Title: COMPOSITIONS WHICH CAN BE USED AS BIOFUEL

Bezeichnung: ZUSAMMENSETZUNGEN VERWENDBAR ALS BIOTREIBSTOFF

Abstract: The invention relates to a composition which contains an alkylester which is provided with an alkyl radical containing 1 - 8 carbon atoms and partial glycerides which have a glycerine content of free glycerine up to a maximum of 2 wt.% in relation to the total amount of the composition. The invention also relates to a first method for producing the inventive composition, wherein triglycerides are enzymatically reacted with an esterase in the presence of alcohols which are provided with a plurality of carbon atoms having 1 - 8 C-atoms, said esterase being activated by adding alkaline salts. In an additional method, the esterases are immobilised and/or chemically modified. The invention further relates to a method, wherein the inventive composition is produced by chemical partial transesterification. The invention subsequently relates to a composition which can be obtained according to said method, in addition to the use of the inventive compositions as biodiesel or additives in fuel compositions.

Zusammensetzungen verwendbar als Biotreibstoff

Gebiet der Erfindung

Stand der Technik

In Treibstoffen auf Kohlenwasserstoffbasis, also z.B. Gasölen, Heizölen, Benzin, Diesel, Kerosin etc., werden zahlreiche Additive eingesetzt. So sind neben Zusätzen zum Korrosionsschutz und zur Schmierfähigkeit auch Fließverbesserer oder Verbindungen bekannt, die die Emissionswerte von Gasen wie CO, CO₂ oder NOₓ verbessern.

In dieser Direktive wird Bio-Treibstoff in Artikel 2.2 wie folgt definiert: Bio-Ethanol, Rapsölmethylester (RSME), Biogas, Biomethanol, Biodimethylether, Biowasserstoff, synthetische Biotreibstoffe und rein pflanzliche Öle.

Im Allgemeinen wird als Biodiesel Rapsöl-methylester (RSME) verwendet. Es ist bereits möglich, dass Motoren mit reinem Biotreibstoff gemäß EU-Direktive betrieben werden. Wahr-scheinlich ist jedoch die Zumischung von bis zu 2 % RSME zu normalem Diesel zur Erfüllung der EU-Direktive.

Die Produktion dieses RSME besteht in der Umwandlung des natürlichen Triglycerides in einen Methylester oder auch Ethylester. Das Nebenprodukt bei diesem Herstellweg ist rohes Glycerin. Bei der Herstellung von einer Tonne Biodiesel als Rapsmethylster entstehen 100 kg freies Glycerin. Mit dem wachsenden Anteil von Biodiesel wird die Verfügbarkkeit von Glycerin größer. Da Glycerin eine limitierte Marktgröße besitzt, die schon durch bisherige Produktionen abgedeckt wird, entsteht eine Entsorgungsproblematik. Dieser Umstand beschränkt möglicherweise die übliche Herstellungsroute für Biodiesel, da Glycerin nicht mehr als zusätzlicher Verdienst eingerechnet werden kann, was diese Route wirtschaftlich unattraktiv machen wird.

Ein hoher Anteil von Glycerin stört die Brennleistung des Diesels und des Biodiesels, sodass eine Abtrennung des Glycerin erfolgen muss. Ein Grund hierfür ist die geringe Löslichkeit des Glycerins in Rapsmethylster. Zu hohe Glycerinkonzentrationen im Methylester führen zur
Ausbildung einer schweren Glycerinphase, die sich zum Beispiel im Tank absetzen kann. Wird solch eine Glycerinphase in den Motor eingespritzt, wird die Leistung verringert und der Verschleiß einzelner Motorenteile potentiell erhöht.

Eine Aufgabe hat nun darin bestanden, Biotreibstoff zur Verfügung zu stellen, der den Richtlinien des Europäischen Parlamentes entspricht und bei dem das Glycerin als Derivat vorliegt und damit möglichst wenig freies Glycerin als Nebenprodukt bei dem Herstellprozess entsteht. Das Verfahren zur Herstellung sollte möglichst umweltfreundlich und wirtschaftlich sein.

In der chemischen und biochemischen Synthese werden vermehrt Enzyme als Katalysatoren eingesetzt. So werden in vielen Fällen aufgrund der oft milderen Reaktionsbedingungen bereits in großtechnischen Verfahren Hydrolasen, speziell Lipasen (EC 3.1.1.3) zur Fettspaltung oder Umesterung eingesetzt.

Diese Enzyme werden von unterschiedlichen Mikroorganismen produziert. Zur Isolierung der Enzyme folgt nach der Fermentation der Mikroorganismen ein aufwendiges Reinigungsverfahren.

Der Effektivität dieser Katalysatoren stehen oftmals die hohen Kosten der Produktion und der Isolierung gegenüber, so dass Forschungsgruppen immer wieder bestrebt sind die Ausbeuten an Enzymen zu erhöhen oder die Produktivität der Enzyme zu steigern.

Die klassische chemische Methode der Monoglyceridherstellung verläuft über eine basekatalysierte Glycerolyse von Triglyceriden, wobei typischerweise eine Ausbeute von 40 – 60 % Monoglycerid bezogen auf die Gesamtglyceride erhalten werden. Eine weitere Anreicherung bis auf > 90 % Monoglyceridgehalt erfolgt über physikalische Trennmethoden wie Molekulardestillation oder Kristallisation.

Gew.% bezogen auf das Triglycerid eingesetzt und die Alkoholkomponente im 20fachen Überschuss.

WO2006505 (Nippon Suisan Kaisha Ltd.) beschreibt die regioselektive Alkoholyse mit immobilisierter Lipase bei hohem Alkoholüberschuß und hoher Enzymeinsatzkonzentration, gefolgt von einer Wiederveresterung des Monoglycerids.

JP03103499 (Meito Sangyo Co. Ltd.) beschreibt die regioselektive Alkoholyse von PUFA-Triglyceriden mit Isobutanol in Anwesenheit einer alkalischen Lipase.

Die enzymatische Herstellung von Partialglyceriden wurde schon vielfach beschrieben, doch in allen oben genannten Dokumenten werden Lösungsmittel benötigt, das Reaktionswasser muss aufwendig entfernt werden oder die Lipasen sind sehr speziell und nicht kommerziell in technischem Maßstab erhältlich.

Beschreibung der Erfindung

Gegenstand der Erfindung ist eine Zusammensetzung enthaltend Alkylester mit einem Alkylrest enthaltend 1 bis 8 Kohlenstoffatome und Partialglyceride, die einen Glycingehalt an freiem Glycerin von maximal 2 Gew.-% bezogen auf die Gesamtmenge der Zusammensetzung hat.

Überraschenderweise konnte gezeigt werden, dass Zusammensetzungen die die genannten Komponenten in der Mischung enthalten und maximal 2 Gew.-% freies Glycerin enthalten, die Aufgabe der Erfindung hervorragend lösen. Bevorzugt ist ein maximaler Glycingehalt von maximal 1,3 Gew.-% und besonders bevorzugt von maximal 1,0 Gew.-%, wobei die Auswertung über Flächenprozent bei der GC-Analytik erfolgt und die Werte für Glycerin aufgrund der starken Absorption kalibriert werden müssen.

In einer besonderen Ausführungsform enthält die Zusammensetzung als Alkylester Methyl- und/oder Ethylester.

In einer weiteren besonderen Ausführungsform enthält die Zusammensetzung Methyl- und/oder Ethylester, Monoglyceride und Diglycerid in Mengenverhältnissen von:

- Methyl- und/oder Ethylester 30-70 Gew.-%, bevorzugt 55-60 Gew.-%
- Monoglycerid 10-35 Gew.-%, bevorzugt 25-33 Gew.-%
- Diglycerid 1-30 Gew.-%, bevorzugt 1-20 Gew.-%

Die Auswertung der prozentualen Gewichtsanteile erfolgt durch die Flächenprozente bei der GC-Analyse.

Eine weitere besondere Ausführungsform sind Zusammensetzungen bei denen die Alkylester, und Partialglyceride Fettsäureester darstellen aus gesättigten oder ungesättigten, linearen oder verzweigten Fettsäuren mit einem Alkylrest mit 8 bis 22 C-Atomen.

Besonders bevorzugt im Sinne der Erfindung sind solche Fettsäureester, die aus Pflanzenölen gewonnen werden können wie beispielsweise Linoleat, Oleat, Palmitat, Stearat und/oder Pelargonat.

Erdnussöl enthält durchschnittlich (bezogen auf Fettsäure) 54 Gew.-% Ölsäure, 24 Gew.-% Linolsäure, 1 Gew.-% Linolensäure, 1 Gew.-% Arachinsäure, 10 Gew.-% Palmitinsäure, sowie 4 Gew.-% Stearinsäure. Der Schmelzpunkt beträgt 2 bis 3 °C.

Alle obigen Angaben über die Fettsäureanteile in den Triglyceriden sind bekanntermaßen abhängig von der Qualität der Rohstoffe und können daher zahlenmäßig schwanken.

Die Fettsäurezusammensetzung in dem Gemisch ergibt sich aus der jeweiligen nativen Fettsäurezusammensetzung des verwendeten Pflanzenöles sowie der jeweiligen Qualität des Rohstoffes aus dem die Methyl- und/oder Ethylester sowie die Monoglyceride hergestellt werden.

Überraschenderweise wurde gefunden, dass die Zugabe von alkalischen Salzen Esterasen aktivieren kann und dadurch im Vergleich zu bekannten Verfahren eine erhöhte Ausbeute an Monoglyceriden bei der Alkoholyse von Triglyceriden erreicht werden kann.

Bei dem erfindungsgemäßen Verfahren wird ein Triglycerid in Anwesenheit eines Alkohols in ein 2-Monoglycerid und zwei Fettsäureester gespalten. Bei diesem Verfahren bleibt das Glycerin zu über 90 % im Produkt chemisch gebunden und die geringen Konzentrationen an freigesetztem Glycerin bleiben im Produkt einphasig gelöst. Dadurch fällt bei diesem Verfahren im Gegensatz zur klassischen Biodieselherstellung kein Glycerin als Nebenprodukt an und entsprechend lässt sich die Menge an benötigtem Rohstoff Öl deutlich verringern. Mit diesem Verfahren lässt sich in hervorragender Weise die erfindungsgemäße Zusammensetzung herstellen.

Die Reaktion wird bei einem Wassergehalt von 0,1 – 10 Gew.-%, bevorzugt 0,1 – 5 Gew.-% und besonders bevorzugt 0,1 – 2 Gew.-%, bezogen auf die Menge an Triglycerid durchgeführt, wobei der Wassergehalt der flüssigen Enzympräparation mit einberechnet ist. Die Reaktion funktioniert auch bei höheren Wassergehalten, allerdings ist dann der Gehalt an gebildeter freier Fettsäure erhöht. Hohe Anteile an freier Fettsäure sind nicht gewünscht, da sie in der Verwendungsförm Biodiesel bei hohen Temperaturen gegebenenfalls korrosiv auf Motorenteile wirken können.

Die Zugabe der Alkoholkomponente mit 1 bis 8 Kohlenstoffatomen, bevorzugt Methanol und/oder Ethanol, Ethanol bevorzugt, erfolgt entweder komplett am Anfang oder über den Reaktionszeitraum dosiert.

Die eingesetzte Alkoholmenge ist variabel, Minimum 2 Mol Alkohol auf 1 Mol Öl, Maximum 50 Gew% Alkohol und 50 Gew% Öl im Ansatz.

In einem weiteren Schritt dieses erfindungsgemäßen Verfahrens kann die Esterase durch die Hitze deaktiviert und anschließend die präzipitierte Esterase gegebenenfalls abfiltriert werden, wobei neben der präzipitierten Esterase die Entfernung von Additiven oder Formulierungsbestandteilen der eingesetzten Enzympräparation erreicht werden kann.

Folgende optionale Schritte können dem erfindungsgemäßen Verfahren angeschlossen werden.

- Zugabe von wasseradsorbierenden Mitteln während der enzymatischen Reaktion zur Unterdrückung der Bildung von freien Säuren
- Filtration des Reaktionsgemisches über Filterhilfsmittel zur Entfernung von Additiven bzw. Bestandteilen der Enzymformulierung
- Raffination des Produksgemisches mit Wasser zur Entfernung von freiem Glycerin, dass in geringen Mengen als Nebenprodukt entsteht

Durch den emulgierenden Charakter der gebildeten Monoglyceride bleiben evtl. gebildete Fettsäuren, freies Glycerin sowie geringe Anteile von Wasser im Produkt einphasig gelöst.

Versuche haben gezeigt, dass auch nach Blending des Biodiesels mit Diesel diese Komponenten im Diesel gelöst bleiben, was durch die emulgierende Wirkung des Monoglycerids vermittelt wird.

Experimentelle Daten haben gezeigt, dass die Zugabe geringer Mengen alkalischer anorganischer Salze die Enzymaktivität der Esterasen drastisch erhöht. Insbesondere werden nicht immobilisierte Lipasen durch die alkalischen Salze aktiviert.

Bevorzugt wird eine Einsatzkonzentration von 0,05 - 2 % der kommerziell erhältlichen Flüssigpräparation in Bezug auf die Menge an eingesetztem Triglycerid eingesetzt. Diese kommerziell erhältlichen Enzym-Flüssigpräparate weisen im Durchschnitt eine Enzymaktivität von 100.000 U/ml auf. Eine Enzymeinheit U (enzyme units) ist definiert als Enzymmenge, die pro Minute ein micromol Substrat umsetzt.

Für das erfindungsgemäße Verfahren werden zur Aktivierung der Esterase bevorzugt alkalische anorganische Salze verwendet, die ausgewählt sind aus der Gruppe, die gebildet wird.
von Hydroxiden, Carbonaten und Phosphaten des Natriums, Kaliums, Calciums, Magnesiums und Ammoniurns, vorgelöst in Wasser. Die Menge an alkalischen anorganischen Salzen zur Aktivierung des Esterasen betragen erfindungsgemäß zwischen 0,00001 und 1 Gew.-%, bevorzugt zwischen 0,0001 und 0,2 Gew.-% bezogen auf die Menge an Triglycerid. Die Einsatzmenge an basischem Additiv ist abhängig von der Menge an eingesetzter Enzym-Flüssigpräparation, die gepuffert ist sowie von der Stärke der Base. Bei Einsatz von NaOH und < 0,5 % Enzym-Flüssigpräparation ist die Einsatzkonzentration im unteren Konzentrationsbereich, wobei bei Einsatz von Na₂CO₃ und 2 % Enzym-Flüssigpräparation die Menge an basischem Additiv am oberen Konzentrationsbereich liegt.

Eine Messung des pH-Wertes des umgesetzten Produktgemisches zeigt zudem, dass der pH-Wert im neutralen bis schwach sauren liegt, was eine Enzymaktivierung alleine über pH-Shift unwahrscheinlich macht.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Monoglyceriden, bei dem Triglyceride in Anwesenheit von Alkoholen mit einer Anzahl an Kohlenstoffatomen von 1 bis 8 C-Atomen mit einer Esterase enzymatisch umgesetzt werden, welche immobilisiert und / oder chemisch modifiziert eingesetzt wird.

Überraschenderweise wurde gefunden, dass sich auch mit diesem enzymatischen Verfahren in hervorragender Weise die erfindungsgemäße Zusammensetzung herstellen lässt. Bei diesem Verfahren bleibt das Glycerin ebenfalls zu über 90 % im Produkt chemisch gebunden und die geringen Konzentrations an freigesetztem Glycerin bleiben im Produkt eindringend gelöst. Dadurch fällt bei diesem Verfahren im Gegensatz zur klassischen Biodieselherstellung kein Glycerin als Nebenprodukt an und entsprechend lässt sich die Menge an benötigtem Rohstoff Öl

Die Alkoholyse wird bei Temperaturen von 10° bis 60° C, bevorzugt bei 10° bis 40° C und zur Erhaltung der optimalen Regioselektivität und Aktivität besonders bevorzugt bei einer Temperatur von 15° bis 30° C durchgeführt.

Die Zugabe der Alkoholkomponente, bevorzugt Methanol und / oder Ethanol, Ethanol bevorzugt, erfolgt entweder komplett am Anfang oder über den Reaktionszeitraum dosiert.

Die eingesetzte Alkoholmenge ist variabel, Minimum 2 Mol Alkohol auf 1 Mol Öl, Maximum 50 Gew% Alkohol und 50 Gew% Öl im Ansatz.

In einem weiteren Schritt des erfindungsgemäßen Verfahrens kann die Esterase abfiltriert werden. Folgende optionale Schritte können dem erfindungsgemäßen Verfahren angeschlosen werden.

- Zugabe von wasseradsorbierenden Mitteln während der enzymatischen Reaktion zur Unterdrückung der Bildung von freien Säuren
- Filtration des Reaktionsgemisches über Filterhilfsmittel zur Entfernung von Bestandteilen der Enzymformulierung oder unlöschlichen Komponenten des eingesetzten Öls
- Raffination des Produktgemisches mit Wasser zur Entfernung von freiem Glycerin, dass in geringen Mengen als Nebenprodukt entsteht

Versuche haben gezeigt, dass auch nach Blending des Biodiesels mit Diesel diese Komponenten im Diesel gelöst bleiben, was durch die emulgierende Wirkung des Monoglycerids vermittelt wird.

Für das erfindungsgemäße Verfahren eignen sich verschiedenste Trägermaterialien, die zur Bindung von Enzymen geeignet sind. Als Träger können Kunststoffe, mineralische Träger oder Harze eingesetzt werden, die die Esterasen über hydrophobe Wechselwirkungen binden wie z.B. Amberlite 16 (Rohm & Haas), Celite oder Accurel MP 1000 (Membrana). Als weiteres eignen sich Ionentauscher, die die Esterasen über ionische und zum Teil auch hydrophobe Wechselwirkungen binden wie z.B. Dowex Marathon WBA (Dow Chemicals) oder Duolite A 568 (Rohm & Haas). Als weiteres geeignet sind Träger, die Esterasen über chemisch reaktive Gruppen binden können wie z.B. Eupergit (Degussa).

Als weiteres eignen sich chemische Modifizierungen für die Adaption der Esterasen auf das Reaktionssystem. Hierbei können hydrophobe Modifizierungen wie zum Beispiel Coating mit Surfactants oder chemische Modifizierung mit Fettsäuredehyden zum Einsatz kommen. Ebenfalls geeignet ist die Stabilisierung der Esterasen über Quervernetzung zum Beispiel durch Glutaraldehyd, DMA oder EDC.

Als weiteres eignet sich die Kombination aus chemischer Modifizierung und Immobilisation zur Adaption der Esterasen auf das Reaktionssystem. Dabei können entweder die Esterasen zuerst immobilisiert werden und anschließend trägergebunden modifiziert werden oder bereits chemisch modifizierte Esterasen werden immobilisiert.

Esterasen sind Enzyme, die die Bildung und Hydrolyse von Estern katalysieren; als Hydrolasen spalten sie ihre jeweiligen Substrate unter Einlagerung der Elemente des Wassers. Zu den Esterasen gehören beispielsweise die fettspaltenden Lipasen, die erfindungsgemäß bevorzugte Esterasen darstellen. Insbesondere bevorzugt für das erfindungsgemäße Verfahren ist die Verwendung von 1,3-regiospezifischen Lipasen, diese zeichnen sich dadurch aus, dass sie bevorzugt die Fettsäuren an 1- und 3-Position von Triglyceriden abspalten.
Prinzipiell kann jede 1,3-regioselektive Lipase bzw. Esterase in freier oder immobilisierter Form für das erfindungsgemäße Verfahren eingesetzt werden. Für das erfindungsgemäße Verfahren hat sich die Lipase von *Thermomyces lanuginosus* (Hersteller Novozymes, Bezeichnung Lipozyme TL 1001 oder Lipolase 100 EX) als besonders bevorzugt erwiesen.

Als Katalysatoren für die saure Niederdruckumesterung in homogener Katalyse werden bevorzugt Mineralsäuren, insbesondere Schwefelsäure, oder aliphatische und aromatische Sul-

Die chemische Teilumesterung kann im erfindungsgemäßen Verfahren als Batchreaktion oder als kontinuierliche Reaktion durchgeführt werden. In kontinuierlicher Reaktionsführung kann die Alkoholkomponente entweder gasförmig im Gegenstrom zum Öl geführt werden oder alternativ unter Hochdruckbedingungen oder Niedrigtemperaturbedingungen im Gleichstrom einphasig mit dem Öl geführt werden.

Bevorzugt werden alle Reaktanden vermischt und die Reaktion durch Zugabe des Katalysators gestartet. Die Zugabe der Alkoholkomponente, bevorzugt Methanol und/oder Ethanol, Ethanol bevorzugt, erfolgt entweder komplett am Anfang oder über den Reaktionszeitraum dosiert. Die eingesetzte Alkoholmenge ist variabel, Minimum 10 Mol% Alkohol, Maximum 30 Mol% Alkohol bezogen auf die eingesetzte Menge an Öl im Ansatz.

In einem weiteren Schritt des erfindungsgemäßen Verfahrens kann der Katalysator abfiltriert oder nach der Reaktion neutralisiert und ausgewaschen werden. Folgende optionale Schritte können dem erfindungsgemäßen Verfahren angeschlossen werden.

- Zugabe von wasseradsorbierenden Mitteln während der Reaktion zur Unterdrückung der Bildung von freien Säuren
- Filtration des Reaktionsgemischs über Filterhilfsmittel zur Entfernung von Katalysator oder unlöschlichen Komponenten des eingesetzten Öls
- Raffination des Produktgemisches mit Wasser zur Entfernung von freiem Glycerin, dass als Nebenprodukt entsteht

kann ebenso noch vorhandenes freies Glycerin abgetrennt werden, welches in geringen Mengen als Nebenprodukt entsteht.

Säurehaltige Fette und Öle lassen sich dabei im beschriebenen sauer katalysierten Niederdruckverfahren und im chemisch katalysierten Hochdruckverfahren problemlos einsetzen.

Bei den erfindungsgemäßen Verfahren werden bevorzugt Triglyceride aus Fetten und Ölen eingesetzt, die einen hohen Anteil an einfach und/oder mehrfach ungesättigter Fettsäuren haben und ausgewählt sind aus der Gruppe, die gebildet wird aus Sonnenblumenöl, Rapsöl, Distelöl, Sojaöl, Leinöl, Erdnussöl, Talge, Olivenöl, Rizinusöl, Palmöl, Yatrophaöl, Kokosöl, Palmkernöl und Alteole wie beispielsweise gebrauchtes Frittiersfett. Die Fette und Öle können dabei in raffiniertem Qualität oder in roher Qualität im erfindungsgemäßen Verfahren eingesetzt werden. Säurehaltige Fette und Öle lassen sich im beschriebenen Verfahren problemlos einsetzen.

Der Gehalt an Alkohol beträgt bevorzugt 10 bis 50 Gew.-% bzw. 10 bis 30 Mol% bei chemischen Verfahren bezogen auf das eingesetzte Triglycerid, bevorzugt werden 15 bis 40 Gew% bzw. 15 bis 25 Mol% bei chemischen Verfahren eingesetzt. Der Monoglyceridgehalt ist abhängig von der eingesetzten Alkoholmenge.

Ein weiterer Gegenstand der Erfindung ist eine Zusammensetzung erhältlich nach den erfindungsgemäßen Verfahren.

Die so erhaltene Zusammensetzung hauptsächlich bestehend aus Alkohol, Alkylester, Monoglycerid und Diglycerid kann direkt zu Dieseltreibstoff zugemischt werden. Durch den emulgierenden Charakter der gebildeten Monoglyceride bleiben evtl. gebildete Fettsäuren, freies Glycerin sowie geringe Anteile von Wasser im Produkt einphasig gelöst. Spuren von Wasser werden besser gebunden und stören den Verbrennungsprozess nicht mehr. Die gebildeten

Daraus ergibt sich als ein weiterer Gegenstand der Erfindung eine Treibstoffzusammensetzung, enthaltend 90 bis 99,5 Gew.-% Gasöl und 0,5 bis 10 Gew.-%, vorzugsweise 2 bis 6 Gew.-% einer erfindungsgemäßen Zusammensetzung oder einer Zusammensetzung die nach den erfindungsgemäßen Verfahren herstellbar ist.

Die Verwendung gilt für alle genannten Gasölfractionen sowohl im additivierten als auch nicht-additivierten Zustand.

Dieseltreibstoffe werden aus Gasöl durch Cracken oder aus Teeren, die bei der Schmelzung von Braun- oder Steinkohle gewonnen werden, erhalten. Dieseltreibstoffe sind schwer entflammbar. Gemische von flüssigen Kohlenwasserstoffen, die als Kraftstoffe für Gleichdruck- oder Brennermotoren (Dieselmotoren) verwendet werden und überwiegend aus Paraffinen mit Beimengungen von Olefinen, Naphthenen und aromatischen Kohlenwasserstoffen bestehen. Ihre Zusammensetzung ist uneinheitlich und hängt besonders von der Herstellungs-Methode ab. Übliche Produkte haben eine Dichte zwischen 0,83 und 0,88 g/cm³, einen Siedepunkt zwischen 170 und 360 °C und Flammpunkte zwischen 70 und 100 °C.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Zusammensetzung enthaltend Alkylester mit einem Alkylrest enthaltend 1 bis 8 Kohlenstoffatome, und Partialglyceride, die einen Glyceringehalt an freiem Glycerin von maximal 2 Gew.-% bezogen auf die Gesamtmenge der Zusammensetzung hat oder die bevorzugten Ausführungsformen dieser Zusammensetzung oder Zusammensetzungen erhältlich nach den erfindungsgemäßen Verfahren als Bio-Treibstoff.

Daraus ergibt sich als weiterer Gegenstand der Erfindung die Verwendung der erfindungsgemäßen Zusammensetzung enthaltend Alkylester mit einem Alkylrest enthaltend 1 bis 8 Kohlenstoffatome, und Partialglyceride und insbesondere Methyl- und/oder Ethylester, Monoglyceride und Methanol und/oder Ethanol, die einen Glyceringehalt von maximal 2 Gew.-% bezogen auf die Gesamtmenge der Zusammensetzung hat oder die bevorzugten Ausführungsformen dieser Zusammensetzung oder Zusammensetzungen erhältlich nach den erfindungsgemäßen Verfahren als Additiv in Treibstoffzusammensetzungen und bevorzugt in Mengen von 0,5 bis 10 Gew.-%, insbesondere von 1 bis 5 Gew.-%. Insbesondere bevorzugt ist die Verwendung der erfindungsgemäßen Zusammensetzung als Additiv zur Verbesserung der Schmierleistung von Treibstoffzusammensetzungen.

Insbesondere Glyceridmischungen mit einem hohen Anteil an Monoglycerid zeigen gute Schmier Eigenschaften. So konnte gezeigt werden, dass auch die nach dem erfindungsgemäßen Verfahren hergestellten Monoglyceride als Kraftstoffadditive in Dieselkraftstoff einsetzbar sind und gute Schmier Eigenschaften zeigen.

Beispiele

Beispiel 1: Regioselektive Alkoholyse mit verschiedenen Enzymen in freier und immobilisierter Form

16 Ansätze bestehend aus 20 g Rapsöl und 2,5 g Ethanol wurden in Bechergläser ausgestattet mit Magnetrührern vorgelegt. Unter Rühren wurden in die Ansätze 1 – 9, sowie 15 + 16 jeweils 0,25 g Wasser zugegeben und in die Ansätze 10 – 14 wurden jeweils 0,5 g Wasser zugegeben. Anschliessend wurden Lipasen in freier sowie immobilisierter Form wie in der Tabelle unten aufgelistet zugegeben. Die Ansätze wurden unter Rühren für 24 h inkubiert, wobei nach 5 h weitere 2,5 g Ethanol zugegeben wurden. Die Alkoholyse der Ansätze 1 – 14 wurde auf einer Multirührplatte bei Raumtemperatur durchgeführt. Die Ansätze 15 + 16 wurden auf einem Schüttler bei 45 °C inkubiert. Nach 24 h wurden Proben entnommen und der Gehalt an Glyceriden und Ethylestern wird gaschromatographisch analysiert. Die Auswertung erfolgte über Flächenprozent. Geringe Anteile an gebildeter Fettsäure sind in der Fläche der Ethylester enthalten.

Die Immobilisate der Ansätze 1 – 3, sowie 15 + 16 wurden direkt vom Hersteller in immobilisierter Form erworben. Die Immobilisate der Ansätze 4 – 8 wurden über Adsorption auf Accurel MP1000 (Membrana) hergestellt. Dazu wurden 1 Accurel MP 1000 für 1 h in 10 ml Ethanol inkubiert. Nach Abdekantieren des Ethanols wurden 10 g Wasser und jeweils 0,5 g der Lipasepräparation zugegeben. Das Gemisch wurde über Nacht bei Raumtemperatur inkubiert. Anschliessend wurde das Immobilisat über Filtration separiert und für 24 h auf Papierbögen bei Raumtemperatur getrocknet.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Enzym</th>
<th>Hersteller</th>
<th>Organismus</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 g Novozym 435</td>
<td>Novozyms</td>
<td>C. antarctica B</td>
<td>Immobilisat</td>
</tr>
<tr>
<td>2</td>
<td>1 g Lipozym RM IM</td>
<td>Novozyms</td>
<td>R. miehei</td>
<td>Immobilisat</td>
</tr>
<tr>
<td>3</td>
<td>1 g Lipozym TL IM</td>
<td>Novozyms</td>
<td>T. lanugenosus</td>
<td>Immobilisat</td>
</tr>
<tr>
<td>4</td>
<td>1 g Lipase FAP 15 / MP 1000</td>
<td>Amano</td>
<td>R. oryzae</td>
<td>Immobilisat</td>
</tr>
<tr>
<td>5</td>
<td>1 g Lipase A / MP 1000</td>
<td>Amano</td>
<td>A. niger</td>
<td>Immobilisat</td>
</tr>
<tr>
<td>6</td>
<td>1 g Lipase M / MP 1000</td>
<td>Amano</td>
<td>M. javanicus</td>
<td>Immobilisat</td>
</tr>
<tr>
<td>7</td>
<td>1 g Lipase L115 / MP 1000</td>
<td>Biocatalysts</td>
<td>Porcine pancreas</td>
<td>Immobilisat</td>
</tr>
<tr>
<td>8</td>
<td>1 g Lipomod 36 / MP 1000</td>
<td>Biocatalysts</td>
<td>R. javanicus</td>
<td>Immobilisat</td>
</tr>
<tr>
<td>9</td>
<td>0,5 g Lipolase</td>
<td>Novozyms</td>
<td>T. lanugenosus</td>
<td>Frei</td>
</tr>
<tr>
<td>10</td>
<td>0,5 g Lipase FAP 15 / MP</td>
<td>Amano</td>
<td>R. oryzae</td>
<td>Frei</td>
</tr>
<tr>
<td>Ansatz</td>
<td>% Ethylester</td>
<td>% Monoglycerid</td>
<td>% Diglycerid</td>
<td>% Triglycerid</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>18,2</td>
<td>1,4</td>
<td>5,0</td>
<td>75,4</td>
</tr>
<tr>
<td>2</td>
<td>39,3</td>
<td>16,2</td>
<td>14,5</td>
<td>29,5</td>
</tr>
<tr>
<td>3</td>
<td>62,7</td>
<td>23,5</td>
<td>10,9</td>
<td>0,5</td>
</tr>
<tr>
<td>4</td>
<td>58,5</td>
<td>29,6</td>
<td>9,6</td>
<td>0,0</td>
</tr>
<tr>
<td>5</td>
<td>5,2</td>
<td>1,6</td>
<td>4,6</td>
<td>88,6</td>
</tr>
<tr>
<td>6</td>
<td>41,7</td>
<td>16,5</td>
<td>27,7</td>
<td>14,1</td>
</tr>
<tr>
<td>7</td>
<td>82,4</td>
<td>6,8</td>
<td>7,0</td>
<td>2,9</td>
</tr>
<tr>
<td>8</td>
<td>57,7</td>
<td>32,7</td>
<td>8,3</td>
<td>0,0</td>
</tr>
<tr>
<td>9</td>
<td>15,9</td>
<td>4,1</td>
<td>14,8</td>
<td>65,2</td>
</tr>
<tr>
<td>10</td>
<td>0,0</td>
<td>0,0</td>
<td>2,1</td>
<td>96,2</td>
</tr>
<tr>
<td>11</td>
<td>2,0</td>
<td>0,4</td>
<td>1,6</td>
<td>96,0</td>
</tr>
<tr>
<td>12</td>
<td>3,4</td>
<td>0,0</td>
<td>2,4</td>
<td>94,2</td>
</tr>
<tr>
<td>13</td>
<td>2,2</td>
<td>0,4</td>
<td>2,3</td>
<td>95,1</td>
</tr>
<tr>
<td>14</td>
<td>3,3</td>
<td>0,0</td>
<td>2,8</td>
<td>93,9</td>
</tr>
<tr>
<td>15</td>
<td>41,0</td>
<td>0,0</td>
<td>2,2</td>
<td>55,8</td>
</tr>
<tr>
<td>16</td>
<td>3,7</td>
<td>0,0</td>
<td>2,3</td>
<td>94,0</td>
</tr>
</tbody>
</table>

Beispiel 2: Regioselektive Alkoholyse von Sb-Öl mit nicht immobilisierten Lipasen

6 Ansätze bestehend aus 40 g Sonnenblumenöl und 10 g Ethanol wurden in Bechergläsern ausgestattet mit Magnetrührern vorgelegt. Unter Rühren wurden 0,4 g Wasser zugefügt. In die Ansätze 2, 4 und 6 wurden 40 mg festes Na$_3$PO$_4$ x 12 H$_2$O zugegeben. In die Ansätze 1 und 2 wurden 0,4 g Lipolase (Thermomyces lanuginosus Lipase Flüssigpräparation), in die Ansätze 3 und 4 wurden 0,4 g Novozym 525 (Candida antarctica B Lipase, Flüssigpräparation) und in die Ansätze 5 und 6 wurden 0,4 g Novozym 388 (Rhizomucor miehei Lipase Flüssigpräparation) gegeben. Die Alkoholyse wurde auf einer Multitührplatte bei Raumtemperatur durchgeführt. Nach 16 h und 44 h wurden Proben entnommen und der Gehalt an Glyceriden gaschromatographisch analysiert. Auswertung erfolgte über Flächenprozent.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Dauer</th>
<th>% Ethylester</th>
<th>Gehalt Monoglycerid</th>
<th>Verhältnis Mono-/Di-/Triglycerid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>0</td>
<td>0 %</td>
<td>0 : 12 : 88</td>
</tr>
<tr>
<td>1</td>
<td>44</td>
<td>0,7</td>
<td>0 %</td>
<td>0 : 4 : 96</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>55,1</td>
<td>26,5 %</td>
<td>63 : 33 : 4</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>61,1</td>
<td>23,3 %</td>
<td>69 : 31 : 0</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>0,7</td>
<td>0 %</td>
<td>0 : 2 : 98</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>2,2</td>
<td>0 %</td>
<td>0 : 4 : 96</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>0,7</td>
<td>0 %</td>
<td>0 : 2 : 98</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>2,2</td>
<td>0 %</td>
<td>0 : 4 : 96</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>7,6</td>
<td>0 %</td>
<td>0 : 4 : 96</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>4,9</td>
<td>1,2 %</td>
<td>2 : 7 : 91</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>2,1</td>
<td>0 %</td>
<td>0 : 3 : 97</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>4,1</td>
<td>0,9 %</td>
<td>1 : 5 : 94</td>
</tr>
</tbody>
</table>

Fazit: Lipolase in Anwesenheit eines basischen Salzes zeigte eine signifikante Aktivität (Ansatz 2). Wurde dagegen kein Salz zugegeben, war nur eine sehr schwache Alkoholsereaktion detektierbar.

Eine schwache Aktivität wird mit Novozym 388 detektiert, die aber unabhängig von der Zugabe von basischem Salz ist.

Beispiel 3: Vergleich der Aktivität von immobilisierter Lipolase und Lipolase Flüssigpräparation

Verglichen wurden Ansätze, die 0,2 g Lipolase Flüssigpräparation enthielten oder eine entsprechende Menge Lipolase trägergebunden enthielten.
Immobilisation von Lipolase auf Accurel MP 1000 (Membrana): 5 g MP1000 wurden in einen 250 ml Erlenmeyerkolben gegeben und 15 ml Ethanol wurde zugesetzt. Die Mischung wurde 1 h geschüttelt, dann wurde Ethanol abdekantiert. Zum MP1000 wurden 50 g Wasser gegeben. Nach 1 h Rühren wurde das Wasser abdekantiert. 100 ml Phosphatpuffer, 20 mM, pH 6.0 wurde zugegeben und die Immobilisation durch Zugabe von 5 g Lipolase Flüssigpräparation gestartet. Die Ansätze wurden über Nacht bei 8° C gerührt, dann wurde das Enzymimmobilisat abfiltriert. Das Immobilisat wurde über Nacht zwischen Papiertüchern bei Raumtemperatur getrocknet. Das Immobilisat wurde ausgewogen und eine Immobilisatmenge, die 0,2 g Lipolase Flüssigpräparation entspricht, für die Alkoholyse eingesetzt.

Immobilisation von Lipolase auf Accurel MP 1000 (Membrana) alternativ: Die Immobilisation erfolgte wie oben beschrieben. Nach Abfiltration des Immobilisats wurden 5 ml einer 200 mM Na₃PO₄ Lösung zugegeben. Das komplette Gemisch wurde bei Raumtemperatur unter Vakuum getrocknet. Ziel dieses zusätzlichen Schrittes war es ein bereits alkalisches Immobilisat herzustellen. Das Immobilisat wurde ausgewogen und eine Immobilisatmenge; die 0,2 g Lipolase Flüssigpräparation entspricht, für die Alkoholyse eingesetzt.

Immobilisation von Lipolase auf Dowex Marathon WBA (Dow Chemicals): 200 mg Dowex WBA wurden in einem kleinen Becherglas vorgelegt. 0,2 g Lipolase Flüssigpräparation wurden zupipettiert und mit einer Pipettenspitze gut vermischt. Der Ansatz inkubierte für 2 h unter gelegentlichem Mischen bei Raumtemperatur. Der komplette Ansatz (Dowex + Überstand) wurde für die Transformation eingesetzt. Parallel durchgeführte Versuche, bei denen nicht gebundene Lipolase über Auswaschen aus dem Immobilisat gewonnen wurde, zeigten, dass etwa 90 % der Lipolase trägergebunden vorliegt.

Immobilisation von Lipolase auf Duolite A568 (Rohm & Haas): 200 mg Duolite A568 wurden in einem kleinen Becherglas vorgelegt. 0,2 g Lipolase Flüssigpräparation wurden zupipettiert und mit einer Pipettenspitze gut vermischt. Der Ansatz inkubierte für 2 h unter gelegentlichem Mischen bei Raumtemperatur. Der komplette Ansatz (Duolite + Überstand) wurde für die Transformation eingesetzt. Parallel durchgeführte Versuche, bei denen nicht gebundene Lipolase über Auswaschen aus dem Immobilisat gewonnen wurde, zeigten, dass etwa 80 % der Lipolase trägergebunden vorliegt.
Durchführung der Versuche:
10 Ansätze bestehend aus 40 g Sonnenblumenöl und 10 g Ethanol wurden in Bechergläser ausgestattet mit Magnetrühren vorgelegt. Unter Rühren wurden 0,4 g Wasser zugefügt. In die Ansätze 2, 4, 6, 8 und 10 wurden 50 mg festes Na₂CO₃ zugegeben. In die Ansätze 1 und 2 wurden 0,2 g Lipolase (Thermomyces lanuginosus Lipase Flüssigpräparation), in die Ansätze 3 und 4 wurden die Dowex Immobilisate, in die Ansätze 5 und 6 wurden die Duolite Immobilisate, in die Ansätze 7 und 8 wurden die MP 1000 Immobilisate und in die Ansätze 9 und 10 wurden die mit Na₃PO₄ nachbehandelten MP1000 Immobilisate gegeben. Die Alkoholyse wurde auf einer Multirührplatte bei Raumtemperatur durchgeführt. Die Ansätze 3 – 10 wurden zweifach durchgeführt. Nach 16 h wurden Proben entnommen und der Gehalt an Glyceriden gaschromatographisch analysiert. Die Auswertung erfolgte über Flächenprozent.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>% Ethylester</th>
<th>Gehalt Monoglycerid</th>
<th>Verhältnis Mono-/Di-/Triglycerid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 %</td>
<td>0 : 3 : 97</td>
</tr>
<tr>
<td>2</td>
<td>56,1</td>
<td>28,5 %</td>
<td>70 : 30 : 0</td>
</tr>
<tr>
<td>3 (1)</td>
<td>25,6</td>
<td>11,5 %</td>
<td>16 : 23 : 61</td>
</tr>
<tr>
<td>3 (2)</td>
<td>26,4</td>
<td>10,2 %</td>
<td>14 : 18 : 68</td>
</tr>
<tr>
<td>4 (1)</td>
<td>31,6</td>
<td>14,1 %</td>
<td>21 : 36 : 44</td>
</tr>
<tr>
<td>4 (2)</td>
<td>37,9</td>
<td>15,7 %</td>
<td>26 : 30 : 45</td>
</tr>
<tr>
<td>5 (1)</td>
<td>17,6</td>
<td>7,4 %</td>
<td>9 : 13 : 78</td>
</tr>
<tr>
<td>5 (2)</td>
<td>22,6</td>
<td>9,3 %</td>
<td>12 : 15 : 73</td>
</tr>
<tr>
<td>6 (1)</td>
<td>35,5</td>
<td>17,1 %</td>
<td>27 : 34 : 39</td>
</tr>
<tr>
<td>6 (2)</td>
<td>28,5</td>
<td>12,8 %</td>
<td>18 : 19 : 63</td>
</tr>
<tr>
<td>7 (1)</td>
<td>15,5</td>
<td>5,5 %</td>
<td>7 : 20 : 73</td>
</tr>
<tr>
<td>7 (2)</td>
<td>24,8</td>
<td>8,5 %</td>
<td>11 : 27 : 61</td>
</tr>
<tr>
<td>8 (1)</td>
<td>26,1</td>
<td>10,5 %</td>
<td>14 : 37 : 49</td>
</tr>
<tr>
<td>8 (2)</td>
<td>44,1</td>
<td>20,0 %</td>
<td>36 : 40 : 24</td>
</tr>
<tr>
<td>9 (1)</td>
<td>24,4</td>
<td>9,1 %</td>
<td>12 : 43 : 45</td>
</tr>
<tr>
<td>9 (2)</td>
<td>14,2</td>
<td>3,5 %</td>
<td>4 : 13 : 83</td>
</tr>
<tr>
<td>10 (1)</td>
<td>8,4</td>
<td>2,4 %</td>
<td>3 : 18 : 79</td>
</tr>
<tr>
<td>10 (2)</td>
<td>15,9</td>
<td>4,3 %</td>
<td>5 : 14 : 81</td>
</tr>
</tbody>
</table>

Fazit: Alle Immobilisate mit Lipolase zeigen eine Alkoholyseaktivität. Mit Ausnahme des mit Na₃PO₄ vorbehandelten Immobilisats zeigen alle Immobilisate eine zusätzliche Aktivierung durch Na₂CO₃. Allerdings ist die Aktivierung der flüssigen Lipolase durch Na₂CO₃ wesentlich stärker als die Aktivierung der Immobilisate. Bei gleicher Gesamtenzymeinwaage ist die Al-
koholyse mit salzaktivierter Lipolase (Ansatz 2) eindeutig schneller als mit den Immobilisat
en.
Dagegen erlaubt eine Immobilisierung den wiederholten Einsatz des Enzyms und damit den Einsatz einer höheren Gesamtenzymmenge.

Beispiel 4: Umsetzung mit verschiedenen Alkoholen

Verschiedene Ansätze bestehend aus 40 g Sonnenblumenöl und variablen Mengen verschiedener Alkohole wurden mit Lipolase bei Raumtemperatur einer Alkoholyserreaktion unterzogen. Die Ansätze hatten eine Zusammensetzung wie in folgender Tabelle aufgeführt:

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Alkohol</th>
<th>Wasser</th>
<th>Salz</th>
<th>Lipolase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 g Ethanol</td>
<td>0,4 g</td>
<td>40 mg Na₃PO₄</td>
<td>0,4 g</td>
</tr>
<tr>
<td>2</td>
<td>13 g Propanol</td>
<td>0,4 g</td>
<td>40 mg Na₃PO₄</td>
<td>0,4 g</td>
</tr>
<tr>
<td>3</td>
<td>13 g Isopropanol</td>
<td>0 g</td>
<td>40 mg Na₃PO₄</td>
<td>1,2 g</td>
</tr>
<tr>
<td>4</td>
<td>16 g Butanol</td>
<td>0,4 g</td>
<td>40 mg Na₃PO₄</td>
<td>0,4 g</td>
</tr>
<tr>
<td>5</td>
<td>16 g Isobutanol</td>
<td>0 g</td>
<td>40 mg Na₃PO₄</td>
<td>1,2 g</td>
</tr>
<tr>
<td>6</td>
<td>19 g Isoamyalkohol</td>
<td>0,4 g</td>
<td>40 mg Na₃PO₄</td>
<td>0,8 g</td>
</tr>
<tr>
<td>7</td>
<td>22 g Hexanol</td>
<td>0,4 g</td>
<td>40 mg Na₃PO₄</td>
<td>0,4 g</td>
</tr>
<tr>
<td>8</td>
<td>28 g 2-Ethylhexanol</td>
<td>0,4 g</td>
<td>40 mg Na₃PO₄</td>
<td>1,2 g</td>
</tr>
<tr>
<td>9</td>
<td>7 g Methanol</td>
<td>0 g</td>
<td>40 mg Na₃PO₄</td>
<td>1,2 g</td>
</tr>
<tr>
<td>10</td>
<td>16 g Butanol</td>
<td>0 g</td>
<td>25 mg Na₂CO₃</td>
<td>1,2 g</td>
</tr>
<tr>
<td>11</td>
<td>16 g Butanol</td>
<td>0 g</td>
<td>50 mg Na₂CO₃</td>
<td>0,6 g</td>
</tr>
<tr>
<td>12</td>
<td>16 g Butanol</td>
<td>0,8 g</td>
<td>50 mg Na₂CO₃</td>
<td>0,6 g</td>
</tr>
<tr>
<td>13</td>
<td>23 g Hexanol</td>
<td>0,8 g</td>
<td>25 mg Na₂CO₃</td>
<td>1,2 g</td>
</tr>
<tr>
<td>14</td>
<td>24 g Hexanol</td>
<td>2,8 g</td>
<td>25 mg Na₂CO₃</td>
<td>1,2 g</td>
</tr>
<tr>
<td>15</td>
<td>22 g Hexanol</td>
<td>2,8 g</td>
<td>50 mg Na₂CO₃</td>
<td>0,6 g</td>
</tr>
</tbody>
</table>

Fazit: Eine Alkoholyserreaktion wurde mit allen eingesetzten Alkoholen beobachtet. Das Enzym akzeptiert primäre und sekundäre Alkohole sowie geradkettige und verzweigtkettige Alkohole.

Die beste Reaktion wurde mit den Alkoholen Ethanol und Propanol in einem Reaktionsmedium erreicht, dass 2 % Wasser enthielt.

Generell kann daraus abgeleitet werden, dass die Konzentration an Wasser erhöht werden muss, wenn der Alkohol hydrophober wird um eine optimale Reaktionsgeschwindigkeit zu erreichen.
Beispiel 5: Einfluss von Ethanolkonzentration auf Glycerinbildung, Säurebildung und Monoglyceridgehalt

Verschiedene Ansätze bestehend aus 40 g Sonnenblumenöl und variablen Mengen Ethanol wurden mit jeweils 0,2 g Lipolase bei Raumtemperatur einer Alkoholysereaktion unterzogen. Es wurden jeweils 25 mg Na₂CO₃ zugesetzt. Die Ansätze hatten eine Zusammensetzung wie in folgender Tabelle aufgeführt:

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Ethanol</th>
<th>Wasser</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 g</td>
<td>0,2 g</td>
</tr>
<tr>
<td>2</td>
<td>30 g</td>
<td>0,2 g</td>
</tr>
<tr>
<td>3</td>
<td>15 g</td>
<td>0,4 g</td>
</tr>
<tr>
<td>4</td>
<td>30 g</td>
<td>0,4 g</td>
</tr>
<tr>
<td>5</td>
<td>15 g</td>
<td>0,8 g</td>
</tr>
<tr>
<td>6</td>
<td>30 g</td>
<td>0,8 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Säurezahl</th>
<th>% Glycerin</th>
<th>% Ethylester</th>
<th>% Monoglycerid</th>
<th>Verhältnis Mono-/Di-/Triglycerid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1,5 %</td>
<td>62,2 %</td>
<td>29,2 %</td>
<td>86 : 14 : 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0,3 %</td>
<td>34,5 %</td>
<td>11,4 %</td>
<td>18 : 35 : 47</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2,4 %</td>
<td>64,3 %</td>
<td>26,2 %</td>
<td>86 : 14 : 0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0,5 %</td>
<td>58,9 %</td>
<td>30,6 %</td>
<td>77 : 23 : 0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2,8 %</td>
<td>64,7 %</td>
<td>25,8 %</td>
<td>87 : 13 : 0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1,1 %</td>
<td>62,4 %</td>
<td>32,2 %</td>
<td>92 : 8 : 0</td>
</tr>
</tbody>
</table>

Da Glycerin bei der verwendeten GC-Methode eine vergleichsweise stärkere Adsorption aufweist als die Ethylester und Glyceride, wurde eine Kalibration direkt in einem Gemisch aus Ethylester, freiem Ethanol und Glyceriden durchgeführt. Die Adsorption über einen Konzentrationsbereich von 0 – 1,0 Gew.-% Glycerin entspricht der Formel:

\[y = 2,3x \] (\(y = \text{Adsorption}, x = \text{Einwaage} \)).

Daraus ergibt sich für obige Analytik:
<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Glycerin gemessen</th>
<th>Glycerin (Gew.-%) nach Kalibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,5</td>
<td>0,65</td>
</tr>
<tr>
<td>2</td>
<td>0,3</td>
<td>0,13</td>
</tr>
<tr>
<td>3</td>
<td>2,4</td>
<td>1,04</td>
</tr>
<tr>
<td>4</td>
<td>0,5</td>
<td>0,22</td>
</tr>
<tr>
<td>5</td>
<td>2,8</td>
<td>1,22</td>
</tr>
<tr>
<td>6</td>
<td>1,1</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Fazit: Je höher die Konzentration an eingesetztem Alkohol ist, desto höhere Monoglyceridgehalte werden erhalten. Bezogen auf die Gesamtglyceride sind Monoglyceridgehalte von über 90 % erreichbar.

Eine Erhöhung des Alkoholgehaltes führte zu einer Reduktion an Nebenproduktbildung wie freie Fettsäure oder Glycerin, das aus der Totalhydrolyse des Öls entsteht.

Die Reaktionsgeschwindigkeit wurde bei einer Erhöhung des Alkoholgehaltes reduziert. Über eine Erhöhung des Wassergehalts konnte die Reaktionsgeschwindigkeit verbessert werden, so dass auch bei einem hohen molaren Überschuss an Ethanol eine gute Monoglyceridbildung erreicht wird (Ansatz 6).

Beispiel 6: Umsetzung mit verschiedenen Ölen

In parallelen Ansätzen wird die Hydrolyse mit verschiedenen Ölen untersucht. Jeweils 40 g des Öls werden mit 10 g Ethanol in Becherflaschen eingewogen. Unter Rühren wird jeweils 0,4 g Wasser zugegeben und 40 mg festes Na₂PO₄ x 12 H₂O wird zugegeben. Die Reaktion wird über Zugabe von 0,4 g Lipolase gestartet. Nach 16 h Reaktionszeit wird eine Probe zur gaschromatographischen Analyse entnommen. Die Auswertung erfolgt über Flächenprozent.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Öl</th>
<th>% Ethylester</th>
<th>% Monoglycerid</th>
<th>Verhältnis Mono-/Di-/Triglycerid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sonnenblumenöl</td>
<td>59,3</td>
<td>26,4 %</td>
<td>72 : 28 : 0</td>
</tr>
<tr>
<td>2</td>
<td>Rapsöl</td>
<td>58,7</td>
<td>26,4 %</td>
<td>73 : 27 : 0</td>
</tr>
<tr>
<td>3</td>
<td>Distelöl</td>
<td>60,9</td>
<td>26,0 %</td>
<td>76 : 24 : 0</td>
</tr>
<tr>
<td>4</td>
<td>Sonnenblumenöl 2</td>
<td>60,0</td>
<td>26,7 %</td>
<td>76 : 24 : 0</td>
</tr>
<tr>
<td>5</td>
<td>Rizinöl</td>
<td>57,5</td>
<td>30,0 %</td>
<td>73 : 27 : 0</td>
</tr>
<tr>
<td>6</td>
<td>Sojaöl</td>
<td>60,3</td>
<td>26,4 %</td>
<td>75 : 25 : 0</td>
</tr>
<tr>
<td>7</td>
<td>Fischöl</td>
<td>51,0</td>
<td>35,0 %</td>
<td>78 : 22 : 0</td>
</tr>
<tr>
<td>8</td>
<td>50 % Rapsöl + 50 % Palmöl</td>
<td>60,7</td>
<td>25,9 %</td>
<td>75 : 25 : 0</td>
</tr>
<tr>
<td>9</td>
<td>Speck</td>
<td>75,4</td>
<td>20,7 %</td>
<td>72 : 28 : 0</td>
</tr>
</tbody>
</table>
Fazit: Mit allen eingesetzten Ölen wurde eine gute Alkoholyse beobachtet. Mit allen Ölen wurde ein Monoglyceridanteil von > 70 % bezogen auf die Gesamtglyceride erreicht.

Beispiel 7: Umsetzung mit verschiedenen alkalischen Salzen

5 5 Ansätze mit jeweils 40 g Sonnenblumenöl und 10 g Ethanol wurden eingewogen. Unter Rühren wurde zu allen Ansätzen 0,4 g Wasser gegeben. In Ansatz 1 wurden 40 mg Na₃PO₄ x 12 H₂O, in Ansatz 2 wurden 11 mg Na₂CO₃, in Ansatz 3 wurden 4 mg Ca(OH)₂, in Ansatz 4 werden 31 mg Trinatriumcitrat x 2 H₂O gegeben und Ansatz 5 verlief ohne Zusatz eines Salzes. Die Reaktionen wurden über die Zugabe von 0,4 g Lipolase gestartet. Nach 16 h Reaktionszeit wurde eine Probe zur gaschromatographischen Analyse entnommen. Die Auswertung erfolgte über Flächenprozent.
<table>
<thead>
<tr>
<th>Ansatz</th>
<th>% Ethylester</th>
<th>Gehalt Monoglycerid</th>
<th>Verhältnis Mono-/Di-/Triglycerid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59,3</td>
<td>26,4 %</td>
<td>72 : 28 : 0</td>
</tr>
<tr>
<td>2</td>
<td>62,1</td>
<td>23,3 %</td>
<td>74 : 26 : 0</td>
</tr>
<tr>
<td>3</td>
<td>50,5</td>
<td>28,9 %</td>
<td>65 : 35 : 0</td>
</tr>
<tr>
<td>4</td>
<td>1,0</td>
<td>0 %</td>
<td>0 : 3 : 97</td>
</tr>
<tr>
<td>5</td>
<td>0,7</td>
<td>0 %</td>
<td>0 : 2 : 98</td>
</tr>
</tbody>
</table>

Fazit: Die Alkoholyserreaktion funktionierte gut bei Zugabe von Phosphatsalzen, Carbonatsalzen und Hydroxiden.

Beispiel 8: Optimierung der Einsatzkonzentration an Salz (für Na₂CO₃)

12 Ansätze mit jeweils 40 g Sonnenblumenöl und 10 g Ethanol wurden eingewogen. Unter Rühren wurde zu den Ansätzen 1 – 6 0,2 g Wasser und zu den Ansätzen 7 – 12 0,4 g Wasser gegeben. Unterschiedliche Salzmengen, wie unten in der Tabelle angegeben, wurden hinzugefügt. Die Reaktionen wurden über die Zugabe von 0,2 g Lipolase gestartet. Nach 16 h Reaktionszeit wurde eine Probe zur gaschromatographischen Analyse entnommen. Die Auswertung erfolgte über Flächenprozent.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Na₂CO₃</th>
<th>% Ethylester</th>
<th>Gehalt Monoglycerid</th>
<th>Verhältnis Mono-/Di-/Triglycerid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 mg</td>
<td>30,0</td>
<td>14,7 %</td>
<td>21 : 32 : 47</td>
</tr>
<tr>
<td>2</td>
<td>25 mg</td>
<td>53,0</td>
<td>29,3 %</td>
<td>65 : 32 : 3</td>
</tr>
<tr>
<td>3</td>
<td>50 mg</td>
<td>54,5</td>
<td>30,2 %</td>
<td>70 : 30 : 0</td>
</tr>
<tr>
<td>4</td>
<td>100 mg</td>
<td>55,9</td>
<td>29,1 %</td>
<td>70 : 30 : 0</td>
</tr>
<tr>
<td>5</td>
<td>200 mg</td>
<td>43,4</td>
<td>22,4 %</td>
<td>41 : 41 : 19</td>
</tr>
<tr>
<td>6</td>
<td>500 mg</td>
<td>4,4</td>
<td>0,9 %</td>
<td>1 : 7 : 92</td>
</tr>
<tr>
<td>7</td>
<td>10 mg</td>
<td>44,2</td>
<td>23,5 %</td>
<td>43 : 38 : 19</td>
</tr>
<tr>
<td>8</td>
<td>25 mg</td>
<td>50,3</td>
<td>27,2 %</td>
<td>56 : 38 : 6</td>
</tr>
<tr>
<td>9</td>
<td>50 mg</td>
<td>55,4</td>
<td>30,2 %</td>
<td>72 : 28 : 0</td>
</tr>
<tr>
<td>10</td>
<td>100 mg</td>
<td>56,9</td>
<td>28,5 %</td>
<td>72 : 28 : 0</td>
</tr>
<tr>
<td>11</td>
<td>200 mg</td>
<td>57,2</td>
<td>27,5 %</td>
<td>70 : 30 : 0</td>
</tr>
<tr>
<td>12</td>
<td>500 mg</td>
<td>36,1</td>
<td>16,4 %</td>
<td>26 : 39 : 35</td>
</tr>
</tbody>
</table>

Fazit: Eine Erhöhung des Wassergehalts im Ansatz verschiebt das Optimum für die Menge an Na₂CO₃ leicht. Bei einer Zugabe von 0,2 g Wasser liegt der Bereich der optimalen Salzmenge.
zwischen 25 mg und 100 mg, wogegen bei einer Zugabe von 0,4 g Wasser der optimale Bereich zwischen 50 mg und 200 mg liegt.
Zu beachten ist, dass das Optimum an basischem Additiv von der eingesetzten Menge an gepufferter Enzymlösung sowie von der Basenstärke abhängt. Die Versuchsreihe mit Na₂CO₃ ist als exemplarisch anzusehen.

Beispiel 9: Einfluss Temperatur auf die Umesterungsgeschwindigkeit

6 Ansätze mit jeweils 40 g Sonnenblumenöl und 10 g Ethanol werden eingewogen. Unter Rühren wird zu den Ansätzen 0,4 g Wasser und 50 mg Na₂CO₃ zugegeben. Die Reaktionen werden über die Zugabe von 0,2 g Lipolase gestartet. Die Umsetzungen werden bei unterschiedlichen Temperaturen, wie in der Tabelle unten dargestellt, durchgeführt. Nach 24 h Reaktionszeit wird eine Probe zur gaschromatographischen Analyse entnommen. Die Auswertung erfolgt über Flächenprozent.

<table>
<thead>
<tr>
<th>Ansatz</th>
<th>Temperatur °C</th>
<th>% Ethylester</th>
<th>Gehalt Monoglycerid</th>
<th>Verhältnis Mono-/Di-/Triglycerid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20°C</td>
<td>30,0</td>
<td>14,7 %</td>
<td>21 : 32 47</td>
</tr>
<tr>
<td>2</td>
<td>25°C</td>
<td>53,0</td>
<td>29,3 %</td>
<td>65 : 32 : 3</td>
</tr>
<tr>
<td>3</td>
<td>30°C</td>
<td>54,5</td>
<td>30,2 %</td>
<td>70 : 30 : 0</td>
</tr>
<tr>
<td>4</td>
<td>35°C</td>
<td>55,9</td>
<td>29,1 %</td>
<td>70 : 30 : 0</td>
</tr>
<tr>
<td>5</td>
<td>40°C</td>
<td>43,4</td>
<td>22,4 %</td>
<td>41 : 41 : 19</td>
</tr>
<tr>
<td>6</td>
<td>45°C</td>
<td>4,4</td>
<td>0,9 %</td>
<td>1 : 7 : 92</td>
</tr>
</tbody>
</table>

Fazit:
Bereits ab Temperaturen oberhalb 30 °C wird die Lipase deutlich deaktiviert. Die optimale Reaktionstemperatur liegt im Bereich von 20 – 25 °C

Beispiel 10: Synthese von Ethylester Partialglycerid Mischungen mit dosierter Ethanolzugabe

In einem temperierbaren 2 l Doppelmantelreaktor wurden 1200 g Rapsöl, 75 g Ethanol, 0,375 % Wasser bezogen auf die Menge an Öl und 0,025 % NaOH mit einer Konzentration von 1 mol/l zugegeben. Das Gemisch wurde unter Rühren auf 15 °C gekühlt, und dann 0,25 % Lipolase bezogen auf die Menge an Öl zugegeben. Unter Rühren wurde das Gemisch für 48 h bei 15 °C inkubiert. Nach 2,5 h wurden weitere 75 g Ethanol und nach 5 h wurden 150 g Ethanol
in den Reaktor gegeben. Nach 48 h wurde der Reaktorinhalt zur Deaktivierung des Enyzms für 1 h auf 80 °C erhitzt. Das fertige Produktgemisch ist einphasig.

Die gaschromatographische Analyse ergab folgende Zusammensetzung (Flächenprozent, Ethanol nicht mit einbezogen):

58,2 % Ethylester
25,6 % Monoglycerid
17,1 % Diglycerid
0,7 % Triglycerid

Rechnerisch enthält das Gesamtgemisch noch etwa 12 Gew.-% freies Ethanol.

Beispiel 11: Synthese mit kontinuierlich dosierter Ethanolzugabe + Aufarbeitung von Ethylester Partialglycerid Mischungen

In einen temperierbaren 2 l Doppelmantelreaktor wurden 1000 g Rapsöl, 50 g Ethanol und 0,025 % NaOH mit einer Konzentration von 1 mol/l zugegeben. Das Gemisch wurde unter Rühren auf 17 °C gekühlt, dann wurden 0,25 % Lipolase bezogen auf die Menge an Öl zugegeben. Unter Rühren wurde das Gemisch für 45 h bei 17 °C inkubiert. 200 g Ethanol wurden nach Reaktionsstart kontinuierlich mit einer Flussrate von 0,14 ml/min in den Reaktor gepumpt. Nach 45 h wurden 0,1 Gew.-% Tonsil in den Reaktor gegeben und der Reaktorinhalt aufgeheizt. Nach einständiger Inkubation bei 75 °C wurde der Reaktorinhalt abfiltriert. Zur Entfernung von Resten an freiem Glycerin wurden 500 g des Produktes zweimal mit 250 g Wasser gewaschen, wobei das Reaktionssystem nur langsam gerührt wurde um eine Emulsionsbildung zu vermeiden. Die glycerin- und laugehaltige wässrige Phase wurde von der Ölphase separiert. Das fertige Produktgemisch ist klar und einphasig.

Die gaschromatographische Analyse ergab folgende Zusammensetzung (Flächenprozent, Ethanol nicht mit einbezogen):

A) Vor Glycerinentfernung

56,9 % Ethylester
28,6 % Monoglycerid
14,2 % Diglycerid
0,3 % Triglycerid

B) Nach Glycerinentfernung

59,9 % Ethylester
29,6 % Monoglycerid
10,6 % Diglycerid
1,8 % Triglycerid

Rechnerisch enthält das Gesamtgemisch vor der Wäsche mit Wasser noch etwa 12 Gew.-% freies Ethanol.
Der Gehalt an freiem Glycerin im gewaschenen fertigen Produkt liegt unter 0,05 Gew.-%. Vor der Wäsche hatte das Produkt einen Glyceringehalt nach Kalibration von 1,1 Gew.-%.

Beispiel 12: Lagerstabilität der Reaktionsprodukte aus Beispiel 11

Die erhaltenen Produkte aus Beispiel 11 wurden bei Raumtemperatur und Tageslicht in klaren Glasflaschen für 55 Tage gelagert. Es wurden vergleichende GC-Untersuchungen durchgeführt.

<table>
<thead>
<tr>
<th>A) Vor Glycerinentfernung</th>
<th>B) Nach Glycerinentfernung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag 1</td>
<td>Tag 56</td>
</tr>
<tr>
<td>Tag 1</td>
<td>Tag 56</td>
</tr>
<tr>
<td>56,9 % Ethylester</td>
<td>55,7 % Ethylester</td>
</tr>
<tr>
<td>28,6 % Monoglycerid</td>
<td>29,3 % Monoglycerid</td>
</tr>
<tr>
<td>14,2 % Diglycerid</td>
<td>13,3 % Diglycerid</td>
</tr>
<tr>
<td>0,3 % Triglycerid</td>
<td>1,7 % Triglycerid</td>
</tr>
</tbody>
</table>

Fazit: Im Rahmen der Messgenauigkeit der GC-Analytik sind die Muster nach 55 Tagen unverändert. Der nach enzymatischem Verfahren hergestellte Bio-Diesel ist somit für mindes tens 55 Tage lagerstabil.

Beispiel 13: Glycerinentfernung aus den Reaktionsprodukten aus Beispiel 11

<table>
<thead>
<tr>
<th>Produkt vor Wäsche:</th>
<th>Glycerin (Gew.-%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zweifache Wäsche mit je 50 % Wasser (Beispiel 10)</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Zweifache Wäsche mit je 5 % Wasser</td>
<td>0,15</td>
</tr>
<tr>
<td>Zweifache Wäsche mit je 2 % Wasser</td>
<td>0,39</td>
</tr>
</tbody>
</table>

Fazit: Glycerin lässt sich aus dem Produkt über Wäsche mit Wasser in einem weiten Konzentrationsbereich und anschließende Phasenseparation entfernen.
Beispiel 14: Anwendungstechnische Tests in Diesel-Typen:

USC-CM-8327-131:
Gemisch aus Ethylester + Monoglycerid + Ethanol, Glyceringehalt < 0,05 Gew.-%
USC-CM-8327-131DS:
Gemisch aus Ethylester + Monoglycerid + Ethanol, glycerinhaltig (Glycerringehalt > 1 Gew.-%)

Die Gemische wurden jeweils zu 2,5; 3 und 5 Gew.-% im Tankstellendiesel auf ihr Kälteverhalten getestet. Dazu wurden die CFPP-Werte der Proben ermittelt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>-15</td>
<td>-16</td>
</tr>
<tr>
<td>3</td>
<td>-15</td>
<td>-16</td>
</tr>
<tr>
<td>5</td>
<td>-14</td>
<td>-14</td>
</tr>
</tbody>
</table>

CFPP-Meßwert, Tankstellendiesel ohne Zusatz: -15°C

Fazit: In niedrigeren Konzentrationen treten keine signifikanten Verschlechterungen des CFPP auf. Erst bei höherer Dosierung erhöht sich der CFPP um 1°C.

Beispiel 15: Herstellung von Monoglycerid haltigen Gemischen zur Untersuchung der schmierenden Eigenschaften

Ansatz 1: 50 g Accurel MP 1000 werden für 1 h mit 500 g Ethanol inkubiert. Nach Abtrennung des Ethanol wird 500 g Wasser und 50 g Lipolase zugegeben und der Ansatz wird für 24 h gerührt. Nach Abtrennung des Wassers wird das Immobilisat getrocknet. Das Immobilisat wird in einen 3 l Reaktor gegeben und es werden 1,6 kg Sonnenblumenöl und 0,4 kg
Ethanol sowie 8 g Wasser zugegeben. Das Reaktionsgemisch wird für 24 h bei Raumtempe-
rat 4 unter Rühren inkubierte. Nach Reaktionsende wird das Immobilisat abfiltriert und das überschüssige Wasser / Ethanol Gemisch wird aus dem Reaktor abgezogen. Das Muster wird mit 16 g Tonsil und 2 g Wasser versetzt und für 30 min bei 80 °C inkubierte. Anschließend wird das Muster unter Vakuum getrocknet und über Filtration wird das Tonsil abgetrennt. Das so erhaltene Ethylester / Partialglycerid Gemisch wurde für die Schmiertests eingesetzt.

Ansatz 2: 25 g Lipolase wird auf 25 g Dowex Marathon WBA pipettiert. Die Mischung wird vermischt und zur Immobilisation für 2 h im Kühlschrank inkubierte. In einem 6 l Rektor werden 4 kg Rapsöl und 1 kg Ethanol vorgelegt. Unter Rühren wird das Immobilisat zum Reaktionsgemisch gegeben. Anschließend wird unter Rühren für 45 h inkubierte. Nach Beendigung der Reaktion wird das Immobilisat abfiltriert und das überschüssige Wasser / Ethanol-Gemisch bei 80 °C und 50 mbar am Rotationsverdampfer abgezogen. Das Ethylester / Partialglyceridgemisch wird anschliessend einer Kurzwegdestillation unterzogen. Bei 175 °C und einem Vakuum von 0,3 mbar werden die Ethylester destillativ abgetrennt. Das Sumpfprodukt wurde für die Schmiertests eingesetzt.

Ansatz 3: 25 g Lipolase wird auf 25 g Dowex Marathon WBA pipettiert. Die Mischung wird vermischt und zur Immobilisation für 2 h im Kühlschrank inkubierte. In einem 3 l Rektor werden 1,83 kg Rapsöl und 0,7 kg Butanol vorgelegt. Unter Rühren wird das Immobilisat zum Reaktionsgemisch gegeben. Anschließend wird unter Rühren für 60 h inkubierte. Nach Beendigung der Reaktion wird das Immobilisat abfiltriert und das überschüssige Wasser / Butanol-Gemisch bei 80 °C und 50 mbar am Rotationsverdampfer abgezogen. Das so erhaltene Butylester / Partialglycerid Gemisch wurde für die Schmiertests eingesetzt.

Die erhaltenen Produktzusammensetzungen sind in Beispiel 16 angegeben.

Beispiel 16: Untersuchung der schmierenden Eigenschaften in Dieselkraftstoff

Die Schmier Eigenschaften wurden mit einem HFFR-Test (High Frequency Reciprocating Rig Test) nach CEC Methode F-06-T-94 durchgeführt. Eingesetzt wurden verschiedene Dieselkraftstoffe und Monoglyceridgemische auf Basis Sonnenblumenöl und Rapsöl aus Beispiel 15 wie in der unten abgebildeten Tabelle aufgeführt.

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Muster</th>
<th>Rohstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe 1</td>
<td>Monoglycerid / Ethylester Gemisch</td>
<td>Sonnenblumenöl</td>
</tr>
<tr>
<td>Probe 2</td>
<td>Monoglyceridgemisch destilliert</td>
<td>Rapsöl</td>
</tr>
<tr>
<td>Probe 3</td>
<td>Monoglycerid / Butylester Gemisch</td>
<td>Rapsöl</td>
</tr>
</tbody>
</table>
Ergebnisse:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Konzentration in Diesel</th>
<th>HFFR-Wert</th>
<th>Film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel A</td>
<td>Blank</td>
<td>411 μm</td>
<td>19 μm</td>
</tr>
<tr>
<td>Probe 1</td>
<td>200 ppm</td>
<td>261 μm</td>
<td>67 μm</td>
</tr>
<tr>
<td>Diesel B</td>
<td>Blank</td>
<td>542 μm</td>
<td>20 μm</td>
</tr>
<tr>
<td>Probe 1</td>
<td>100 ppm</td>
<td>311 μm</td>
<td>65 μm</td>
</tr>
<tr>
<td>Probe 1</td>
<td>150 ppm</td>
<td>217 μm</td>
<td>70 μm</td>
</tr>
<tr>
<td>Probe 1</td>
<td>200 ppm</td>
<td>231 μm</td>
<td>68 μm</td>
</tr>
<tr>
<td>Diesel C</td>
<td>Blank</td>
<td>615 μm</td>
<td></td>
</tr>
<tr>
<td>Probe 2</td>
<td>100 ppm</td>
<td>183 μm</td>
<td></td>
</tr>
<tr>
<td>Probe 2</td>
<td>300 ppm</td>
<td>170 μm</td>
<td></td>
</tr>
<tr>
<td>Probe 3</td>
<td>100 ppm</td>
<td>279 μm</td>
<td></td>
</tr>
<tr>
<td>Probe 3</td>
<td>300 ppm</td>
<td>195 μm</td>
<td></td>
</tr>
</tbody>
</table>

Fazit: Alle Muster verbessern die Schmier eigenschaften der eingesetzten Dieselkraftstoffe signifikant und senken die HFFR-Werte unter vorgeschriebene Grenzwerte (z.B. aktuell 450 μm in der Schweiz).

Beispiel 17: Enzymatische Synthese von ethanolhaltigem Ethylester Partialglycerid Gemisch

In einen 4000 l Rektor werden insgesamt 1600 kg raffiniertes Rapsöl, 640 kg Ethanol, 600 ml 1 M NaOH, 71 l Wasser und 250.000 U Lipase (Esterase aus Thermomyces, Unit Angaben nach Hersteller) bezogen auf 1 kg Rapsöl gegeben. Der Ansatz wird für 40 h gerührt, danach wird der Ansatz unter Rühren auf 80 °C aufgeheizt und für 2 h bei 80 °C gerührt, wobei der Behälter geschlossen bleibt, so dass kein Ethanol entweichen kann. Anschließend wird auf
50 °C abgekühlt und über einen Trommelfilter mit 10 kg Celatom FW 14 filtriert. Das Produkt wird in Fässer abgefüllt und bei Raumtemperatur gelagert.

Fazit: Es werden 2200 kg Produkt erhalten mit einer Ausbeute von 98 %.

Beispiel 18: Herstellung von destilliertem Ethylester Partialglycerid Gemisch

In einen 4000 l Reaktor werden insgesamt 1600 kg raffiniertes Rapsöl, 640 kg Ethanol, 600 ml 1 M NaOH, 7 l Wasser und 250.000 U Lipase (Esterase aus Thermomyces, Unit Angaben nach Hersteller) bezogen auf 1 kg Rapsöl gegeben. Der Ansatz wird für 40 h gerührt, danach wird der Ansatz unter Rühren auf 120 °C aufgeheizt. Es wird Vakuum auf den Reaktor gelegt und das Ethanol – Wasser Gemisch aus dem Reaktor abgezogen. Das Vakuum wird so lange langsam abgesenkt bis kein Ethanol mehr aus dem Ansatz entweicht. Anschliessend wird auf 50 °C abgekühlt und über einen Trommelfilter mit 10 kg Celatom FW 14 filtriert. Das Produkt wird in Fässer abgefüllt und bei Raumtemperatur gelagert.

Fazit: Es werden 1742 kg Produkt und 470 kg Destillat erhalten mit einer Ausbeute von 98 %.

Beispiel 19: Analyse der Versuchsprodukte aus den Beispielen 17 und 18

Die in der Tabelle aufgeführten Analysen wurden mit den Versuchsprodukten aus den Beispielen 17 und 18 durchgeführt.

<table>
<thead>
<tr>
<th>Kennzahlen</th>
<th>Produkt aus Beispiel 17</th>
<th>Produkt aus Beispiel 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxylzahl</td>
<td>ca. 318 - 335</td>
<td>107</td>
</tr>
<tr>
<td>Iodzahl</td>
<td>83</td>
<td>105</td>
</tr>
<tr>
<td>Peroxidzahl</td>
<td>9,1</td>
<td>9,6</td>
</tr>
<tr>
<td>Säurezahl</td>
<td>1,9</td>
<td>2,7</td>
</tr>
<tr>
<td>Verseifungszahl</td>
<td>136</td>
<td>173</td>
</tr>
<tr>
<td>Dichte</td>
<td>0,875 g/ml</td>
<td>0,9 g/ml</td>
</tr>
<tr>
<td>Farbwerte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lovibond 5-1/4</td>
<td>19/2,3</td>
<td>35/3,2</td>
</tr>
<tr>
<td>Lovibond 1</td>
<td>2,0/0,6</td>
<td>3,5/0,8</td>
</tr>
<tr>
<td>Gardener</td>
<td>2,6</td>
<td>3,9</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Spurenanalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stickstoff</td>
<td>< 20 mg/kg</td>
<td>< 20 mg/kg</td>
</tr>
<tr>
<td>Schwefel</td>
<td>< 2 mg/kg</td>
<td>< 2 mg/kg</td>
</tr>
<tr>
<td>Natrium</td>
<td>8 mg/kg</td>
<td>10 mg/kg</td>
</tr>
<tr>
<td>Eisen</td>
<td>0,4 mg/kg</td>
<td>0,7 mg/kg</td>
</tr>
<tr>
<td>Phosphor</td>
<td>< 3 mg/kg</td>
<td>< 3 mg/kg</td>
</tr>
<tr>
<td>Zusammensetzung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wassergehalt</td>
<td>0,3</td>
<td>0,01</td>
</tr>
<tr>
<td>Glycerin frei</td>
<td>0,20%</td>
<td>0,30%</td>
</tr>
<tr>
<td>Glycerin gebunden</td>
<td>6,80%</td>
<td>9,00%</td>
</tr>
<tr>
<td>Ethanol</td>
<td>21,90%</td>
<td>0,20%</td>
</tr>
<tr>
<td>Ethylester</td>
<td>41,00%</td>
<td>55,50%</td>
</tr>
<tr>
<td>Monoglyceride</td>
<td>23,00%</td>
<td>32,20%</td>
</tr>
<tr>
<td>Diglyceride</td>
<td>13,00%</td>
<td>11,40%</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>< 1 %</td>
<td>< 1 %</td>
</tr>
<tr>
<td>Fettsäurespektrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmitinsäure</td>
<td>5,20%</td>
<td>4,80%</td>
</tr>
<tr>
<td>Stearinsäure</td>
<td>1,30%</td>
<td>1,30%</td>
</tr>
<tr>
<td>Ölsäure</td>
<td>58,30%</td>
<td>60,20%</td>
</tr>
<tr>
<td>Linolsäure</td>
<td>21,10%</td>
<td>20,80%</td>
</tr>
<tr>
<td>Linolensäure</td>
<td>8,80%</td>
<td>8,30%</td>
</tr>
</tbody>
</table>

Beispiel 20: Stabilität der Versuchsprodukte aus Beispiel 17 und 18

Die Produkte aus Beispiel 17 und Beispiel 18 wurden für 3 Monate bei Raumtemperatur in verschlossenen Fässern gelagert.
<table>
<thead>
<tr>
<th></th>
<th>Produkt aus Beispiel 17</th>
<th>Produkt aus Beispiel 17</th>
<th>Produkt aus Beispiel 18</th>
<th>Produkt aus Beispiel 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zusammensetzung</td>
<td>nach Synthese</td>
<td>nach 3 Monaten</td>
<td>nach Synthese</td>
<td>nach 3 Monaten</td>
</tr>
<tr>
<td>Ethylester</td>
<td>41,00%</td>
<td>40,10%</td>
<td>55,50%</td>
<td>55,00%</td>
</tr>
<tr>
<td>Monoglyceride</td>
<td>23,00%</td>
<td>22,30%</td>
<td>32,20%</td>
<td>31,20%</td>
</tr>
<tr>
<td>Diglyceride</td>
<td>13,00%</td>
<td>13,30%</td>
<td>11,40%</td>
<td>12,00%</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>< 1 %</td>
<td>1,90%</td>
<td>< 1 %</td>
<td>0,90%</td>
</tr>
<tr>
<td>Glycerol free (titr.)</td>
<td>0,20%</td>
<td>0,25%</td>
<td>0,30%</td>
<td>0,50%</td>
</tr>
<tr>
<td>Glycerol free (GC) (not calibrated / area%)</td>
<td>1,10%</td>
<td>0,70%</td>
<td>0,90%</td>
<td>0,90%</td>
</tr>
<tr>
<td>Kennzahlen</td>
<td>nach Synthese</td>
<td>nach 3 Monaten</td>
<td>nach Synthese</td>
<td>nach 3 Monaten</td>
</tr>
<tr>
<td>Acid value</td>
<td>1,9</td>
<td>1,9</td>
<td>2,7</td>
<td>2,8</td>
</tr>
<tr>
<td>POV</td>
<td>9,1</td>
<td></td>
<td>9,6</td>
<td></td>
</tr>
<tr>
<td>Lovibond</td>
<td>2,0 / 0,6</td>
<td>1,9 / 0,6</td>
<td>3,5 / 0,8</td>
<td>3,0 / 0,8</td>
</tr>
<tr>
<td>Gardner</td>
<td>2,6</td>
<td>2,6</td>
<td>3,9</td>
<td>3,6</td>
</tr>
</tbody>
</table>

Fazit: Die Produkte sind ausreichend lagerstabil zum Einsatz als Dieseladditiv oder Treibstoffzusatz zum Diesel.

Beispiel 21: Vergleich der Schmierwirkung zwischen FAME (Fatty acid methylester) und der erfindungsgemäßen Zusammensetzung

Die erfindungsgemäße Zusammensetzung, die dem Diesel zugemischt wurde um eine 3 %-ige Abmischung zu erhalten, enthielt folgende Gewichtsprozentverteilung:
55,5 % Ethylester
32,2 % Monoglyceride
11,4 % Diglyceride
< 1 % Nebenprodukte

Ergebnisse:

<table>
<thead>
<tr>
<th>HFFR-Test gemäß ISO 12156</th>
<th>Verschleißnarbe [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN EN 590</td>
<td>460</td>
</tr>
<tr>
<td>Diesel</td>
<td>600</td>
</tr>
<tr>
<td>Diesel + 0,5 % FAME</td>
<td>540</td>
</tr>
<tr>
<td>Diesel + 1 % FAME</td>
<td>370</td>
</tr>
<tr>
<td>Diesel + 2,5 % FAME</td>
<td>320</td>
</tr>
<tr>
<td>Diesel + 5 % FAME</td>
<td>310</td>
</tr>
<tr>
<td>Diesel + 3 % erfindungsgemäße Zusammensetzung</td>
<td>220</td>
</tr>
</tbody>
</table>

Es konnte gezeigt werden, dass eine Zumischung der erfindungsgemäßen Zusammensetzung zu herkömmlichen Diesel das Schmierverhalten überproportional verbessert im Vergleich zu Abmischungen mit Fettsäuremethylester in unterschiedlichen Konzentrationen. Die spezifizierte Grenze gemäß EN des Wertes für die Verschleißnarbe liegt bei 460 µm.
Beispiel 22: Eignung der erfindungsgemäßen Zusammensetzung aus Beispiel 18 als Additiv zu Treibstoffen gemäß EU-Richtlinie

<table>
<thead>
<tr>
<th>Test</th>
<th>Institut Saybolt</th>
<th>ISO/ASTM Äquivalent</th>
<th>Test Methode</th>
<th>Einheit</th>
<th>Analyse Ergebnisse</th>
<th>Spezifikation</th>
</tr>
</thead>
</table>
| Cetanzahl | EN ISO 5165 | ASTM D 613 | Test Methode | 51.8 | min 51 | 2.97% erfindungsgem.
| | Saybolt | | | 49.750,3| min 46 | Zusammensetzung | Diesel |
| Cetanindex | ASTM D 976 / ISO 4264 | ISO 12105 | kg/l | 0.6341 | min 620/max 845 | |
| Dichte bei 15°C | ASTM D 4052 | ISO 2719 | deg C | min 55 | | |
| Flammpunkt (PM) | ISO 3679 | ISO 3679 | | 67 | | |
| Viskosität bei 40°C | ASTM D 445 | ISO 3104 | mm²/s | 2.465 | min 2.0/max 4.50 | |
| Carbon Residue Micro (on 10% dist res) | ASTM D 4530 | ISO 10370 | wt% | <0.1 | max 0.30 | |
| Cloudpoint | ASTM D 2500 | ISO 3018 | deg C | - | only spec Arctic grades |
| lubricity | ISO 12156 | ASTM D 6079 | um | 220 | max 460 | |
| Destillation (atmospheric) | ASTM D 86 | ISO 3405 | | | | |
| Destillation (vacuum) | ASTM D 1160 | | | | | |
| IBP | | deg C | 175.1 | | | |
| 5%v | | deg C | 186.8 | | | |
| 10%v | | deg C | 207.2 | | | |
| 15%v | | deg C | 212.5 | | | |
| 20%v | | deg C | 217.7 | | | |
| 30%v | | deg C | 229.9 | | | |
| 40%v | | deg C | 242.2 | | | |
| 50%v | | deg C | 254.8 | | | |
| 60%v | | deg C | 268.5 | | | |
| 70%v | | deg C | 285.7 | | | |
| 75%v | | deg C | 297.5 | | | |
| 90%v | | deg C | 333.3 | | | |
| 95%v | | deg C | 348.7 | | max 360 | |
| FBP | | deg C | 354.9 | | | |
| %v recovered at 250 deg C | | %vol | 46.2 max 65 | | | |
| %v recovered at 350 deg C | | %vol | 95.3% min 85 | | | |

Erklärungen:
Institut Saybolt: ein externes Institut aus Rotterdam zur unabhängigen Bestimmung der Messwerte.
Bestimmung des Destillationsverhaltens:
IBP: Initial Boiling Point
FBP: Final Boiling Point. Die Prozentangabe bezieht sich auf den Anteil verdampften Diesels bei den jeweiligen Temperaturen.
Als eindeutiger Vorteil lässt sich die verbesserte Schmierleistung erkennen.
Beispiel 23: Chemische Partialumesterung

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Glycerin</th>
<th>Ethylester</th>
<th>Monoglycerid</th>
<th>Diglycerid</th>
<th>Triglycerid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach Synthese</td>
<td>3,9 %</td>
<td>64,9 %</td>
<td>10,7 %</td>
<td>14,7 %</td>
<td>6,4 %</td>
</tr>
<tr>
<td>Wäsche 1</td>
<td>1,6 %</td>
<td>64,4 %</td>
<td>10,9 %</td>
<td>15,5 %</td>
<td>7,6 %</td>
</tr>
<tr>
<td>Wäsche 2</td>
<td>0,2 %</td>
<td>65,0 %</td>
<td>10,0 %</td>
<td>17,3 %</td>
<td>7,8 %</td>
</tr>
</tbody>
</table>

Patentansprüche

1. Zusammensetzung enthaltend
 a) Alkylester mit einem Alkylrest enthaltend 1 bis 8 Kohlenstoffatome
 b) Partialglyceride
dadurch gekennzeichnet, dass sie einen Glyceringehalt an freien Glycerin von maximal 2 Gew.-% bezogen auf die Gesamtmenge der Zusammensetzung hat.

2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass sie als Komponente (a) Methyl- und/oder Ethylester enthalten.

3. Zusammensetzungen nach mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass sie einen Partialglyceridgehalt von mindestens 10 Gew.-% bezogen auf die Gesamtmenge der Zusammensetzung enthalten.

4. Zusammensetzungen nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie einen Triglyceridgehalt von maximal 5 Gew.-% bezogen auf die Gesamtmenge der Zusammensetzung enthalten.

5. Zusammensetzungen nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie eine Säurezahl von maximal 5 aufweisen.

6. Zusammensetzung nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Alkylester, Monoglyceride und Diglyceride in Mengenverhältnissen von
 Alkylester 30-70 Gew.-%
 Monoglycerid 10-35 Gew.-%
 Diglycerid 1-30 Gew.-%
 enthaltend sind.

7. Zusammensetzung nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sich die Alkylester und Partialglyceride von gesättigten oder ungesättigten, linearen oder verzweigten Fettsäuren mit 8 bis 22 C-Atomen ableiten.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man in einem weiteren Schritt die Esterase deaktiviert.
10. Verfahren nach einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, dass man die Alkoholyse bei Temperaturen von 10° bis 40° C, einem Wassergehalt von 0,1 – 10 Gew.-% bezogen auf die Menge an Triglycerid durchführt.

11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass man die Esterasen in Mengen von 0,05 - 2 % der kommerziell erhältlichen Flüssigpräparation in Bezug auf die Menge an eingesetztem Triglycerid einsetzt.

12. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass man zur Aktivierung der Esterase wässrige Lösungen alkalischer anorganische Salze einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Hydroxiden, Carbonaten und Phosphaten des Natriums, Kaliums, Calciums, Magnesiums und Ammoniums.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man die Salze in Mengen von 0,00001 und 1 Gew.-% bezogen auf das Triglycerid einsetzt.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass in einem weiteren Schritt die Esterase vom Produktgemisch separiert wird.

16. Verfahren nach einem der Ansprüche 15 bis 16, dadurch gekennzeichnet, dass man die Alkoholyse bei Temperaturen von 10° bis 60° C, einem Wassergehalt von 0 – 10 Gew.-% bezogen auf die Menge an Triglycerid durchführt.

17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die Esterasen immobilisiert sind durch hydrophobe Wechselwirkung auf Kunststoffen, Harzen oder mineralischen Trägern oder immobilisiert sind durch ionische Wechselwirkungen auf Anionen- oder Kationentauschern oder durch chemische Bindung auf Trägern mit aktivierten chemischen Gruppen.

18. Verfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass die Esterasen chemisch modifiziert werden durch Coating mit Surfactants, durch Hydrophobisierung der Enzymoberfläche oder durch chemische Quervernetzung.

19. Verfahren nach einem der Ansprüche 8 bis 13 oder 14 bis 18, dadurch gekennzeichnet, dass die eingesetzten Esterasen aus Organismen stammen, die ausgewählt sind aus der Gruppe, die gebildet wird von Thermomyces lanuginosus, Candida antarctica A, Candida antarctica B, Rhizomucor miehei, Candida cylindracea, Rhizopus javanicus, Por-
cine pancreas, Aspergillus niger, Candida rugosa, Mucor javanicus, Pseudomonas fluorescens, Rhizopus oryzae, Pseudomonas sp., Chromobacterium viscosum, Fusarium oxysporum und Penicillium camemberti.

21. Verfahren nach einem der Ansprüche 19 bis 20, dadurch gekennzeichnet, dass man 1,3-spezifische Lipasen einsetzt.

22. Verfahren nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, dass es sich bei der Lipase um Lipase aus Thermomyces lanuginosus handelt.

23. Verfahren nach einem der Ansprüche 8 bis 13 oder 14 bis 18 und/oder 19 bis 22, dadurch gekennzeichnet, dass Triglyceride aus Fetten und Ölen eingesetzt werden, die einen hohen Anteil an einfach und/oder mehrfach ungesättigter Fettsäuren haben.

25. Verfahren nach mindestens einem der Ansprüche 8 bis 13 oder 14 bis 18 und/oder 19 bis 22, dadurch gekennzeichnet, dass man als Alkoholkomponente Methanol oder Ethanol einsetzt.

27. Verfahren nach einem der Ansprüche 8 bis 13 oder 14 bis 18 und/oder 19 bis 22, dadurch gekennzeichnet, dass man Alkohol und/oder Wasser teilweise oder vollständig entfernt.

30. Verfahren nach einem der Ansprüche 28 bis 29, dadurch gekennzeichnet, dass man die Alkoholyse bei Alkoholkonzentrationen von 10 Mol% bis 30 Mol% bezogen auf das eingesetzte Öl durchführt.

31. Verfahren nach einem der Ansprüche 28 bis 30, dadurch gekennzeichnet, dass man die Alkoholyse bevorzugt mit Ethanol oder Methanol durchführt.

32. Verfahren nach einem der Ansprüche 28 bis 31, dadurch gekennzeichnet, dass man die Alkoholyse als Batch Reaktion oder als kontinuierliche Reaktion im Gleich- oder Gegenstromverfahren durchführt.

33. Verfahren nach einem der Ansprüche 28 bis 32, dadurch gekennzeichnet, dass man die Alkoholyse bei Drücken bis 2 bar und einer Temperatur von 40 °C – 120 °C mit einem alkalischen Metallalkoholat in einer Konzentration von 0,01 Gew% bis 5 Gew% durchführt.

34. Verfahren nach einem der Ansprüche 28 bis 32, dadurch gekennzeichnet, dass man die Alkoholyse bei Drücken bis 5 bar und einer Temperatur von 40 °C – 120 °C mit Schwefelsäure oder einer Sulfonsäure in einer Konzentration von 0,01 Gew% bis 5 Gew% durchführt.

35. Verfahren nach einem der Ansprüche 28 bis 32, dadurch gekennzeichnet, dass man die Alkoholyse bei Drücken von 20 - 200 bar und einer Temperatur von 120 °C – 250 °C mit Metallsalzen oder Metallseifen in einer Konzentration von 0,01 Gew% bis 1 Gew% durchführt.

37. Verfahren nach einem der Ansprüche 28 bis 36, dadurch gekennzeichnet, dass Alkohol und/oder Glycerin und/oder Wasser teilweise oder vollständig entfernt wird.

38. Zusammensetzung erhältlich nach den Verfahren gemäß Ansprüchen 8 bis 37.

39. Treibstoffzusammensetzung, enthaltend 90 bis 99,5 Gew.-% Gasöl und 0,5 bis 10 Gew.-% (vorzugsweise 2 bis 6 Gew.-%) einer Zusammensetzung gemäß der Ansprüche 1 bis 7 oder gemäß Anspruch 38 als Additiv.
40. Verwendung einer Zusammensetzung gemäß Ansprüchen 1 bis 7 oder gemäß Anspruch 38 als Bio-Treibstoff.

41. Verwendung einer Zusammensetzung gemäß Ansprüchen 1 bis 7 oder gemäß Anspruch 38 als Additiv in Treibstoffzusammensetzungen.

42. Verwendung einer Zusammensetzung gemäß den Ansprüchen 1 bis 7 oder gemäß Anspruch 38 als Additiv zur Verbesserung der Schmierleistung von Treibstoffzusammensetzungen.

43. Verwendung gemäß Anspruch 41 und/oder 42, dadurch gekennzeichnet, dass die Zusammensetzung gemäß Ansprüche 1 bis 7 oder gemäß Anspruch 38 in Mengen von 0,5 bis 10 Gew.-% vorliegt.