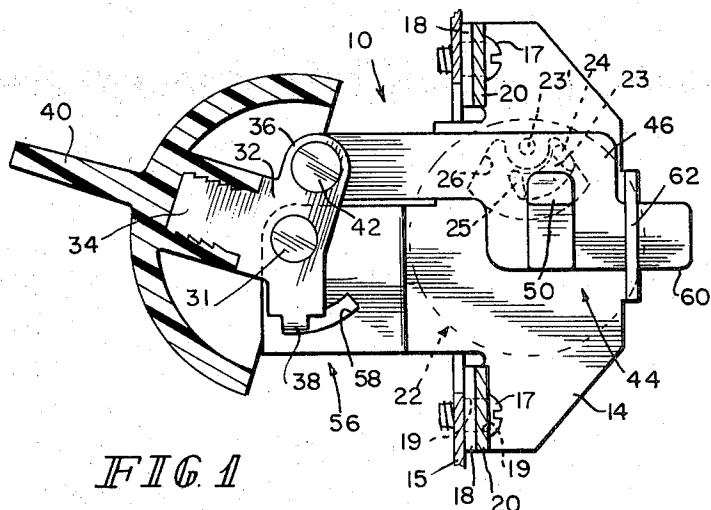
[56]

References Cited**UNITED STATES PATENTS**


3,604,863	9/1971	Schink	200/16 C
3,199,017	8/1965	Graves et al.	200/4 X
3,329,778	7/1967	Bedocs.....	200/16 C
3,187,120	6/1965	Akst.....	200/17 R X

Primary Examiner—J. R. Scott*Attorney*—Richard H. Childress et al.

[57]





ABSTRACT

A bell crank moves a switch actuator blade between a pair of opposed rotary switches to actuate same.

7 Claims, 4 Drawing Figures

PATENTED SEP 25 1973

3,761,652

BELL CRANK TYPE OPERATING MEANS FOR SIMULTANEOUSLY ACTUATING INTERLOCKED PAIR OF ELECTRICAL SWITCHES

The present invention is directed to a device for controlling switches and more specifically to the type of switches which are actuated by rotary actuators employed by the switches.

The audio-video industry widely accepts rotationally actuated, on-off, over center snap action switches, such as disclosed by U.S. Pat. No. 2,820,864, W. A. Newman, et al. In the past, rotationally actuated switches were normally coupled with and controlled by a volume control of the variable resistor type. These types of switches are normally found in radios and televisions. Switches of this nature are designed to be actuated by an actuator moving in a concentric path across the switch actuator.

Adapting the rotary actuator switch to control mechanism other than the concentric type presents a great deal of problems such as force factors, lost motion within the actuator device, space limitation, and provisions for the device to be controlled by various types of external hardware.

It is, therefore, an object of the present invention to provide a control device having a frame for supporting a plurality of electrical switches, supporting and positioning means for the linkage required to actuate the switches, and means on the frame for mounting the frame to a control panel.

Another object is to provide a mechanism for actuating the switches that can be easily assembled with a minimum amount of parts and a limited amount of frictional generating surfaces to provide smooth operating conditions.

A further object is to provide a fabricated frame for the control which can be assembled during manufacturing or may be assembled when attaching the frame to a chassis.

It is another object of the invention to provide a travel limiting feature to assure proper amount of movement of the control device.

Another object is to provide a control for electrical switches that is neat, compact and having a substantially uncluttered exterior.

The foregoing and other objects of the present invention may be more fully appreciated from the following description and the accompanying drawings wherein:

FIG. 1 is a side view in section of the control device in one position of operation;

FIG. 2 is an end elevation of FIG. 1;

FIG. 3 is a section taken along line 3-3 of FIG. 2, in another position of operation; and

FIG. 4 is a bottom view of FIG. 1.

Accordingly, the invention provides a frame means, comprising a first frame coupled to and co-planer with a second frame, each having a cooperating electrical switch attached thereto. Linearly moveable between the frames and positioned to travel in an interference path to operate the electrical switches is a switch actuating blade. The switch actuating blade is coupled to and moveable by a bell-crank, pivotally carried on the first frame. A slot in the first frame, in cooperation with a protrusion on the bell-crank, conveniently provides a limit travel control. The bell-crank is formed so as to retainably receive a control lever for manual actuation of the bell-crank, which in turn linearly moves the

switch actuating blade. Linear movement of the switch actuating blade will position the switches to an on or off condition.

Referring now to the drawings, the switch control 10 includes a frame means 12 having a first frame 14 and a second frame 16. The first frame member 14 serves as the primary support member, and has formed thereon a pair of outwardly projecting mounting wings 18 for mounting the first frame 14 to a chassis 15, by fastener 17. Another function of the first frame 14 is to provide a mounting for a first rotary actuated electrical switch 22. Switch 22 could be mounted to the frame 14 by some suitable means, such as by welding, for example. Second frame 16 is designed to cooperate with the first frame 14 to provide a support for second rotary actuated switch 27 and to properly align it so as to be controlled by the same actuator as the switch 22. Rotary actuated switches 22 and 27 are of the type described in the aforementioned U.S. Pat. No. 2,820,864, W. A. Newman, et al., and are controlled by an actuator 23. Actuator 23 includes a pivot post 23', upstanding legs 24 and 25, and an opening 26 in the housing for limiting the travel of the actuator 23. The actuator 23 is coupled to an overcenter spring (not shown) to move the electrical contacts in the switch to an on or off condition.

Rigidly coupled to the first frame 14 is a pivot post 31 for pivotally carrying a bell crank 32. The bell crank 32 includes a first leg 34, a second leg 36, and a tongue 38. First leg 34 is designed to receive a variety of different types of external hardware for transmitting motion from outside a chassis to the bell crank. As shown in the present embodiment, one of the forms of hardware used is a control lever 40. Control lever 40 provides a mechanical advantage to the control switch as a result of its length.

The second leg 36 of the bell crank is hinged to switch blade 46 by a hinge pin 42 for imparting motion from the bell crank to switch actuator means 44. The path of travel of switch blade 46 is transverse to the axis of pivot post 31. A travel limit control 56 is provided to limit the travel of the switch blade. Travel limit control 56 includes a travel limiting tongue 38 which is located on the bell crank and positioned to travel in a slot 58 in first frame 14. It can be seen that as the bell crank is moved to a first position, the distance of travel is controlled by the tongue 38 moving in slot 58 and is stopped at the ends of slot 58.

Switch actuating means 44 includes switch blade 46, and bosses 48 and 50, and a retaining tab 60. The retaining tab 60 is provided to retain the distal end of the switch blade 46 opposite that of the hinged end. The tab 60 is retained in a window 62 projecting from the first frame 14. As switch blade 46 is moved to the two extreme positions, furthest right and furthest left, as shown in FIGS. 1 and 3 respectively, it can be seen that the bosses 48 and 50 engage the rotary switch actuators 23 on switches 22 and 27 respectively. This is achieved by the boss 48 engaging one of the upstanding legs 24 or 25 of the rotary switch actuator 23 on switch 22 and the boss 50 engaging the upstanding legs 24 and 25 of the rotary switch actuator 23 of switch 27. It should be noted that the bosses 48 and 50 actuate their respective rotary switch actuators to an over center condition and allow the rotary switch actuator to then travel at its own speed until the switch actuator is stopped by the windows 26 in the switches 22 and 27.

A feature of the present device is that first frame 14 and second frame 16 are so designed that they may be assembled together by their wings 18 and 20 and rigidly attached by welding or other means well known in the art. Optionally, the frames 14 and 16 may be assembled together at the time they are being attached to a chassis 15 by aligning the mounting wings 18 of the first frame 14, with the mounting wings 20 of second frame 16 and then rigidly coupling the frames to each other with the same fastener such as mounting screw 17 which mounts the frame means 12 to the control panel through mounting apertures 19. 10

OPERATIONS

To actuate the switches, the operator moves the control lever 40 from the position as shown in FIG. 1 downwardly to come to rest in a position as indicated in FIG. 3. As the lever 40 is moved downward, the bell crank 32 pivots about its pivot post 31 moving the end of leg 36 to the counterclockwise as viewed in FIG. 1. 15 The amount of travel of the bell crank is controlled by a travel limiting means 56, wherein tongue 38 of the bell crank travels in slot 58 in the first frame 14. Leg 36 of the bell crank 32 is coupled to switch blade 46 by hinge pin 42 to thereby also move the switch blade 46 to the left in FIG. 1. As switch blade 46 is moved, the switches 22 and 27 are simultaneously actuated by way of the bosses 48 and 50 on the blade being in an interference path with the rotary switch actuators 23 on the respective switches. To return the switches to the condition as shown in FIG. 1 from the condition as shown in FIG. 3, the control lever 40 is moved upwardly to pivot the bell crank about its pivot 31 and therefore impart motion to the switch blade 46 through the hinge pin 42 to thereby move the rotary switch actuators 23 to the condition as in FIG. 1. It should be noted that if the second frame 16 has been deleted, only the switch 22 will be actuated and depending upon the geometry of the switches 22 and 27, the switches will be switched to an "on or off" condition. 20 25 30

The present invention therefore provides a means for controlling one or more opposed switches by a single control lever to at least two conditions of the switches.

What is claimed is:

1. A control for electrical switches comprising:
 - a. frame means
 - b. at least two separate and distinct electrical switch bodies carried in a face to face relationship by said frame means, said electrical switches including rotary switch actuators,
 - c. a bell crank having first and second legs and mounted for pivotal movement on said frame,
 - d. a control lever carried on said first leg to impart movement thereto,
 - e. a switch actuating blade carried by said frame means and hinged to said second leg to move said actuating blade in a linear direction between said electrical switch bodies, and
 - f. means carried on said switch actuating blade engaging said rotary switch actuators.
2. A control according to claim 1 further including a travel limiting means limiting said pivotal movement of said bell crank.
3. A control according to claim 2 wherein said travel limiting means includes a tongue on said bell crank extending into a slot in said frame means.
4. A control according to claim 1 wherein said frame means includes a pair of switch supporting frames each carrying one of said electrical switch bodies.
5. A control according to claim 5 wherein said switch supporting frames are connected by welding.
6. A control according to claim 4 wherein said switch supporting frames are connected to each other by the same fastener which attaches said frame means to a control panel.
7. A control according to claim 1 wherein said engaging means comprises a pair of bosses carried on opposed sides of said switch actuating blade.

* * * * *