

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
3 January 2008 (03.01.2008)

PCT

(10) International Publication Number
WO 2008/002573 A2(51) International Patent Classification:
A61K 31/56 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZW.

(21) International Application Number:
PCT/US2007/014829

(22) International Filing Date: 27 June 2007 (27.06.2007)

(25) Filing Language: English

(26) Publication Language: English

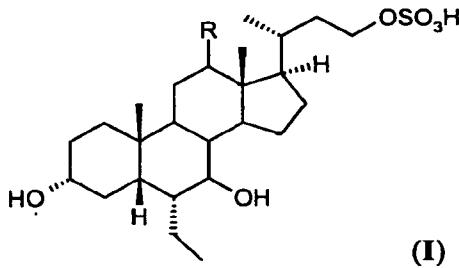
(30) Priority Data:
60/816,635 27 June 2006 (27.06.2006) US

(71) Applicant (for all designated States except US): INTER-CEPT PHARMACEUTICALS, INC. [US/US]; 421 Hudson Street, New York, NY 10014 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PELLICCIARI, Roberto [IT/IT]; Via Rocchi, 60, I-06100 Perugia (IT). FIORUCCI, Stefano [US/IT]; Via Dei Narcisi, 25, I-06100 Perugia (IT). PRUZANSKI, Mark [US/US]; 421 Hudson Street, New York, NY 10014 (US).

(74) Agents: WISZ, Jamie, T. et al.; Wilmer Cutler Pickering Hale, And Dorr Llp, 1875 Pennsylvania Avenue, Nw, Washington, DC 20006 (US).


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BILE ACID DERIVATIVES AS FXR LIGANDS FOR THE PREVENTION OR TREATMENT OF FXR-MEDIATED DISEASES OR CONDITIONS

(57) Abstract: The present invention relates to compounds of formula (I): wherein R is hydrogen or alpha-hydroxy, the hydroxyl group in position 7 is in the alpha or beta position; and pharmaceutically acceptable salts, solvates or amino acid conjugates thereof.

BILE ACID DERIVATIVES AS FXR LIGANDS FOR THE PREVENTION OR TREATMENT OF FXR-MEDIATED DISEASES OR CONDITIONS

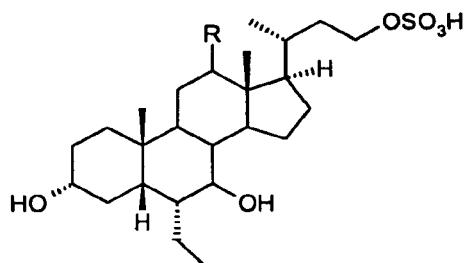
Field of the invention

The present invention relates to Farnesoid X receptor (FXR) modulators which can be used for the treatment of cholestatic disorders, in particular to bile acid derivatives wherein the C₆ contains an ethyl and the C₂₄ carboxy group is 5 transformed into a sulphate group.

Background of the invention

Farnesoid X Receptor (FXR) is an orphan nuclear receptor initially identified from a rat liver cDNA library (BM. Forman, et al., *Cell* 81:687-693 (1995)) that is most closely related to the insect ecdysone receptor. FXR is a member of the nuclear 10 receptor family of ligand-activated transcription factors that includes receptors for the steroid, retinoid, and thyroid hormones (DJ. Mangelsdorf, et al., *Cell* 83:841-850 (1995)). Northern and *in situ* analysis show that FXR is most abundantly expressed in the liver, intestine, kidney, and adrenal (BM. Forman, et al., *Cell* 81:687-693 (1995) and W. Seol, et al., *Mol. Endocrinol.* 9:72-85 (1995)). FXR binds to DNA 15 as a heterodimer with the 9-cis retinoic acid receptor (RXR). The FXR/RXR heterodimer preferentially binds to response elements composed of two nuclear receptor half sites of the consensus AG(G/T)TCA organized as an inverted repeat and separated by a single nucleotide (IR-1 motif) (BM. Forman, et al., *Cell* 81:687-693 (1995)). An early report showed that rat FXR is activated by micromolar 20 concentrations of farnesoids such as farnesol and juvenile hormone (BM. Forman, et al., *Cell* 81:687-693 (1995)). However, these compounds failed to activate the mouse and human FXR, leaving the nature of the endogenous FXR ligand in doubt. Several naturally-occurring bile acids bind to and activate FXR at physiological

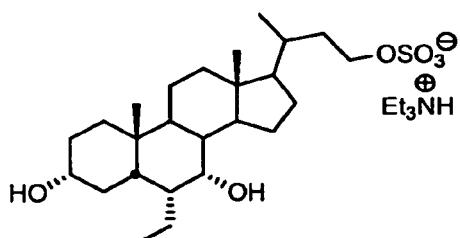
concentrations (PCT WO 00/37077, published 29 June 2000)). As discussed therein, the bile acids that serve as FXR ligands include chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), and the taurine and glycine conjugates of these bile acids.

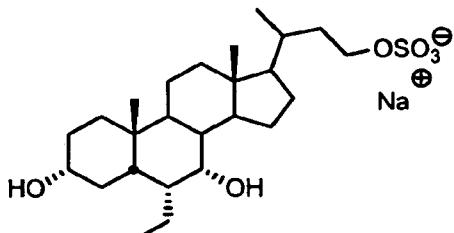

5 Bile acids are cholesterol metabolites that are formed in the liver and secreted into the duodenum of the intestine, where they have important roles in the solubilization and absorption of dietary lipids and vitamins. Most bile acids (~95%) are subsequently reabsorbed in the ileum and returned to the liver via the enterohepatic circulatory system. The conversion of cholesterol to bile acids in the 10 liver is under feedback regulation: bile acids down-regulate the transcription of cytochrome P450 7a (CYP7a), which encodes the enzyme that catalyzes the rate limiting step in bile acid biosynthesis. There is data to suggest that FXR is involved in the repression of CYP7a expression by bile acids, although the precise mechanism remains unclear (DW. Russell, *Cell* 97:539-542 (1999)). In the ileum, bile acids 15 induce the expression of the intestinal bile acid binding protein (IBABP), a cytoplasmic protein which binds bile acids with high affinity and may be involved in their cellular uptake and trafficking. Two groups have now demonstrated that bile acids mediate their effects on IBABP expression through activation of FXR, which binds to an IR-1 type response element that is conserved in the human, rat, and 20 mouse IBABP gene promoters. Thus FXR is involved in both the stimulation (IBABP) and the repression (CYP7a) of target genes involved in bile acid and cholesterol homeostasis.

EP 1392714 discloses 3 α ,7 α -dihydroxy-6 α -ethyl-5 β -cholan-24-oic acid (hereinafter also referred to as 6-ethyl-chenodeoxycholic acid, 6-EDCA), solvates 25 and amino acids conjugates thereof as FXR agonists, which can be used in the preparation of medicaments for the prevention or treatment of FXR-mediated diseases or conditions.

EP 1568796 discloses 6-ethyl-ursodeoxycholic acid (6-EUDCA) derivatives as FXR agonists and their use in the prevention or treatment of FXR-mediated diseases or conditions.

Brief summary of the invention


5 According to a first aspect, the present invention provides compounds of formula (I):


10 wherein R is hydrogen or alpha-hydroxy,
the hydroxyl group in position 7 is in the alpha or beta position;
and pharmaceutically acceptable salts, solvates or amino acid conjugates
thereof.

15 In one embodiment, the compound of formula (I) is in the form of a
chenodeoxycholic acid derivative. In another embodiment, the compound of
formula (I) is in the form of a ursodeoxycholic acid derivative. In still another
embodiment, the compound of formula (I) is in the form of a cholic acid derivative.

In another embodiment, the compound of formula (I) is in the form of a
triethyl ammonium salt:

6. In another embodiment, the compound of formula (I) is in the form of a sodium salt:

5

In another aspect, the present invention provides a method for the prevention or treatment of an FXR mediated disease or condition. The method comprises administering a therapeutically effective amount of a compound of formula (I). The present invention also provides the use of a compound of formula (I) for the preparation of a medicament for the prevention or treatment of an FXR mediated disease or condition.

In certain embodiments, the FXR-mediated disease or condition is cardiovascular disease, atherosclerosis, arteriosclerosis, hypercholesterolemia, or hyperlipidemia; chronic liver disease, gastrointestinal disease, renal disease, cardiovascular disease, metabolic disease, cancer (i.e., colorectal cancer), or neurological indications such as stroke. In certain embodiments, the chronic liver disease is primary biliary cirrhosis (PBC), cerebrotendinous xanthomatosis (CTX), primary sclerosing cholangitis (PSC), drug induced cholestasis, intrahepatic cholestasis of pregnancy, parenteral nutrition associated cholestasis (PNAC), bacterial overgrowth or sepsis associated cholestasis, autoimmune hepatitis, chronic viral hepatitis, alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), liver transplant associated graft versus host disease, living donor transplant liver regeneration, congenital hepatic fibrosis, choledocholithiasis, granulomatous liver disease, intra- or extrahepatic malignancy,

Sjogren's syndrome, Sarcoidosis, Wilson's disease, Gaucher's disease, hemochromatosis, or alpha 1-antitrypsin deficiency. In certain embodiments, the gastrointestinal disease is inflammatory bowel disease (IBD) (including Crohn's disease and ulcerative colitis), irritable bowel syndrome (IBS), bacterial overgrowth, 5 malabsorption, post-radiation colitis, or microscopic colitis. In certain embodiments, the renal disease is diabetic nephropathy, focal segmental glomerulosclerosis (FSGS), hypertensive nephrosclerosis, chronic glomerulonephritis, chronic transplant glomerulopathy, chronic interstitial nephritis, or polycystic kidney disease. In certain embodiments, the cardiovascular disease is 10 atherosclerosis, arteriosclerosis, dyslipidemia, hypercholesterolemia, or hypertriglyceridemia. In certain embodiments, the metabolic disease is insulin resistance, Type I and Type II diabetes, or obesity.

In another aspect, the present invention provides a pharmaceutical composition comprising a compound of formula (I) and a pharmaceutically acceptable carrier or diluent.

In another aspect, the present invention provides a process for preparing a compound of formula (I) and pharmaceutically acceptable salts, solvates or amino acid conjugates thereof.

Brief description of the figures

20 Figure 1 shows the transactivation assay result in a graph format. Each data point is the average of triplicate assays. CTRL: control; INT-747: 6-ECDCA; UPF-987.

Figure 2 shows the dose response of INT-747 and UPF-987 in the transactivation assay.

25 Figure 3 shows FXR target gene expression *in vitro*. The result is the mean of two quantitative Real-Time PCR experiments.

Figure 4 shows representative FXR target gene expression in cells derived

from mouse liver *in vivo*. The data is the mean of two quantitative Real-Time PCR experiments.

Figure 5 shows the effect of UPF-987 on weight loss induced by TNBS.

Figure 6 shows the effect of UPF-987 on stool consistency.

5 Figure 7 shows the effect of UPF-987 on mucosal damage score.

Figure 8 shows the effect of UPF-987 on mouse colon genes expression. The result is the mean of two quantitative Real-Time PCR experiments.

Figure 9 shows the effect of UPF-987 on plasmatic bilirubin in ANIT-induced cholestasis.

10 Figure 10 shows the effect of UPF-987 on plasmatic AST in ANIT-induced cholestasis.

Figure 11 shows the effect of UPF-987 on plasmatic ALP in ANIT-induced cholestasis.

15 Figure 12 shows the effect of UPF-987 on plasmatic gammaGT in ANIT-induced cholestasis.

Figure 13 shows the effect of UPF-987 on plasmatic cholesterol in ANIT-induced cholestasis.

Figure 14 shows the effect of UPF-987 on body weight in ANIT-induced cholestasis.

20 Figure 15 shows the effect of UPF-987 on liver weight in ANIT-induced cholestasis.

Figure 16 shows the effect of UPF-987 on FXR target genes expression in the liver of ANIT-induced cholestatic rat. The result is the mean of two quantitative Real-Time PCR experiments.

25 Figure 17 shows the effect of INT-1103 on plasmatic bilirubin in ANIT-induced cholestatic rats.

Figure 18 shows the effect of INT-1103 on plasmatic AST in ANIT-induced

cholestatic rats.

Figure 19 shows the effect of INT-1103 on plasmatic ALT in ANIT-induced cholestatic rats.

Figure 20 shows the effect of INT-1103 on plasmatic ALP in ANIT-induced
5 cholestatic rats.

Figure 21 shows the effect of INT-1103 on plasmatic gammaGT in ANIT-induced cholestatic rats.

Figure 22 shows the effect of INT-1103 on body weight in ANIT-induced cholestatic rats.

10 Figure 23 shows the resulting liver ratio (liver weight/body weight x100).

Figure 24 shows the effect of INT-1103 on plasmatic bilirubin in BDL-induced cholestatic rats.

Figure 25 shows the effect of INT-1103 on plasmatic AST in BDL-induced cholestatic rats.

15 Figure 26 shows the effect of INT-1103 on plasmatic ALT in BDL-induced cholestatic rats.

Figure 27 shows the effect of INT-1103 on plasmatic ALP in BDL-induced cholestatic rats.

20 Figure 28 shows the effect of INT-1103 on plasmatic gammaGT in BDL-induced cholestatic rats.

Figure 29 shows the effect of INT-1103 on body weight in BDL-induced cholestatic rats.

Figure 30 shows the resulting liver ratio (liver weight/body weight x 100).

25 Figure 31 shows the effect of INT-1103 and INT-747 on bile flow in naïve rats.

Figure 32 shows the effect of INT-1103 and INT-747 on bile flow in estrogen colestastic rats.

Figure 33 shows the effect of INT-1103 and INT-747 on liver ratio in estrogen colestastic rats.

Figure 34 shows the effect of INT-1103 and INT-747 on body weight in estrogen colestastic rats.

5 Figure 35 shows the resulting insulin gene expression by Quantitative Real-Time PCR.

Figure 36 shows the surface tension (dyne/cm) plotted against the logarithm of the bile salt concentration (mM) in water.

10 Figure 37 shows the surface tension (dyne/cm) plotted against the logarithm of the bile salt concentration (mM) in NaCl 0.15 M.

Figure 38 shows the secretion rate of taurine conjugated INT-747. Data are reported as concentration in bile and should be corrected by the bile volume.

Figure 39 shows the secretion rate of glycine conjugated INT-747. Data are reported as concentration in bile and should be corrected by the bile volume.

15 Figure 40 shows the secretion rate of INT-747. Data are reported as concentration in bile and should be corrected by the bile volume.

Figure 41 shows the secretion rate of INT-747 epimers. Data are reported as concentration in bile and should be corrected by the bile volume.

20 Figure 42 shows the secretion rate of taurine conjugated epimers of INT-747. Data are reported as concentration in bile and should be corrected by the bile volume.

Figure 43 shows the secretion rate of INT-1103. Data are reported as concentration in bile and should be corrected by the bile volume.

25 Figure 44 shows the secretion rate of INT-1103 and its main metabolite 3-Glucuronides. The relative amount are expressed as analytical signal. Data are reported as concentration in bile and should be corrected by the bile volume.

Figure 45 shows the secretion rate of INT-1103 main metabolites identified in

bile using mass spectrometry. Data are reported as concentration in bile and should be corrected by the bile volume.

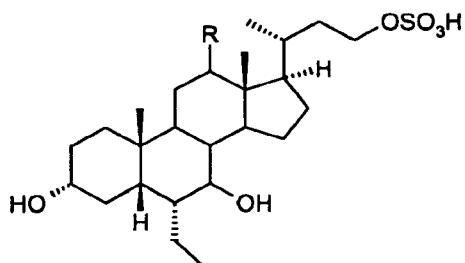

Figure 46 shows the secretion rate of INT-1103 main metabolites identified in bile using mass spectrometry zoom display. Data are reported as concentration in 5 bile and should be corrected by the bile volume.

Figure 47 shows the metabolic stability of INT-747 and INT-1103 in human stools cultures. Chenodeoxycholic was used as a reference natural analogue.

Figure 48 shows the metabolic stability of INT-1103 in simulated pancreatic fluid. Olive oil was used as a reference as reported in the USP protocol. The 10 compound is very stable and the ester bond (sulphate) is not hydrolyzed by pancreatic esterases, suggesting a high stability in human duodenal and upper intestine content.

Detailed description of the invention

15 The present invention relates to compounds of general formula (I):

wherein R is hydrogen or alpha-hydroxy,
the hydroxyl group in position 7 is in the alpha or beta position;
20 and pharmaceutically acceptable salts, solvates or amino acid conjugates thereof.

Suitable pharmaceutically acceptable salts according to the present invention will be readily determined by one skilled in the art and will include, for example, basic salts such as alkali or alkaline-earth metallic salts made from aluminium,

calcium, lithium, magnesium, potassium, sodium, and zinc or organic salts made from N,N'-dibenzylethylenediamine, chlorprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), and procaine. Salts with pharmaceutically acceptable amines such as lysine, arginine, tromethamine,

5 triethylamine and the like can also be used. Such salts of the compounds of formula (I) may be prepared using conventional techniques, from the compound of Formula (I) by reacting, for example, the appropriate base with the compound of Formula (I).

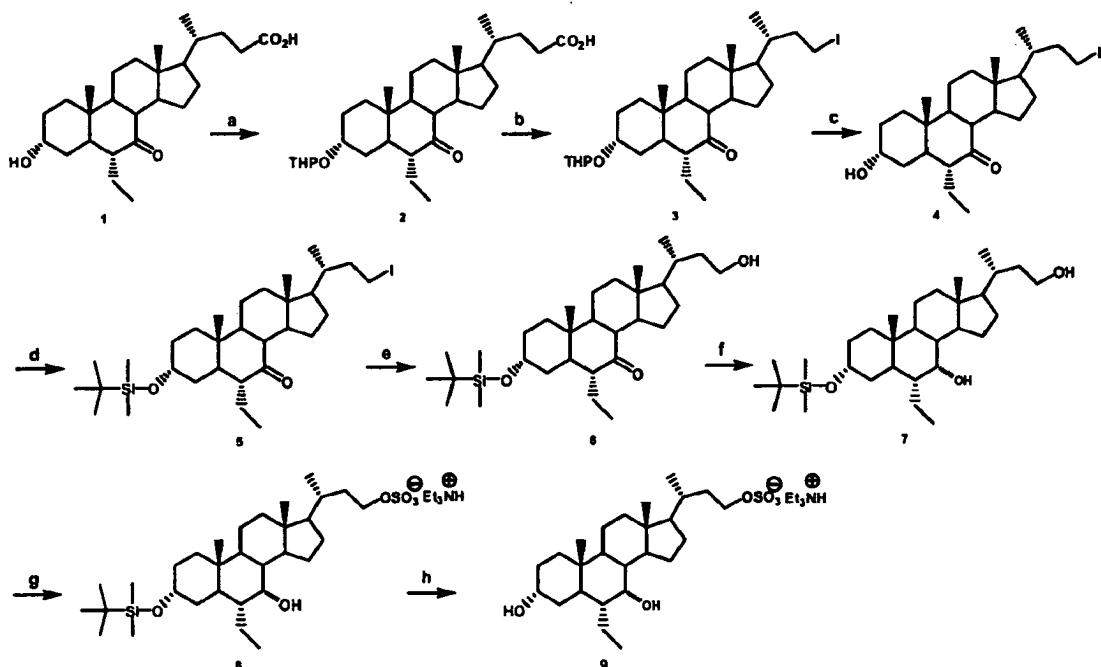
When used in medicine, the salts of a compound of formula (I) should be pharmaceutically acceptable, but pharmaceutically unacceptable salts may

10 conveniently be used to prepare the corresponding free base or pharmaceutically acceptable salts thereof.

As used herein, the term "solvate" is a crystal form containing the compound of formula (I) or a pharmaceutically acceptable salt thereof and either a stoichiometric or a non-stoichiometric amount of a solvent. Solvents, by way of 15 example, include water, methanol, ethanol, or acetic acid. Hereinafter, reference to a compound of formula (I) is to any physical form of that compound, unless a particular form, salt or solvate thereof is specified.

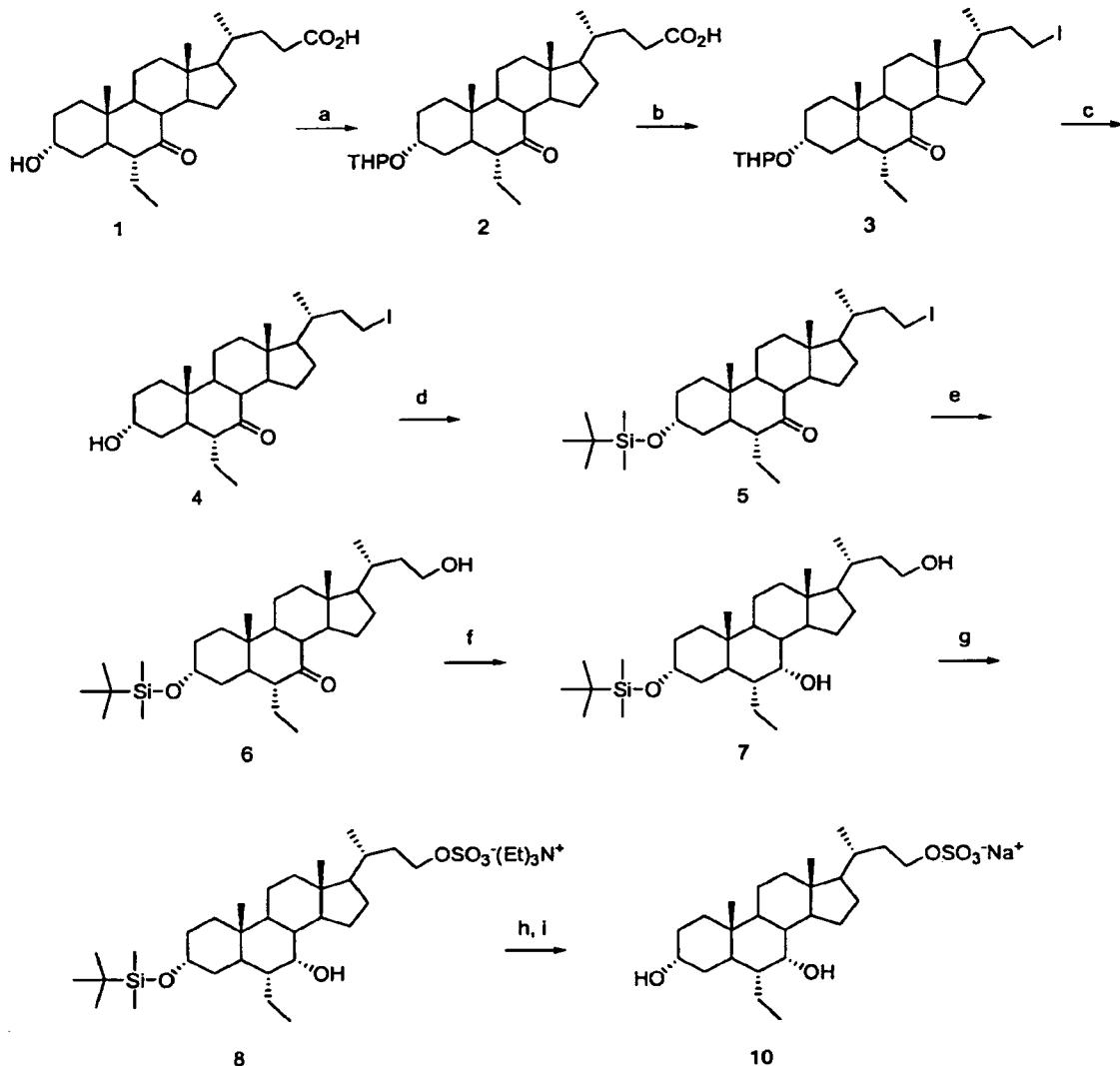
As used herein, the term "amino acid conjugates" refers to conjugates of the compounds of formula (I) with any suitable amino acid. Preferably, such suitable 20 amino acid conjugates of the compounds of formula (I) will have the added advantage of enhanced integrity in bile or intestinal fluids. Suitable amino acids include but are not limited to glycine and taurine. Thus, the present invention encompasses the glycine and taurine conjugates of any of the compounds of formula (I).

25 In one embodiment, the compound of formula I is a chenodeoxycholic acid derivative, wherein the hydroxyl group in 7 is in the alpha position and R is hydrogen.


In another embodiment, the compound of formula I is a ursodeoxycholic acid derivative, wherein the hydroxyl group in 7 is in the beta position and R is hydrogen.

In another embodiment, the compound of formula I is a cholic acid derivative, wherein the hydroxyl group in 7 is in the alpha position and R is alpha-hydroxy.

Hereinafter all references to "compounds of formula (I)" refer to compounds of formula (I) as described above together with their and pharmaceutically acceptable salts, solvates or amino acid conjugates thereof.


The compounds of formula I may be prepared starting from the 6-ethyl-7-keto-cholic acids, prepared as disclosed in EP 1392714 and EP 1568796, suitably protected at the 3-hydroxy moiety, by a reaction sequence comprising the transformation of the C24 carboxy group into a iodine atom, the conversion of the latter into an hydroxyl group, reduction of the 7-keto group to give the corresponding 3-alpha or 3-beta hydroxyl group, the selective sulfonylation of the C24 hydroxy group and the deprotection of the 3-hydroxy group.

The reaction scheme and the reagents used in each step are reported in the following scheme showing the preparation of 3 α ,7 α ,23-trihydroxy-6 α -ethyl-24-nor-5 β -cholan-23-sulphate in the form of triethylammonium salt (UPF-987 or compound (9) below). The same scheme may be adapted, by suitably substituting the reagents and/or starting materials and optionally by also changing reaction sequences and protective groups, for the preparation of other compounds of formula I.

a) 3,4-dihydro-2*H*-pirane, p-TsOH, dioxane, r.t.; b) I₂, Pb(AcO)₄, hv, CCl₄; c) HCl_{conc.}, THF; d) TBDMSCl, imidazole, CH₂Cl₂, r.t.; e) Ag₂CO₃, acetone, H₂O, reflux; f) NaBH₄, THF, H₂O, r.t.; g) CISO₃H, (Et)₃N, THF; h) CH₃COCH₃, PdCl₂(CH₃CN)₂

The reaction scheme and the reagents used in each step are reported in the following scheme below showing the preparation of 3*α*,7*α*,23-trihydroxy-6*α*-ethyl-24-nor-5*β*-cholan-23-sulphate in the form of sodium salt (INT-1103 or compound 5 (10) below). The same scheme may be adapted, by suitably substituting the reagents and/or starting materials and optionally by also changing reaction sequences and protective groups, for the preparation of other pharmaceutically acceptable salt forms of formula I.

a) 3,4 dihydro-2H-pyran, p-TsOH, dioxane, t.a.; b) I₂, Pb(AcO)₄, h.v, CCl₄; c) HCl_{gas}, DME; d) TBDMSCl, imidazole, CH₂Cl₂, t.a.; e) Ag₂CO₃, acetone, H₂O, reflux; f) NaBH₄, THF, H₂O, r.t.; g) ClSO₃H, (Et)₃N, THF; h) H₂O, acetone; PdCl₂(CH₃CN)₂; i) NaOH, MeOH

As explained in greater detail in the experimental section, compound 9 was tested in a cell-free assay and transactivation assay in a human hepatocyte cell line and *in vivo* in intact mice and rats rendered cholestatic by administration of alfa-5 naphthylsitiocyanate (ANIT). In the FRET assay, the compound was found to be approximately 1000 fold more potent than chenodeoxycholic acid (CDCA) in activating FXR. In the tranactivation assay Compound 9 caused 2 fold induction of bile acid transporter, BSEP (bile salt export pump) and the small heterodimeric partner (SHP, an atypical nuclear receptor that lacks a DNA-binding domain).

Further it potently suppressed Cyp7A1, SREPB-1c and the fatty acid synthase (FAS), thus indicating that FXR activation by the compound of the invention allows selective modulation of genes involved in bile acid synthesis as well as in lipid, cholesterol and glucose metabolism. Therefore, compounds of formula (I) act as

5 selective modulators of the bile acid transporters and increase the flux of biliary acids in the liver; furthermore, they potently regulate genes involved in lipid and cholesterol metabolism and for this reason they can be used for the prevention or treatment of FXR-mediated diseases or conditions, which include chronic liver disease (involving one or more of cholestasis, steatosis, inflammation, fibrosis, and

10 cirrhosis), gastrointestinal disease, renal disease, cardiovascular disease, and metabolic disease. Chronic liver diseases which may be prevented or treated using compounds of formula (I) include but are not limited to primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), cerebrotendinous xanthomatosis (CTX), drug induced cholestasis, intrahepatic cholestasis of pregnancy, parenteral

15 nutrition associated cholestasis (PNAC), bacterial overgrowth or sepsis associated cholestasis, autoimmune hepatitis, chronic viral hepatitis, alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), liver transplant associated graft versus host disease, living donor transplant liver regeneration, congenital hepatic fibrosis, choledocholithiasis, granulomatous liver

20 disease, intra- or extrahepatic malignancy, Sjogren's syndrome, Sarcoidosis, Wilson's disease, Gaucher's disease, hemochromatosis, and alpha 1-antitrypsin deficiency. Gastrointestinal diseases which may be prevented or treated using compounds of formula (I) include but are not limited to inflammatory bowel disease (IBD) (including Crohn's disease and ulcerative colitis), irritable bowel syndrome

25 (IBS), bacterial overgrowth, malabsorption, post-radiation colitis, and microscopic colitis. Renal diseases which may be prevented or treated using compounds of formula (I) include but are not limited to diabetic nephropathy, focal segmental

glomerulosclerosis (FSGS), hypertensive nephrosclerosis, chronic glomerulonephritis, chronic transplant glomerulopathy, chronic interstitial nephritis, and polycystic kidney disease. Cardiovascular diseases which may be prevented or treated using compounds of formula (I) include but are not limited to

5 atherosclerosis, arteriosclerosis, dyslipidemia, hypercholesterolemia, and hypertriglyceridemia. Metabolic diseases which may be prevented or treated using compounds of formula (I) include but are not limited to insulin resistance, Type I and Type II diabetes, and obesity.

The methods of the present invention comprise the step of administering a

10 therapeutically effective amount of a compound of formula (I). As used herein, the term "therapeutically effective amount" refers to an amount of a compound of formula (I) which is sufficient to achieve the stated effect. Accordingly, a therapeutically effective amount of a compound of formula (I) used in a method for the prevention or treatment of FXR mediated diseases or conditions will be an

15 amount sufficient to prevent or treat the FXR mediated disease or condition.

Similarly, a therapeutically effective amount of a compound of formula (I) for use in a method for the prophylaxis or treatment of cholestatic liver diseases or increasing bile flow will be an amount sufficient to increase bile flow to the intestine.

The amount of the compound of formula (I) which is required to achieve the

20 desired biological effect will depend on a number of factors such as the use for which it is intended, the means of administration, and the recipient, and will be ultimately at the discretion of the attendant physician or veterinarian. In general, a typical daily dose for the treatment of FXR mediated diseases and conditions, for instance, may be expected to lie in the range of from about 0.01 mg/kg to about 100

25 mg/kg. This dose may be administered as a single unit dose or as several separate unit doses or as a continuous infusion. Similar dosages would be applicable for the treatment of other diseases, conditions and therapies including the prophylaxis and

treatment of cholestatic liver diseases.

Thus, in a further aspect, the present invention provides pharmaceutical compositions comprising, as active ingredient, a compound of formula (I) together, and/or in admixture, with at least one pharmaceutical carrier or diluent. These 5 pharmaceutical compositions may be used in the prophylaxis and treatment of the foregoing diseases or conditions.

The carrier must be pharmaceutically acceptable and must be compatible with, i.e. not have a deleterious effect upon, the other ingredients in the composition. The carrier may be a solid or liquid and is preferably formulated as a unit dose 10 formulation, for example, a tablet which may contain from 0.05 to 95% by weight of the active ingredient. If desired, other physiologically active ingredients may also be incorporated in the pharmaceutical compositions of the invention.

Possible formulations include those suitable for oral, sublingual, buccal, parenteral (for example subcutaneous, intramuscular, or intravenous), rectal, topical 15 including transdermal, intranasal and inhalation administration. Most suitable means of administration for a particular patient will depend on the nature and severity of the disease or condition being treated or the nature of the therapy being used and on the nature of the active compound, but where possible, oral administration is preferred for the prevention and treatment of FXR mediated diseases and conditions.

20 Formulations suitable for oral administration may be provided as discrete units, such as tablets, capsules, cachets, lozenges, each containing a predetermined amount of the active compound; as powders or granules; as solutions or suspensions in aqueous or non-aqueous liquids; or as oil-in-water or water-in-oil emulsions.

Formulations suitable for sublingual or buccal administration include 25 lozenges comprising the active compound and, typically a flavoured base, such as sugar and acacia or tragacanth and pastilles comprising the active compound in an inert base, such as gelatine and glycerine or sucrose acacia.

Formulations suitable for parenteral administration typically comprise sterile aqueous solutions containing a predetermined concentration of the active compound; the solution is preferably isotonic with the blood of the intended recipient.

Additional formulations suitable for parenteral administration include formulations 5 containing physiologically suitable co-solvents and/or complexing agents such as surfactants and cyclodextrins. Oil-in-water emulsions are also suitable formulations for parenteral formulations. Although such solutions are preferably administered intravenously, they may also be administered by subcutaneous or intramuscular injection.

10 Formulations suitable for rectal administration are preferably provided as unit-dose suppositories comprising the active ingredient in one or more solid carriers forming the suppository base, for example, cocoa butter.

Formulations suitable for topical or intranasal application include ointments, creams, lotions, pastes, gels, sprays, aerosols and oils. Suitable carriers for such 15 formulations include petroleum jelly, lanolin, polyethyleneglycols, alcohols, and combinations thereof.

Formulations of the invention may be prepared by any suitable method, typically by uniformly and intimately admixing the active compound with liquids or finely divided solid carriers or both, in the required proportions and then, if 20 necessary, shaping the resulting mixture into the desired shape.

For example a tablet may be prepared by compressing an intimate mixture comprising a powder or granules of the active ingredient and one or more optional ingredients, such as a binder, lubricant, inert diluent, or surface active dispersing agent, or by moulding an intimate mixture of powdered active ingredient and inert 25 liquid diluent.

Suitable formulations for administration by inhalation include fine particle dusts or mists which may be generated by means of various types of metered dose

pressurised aerosols, nebulisers, or insufflators.

For pulmonary administration via the mouth, the particle size of the powder or droplets is typically in the range 0.5-10 μm , preferably 1-5 μm , to ensure delivery into the bronchial tree. For nasal administration, a particle size in the range 10-500 5 μm is preferred to ensure retention in the nasal cavity.

Metered dose inhalers are pressurised aerosol dispensers, typically containing a suspension or solution formulation of the active ingredient in a liquefied propellant. During use, these devices discharge the formulation through a valve adapted to deliver a metered volume, typically from 10 to 150 μl , to produce a fine 10 particle spray containing the active ingredient. Suitable propellants include certain chlorofluorocarbon compounds, for example, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane and mixtures thereof. The formulation may additionally contain one or more co-solvents, for example, ethanol 15 surfactants, such as oleic acid or sorbitan trioleate, anti-oxidants and suitable flavouring agents.

Nebulisers are commercially available devices that transform solutions or suspensions of the active ingredient into a therapeutic aerosol mist either by means of acceleration of a compressed gas typically air or oxygen, through a narrow venturi orifice, or by means of ultrasonic agitation. Suitable formulations for use in 20 nebulisers consist of the active ingredient in a liquid carrier and comprise up to 40% w/w of the formulation, preferably less than 20% w/w. The carrier is typically water or a dilute aqueous alcoholic solution, preferably made isotonic with body fluids by the addition of, for example, sodium chloride. Optional additives include preservatives if the formulation is not prepared sterile, for example, methyl hydroxy- 25 benzoate, anti-oxidants, flavouring agents, volatile oils, buffering agents and surfactants.

Suitable formulations for administration by insufflation include finely

comminuted powders which may be delivered by means of an insufflator or taken into the nasal cavity in the manner of a snuff. In the insufflator, the powder is contained in capsules or cartridges, typically made of gelatin or plastic, which are either pierced or opened *in situ* and the powder delivered by air drawn through the 5 device upon inhalation or by means of a manually-operated pump. The powder employed in the insufflator consists either solely of the active ingredient or of a powder blend comprising the active ingredient, a suitable powder diluent, such as lactose, and an optional surfactant. The active ingredient typically comprises from 0.1 to 100 w/w of the formulation.

10 In addition to the ingredients specifically mentioned above, the formulations of the present invention may include other agents known to those skilled in the art of pharmacy, having regard for the type of formulation in issue. For example, formulations suitable for oral administration may include flavouring agents and formulations suitable for intranasal administration may include perfumes.

15 Therefore, according to a further aspect of the present invention, there is provided the use of the compounds of formula (I) in the preparation of medicaments for the prevention or treatment of FXR mediated diseases or conditions.

The invention will be hereinafter illustrated in more detail in the following Examples.

20 **EXAMPLE 1**

Chemistry. Melting points were determined with a Buchi 535 electrothermal apparatus and are uncorrected. NMR spectra were obtained with a Bruker AC 200 MHz spectrometer, and the chemical shifts are reported in parts per million (ppm). The abbreviations used are as follows: s, singlet; bs, broad singlet; d, doublet; dd, 25 double doublet; m, multiplet; q, quartet, t, triplet. Flash column chromatography was performed using Merck silica gel 60 (0.040-0.063 mm). TLC was carried out on precoated TLC plates with silica gel 60 F-254 (Merck). Spots were visualized with

phosphomolybdate reagent (5% solution in EtOH). The reactions were carried out under a nitrogen atmosphere.

3 α -Tetrahydropyranloxy-7-keto-5 β -cholan-24-oic Acid (2)

3,4-dihydro-2H-pyran (1.74 ml, 19 mmol) in dioxane (12 ml) was dropped slowly to a solution of *p*-Toluenesulfonic acid (115 mg, 0.6 ml) and 6 α -ethyl-7-ketolithocholic acid (5.0 g, 12 mmol) in dioxane (55 ml). The reaction mixture was stirred at room temperature for 2 hours. Water (40 ml) was then added, and the mixture was partially concentrated under vacuum and extracted with EtOAc (4 x 25 ml). The combined organic fractions were washed with brine (1 x 50 ml), dried over anhydrous Na₂SO₄ and evaporated under vacuum to afford 6 g of compound 2. The crude derivative was used for the next step without further purification.

¹H NMR: (200 MHz, CDCl₃) δ : 0,68 (3H, s, C-18 Me); 0,8 (3H, t, *J*= 4 Hz, C-26); 0,98 (3H, d, *J*=6,5, C-21 Me); 1,17 (3H, s, C-19 Me); 3,4-3,7 (4H, m, C-23 CH₂, C-6'); 3,8-3,9 (1H, m, C-3); 2,6-2,8 (1H, m, C-6).
13C NMR (50,3 MHz, CDCl₃) δ : 212,41, 179,42, 54,75, 52,10, 21,79, 18,30, 12,04.

3 α -Tetrahydropyranloxy-7-keto-24-nor-5 β -cholan-23-I (3)

Under irradiation with a 300 w tungsten lamp, iodine (5 g, 20 mmol) in CCl₄ (75 ml) was added dropwise to a solution of 2 (5.5 g, 11 mmol) and lead tetraacetate (4.9 g, 11 mmol) in CCl₄ (200 ml). The reaction mixture was stirred until the colour was permanent (18 h). The mixture was cooled and filtered on celite. The organic phase was washed with a 5% Na₂S₂O₃ solution, 5% NaOH, brine (15 ml), dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by silica gel flash chromatography using a mixture of light petroleum/EtOAc 95/5 as mobile phase to give 4.6 g of compound 3 (40% yield).

¹H NMR: (200 MHz, CDCl₃) δ : 0,54 (3H, s, C-18 Me); 0,68 (3H, t, *J*=7,36 MHz, C-25); 0,79 (3H, d, *J*=5,2 MHz, C-21); 1,09 (3H, s, C-19); 2,55 (1H, m, C-

26); 2,96 (1H, m, C-23); 3,16 (1H, m, C-23); 3,20 (1H, m, C-6'); 3,76 (1H, m, C-6'); 4,59 (1H, m, C-2').

¹³C NMR (50,3 MHz, CDCl₃) δ: 212.50, 96.56, 95.99, 74.90, 74.60, 62.63, 54.63, 52.08, 50.78, 50.58, 49.84, 48.91, 43.38, 42.70, 40.11, 38.90, 36.92, 35.81, 5 34.34, 34.10, 31.07, 30.06, 29.61, 28.26, 27.85, 25.97, 25.42, 24.54, 23.49, 21.75, 19.76, 19.59, 18.88, 17.84, 12.05, 11.98, 5.26.

3α-hydroxy-6α-ethyl-7-keto-24-nor-5β-cholan-23-I (4)

The compound 3 (2.2 g, 3.8 mmol) was stirred in a solution of HCl 37% in THF (50 ml) overnight at room temperature. The reaction mixture was washed with 10 a saturated solution of NaHCO₃ (20 ml), H₂O (20 ml), brine (20 ml) dried over Na₂SO₄ and evaporated under vacuum to afford 1.4 g of compound 4 (80% yield). The crude derivative was used for the next step without further purification.

¹H NMR: (200 MHz, CDCl₃) δ: 0,68 (3H, s, C-18 Me); 0.82 (3H, t, J=7,36 MHz, C-21); 0,93 (3H, t, J=5,2 Hz, C-21 Me); 1,26 (3H, s, C-19 Me); 3.08 (1H, m, 15 C-23); 3,37 (1H, m, C-23); 3.61 (1H, m, C-3).

¹³C NMR (50,3 MHz, CDCl₃) δ: 212.81, 71.09, 54.63, 51.93, 50.60, 49.84, 48.93, 43.64, 42.70, 40.11, 38.92, 36.92, 35.63, 34.19, 31.71, 31.06, 29.78, 28.25, 27.89, 25.96, 25.42, 24.51, 23.48, 21.79, 19.56, 18.77, 18.22, 17.85, 12.02, 11.95, 5.22.

20 3α-tert-Butyldimethylsilyloxy-6α-ethyl-7-keto-24-nor-5β-cholan-23-I (5)

To a solution of 4 (1.4 g, 2.8 mmol) in CH₂Cl₂ (30 ml), *tert*-butyldimethylsilylchloride (496 mg, 3.22 mmol) and imidazole (230 mg, 3.36 mmol) were added and the mixture was stirred overnight at room temperature. The reaction mixture was washed with a saturated solution of NaHCO₃ (30 ml), brine (30 ml), and dried over anhydrous Na₂SO₄. The organic phase was evaporated under vacuum to afford 1.5 g of compound 5 (87% yield). The crude derivative was used for the next step without further purification.

¹H NMR: (200 MHz, CDCl₃) δ: 0.02 (6H, s, (CH₃)₂Si); 0.65 (3H, s, C-18 Me); 0.85 (9H, s, (CH₃)₃CSi); 1.19 (3H, s, C-19); 3.16 (1H, m, C-23); 3.30 (1H, m, C-23); 3.48 (1H m, C-3).

¹³C NMR (50.3 MHz, CDCl₃) δ: 212.56, 71.93, 54.63, 51.89, 50.62, 49.81, 5 48.90, 43.34, 42.72, 40.11, 38.89, 36.92, 35.62, 34.37, 31.97, 30.34, 28.26, 25.83, 25.61, 24.57, 23.48, 21.77, 18.81, 17.84, 12.02, 11.92, 5.27, -4.70.

3a-*tert*-Butyldimethylsilyloxy-6a-ethyl-7-keto-24-nor-5β-cholan-23-ole (6)

To a solution of **5** (1.2 g, 1.96 mmol) in acetone (12 ml), Ag₂CO₃ 10 (1.1 g, 3.9 mmol) was added. The reaction mixture was refluxed overnight and then cooled to r.t., filtered on celite washed with acetone and the combined organic phases were concentrated to yield 1 g of compound **6**. The crude derivative was used for the next step without further purification.

¹H NMR: (200 MHz, CDCl₃) δ: 0.02 (6H, s, (CH₃)₂Si); 0.65 (3H, s, C-18 Me); 0.88 (9H, s, (CH₃)₃CSi); 3.16 (1H, m, C-23); 3.37 (1H m, C-3); 3.69 (2H, m, C-23).

¹³C NMR (50.3 MHz, CDCl₃) δ: 212.64, 71.96, 60.84, 55.27, 50.66, 49.87, 48.94, 43.37, 42.69, 38.94, 35.64, 34.39, 32.70, 32.00, 30.36, 29.68, 28.53, 25.85, 24.64, 23.50, 21.80, 18.84, 12.01, 11.94, -4.68.

20 3a-*tert*-Butyldimethylsilyloxy-7a-hydroxy-6a-ethyl-24-nor-5β-cholan-23-ole (7)

To a solution of **6** (1 g, 1.96 mmol) in a mixture of THF (50 ml) and H₂O (12.5ml), NaBH₄ (740 mg, 19.6 mmol) was added and the mixture was stirred at room temperature for 1 hours and 30 minutes. The reaction solution was partially 25 concentrated under vacuum and extracted with CHCl₃ (3 x 20 ml). The combined organic layers were washed with brine (1 x 50 ml), dried over anhydrous Na₂SO₄, and evaporated under vacuum. The crude residue was purified by silica gel flash

chromatography using a mixture of CH_2Cl_2 : MeOH 99:1 as mobile phase to give 0.8 g of 7 (81% yield).

^1H NMR: (200 MHz, CDCl_3) δ : 0.04 (6H, s, $(\text{CH}_3)_2\text{Si}$); 0.66 (3H, s, C-18 Me); 0.88 (9H, s, $(\text{CH}_3)_3\text{CSi}$); 3.16 (1H, m, C-23); 3.37 (1H m, C-3); 3.69 (1H, m, C-7, 2H, m, C-23).

^{13}C NMR (50.3 MHz, CDCl_3) δ : 73.30, 70.85, 60.82, 56.31, 50.55, 45.28, 42.77, 41.17, 40.03, 39.62, 38.95, 35.74, 35.52, 34.10, 33.14, 32.93, 31.01, 28.40, 25.98, 23.70, 23.18, 22.22, 20.72, 18.79, 11.62, -4.60.

3 α -tert-Butyldimethylsilyloxy-7 α -hydroxy-6 α -ethyl-24-nor-5 β -cholan-10 sulphate triethyl ammonium salt (8)

To a solution of 7 (0.5 g, 0.99 mmol) in THF (7 ml) cooled at -3°C, Et_3N (0.3 ml, 2.1 mmol) was added and the resulting mixture was stirred for 10 min. ClSO_3H (0.1 ml, 1.5 mmol) was added and the mixture was stirred overnight at room temperature. Water (10 ml) was then added and the mixture was extracted with CH_2Cl_2 (3 x 15 ml), dried over anhydride Na_2SO_4 and evaporated under vacuum. The crude sulphate derivative was used for the next step without further purification.

3 α ,7 α ,23-trihydroxy-6 α -ethyl-24-nor-5 β -cholan-23-sulphate triethyl ammonium salt (9)

To a solution of 8 (0.5 g, 0.77 mmol) in acetone (8 ml), $\text{PdCl}_2(\text{CH}_3\text{CN})_2$ (10 mg, 0.05 eq) was added and the mixture was stirred at room temperature for 3 hours. The reaction mixture was filtered, concentrated under vacuum and purified by medium pressure Lichroprep RP-8 using a $\text{MeOH}/\text{H}_2\text{O}$ 8/2 mixture as mobile phase to afford 0.115 g of 9, *m.p.* 118-121°C

^1H NMR (200 MHz, CD_3OD) δ : 0.70 (3H, s, C-18 Me); 0.91 (3 H, m, C-21 Me, 3 H, C-25); 0.98 (3 H, d, J = 6.4 Hz, C-19 Me); 1.32 (9 H, t, J = 7.3 Hz, $(\text{CH}_3)_3\text{N}$); 3.20 (6 H, q, J = 7.31 Hz, $(\text{CH}_3\text{-CH}_2\text{-})_3\text{N}$; 3.31 (1 H, m, C-3); 3.65 (1 H, bs, C-7); 4.03 (2H, m, $\text{CH}_2\text{-}23$).

¹³C NMR (CD₃OD) δ: 9.23, 12.05, 12.19, 19.14, 21.97, 23.52, 23.76, 24.57, 34.23, 34.51, 36.56, 36.65, 36.79, 41.06, 41.55, 43.13, 47.73, 50.28, 51.68, 57.80, 67.19, 71.16, 73.23.

3a,7a,23-trihydroxy-6a-ethyl-24-nor-5β-cholan-23-sulphate sodium salt

5 (10)

To a solution of **8** (0.4 g, 0.72 mmol) in a mixture of acetone (4 ml) and H₂O (0.08 ml), PdCl₂(CH₃CN)₂ (10 mg, 0.05 eq) was added and the resulting mixture was stirred at room temperature for 3 hours. The reaction mixture was filtered over celite and concentrated under vacuum. The resulting residue was treated with a methanolic solution of 10% NaOH for 2h. The resulting mixture was concentrated under vacuum and submitted to liquid medium pressure purification using a mixture of CH₃OH/H₂O (7:3) as mobile phase to afford 0.09 g of **10** (25% yield).

EXAMPLE 2

15 **Biological activities**

Tests were first carried out in order to verify whether UPF-987 modulates FXR-regulated genes, in comparison with chenodeoxycholic acid (CDCA). CDCA is a primary bile acid that functions as an endogenous ligand of the farnesoid-x-receptor (FXR; NR1H4). The biological activity of UPF-987 on FXR activity was first tested in an in vitro assay using the fluorescence resonance energy transfer (FRET) cell free assay, described in Pellicciari R., et al. J Med Chem. 2002 15;45:3569-72.

Briefly, reactions contained europium-labeled anti-GST antibody and streptavidin-conjugated allophycocyanin, FXR GST-LBD fusion proteins and biotinylated SRC1 sensor peptide. Reactions were incubated at room temperature for 1 h in FRET buffer (10 mM Hepes, pH 7.9, 150 mM NaCl, 2 mM MgCl₂, 1 mM EDTA, 0.1 mg/ml BSA). FRET was measured on a Victor 1420 multilabel counter.

In the FRET cell-free assay, the recruitment of Scr-1, a co-activating factor for FXR, occurs at a concentration of compound that is almost 300-fold lower than that required for the natural FXR-ligand CDCA (Table 1).

Table 1. Activity of UPF-987 on Human FXR on FRET

5

Compound Tested	Cell-Free Assay EC ₅₀ (μM)	Efficacy ¹
UPF-987	0.014	111
CDCA	4	100 ± 3

¹ Relative recruitment of the SRC1 peptide to FXR where CDCA = 100%.

All data are mean ± SE, n = 4.

It was also evaluated if UPF-987 modulated FXR-regulated genes in a cellular assay using a human hepatocyte cell line (HepG2). In a cell transfection assay using the HepG2 cell line, UPF-987 proved a potent FXR ligand. Exposure of HepG2 cells to UPF-987 transactivates FXR. In other experiments using liver cells transfected with viral constructs carrying the FXR gene or other nuclear receptors cloned upstream to the luciferase gene, it was found that UPF-987 functions as a selective FXR ligand in mouse, rat, and human hepatocytes. A detailed description of these methods can be found in the following reference: Fiorucci S., et al. Gastroenterology 2004.

Briefly, for luciferase assay, HepG2 cells were cultured in E-MEM supplemented with 1% penicillin/streptomycin, 1% L-glutamine and 10% fetal bovine serum (high glucose) (CELBIO). Cells were grown at 37°C in 5% CO₂. All the transfections were making using a calcium phosphate coprecipitation method in the presence of 25 μM chloroquine as inhibitor for DNA degradation. Transient transfections were performed using 500 ng of reporter vector phsp27-TKLUC, 200 ng pCMV-βgal, as internal control for transfection efficiency, and 50 ng of each receptor expression plasmid pSG5-FXR, pSG5-RXR. The pGEM vector was added

to normalize the amounts of DNA transfected in each assay (2.5 µg). The transfection efficiency was evaluated by β-gal expression, obtained by co-transfected the cells with pCMV-βgal plasmid. Forty-Eight hours post-transfection, HepG2 cells were stimulated with 1 µM UPF-987 for 18 h. Control cultures received 5 vehicle (0.1% DMSO) alone. Cells were lysed in 100 µl diluted reporter lysis buffer (Promega), and 0.2 µl cellular lystate was assayed for luciferase activity using Luciferase Assay System (Promega). Luminescence was measured using an automated luminometer. Luciferase activities were normalized for transfection efficiencies by dividing the relative light units by β-galactosidase activity.

10 Regulation of FXR Target Gene Expression by UPF-987 in HepG2 Cells

To establish if UPF-987 is a FXR modulator and exerts differential activities, human HepG2 cells were exposed to UPF-987, CDCA (natural FXR ligand) and to its 6-ethyl-derivative, 6-ECDCA, which is a potent FXR ligand. The effects of these ligands on FXR responsive genes was then investigated by quantitative reverse 15 transcription PCR (qRT-PCR).

Briefly, all PCR primers were designed using PRIMER3-OUTPUT software using published sequence data from the NCBI database. Total RNA was isolated (TRIzol reagen, Invitrogen srl, Milan, Italy) from specimens taken from livers. One microgram of purified RNA was treated with DNase I for 10 minutes at room 20 temperature, followed by incubation at 95°C for 3 minutes in the presence of 2.5 mmol/L EDTA. The RNA was reverse transcribed with Superscript III (Invitrogen, Carsbad, CA) in 20µL reaction volume using reandom primers. For quantitative RT-PCR, 100 ng template was dissolved in a 25 µL containing 0.3 µmol/L of each primer and 12.5 µL of 2X SYBR Green PCR Master mix (Fynnzimes-DyNAmo 25 SYBRR Green qPCR mix). All reactions were performed in triplicate, and the thermal cycling conditions were as follows: 2 minutes at 95°C, followed by 50 cycles of 95°C for 20 seconds, 55°C for 20 seconds and 72°C for 30 seconds on

iCycler iQ instrument (Bio-Rad, Hercules, CA). The mean value of the replicates for each sample was calculated and expressed as the cycle threshold (CT; cycle number at which each PCR reaction reaches a predetermined fluorescent threshold, set within the linear range of all reactions). The amount of gene expression was then 5 calculated as the difference (ΔCT) between the CT value of the sample for the target gene and the mean CT value of that sample for the endogenous control (GAPDH). Relative expression was calculated as the difference ($\Delta\Delta CT$) between ΔCT values of the test control sample for each target gene. The relative mRNA expression was shown as $2^{-\Delta\Delta CT}$ (Figure 3). The Primers used in Real-Time PCR were:

10 hGAPDH: gaaggtgaaggcggagt and catgggtggaatcataatggaa;
hCYP7A1: cacctgaggacgggttccta and cgatccaaagggcatgtgt;
hSHP: gctgtctggagtccctctgg and ccaatgatagggcgaaagaagag;
hBSEP: gggccattgtacgagatcctaa and tgcaccgtctttcactttctg;
hSREBP1c: gcaaggccatcgactacatt and ggtcagtgtgcctccacct.

15 In contrast to Figure 3, a different *in vitro* experiment using quantitative reverse transcription PCR, demonstrated that while no direct cell toxicity was observed upon exposure to any of these ligands, exposure of HepG2 cells to CDCA and its 6-ECDCA derivative, resulted in a 2-3 fold induction of SHP, an FXR regulated gene. By contrast, despite the fact that UPF-987 is a FXR ligand (see 20 above), it stimulates SHP expression. All the FXR ligands tested, namely CDCA, 6-ECDCA and UPF-987 exerted the same effect on CYP7 α 1 (all agents caused a 60-70% reduction of the expression of CYP7 α 1 mRNA). In addition, exposure to UPF-987 induced BSEP and SHP mRNA expression (approximately 2-3 fold induction). This effect was significantly more pronounced with UPF-987 than with the other 25 FXR ligands. Furthermore, similarly to the other ligands, exposure to UPF-987 resulted in a potent inhibition of SREPB-1c and FAS mRNA expression. Taken together, these data suggest that UPF-987 is an FXR modulator that functions as a

potent FXR ligand, and unexpectedly alters FXR regulated genes, causing significant induction of bile acid transporters (for example BSEP) and potent suppression of lipid-related genes. In addition, UPF-987 represses the expression of Cyp7 α 1, a gene that is critically involved in bile acid synthesis from cholesterol.

5 The regulation of these FXR target genes suggests that UPF-987 is a gene-selective FXR ligand that may inhibit bile acid biosynthesis through the classical pathway while increasing bile acid secretion from hepatocytes, without interfering with SHP expression. This effect is desirable, since it narrows the pharmacological activities of these FXR ligands, and might prevent metabolic activation typically associated
10 with SHP induction.

Results of *In vitro* pharmacology studies on UPF-987 are shown in Table 2 below.

Table 2. *In Vitro* Pharmacology Studies on UPF-987

Cells	Test Article	Doses	Species	Endpoints	Summary Findings
Cell free assay	UPF-987 CDCA	Concentrations ranging from 1 nM to 100 μ M	n/a	Potency of UPF-987 as an FXR ligand in a cell free assay using FRET assay	The results of these experiments show that UPF-987 is a potent ligand of FXR ($EC_{50} \sim 14$ nM)
Hepatoma cell line(HepG2)	UPF-987 CDCA 6-ECDCA	Concentrations ranging from 1 to 100 μ M	Human	Potency on regulation of FXR and FXR regulated genes (SHP, CYP7 α 1, CYP8 β 1, SREPB1c, FAS and BSEP)	UPF-987 causes transactivation of FXR. UPF-987 is a potent inducer of BSEP and SHP. UPF-987 is potent inhibitor of Cyp7A1 and SREBP1c mRNA expression
In vivo testing Intact	UPF-987	5 mg/kg intraperitoneal	Mice	Regulation of FXR related	UPF-987 administration induces liver

Cells	Test Article	Doses	Species	Endpoints	Summary Findings
mouse	CDCA 6E- CDCA	4 days		genes (SHP, CYP7 α 1, CYP8 β 1, SREPB1c, FAS and BSEP) in vivo	expression of BSEP and SHP and inhibits liver Cyp7A1, SREBP1c and FAS mRNA expression
In vivo testing ANIT-induced cholestasis	UPF-987	5 mg/kg oral 7 days administration	Rats	Biochemical assessment of cholestasis	UPF-987 administration reduces ANIT induced cholestasis as measured by serum liver enzymes (AST, bilirubin, Alc. Phosphatase and cholesterol) and modulates liver expression of NTCP, BSEP and CYP7A1 mRNA expression

Example 3

Regulation of FXR target genes by UPF-987 *in vivo*

Background

5 Compound 9 is also referred to as UPF-987. FXR plays a key role in the transcriptional regulation of genes involved in bile acid metabolism and lipid/cholesterol and glucose homeostasis. The regulation of these interactions is highly complex and contains multiple feedback loops to self-regulate the transcriptional circuits. The overlapping range of agonistic and antagonistic ligands, 10 as well as of target genes shared by FXR with other metabolic nuclear receptors including PPARs and LXR, may serve as a redundant safety mechanism to elicit a protective response so that even when one pathway is compromised, a salvage pathway takes over. Crucial to the complexity of putative convergent and divergent

functions of the metabolic nuclear receptors are their transcriptional coactivators and corepressors, that will be recruited in various manner from FXR modulators.

FXR modulators will be used for the treatment of the inflammatory, cholestatic, fibrotic liver disorders, and metabolic disorders including

5 hypertriglyceridemic and hypercholesterolemic states and, by extension, atherosclerosis and its complications.

In conclusion, FXR is emerging as a particularly intriguing therapeutic target, not only for the promising application associated with its modulation but also for its peculiar mechanism of ligand recognition and gene activation.

10 Materials and Methods

Animals

Six- to eight-week old female Balb/c mice were obtained from Charles River (Charles River Laboratories, Inc., Wilmington, MA). Animals were fed a standard chow pellet diet, had free access to water, and were maintained on a 12-h light/dark cycle. All procedures in this study were approved by the Animal Study Committees of the University of Perugia (Italy) according to governmental guidelines for animal care. Animals were treated for 5 days by intraperitoneal injection of 6-ECDCA 15 5mg/Kg/day, while control animals were treated with vehicle alone (methyl-cellulose). At the end of the experiment mice were sacrificed and liver was removed 20 to perform Real Time PCR analysis of FXR target genes.

Quantitative Real-Time PCR

Quantitative Real-Time PCR was performed as above (see 1.1 Materials and Methods). The primers used were:

mGAPDH: ctgagttatgtcggtggagtctac and gttgggtgggtgcaggatgcattg
25 mBSEP: aatcggtatgggttgactgc and tgacagcgagaatcaccaag
mSHP: tctcttccgcgcctatca and aagggttgcgtggacagtta
mCYP7A1: aagccatgtgcacaaacctc and gccggaaatacttggtcaaa

mSREBP1c: gatcaaagaggagccagtgc and tagatggtggtgttgagtgt

Results

In vivo administration of the UPF-987 to intact mice for 4 days at the dose of 5 mg/kg resulted in a potent induction of BSEP and SHP in the liver. Despite 5 encouraging yet inconsistent target gene expression data with preliminary *in vitro* assays discussed above, the observed *in vivo* data suggest potent downregulation (60-70% reduction) of Cyp7a1. UPF-987 which also caused 90% inhibition of SREBP-1c and reduced FAS mRNA expression in the liver (Fig. 5).

Example 4

10 **Evaluation of UPF-987 anti-inflammatory activity in TNBS mouse model of colitis**

Materials and Methods

Colitis models

The intracolonic application of the hapten TNBS causes acute and chronic colitis in 15 rodents. Mucosal inflammation in TNBS-colitis has a prominent neutrophilic infiltrate, but also comprises influx of CCR1+ and CCR5+ macrophages and monocytes as well as a prominent IL-12 and IFN- γ -dependent T lymphocyte (Th1) activation. Histopathological features resemble human Crohn's disease, transmural inflammation, granulomas, fissuring ulcers and "skip lesions" (regions of ulceration 20 separated by regions of normal mucosa". TNBS-colitis serves as a useful pre-clinical model for testing established and innovative treatments for Crohn's disease.

Animals

Animals were monitored daily for appearance of diarrhea, loss of body weight, and survival. At the end of the experiment, surviving mice were sacrificed, blood 25 samples collected by cardiac puncture, and a 7 cm segment of colon was excised, weighed, and macroscopic damage was evaluated.

Induction of Colitis and Study Design

Colitis was induced in BALB/c mice (8 weeks old) by intra-rectal administration of TNBS (0.5 mg/mouse) Beginning three hours later and continuing at 24-h intervals for five days, the mice were administered intra- peritoneally, UPF-987 (0.3-1-3mg/kg) or vehicle (methyl cellulose 1%). Each group consisted of 5 or 7 mice.

5 The mice were sacrificed 18h after the final administration of the test drug or vehicle. The severity of colitis was scored by assessing the macroscopic appearance. The latter is an index of granulocyte infiltration in the tissue. The macroscopic scoring of colitis has been described in detail by Fiorucci et al, and involved blind scoring on a 0 (normal) to 4 (severe damage) scale. Body weight and
10 stool consistency was recorded at the start and end of the study. Tissue samples were collected from the distal colon of each mouse and processed, as described previously.

Macroscopic Grading of Colitis

Colons were examined under a dissecting microscope (x 5) and graded for
15 macroscopic lesions on a scale from 0 to 10 based on criteria reflecting inflammation, such as hyperemia, thickening of the bowel, and the extent of ulceration.

Quantitative Real-Time PCR

Mouse colon genes expression was evaluated by quantitative real-time polymerase
20 chain reaction (RT-PCR) like previously described. Total RNA was isolated from specimens taken from distal colon. Followed primers were designed using PRIMER3-OUTPUT software, using published sequence data from the NCBI database:

mGAPDH: ctgagttatgtcgaggatctac and gttgggtggcaggatgcattg

25 mTNF α : acggcatggatctcaaagac and gtgggtgagcacgtgt

mIL1 β : tcacagcagcacatcaacaa and tgcctcatcctcgaaggtc

mIL6: ccggagaggagactcacag and tccacgattcccagagaac

mINF γ : gctttcagctttccat and gtcaccatcctttgccagt

miNOS: acgagacggataggcagaga and cacatgcaaggaagggaact

mTGF β 1: ttgcttcagctccacagaga and tggttgttagagggcaaggac

mFXR: tgtgagggctgcaaaggtt and acatccccatctctgcac

5 **Example 5**

Evaluation of efficacy of UPF-987 in rat cholestatic model (ANIT)

Background

Cholestasis results in intrahepatic accumulation of cytotoxic bile acids which cause liver injury ultimately leading to biliary fibrosis and cirrhosis. Cholestatic

10 liver damage is counteracted by a variety of intrinsic hepatoprotective mechanisms. Such defense mechanisms include repression of hepatic bile acid uptake and de novo bile acid synthesis. Furthermore, phase I and II bile acid detoxification is induced rendering bile acids more hydrophilic. In addition to "orthograde" export via canalicular export systems, these compounds are also excreted via basolateral 15 "alternative" export systems into the systemic circulation followed by renal elimination. Passive glomerular filtration of hydrophilic bile acids, active renal tubular secretion, and repression of tubular bile acid reabsorption facilitate renal bile acid elimination during cholestasis. The underlying molecular mechanisms are mediated mainly at a transcriptional level via a complex network involving nuclear 20 receptors and other transcription factors. So far, the farnesoid X receptor FXR, pregnane X receptor PXR, and vitamin D receptor VDR have been identified as nuclear receptors for bile acids. However, the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis. Therefore, additional therapeutic strategies such as targeted activation of nuclear receptors are needed to 25 enhance the hepatic defense against toxic bile acids.

Materials and Methods

Animals

Wistar Rats studies were approved by the Animal Study Committee of the University of Perugia. Male Wistar rats (200–250 g) were obtained from Charles River Breeding Laboratories (Portage, MI) and maintained on standard laboratory rat chow on a 12-h light/dark cycle.

5 **Colestatic models: Method:alpha-naphthyl-isothiocyanate (ANIT)**

The first rats group (N=6) was treated, daily, by ANIT 100mg/kg via gavage (colestatic inducer), the second and third groups (N=6) were treated by ANIT 100mg/kg via gavage plus UPF-987 5 and 3 mg/kg intraperitoneally daily. Control rats (N=4) were administered vehicle (physiologic solution I.P.). At the end of the 10 study, rats were sacrificed under anaesthesia with sodium pentobarbital (50 mg/kg i.p.) and terminally bled via cardiac puncture; the liver was removed and weighted for examination and blood samples were taken.

Quantitative Real-Time PCR

Rat genes expression was evaluated by quantitative real-time polymerase chain 15 reaction (RT-PCR) as previously described herein. The following PCR primers were designed using PRIMER3-OUTPUT software using published sequence data from the NCBI database:

rGAPDH: atgactctacccacggcaag and atgactctacccacggcaag

rSHP cctggagcagccctcgctcag and aacactgtatgcaaaccgagga

20 rBSEP: aaggcaagaactcgagataccag and tttcactttcaatgtccaccaac

rCYP7A1: ctgcagcggagctttatccac and cctgggttgctaagggactc

rCYP8B1: cccctatctctcagtagcacatgg and gaccataaggaggacaaaggct

rNTCP: gcatgatgccactcctttatac and tacatagtgtggcctttggact

rMdr1: cgttgcctacatccaggttt and gccattgcctgaaagaacat

25 rMdr2: gttctcgctggctttttgg and cgtctgtggcgagtcttgta

rMMP2: gatggatacccggttgatgg and tgaacaggaaggggaacttg

Results

UPF-987 was tested in vivo for its ability to protect against cholestasis induced in rat by α -naphthylisothiocyanate (ANIT). ANIT administration leads to a severe cholestasis, previous studies by Fiorucci et al. (unpublished) have shown that 6-ECDCA is not effective in reducing liver injury in this model. Administration of 5 UPF-987 attenuates liver injury in ANIT treated rats, as measured by assessing plasma levels of AST, γ GT and alkaline phosphatase, three markers of cholestasis and plasma cholesterol. In addition UPF-987, modulates NTCP, CYP7A1 and BSEP expression.

10 **Example 6**

Evaluation of efficacy of INT-1103 in rat cholestatic model (ANIT)

Background

INT-1103 is sulphide derivative of 6-ethyl-chenodeoxycholic acid (6E-CDCA or INT-747), which is disclosed and in U.S. Patent No. 7,138,390 and incorporated by 15 reference herein.

Material and Methods

Colestatic models: alpha-naphthyl-isothiocyanate (ANIT) Wistar Rats

Studies were approved by the Animal Study Committee of the University of Perugia. Male Wistar rats (200–250 g) were obtained from Charles River Breeding 20 Laboratories (Portage, MI) and maintained on standard laboratory rat chow on a 12-h light/dark cycle. The first group (N=8) were treated, daily, by ANIT 100mg/kg via gavage (cholestatic inducer), the second and third groups (N=8) were treated by ANIT 100mg/kg via gavage plus INT-1103 5mg/kg intraperitoneally daily. Control rats (N=8) were administered vehicle (physiologic solution I.P.). At the end of the 25 study, rats were sacrificed under anaesthesia with sodium pentobarbital (50 mg/kg i.p.) and terminally bled via cardiac puncture; the liver was weighted and removed for examination and blood samples were taken.

Quantitative Real-Time PCR

The expression of rat FXR target genes was evaluated by quantitative real-time polymerase chain reaction (RT-PCR) as previously described herein. The following PCR primers were designed using PRIMER3-OUTPUT software using published

5 sequence data from the NCBI database:

rGAPDH: atgactctacccacggcaag and atgactctacccacggcaag

rSHP cctggagcagccctcgctcag and aacactgtatgcaaaccgagga

rBSEP: aaggcaagaactcgagataccag and tticactttcaatgtccaccaac

rCYP7A1: ctgcagcgagcttatccac and cctgggttgctaagggactc

10 rCYP8B1: cccctatctctcagtacacatgg and gaccataaggaggacaaaggct

rNTCP: gcatgatgccactcctttatac and tacatagtgtggcctttggact

rMdr1: cgttgcctacatccagggtt and gccattgcctgaaagaacat

rMdr2: gttctcgctggtcttctgg and cgtctgtggcgagtcgttgc

rMMP2: gatggatacccggttgatgg and tgaacaggaaggggaaactg

15

Example 7

Evaluation of efficacy of INT-1103 in rat cholestatic model (BTL)

Material and Methods

The (BTL) hepatic cholestatic model was induced by bile duct ligation (BDL) of 20 225-250g old male Wistar rats. Sham-operated rats (N = 8) received the same laparoscopic procedure, except that the bile duct was manipulated, but not ligated and sectioned. In total, 24 animals were operated. Three days after surgery, surviving rats were randomized to receive placebo, intraperitoneally, (fisiologic solution) (N=6) or INT-1103 5 mg/kg (N=8). Animals were then treated for 7 days.

25 At the end of the study, rats were sacrificed under anaesthesia with sodium pentobarbital (50 mg/kg i.p.) and terminally bled via cardiac puncture; the liver was weighted and removed for examination and blood samples were taken.

Example 8**Evaluation of efficacy of INT-1103 and INT-747 in bile flow on naïve rat****Material and Methods**

5 Adult male Wistar rats weighing 200 to 250 g were used throughout the study. Before the experiments, the animals were maintained on standard chow and water ad libitum and housed in a temperature (21–23°C)- and humidity (45–50%)-controlled room under a 12-h light/dark cycle. All studies were approved by the Animal Study Committee of the University of Perugia. For bile flow measurement, animals were 10 anesthetized with a single dose of sodium pentobarbital (50 mg/kg body wt intraperitoneally) and maintained under this condition throughout the experiment. After catheterization of the jugular vein using a PE-50 polyethylene tubing (Intramedic; Clay Adams, Parsippany, NJ), a middle abdominal incision was made, and the common bile duct was also cannulated (PE-10, Intramedic; Clay Adams)..

15 Body temperature was maintained at 37.0 to 38.5°C with a warming lamp to prevent hypothermic alterations of bile flow.. The bile samples were collected by the external biliary fistula every 15 min for 195 min and then weighed in order to determine the bile flow. Bile flow was determined by gravimetry, assuming a density of the bile of 1.0 g/ml. Bile collection started between 9:00 and 11:00 AM to 20 minimize influence of circadian variations. Drugs administration was done by jugular cannula at the doses of 3 μ mol/kg/min, control group received vehicle alone (BSA 2% on fisilogic solution).

Example 9**Evaluation of efficacy of INT-1103 and INT-747 in bile flow on estrogen**

25 **colestalic rat**

Material and Methods

Adult male Wistar rats weighing 300 to 350 g were used throughout the study.

Before the experiments, the animals were maintained on standard chow and water ad libitum and housed in a temperature (21–23°C)- and humidity (45–50%)-controlled room under a 12-h light/dark cycle. All studies were approved by the Animal Study Committee of the University of Perugia. Animals were randomly divided into 4

5 experimental groups :

1. Naïve,(N=5).
2. 17 -ethynodiol 5mg/kg for 5 days intra-peritoneal, (N=8).
3. 17 -ethynodiol 5mg/kg + INT-747 5mg/kg intra-peritoneal, for 5 days (N=7);
- 10 4. 17 -ethynodiol 5mg/kg + INT-1103 5mg/kg intra-peritoneal, for 5 days (N=7).

For bile collection, surgical procedures were made on the sixth day (1 day after the administration of the last dose of E217). For bile flow measurement, animals were anesthetized with a single dose of sodium pentobarbital (50 mg/kg body wt 15 intraperitoneally) and maintained under this condition throughout the experiment. A middle abdominal incision was made, and the common bile duct was also cannulated (PE-10, Intramedic; Clay Adams).. Body temperature was maintained at 37.0 to 38.5°C with a warming lamp to prevent hypothermic alterations of bile flow.. Bile collection started between 9:00 and 11:00 AM to minimize influence of circadian 20 variations. Bile was collected at 15-min intervals for 120 min, and bile flow was determined gravimetrically. At the end of the experiments the body and liver rats was weighted.

Example 10

25 ***In vitro* study of insulin gene regulation by INT-747 vs INT-1103**

Material and Methods

For RT-PCR assay, pancreatic Beta-TC6 cells were cultured in D-MEM

supplemented with 1% penicillin/streptomycin, 1% L-glutamine and 10% fetal bovine serum (high glucose) (CELBIO). Cells were grown at 37°C in 5% CO₂ and treated with INT-1103 and INT-747, at the final concentration 1µM, for 18 hours. At the end of the experiments the cells were collected for RNA extraction.

5 Real Time PCR

Quantification of the expression of mouse genes was performed by quantitative real-time polymerase chain reaction (RT-PCR). All PCR primers were designed using PRIMER3-OUTPUT software using published sequence data from the NCBI database. Total RNA was isolated (TRIzol reagen, Invitrogen srl, Milan, Italy) from specimens taken from livers. One microgram of purified RNA was treated with DNase I for 10 minutes at room temperature, followed by incubation at 95°C for 3 minutes in the presence of 2.5 mmol/L EDTA. The RNA was reverse transcribed with Superscript III (Invitrogen, Carsbad, CA) in 20µL reaction volume using reandom primers. For quantitative RT-PCR, 100 ng template was dissolved in a 25 µL containing 0.3 µmol/L of each primer and 12.5 µL of 2X SYBR Green PCR Master mix (Fynnzymes-DyNAmo SYBRR Green qPCR mix). All reactions were performed in triplicate, and the thermal cycling conditions were as follows: 2 minutes at 95°C, followed by 50 cycles of 95°C for 20 seconds, 55°C for 20 seconds and 72°C for 30 seconds on iCycler iQ instrument (Bio-Rad, Hercules, CA). The mean value of the replicates for each sample was calculated and expressed as the cycle threshold (CT; cycle number at which each PCR reaction reaches a predetermined fluorescent threshold, set within the linear range of all reactions). The amount of gene expression was then calculated as the difference (ΔCT) between the CT value of the sample for the target gene and the mean CT value of that sample for the endogenous control (GAPDH). Relative expression was calculated as the difference (ΔΔCT) between ΔCT values of the test control sample for each target gene. The relative mRNA expression was shown as $2^{-\Delta\Delta CT}$. The Primers used in

Real-Time PCR were:

mGAPDH: gaaggtgaaggctggagt and catgggtgaaatcatattgaa;
mSHP: gctgtctggagtcctctgg and ccaatgatagggcgaaagaagag;
mSREBP1c: gcaaggccatcgactacatt and ggtcagtggtcctccacct.
5 mINS: tgggtgcacttcctaccc and ttgttccacttgtgggtcct
mSHP: aaggccttgctggacagtta and tctttttccctccatca
mGLUT2: ccctgggtactttcaccaa and gccaagttaggatgtgccaat

Example 11

10 **Physico-chemical properties of INT-747 and INT-1103**

Background

The two bile acid analogues, INT-747 and INT-1103, were admitted to a complete physico-chemical properties characterization following protocols previously developed and optimized in our laboratory and previously applied for a complete 15 screening of a large series of Bile acid analogues (UDCA analogues) developed in the R. Pellicciari lab. The physico-chemical properties were selected to accurately define the behaviour in aqueous solutions and in biological fluids and to establish their potential toxicity to biological membranes, their pharmacokinetics and pharmacodynamics and biodistribution in the different biological fluids and organs.

20 Comparative data with natural analogues will be also performed and discussed.

Water Solubility

Only side chain carboxylated BA INT-747, CDCA and UDCA were studied. Solid BA were suspended in 5 ml of 0.1 M HCl. The saturated solutions, after incubation 25 for 1 week, were filtered on a Millipore filter (0.22 µm) and the concentration of BA was measured by HPLC-ESI-MS/MS using C18 column (150mm x 2mm i.d., 4µm) and mobile phases of water containing 15mM acetic acid pH 5 and acetonitrile. The

flow rate was 150 $\mu\text{l}/\text{min}$. The mass spectrometry acquisition was performed in the multiple reaction monitoring mode using the ESI source in negative ionization. Water solubility was expressed as $\mu\text{mol}/\text{liter}$

Table 3: water solubility of the studied bile acids

Bile Acid	Water Solubility (μM)*
INT-747	9.0
INT-103	-
CDCA	32
UDCA	7.5

5 * water solubility refers to BA as protonated species and therefore not evaluated for INT-1103

The water solubility was measured for the insoluble protonated species of carboxylated bile acids at a pH 1. The sulphate compound, UPF 1103 is ionized even at low pH and in physiological conditions is always soluble in all biological fluids.

10 The water solubility of INT-747 is 9 μM , lower than CDCA, and comparable with that of UDCA. Since the CMC of INT-747 is relatively low (see next paragraph), the low water solubility of INT-747 do not compromise the behaviour of the compound in a micellar phase; in the case of UDCA, the low water solubility associated with an high CMC compromises the pH at which the protonated acid goes in solution to form micelles. The CMpH is, in fact, for UDCA 8.4, which is too high if is not 15 present a postprandial alkalinization in duodenal content.

Critical Micellar Concentration (CMC)

This value was determined by surface tension measurements using a maximum bubble-pressure method. The tensiometer was a Sensadyne 6000 (Chem-Dyne

20 Research Corp., Milwaukee, WI) equipped with two glass probes of 0.5 and 4.0 mm diameters connected to a source of nitrogen. The bubble frequency was 1 bubble/second in distilled water at 26°C ($P=2.7$ atm) and the calibration was made with double-distilled water and methanol. The surface tension of BA sodium salts

solutions both in water and in NaCl 0.15 M was measured at various concentrations range, 0.2-75 mM and 0.3-100 mM respectively. The surface tension values were plotted against the logarithm of the bile salt concentration; the regression lines corresponding to the two parts of the curve (monomeric and micellar phases) were calculated using the method of least squares, and the intersection of the lines was taken as the CMC value.

5

Table 4: Critical Micellar Concentration of the studied bile acids

Bile Acid	CMC (mM)		ST _{CMC} Dyne/cm	ST ₅₀ Dyne/cm
	H ₂ O	NaCl 0,15 M		
INT-747	4.5	2.9	48.8	43.2
INT-1103	3.9	1.3	47.9	43.3
CDCA	7.5	3.0	55.6	48.5
UDCA	26	6.0	63.0	50.4
TUDCA	8.0*	2.2*	-	-
TCDCA	7.0*	3.0*	-	-

ST_{CMC}: Surface Tension at CMC in water, ST50: Surface Tension of 50mM aqueous

10 solution; *: values from literature

The CMC, as evaluated by surface tension measurements in non equilibrium conditions i.e. in conditions that impurities do not affect the results, of INT-747 and INT-1103 are relatively low, similar to CDCA natural analogue. INT-1103 presents the lower CMC both in water and in presence of counter ion Na⁺ 150 mM. The low CMC value of INT-747 is related to the topographic distribution of the ethyl and hydroxyl groups: the ethyl group in the 6 position is oriented in the β face, the back of the steroid, contributing to increase the lipophilic extent and area of the surface of

15

this moiety and therefore the tendency to form micelles. INT-1103 presents the lower CMC as result of ethyl group in 6 position and the 23 sulphate in the side chain. The peculiar properties of the sulphate group gave to INT-1103 anionic surfactant like properties (like sodium dodecyl sulphate) as a result of a negative charged head and lipophilic tail with a surface lipophilic moiety. The values of the surface tension activity both at CMC and in micellar phase (50 mM) agree with the present CMC data, both compounds are surface active and able to lower the surface tension to a great extent in respect to UDCA and TUDCA. This data further supports the concept that this compounds are detergent like the CDCA analogue and even 5 more. INT-747 at a relatively high concentration >60 mM and in the presence of Na⁺ 0.15 M form a gel phase and this account for the relatively inaccurate ST data found in that conditions (Fig.1) These results are not surprising since other detergent natural BA like deoxycholic acid behave similarly forming this gel (usually viscoelastic) particularly for the effect of counter ions like Na⁺ and Ca⁺⁺ This phase 10 evolves to micellar phase with a relatively low kinetics. Moreover this phenomenon 15 occurs at a very high not physiological concentration.

Octanol/water partition coefficient

1-Octanol/water partition coefficient (log P) was evaluated using a conventional shake-flask procedure. The experiments were carried out on 0.1 mM bile salt 20 solution buffered at pH 8 with 0.1 M phosphate buffer to ensure complete ionization of the BA; the log P values refer to the BA in the ionized form, not to the protonated species, and the initial concentration of each BA was below its own CMC value. The aqueous buffer was previously pre-saturated with 1-octanol, 5 ml of 1-octanol pre-saturated with water was then added and the samples were left to equilibrate for 2 25 weeks under continuous stirring at room temperature After centrifugation the two phases were carefully separated. BA concentration in the water phase was measured with HPLC-ESI-MS/MS using C18 column (150mm x 2mm i.d., 4μm) and mobile

phases: A: water containing 15 mM acetic acid pH 5 , B: acetonitrile. The flow rate was 150 μ l/min and the column was maintained at 45°C. The mass spectrometry acquisition was performed in the multiple reaction monitoring mode using the ESI source in negative ionization.

5 Table 5: 1-octanol-water partition coefficient of the studied bile acids as ionized species

Bile Acid	LogP _A ⁻
INT-747	2.5
INT-1103	2.0
CDCA	2.2
UDCA	2.2
TCDCA	0.9
TUDCA	1.0*

*: value from literature

The 1-octanol/water partition coefficient was calculated for the ionized species to facilitate the comparison between the carboxyl and sulphate bile acids since the 10 latter do not protonated even at very low pH. INT-747 presents a slightly higher lipophilicity in respect to other dihydroxy bile acids such as UDCA and CDCA. The increased lipophilicity is the result of the introduction of an ethyl group in position 6. The tendency to distribute in a lipid domain is therefore higher. The UPF 1103 shows a logP of 2.0, value slightly lower than INT-747 and natural CDCA and 15 UDCA analogues and this account for the contribution of the sulphate group and side chain length. Moreover the lipophilicity of INT-1103 is still similar to an unconjugated BA and higher than taurine conjugated like TCDCA that present a logP of 0.9. Contrarily to Taurine conjugate which preferentially stay in a water domain , INT-1103 has a tendency to accumulate in a lipid domain like INT-747.

20 **Albumin binding**

Albumin binding was evaluated by equilibrium dialysis at a fixed BA-albumin ratio. BA was dissolved at a concentration of 100 μ M in 5% bovine serum albumin-saline solution and left to stand for 24 h at 25°C. Two ml of this solution was dialyzed in cellulose sacs having a molecular weight cut-off of 12-14,000 against 25 ml of saline solution. The system was equilibrated by mechanical shaking for 72 h at 25°C. BA concentrations of the dialyzed solution and of the starting solution were determined with HPLC-ESI-MS/MS in the same conditions of the previous analysis.

Table 6: Albumin binding of the studied bile acids *: values from literature

Bile Acid	% Binding
INT-747	96
INT1103	85
CDCA	93
UDCA	94
TUDCA	67
CA	40*

10

Both INT-747 and UPF 1103 present a strong interaction with albumin quite similar to natural dihydroxy bile acid like CDCA and UDCA suggesting a similar kinetic in the hepatic uptake. Trihydroxy bile acids like cholic acid or taurine conjugated bile acids show a lower interaction with albumin and this account to the lower serum concentration at a similar intestinal uptake as a result of a higher first pass clearance. The unbound fraction (like for many drugs) modulates the liver uptake: as the fraction increase the higher is the uptake. INT-747 and INT-1103 present a low unbound fraction and therefore their serum concentration are higher as a result of a relatively low first pass clearance, and their behaviour is similar to natural analogs.

15 Critical micellar pH

This value can be experimentally determined by evaluating the pH at which a given BA starts to precipitate from a micellar solution. It can be calculated from the CMC Water solubility of the protonated species and pKa using the formula:

$CMpH = pKa + \log CMC/WS$. The CMpH of the studied compounds in comparison

5 with the natural analogs are reported in Table I.

Table 7: Critical Micellar pH the studied bile acids

Bile Acid	CMpH
UPF 747	7.7
UPF1103	-
CDCA	7.6
UDCA	8.4
TCDCA	-

The CMpH value of INT747 is similar to that of CDCA and lower to UDCA.

According to this value INT747 do not present problems of intestinal solubility and

10 requires a pH of 7.6 which is physiological to go in solution. For example UDCA with a CMpH of 8.4 requires an higher alkalinization of the duodenal content and only in post-prandial phase is solubilized in a micellar phase. UP 1103 having a sulphate group do not present these problems since is always soluble in the physiological pH from 2 to 9 since the pKa is very low and the compound do not 15 protonated to form insoluble molecule. Its behaviour is similar to taurine conjugated bile acids.

Example 12

Hepatic metabolism and secretion of INT-747 and INT-1103 in rat after one

20 **hour iv infusion at a dose of 3umol/Kg/min**

Background

The BA were administered by infusion to bile fistula rat and bile collected at 15 min intervals for 7 hours. The bile flow was measured and bile analyzed using HPLC-ES-MS-MS for the identification of the rate of biliary secretion and to evaluate the major hepatic metabolites.

5 HPLC-ES-MS/MS Method

Bile acids and their metabolites were determined by a liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method using electrospray (ESI) source in negative ionization mode. Rat bile samples were brought to room temperature and diluted 1:100 v/v - 1:1000 v/v with 15 mM ammonium acetate buffer (pH=5). Then, 10 μ L were injected into the chromatographic column. Liquid chromatography was performed using a Waters Alliance 2695 separation module coupled with autosampler. Bile acids were analyzed using a Synergi Hydro-RP C18 column (150x2.0mm i.d., 4 μ m particle size), protected by a SecurityGuard ODS 4x2.0mm i.d. precolumn, both supplied from Phenomenex. Bile acids were separated in 15 elution gradient using 15 mM ammonium acetate buffer (pH = 5.00) as mobile phase A and acetonitrile as mobile phase B. Mobile phase B was increased from 30% to 64% in 12 min, then to 70% in 8 min, and finally brought to 100% in 10 min and held constant for 1 min. Flow rate was 150 μ L/min and the column was maintained at 45°C. The column effluent was analysed by ESI-MS/MS using a Quattro-LC 20 (Micromass) triple quadruple mass spectrometer operating in Multiple Reaction Monitoring (MRM) acquisition mode. MassLynx software version 4.0 was used for data acquisition and processing.

Results

INT-747 is secreted into bile mainly as taurine conjugate and its recovery is almost 25 complete: at the administered dose more than 99 % of the infused molecule is secreted into bile as shown in fig 3. At the last point of bile collection a relatively high amount of the taurine conj. compound is still secreted in bile. The maximum

secretion rate is achieved after 120 minutes just at the end of the infusion. A steady state concentration is maintained for additional 30 minutes. The taurine conjugation process begin very early and appears efficient at the administered dose. Trace amount of the compound is also conjugate with glycine, less than 0.2% and similar amount is secreted as such in bile. The behaviour of INT-747 is similar to that of natural dihydroxy analogs such as CDCA or UDCA which are secreted into bile only as taurine and glycine conjugates. Differently, trihydroxy BA such as CA, can be also partially secreted in unconjugated form. The extent of a BA that can be secreted unmodified is related to its lipophilicity and is dose and species dependent.

10

The behaviour in term of hepatic uptake and secretion of this molecule is quite similar to natural analogue like CDCA and the rate of hepatic secretion is related to that of taurine conjugation mediated by a CoA activation and taurine liver availability. The preferential conjugation with taurine is peculiar to rat and other species (dog, mice,..) and in man this compound is amidated mainly with glycine. According to these date seems that INT-747 is efficiently take up and secreted by the liver. The hepatic metabolism of INT-747 produces mainly the taurine conjugate form. Trace amount of glycine conjugate are secreted in bile and also very low amount is secreted as such. (fig 37 and 38). Minor epimers of both unconjugated and 15 taurine conjugated are present in bile (fig 39 and 40).

20 INT-1103 is secreted in bile partially unmodified as reported in fig 41. The amount of INT-1103 secreted in bile is approx. 30-40% of the administered dose and its secretion rate is relatively low and at the end of the collection period a relatively high amount of the molecule is still secreted into bile. The main hepatic metabolite 25 of INT-1103 in rat at the administered dose is the 3-glucoronide as reported in fig 42. The amount of this compound has not be quantified since the pure reference standard is not available. Other metabolites are secreted into bile as reported in fig

43 and in more details in fig 43 and fig 44. The main identified metabolites is the 3-sulphate conjugate, an hydroxy analog (one more hydroxyl), keto derivatives and epimers of INT-1103. The exact amount of these compound were not quantified since the standards are not yet available.

5

These data suggest that INT-1103 can be secreted in bile as such and its behaviour is different from natural dihydroxy analogs such as CDCA and INT-747 that require a conjugation with taurine and glycine to be secreted into bile. This is a main requisite for molecules with this lipophilicity. On the contrary trihydroxy BA such as CA or UCA can be secreted in bile also partially as such. The sulphate group present in INT1103 facilitate the secretion process even if the molecule is still quite lipophilic and the behaviour is between an unconjugated and taurine conjugated bile acid. Moreover the liver strong metabolize this compound forming more hydrophilic compound such as 3-glucuronides, 3-sulphates and hydroxylated analogs. The extensive metabolism do to retained compound is related to the animal species and to the administered dose and according to these data we can speculate that this compound present a metabolism more similar to an "acids steroids" slightly different from a common bile acid, but maybe sharing same properties. We do not know the metabolism in human but if its behaviour is more like a steroid is may be underwent to 3-glucuronidation even in humans. The compound was administered iv and addition data are required to evaluate the extent of its intestinal absorption ie passive or active like a taurine conjugate.

Example 13

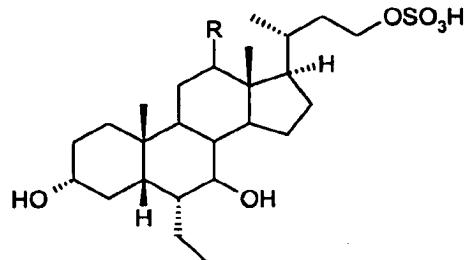
25 ***In vitro* metabolic stability in human stools culture**

Stability to Intestinal Bacteria; 7 α -dehydroxylation

Homogenized fresh human stools (500 mg) were transferred into sterile vials to

which 5 mL of sterilized chopped meat-glucose medium (Scott Lab., Fiskville, RI) was added. BA were then added at a final concentration of 0.05 mM. Vials were incubated at 37 C; then, at 0, 4, 8, 16, 20, 24, and 72 h after the addition of the BA, the reaction was stopped with 150 L of 30% KOH. The samples were centrifuged at 5 3500 rpm for 10 min; from the supernatant the BA were isolated by C-18 solid-phase extraction and analyzed by TLC and HPLC-ES-MS/MS. Thin-layer chromatography (TLC), utilizing silica gel 0.25 m thickness plates (Merck, Darmstat, Germany), was employed as the first screening test. The solvent system used for the separation of conjugated BA was composed of propionic acid/isoamyl acetate/water/N-propanol (3:4:1:2, v/v/v/v; solvent I), and that of the unconjugated BA was acetic acid/carbon tetrachloride/isopropyl ether/isoamyl acetate/water/N-propanol/benzene (1:4:6:8:2:2, v/v/v/v/v/v; solvent II). Separated BA were revealed with 5% phosphomolybdic acid ethanol solution. Both INT-747 and INT-1103 are very stable when incubated in human stool cultures and even after 24 hour more than 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10100 10105 10110 10115 10120 10125 10130 10135 10140 10145 10150 10155 10160 10165 10170 10175 10180 10185 10190 10195 10200 10205 10210 10215 10220 10225 10230 10235 10240 10245 10250 10255 10260 10265 10270 10275 10280 10285 10290 10295 10300 10305 10310 10315 10320 10325 10330 10335 10340 10345 10350 10355 10360 10365 10370 10375 10380 10385 10390 10395 10400 10405 10410 10415 10420 10425 10430 10435 10440 10445 10450 10455 10460 10465 10470 10475 10480 10485 10490 10495 10500 10505 10510 10515 10520 10525 10530 10535 10540 10545 10550 10555 10560 10565 10570 10575 10580 10585 10590 10595 10600 10605 10610 10615 10620 10625 10630 10635 10640 10645 10650 10655 10660 10665 10670 10675 10680 10685 10690 10695 10700 10705 10710 10715 10720 10725 10730 10735 10740 10745 10750 10

specification)

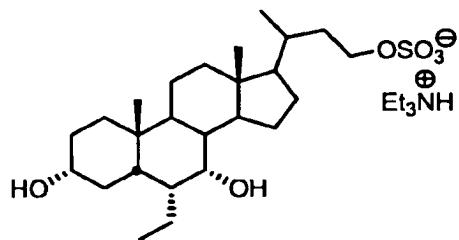

Material and Methods

This study has been performed only for INT1103 since it contain an ester bond in the side chain and the aim was to verify the stability in presence of esterase enzymes

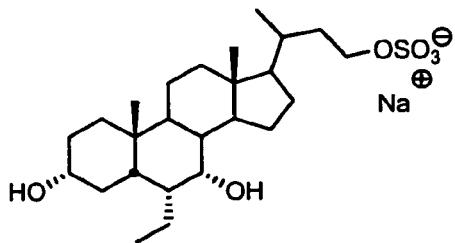
5 like present in duodenal and pancreatic juice. Simulated pancreatic fluid was prepared by dissolving 10 g/L Pancreatin (Sigma P8096: pancreatin from porcine pancreas, activity 1x USP specifications) in 0.05M phosphate buffer, pH = 7.2 ± 0.1. Then, 4-mL aliquots of the simulated pancreatic fluid were added of 50 µM INT-1103 and incubated for different times (0, 30, 60, 90, 120, 180 and 240 min) at 10 37°C. After incubation, a 2-mL aliquot of each solution was added with 2 mL of 0.1M NaOH and subjected to bile acids extraction by SPE and analysis by thin-layer chromatography and mass spectrometry as described above.

CLAIMS

1. A compound of formula (I):


5 wherein R is hydrogen or alpha-hydroxy
 the hydroxyl group in position 7 is in the alpha or beta position
 and pharmaceutically acceptable salts, solvates or amino acid conjugates thereof.

2. A compound of formula (I) wherein the hydroxy group in 7 is in the alpha
 10 position and R is hydrogen.


3. A compound of formula (I) wherein the hydroxy group in 7 is in the beta
 position and R is hydrogen.

15 4. A compound of formula (I) wherein the hydroxy group in 7 is in the alpha
 position and R is alpha-hydroxy.

5. A compound of formula (I) wherein the pharmaceutically acceptable salt is:

6. A compound of formula (I) wherein the pharmaceutically acceptable salt is:

5 7. A method for the prevention or treatment of an FXR-mediated disease or condition in a mammal comprising administering to the mammal suffering from an FXR-mediated disease or condition a therapeutically effective amount of a compound of formula (I) according to any one of claims 1-4.

10 8. A method according to claim 5 wherein the FXR-mediated disease or condition is selected from the group consisting of chronic liver disease, gastrointestinal disease, renal disease, cardiovascular disease, and metabolic disease.

9. A method according to claim 6 wherein the chronic liver disease is selected 15 from the group consisting of primary biliary cirrhosis (PBC), cerebrotendinous xanthomatosis (CTX), primary sclerosing cholangitis (PSC), drug induced cholestasis, intrahepatic cholestasis of pregnancy, parenteral nutrition associated cholestasis (PNAC), bacterial overgrowth or sepsis associated cholestasis, autoimmune hepatitis, chronic viral hepatitis, alcoholic liver disease, nonalcoholic 20 fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), liver transplant associated graft versus host disease, living donor transplant liver regeneration, congenital hepatic fibrosis, choledocholithiasis, granulomatous liver disease, intra- or extrahepatic malignancy, Sjogren's syndrome, Sarcoidosis, Wilson's disease, Gaucher's disease, hemochromatosis, and alpha 1-antitrypsin deficiency.

10. A method according to claim 6 wherein the gastrointestinal disease is selected from the group consisting of inflammatory bowel disease (IBD), Crohn's disease, ulcerative colitis, irritable bowel syndrome (IBS), bacterial overgrowth, malabsorption, post-radiation colitis, and microscopic colitis.

5

11. A method according to claim 6 wherein the renal disease is selected from the group consisting of diabetic nephropathy, focal segmental glomerulosclerosis (FSGS), hypertensive nephrosclerosis, chronic glomerulonephritis, chronic transplant glomerulopathy, chronic interstitial nephritis, and polycystic kidney disease.

10

12. A method according to claim 6 wherein the cardiovascular disease is selected from the group consisting of atherosclerosis, arteriosclerosis, dyslipidemia, hypercholesterolemia, and hypertriglyceridemia.

15

13. A method according to claim 6 wherein the metabolic disease is selected from the group consisting of insulin resistance, Type I and Type II diabetes, and obesity.

14. A pharmaceutical composition comprising a compound of formula (I) according to any one of claims 1-4 and a pharmaceutically acceptable carrier or diluent.

20
15. Use of a compound of formula (I) as defined in claims 1-4 for the preparation of pharmaceutical compositions for the prevention or treatment of FXR-mediated diseases or conditions.

25

16. Use of a compound of formula (I) as defined in claims 1-4 for the preparation of pharmaceutical compositions for the prevention or treatment of a FXR-mediated disease or condition selected from the group consisting of chronic liver disease, gastrointestinal disease, renal disease, cardiovascular disease, and metabolic disease,
5 cardiovascular disease, atherosclerosis, arteriosclerosis, hypercholesterolemia, and hyperlipidemia.
17. Use of a compound of formula (I) as defined in claims 1-4 for the preparation of pharmaceutical compositions for the prevention or treatment of cholestatic liver diseasesa chronic liver disease selected from the group consisting of primary biliary cirrhosis (PBC), cerebrotendinous xanthomatosis (CTX), primary sclerosing cholangitis (PSC), drug induced cholestasis, intrahepatic cholestasis of pregnancy, parenteral nutrition associated cholestasis (PNAC), bacterial overgrowth or sepsis associated cholestasis, autoimmune hepatitis, chronic viral hepatitis, alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), liver transplant associated graft versus host disease, living donor transplant liver regeneration, congenital hepatic fibrosis, choledocholithiasis, granulomatous liver disease, intra- or extrahepatic malignancy, Sjogren's syndrome, Sarcoidosis, Wilson's disease, Gaucher's disease, hemochromatosis, and alpha 1-antitrypsin deficiency.
20
18. Use of a compound of formula (I) as defined in claims 1-4 for the preparation of pharmaceutical compositions for the prevention or treatment of a gastrointestinal disease selected from the group consisting of inflammatory bowel disease (IBD), Crohn's disease, ulcerative colitis, irritable bowel syndrome (IBS), bacterial overgrowth , malabsorption, post-radiation colitis, and microscopic colitis.
25

19. Use of a compound of formula (I) as defined in claims 1-4 for the preparation of pharmaceutical compositions for the prevention or treatment of a renal disease selected from the group consisting of diabetic nephropathy, focal segmental glomerulosclerosis (FSGS), hypertensive nephrosclerosis, chronic glomerulonephritis, chronic transplant glomerulopathy, chronic interstitial nephritis, and polycystic kidney disease.
20. Use of a compound of formula (I) as defined in claims 1-4 for the preparation of pharmaceutical compositions for the prevention or treatment of a cardiovascular disease selected from the group consisting of atherosclerosis, arteriosclerosis, dyslipidemia, hypercholesterolemia, and hypertriglyceridemia. atherosclerosis, arteriosclerosis, hypercholesterolemia, and hyperlipidemia.
21. Use of a compound of formula (I) as defined in claims 1-4 for the preparation of pharmaceutical compositions for the prevention or treatment of a metabolic disease selected from the group consisting of insulin resistance, Type I and Type II diabetes, and obesity.
22. Pharmaceutical compositions containing a compound of formula (I) as defined in claims 1-4 in admixture with pharmaceutically acceptable carriers and/or diluents.

Figure 1

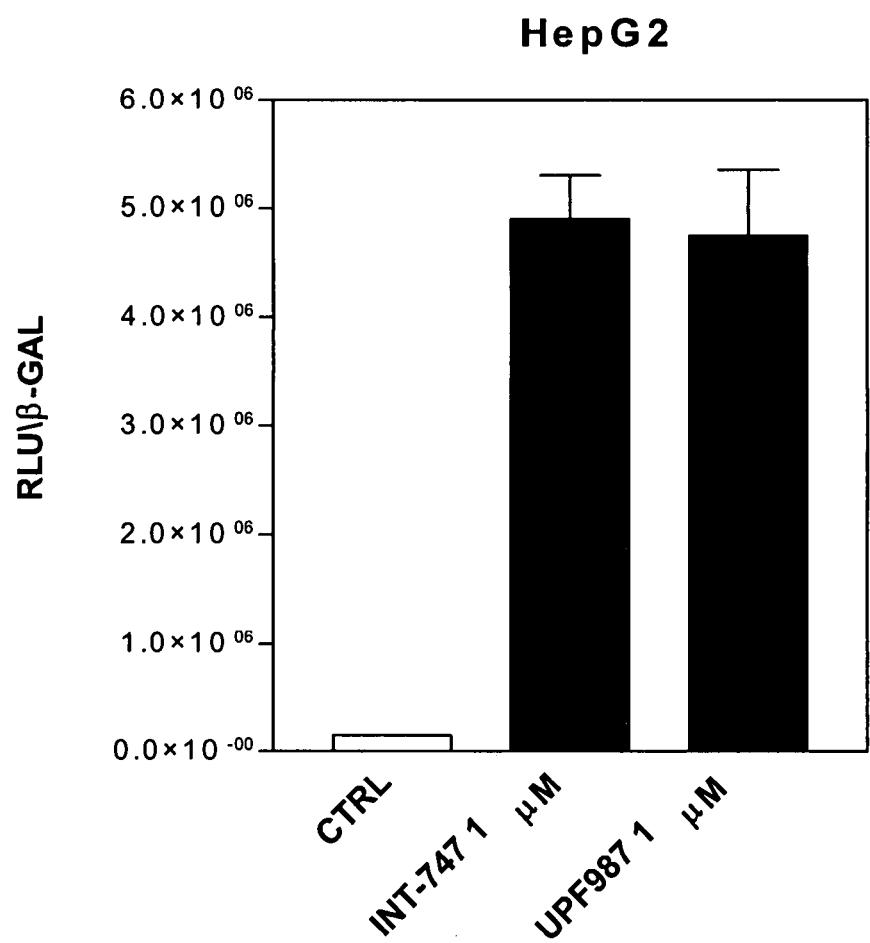


Figure 2

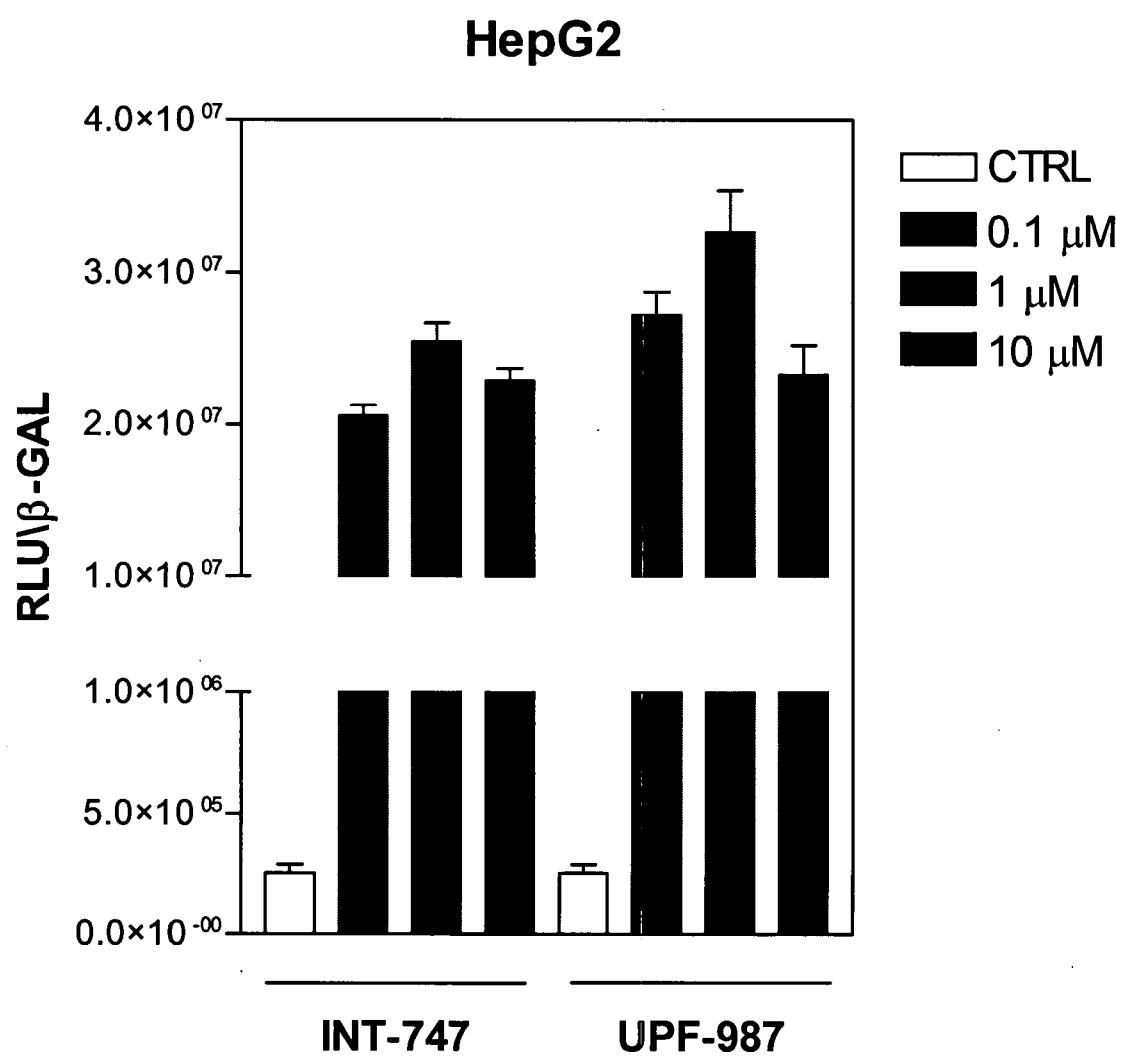


Figure 3

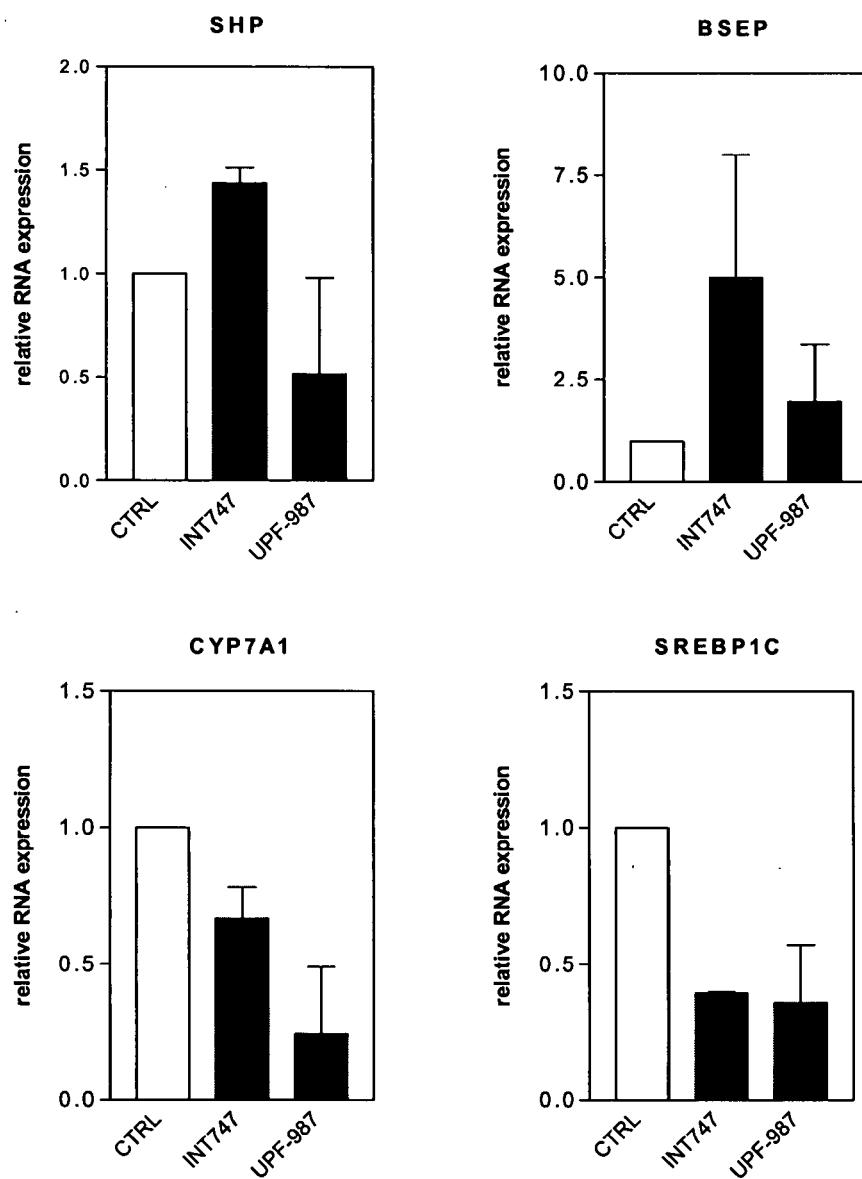


Figure 4

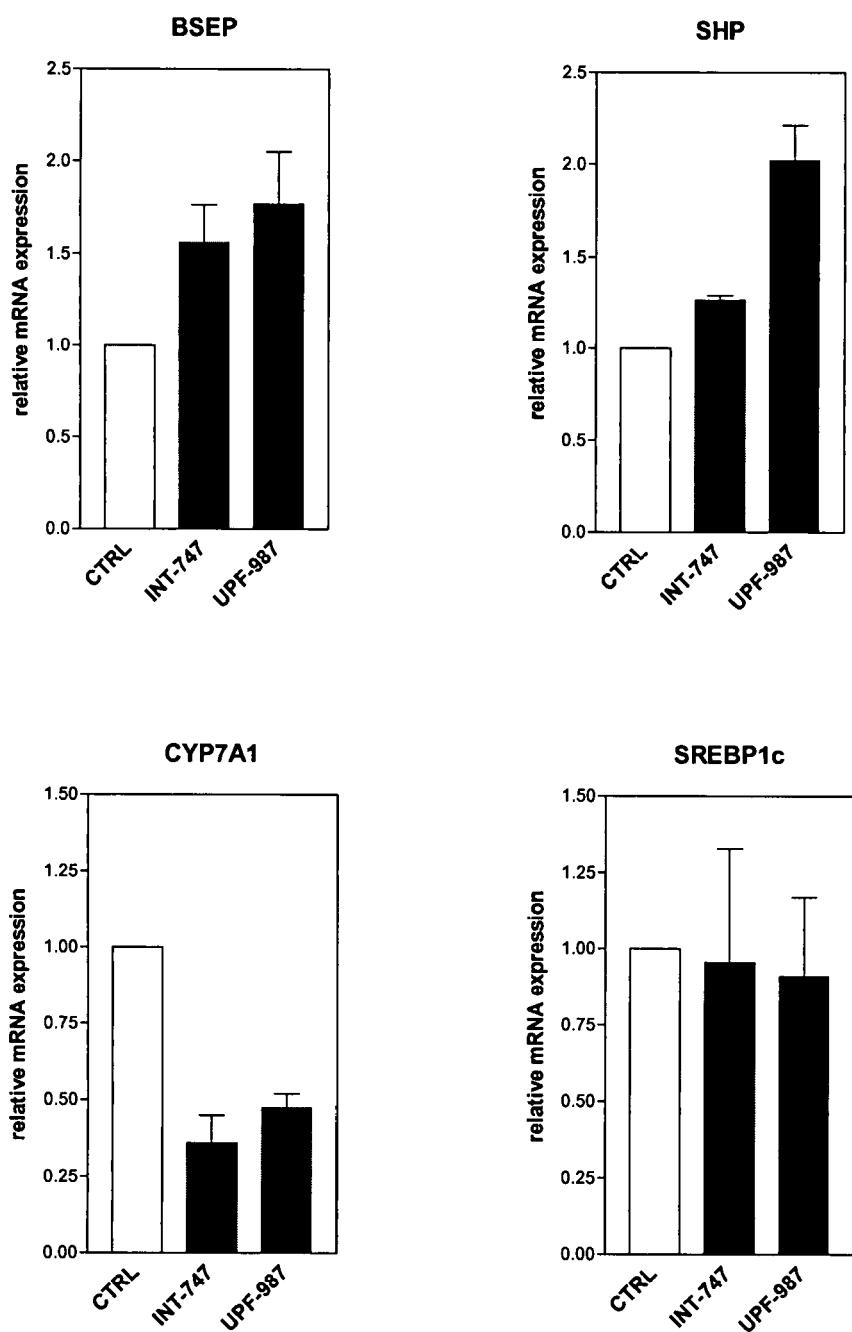


Figure 5

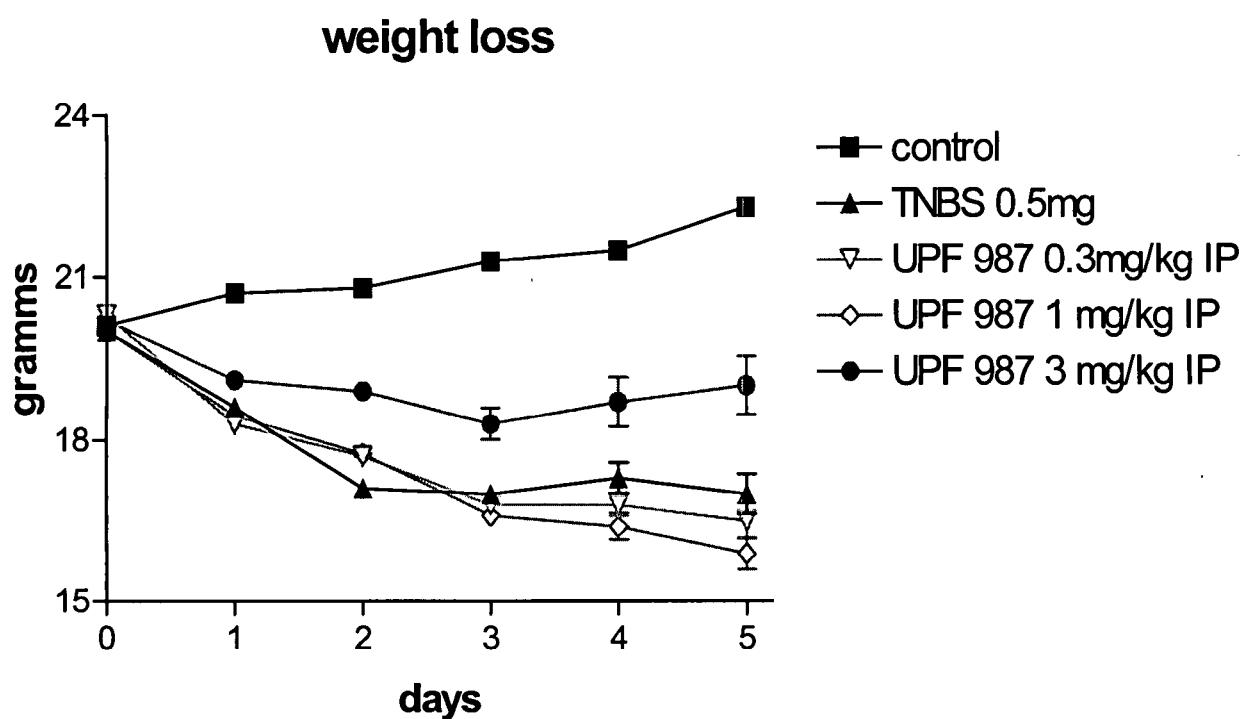


Figure 6

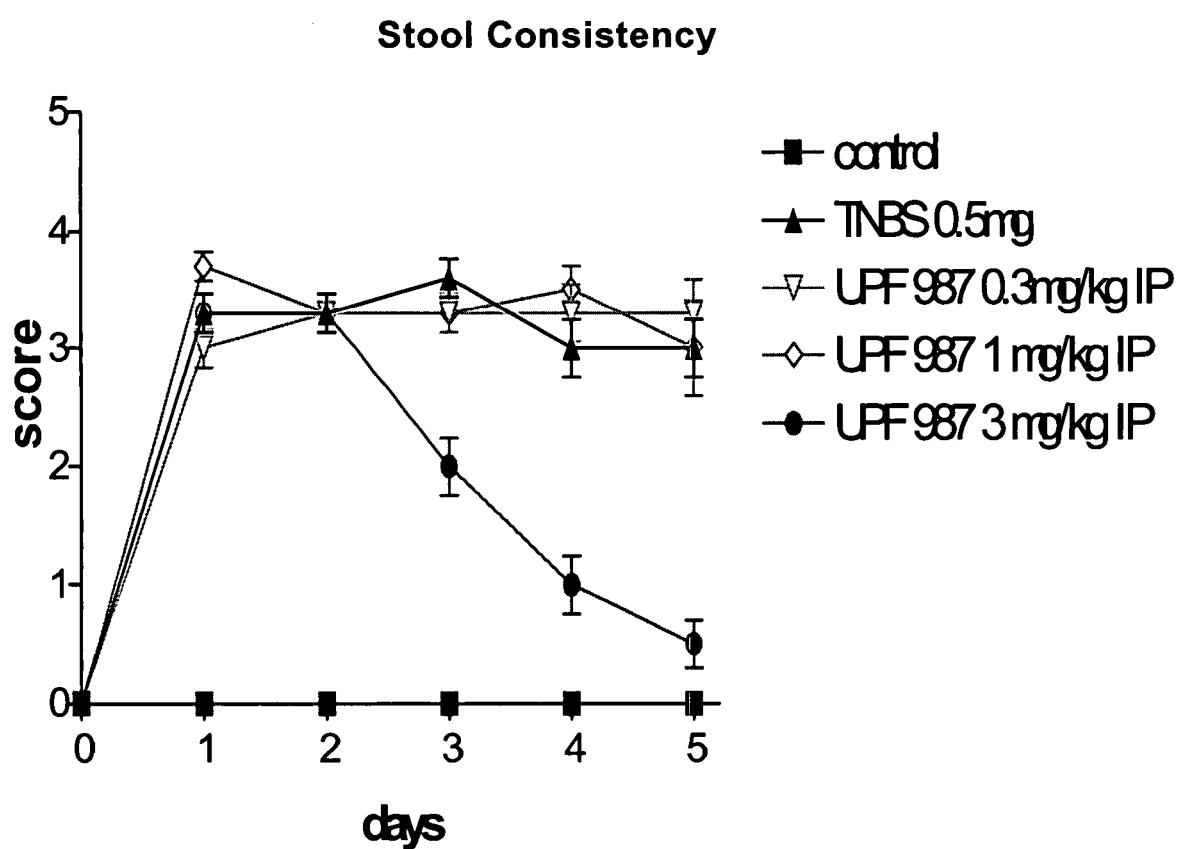


Figure 7

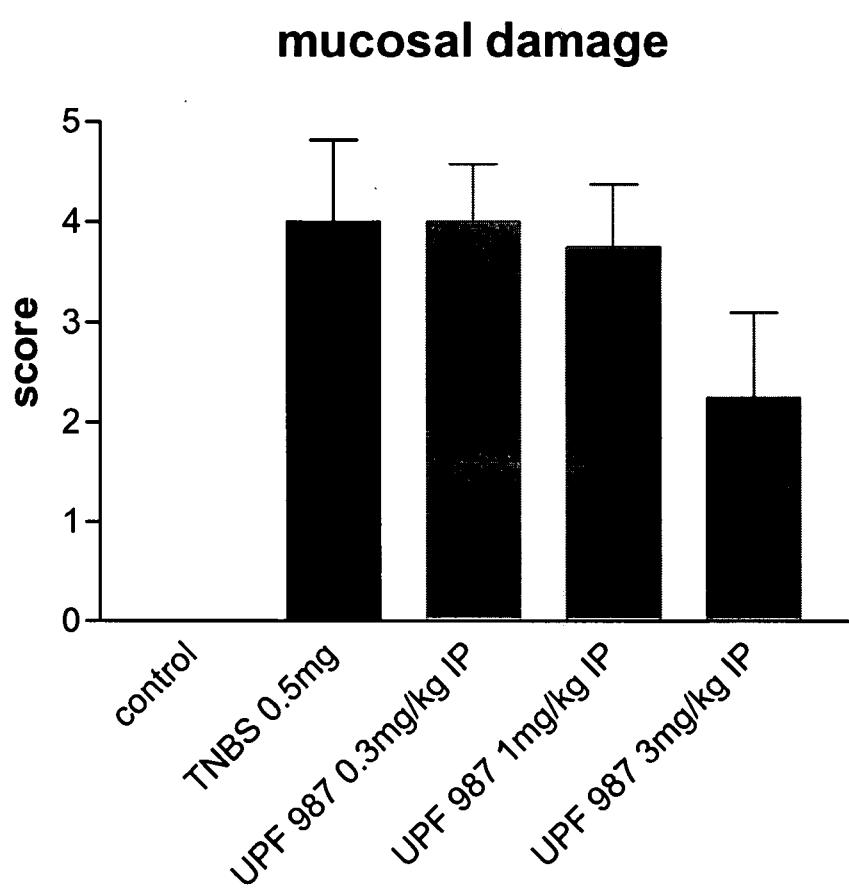


Figure 8

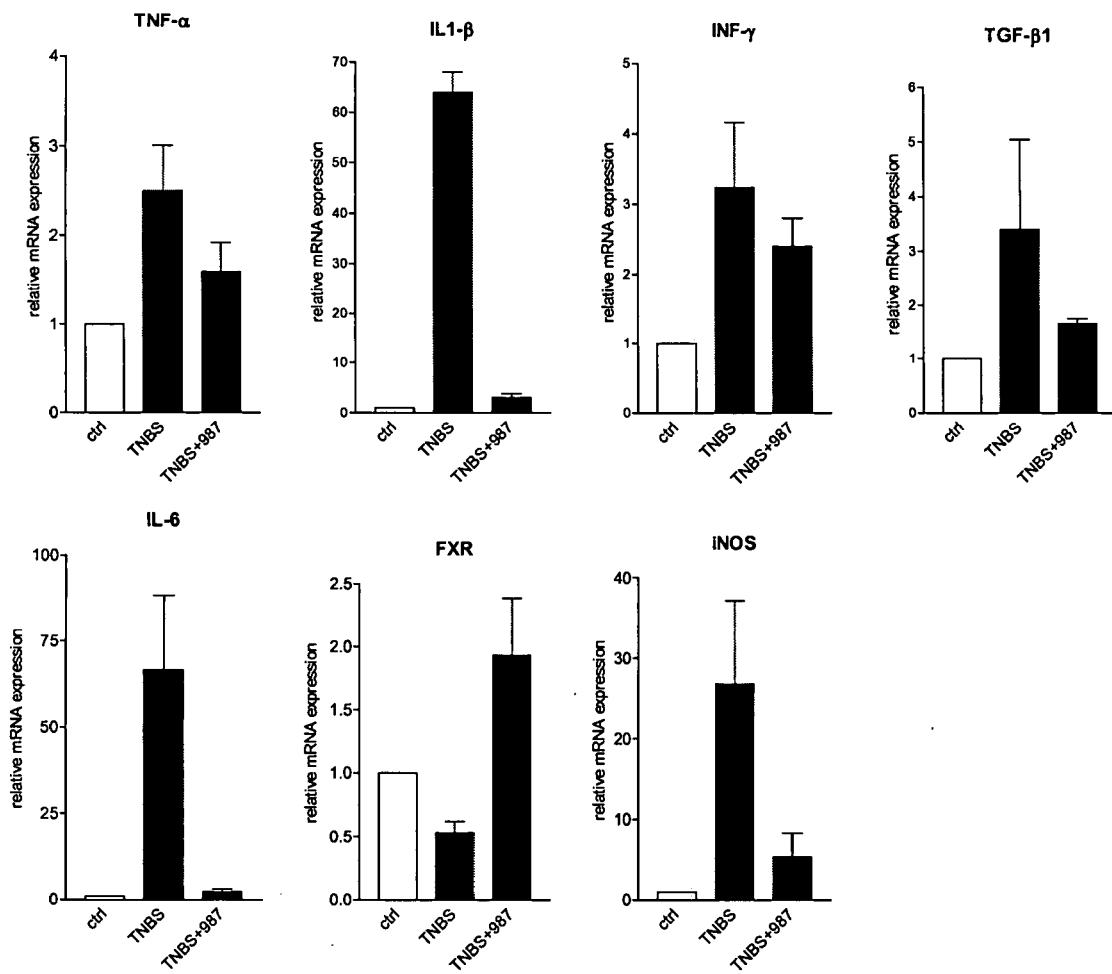


Figure 9

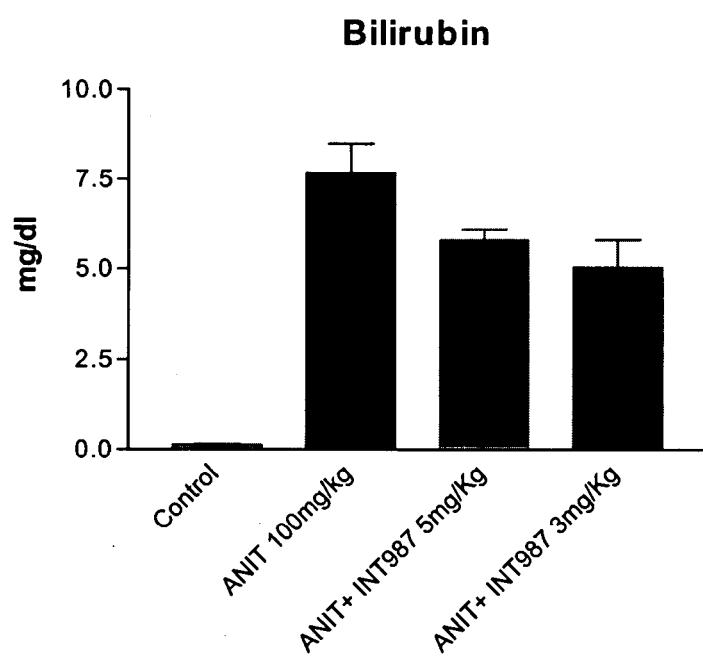


Figure 10

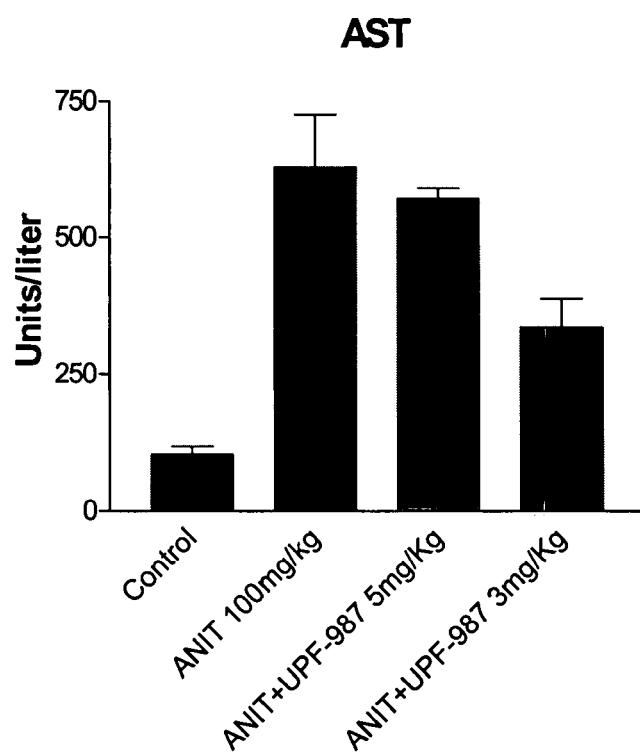


Figure 11

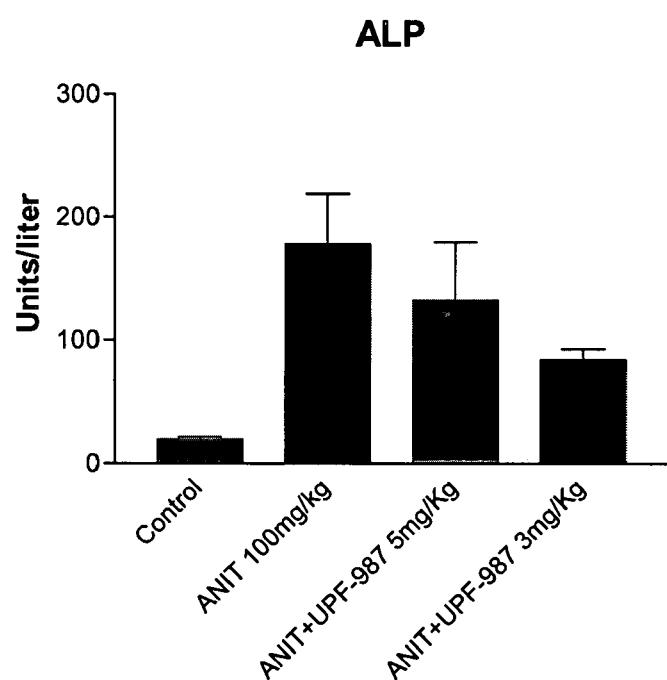
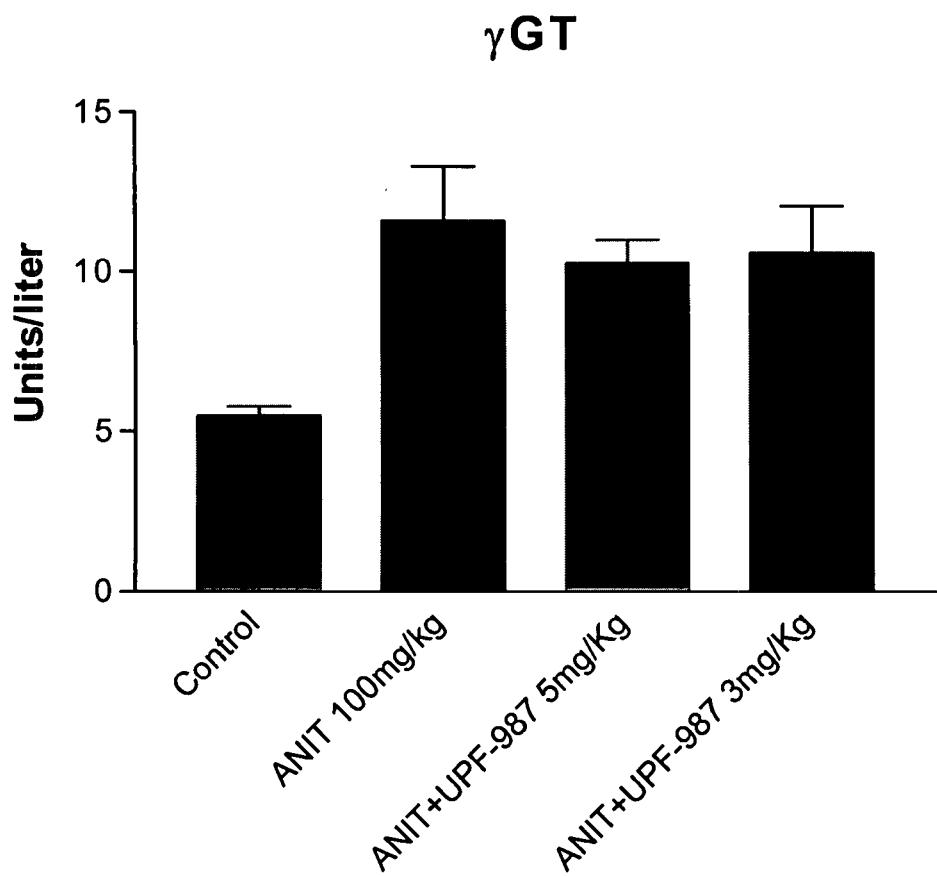



Figure 12

12/48

Figure 13

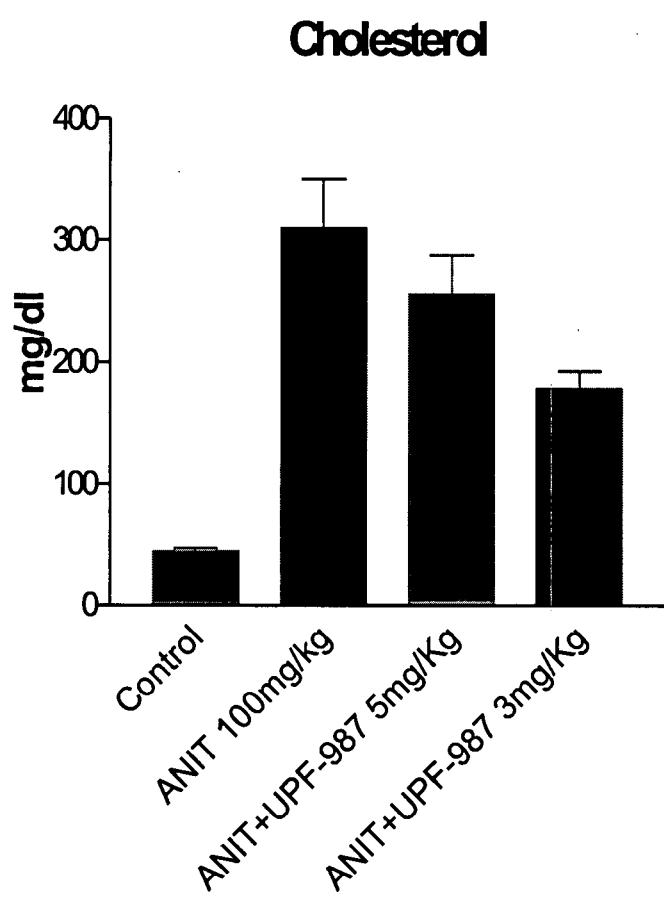


Figure 14

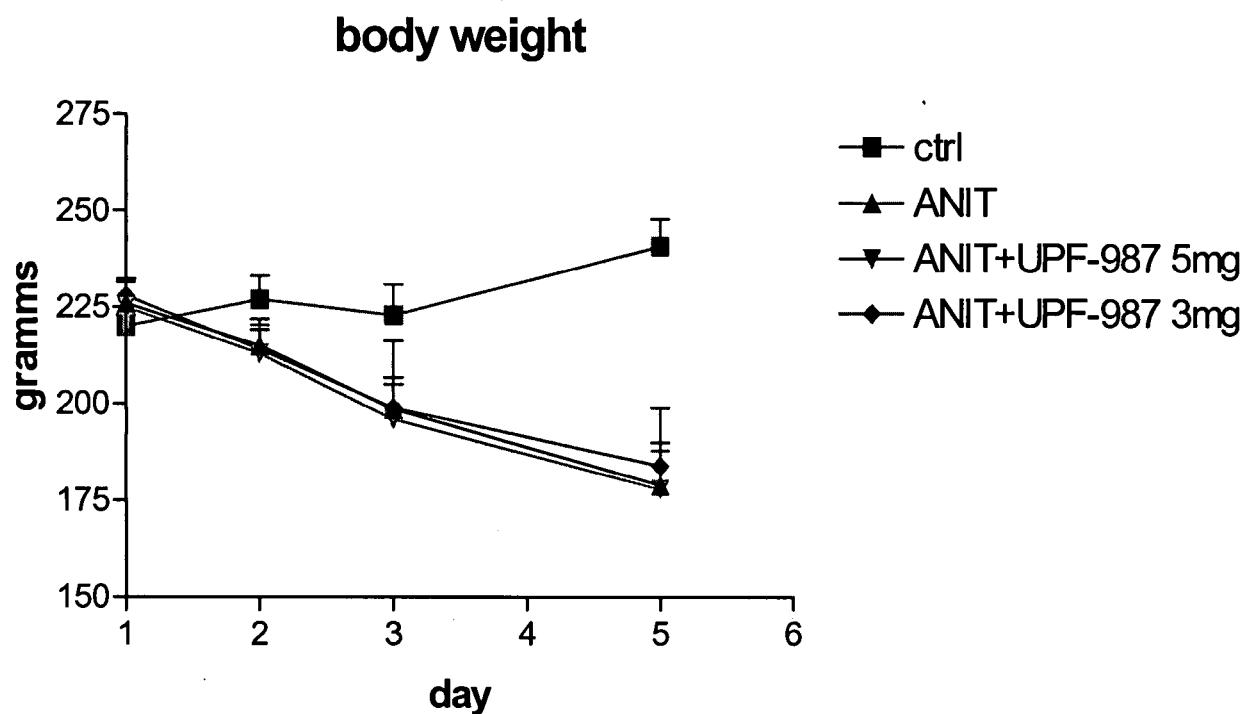


Figure 15

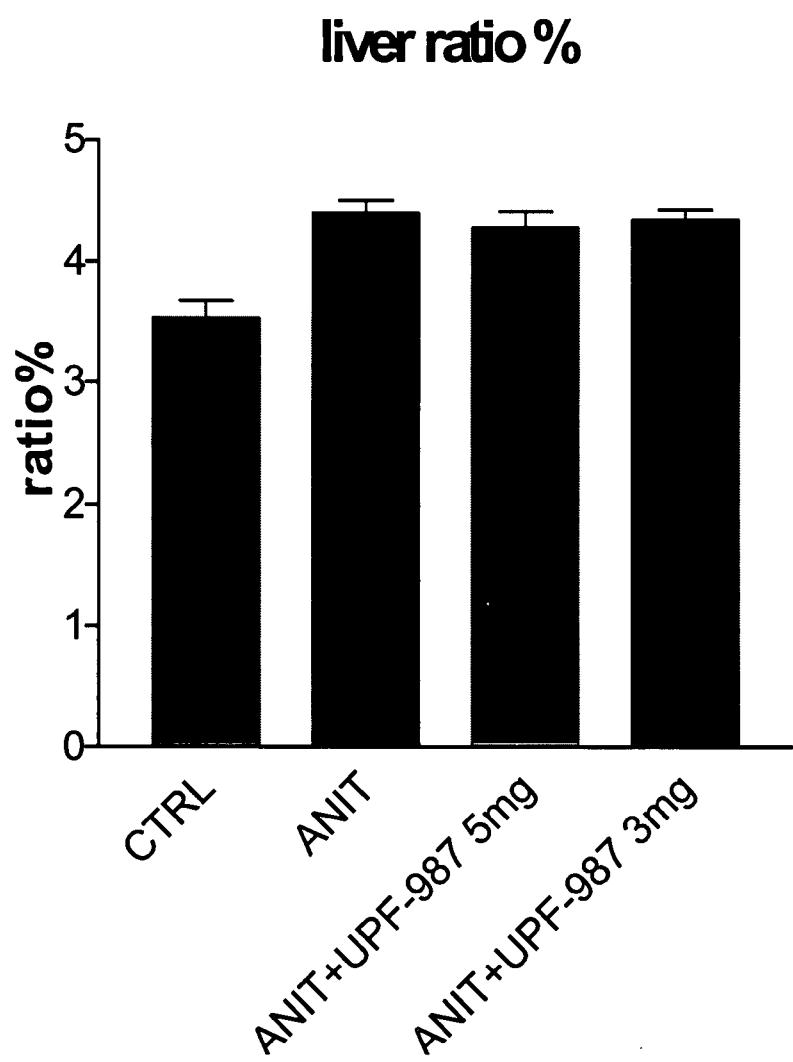


Figure 16

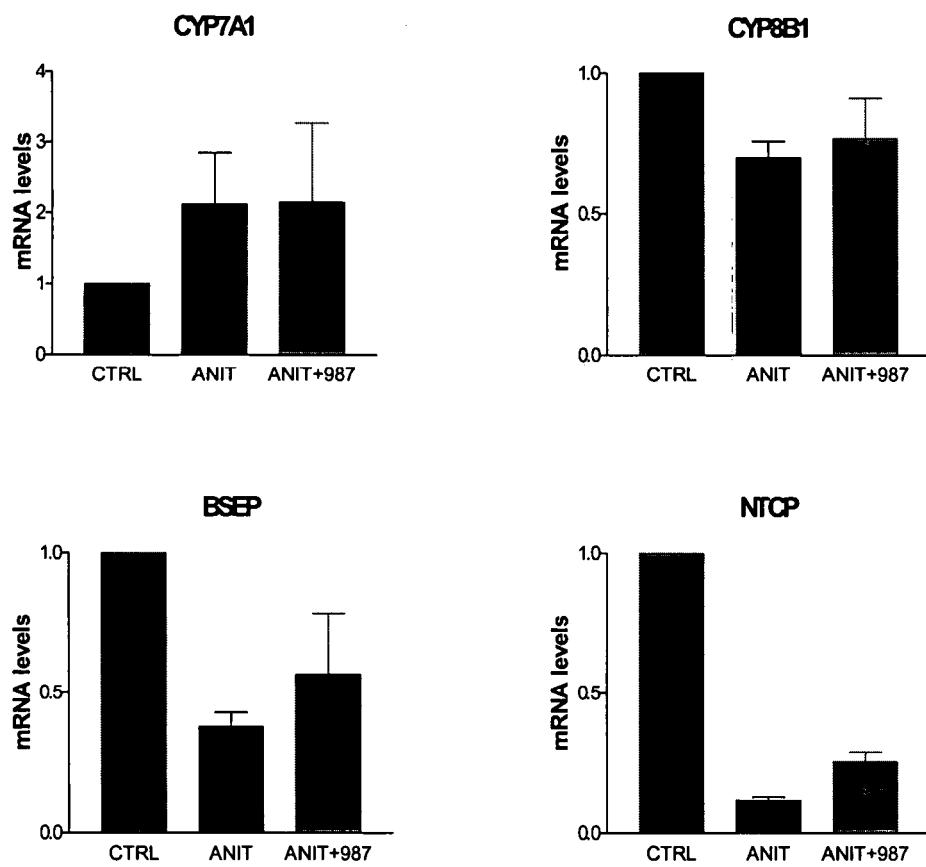

Liver tissue

Figure 17

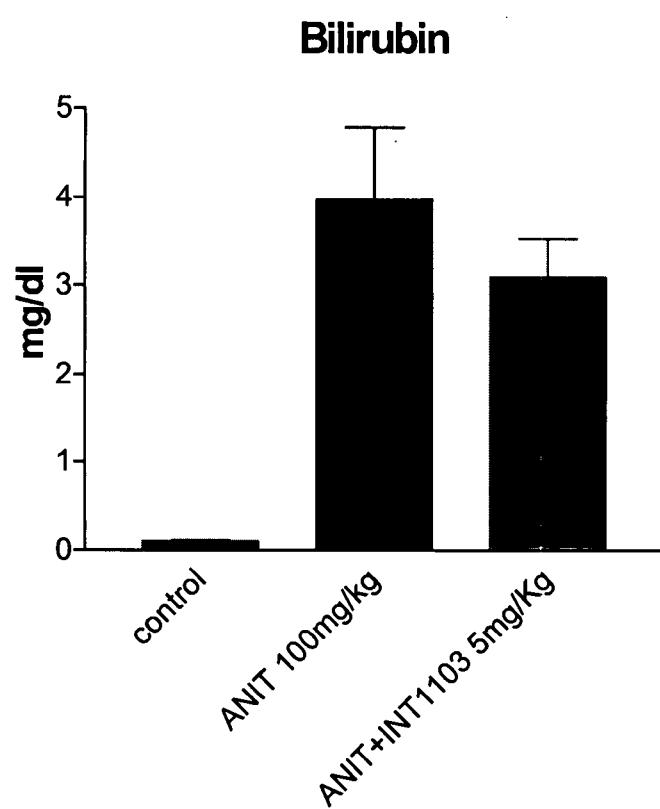


Figure 18

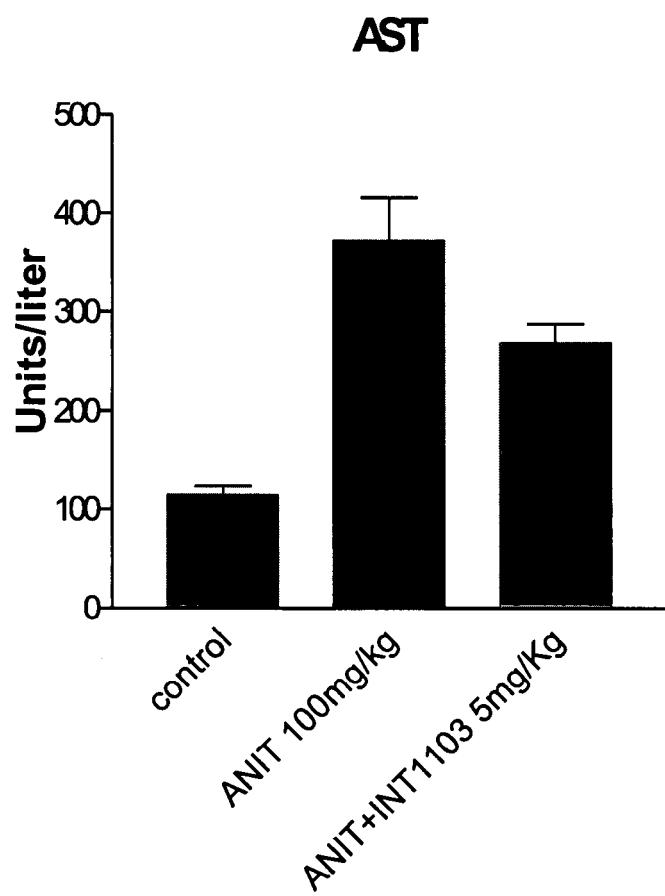


Figure 19

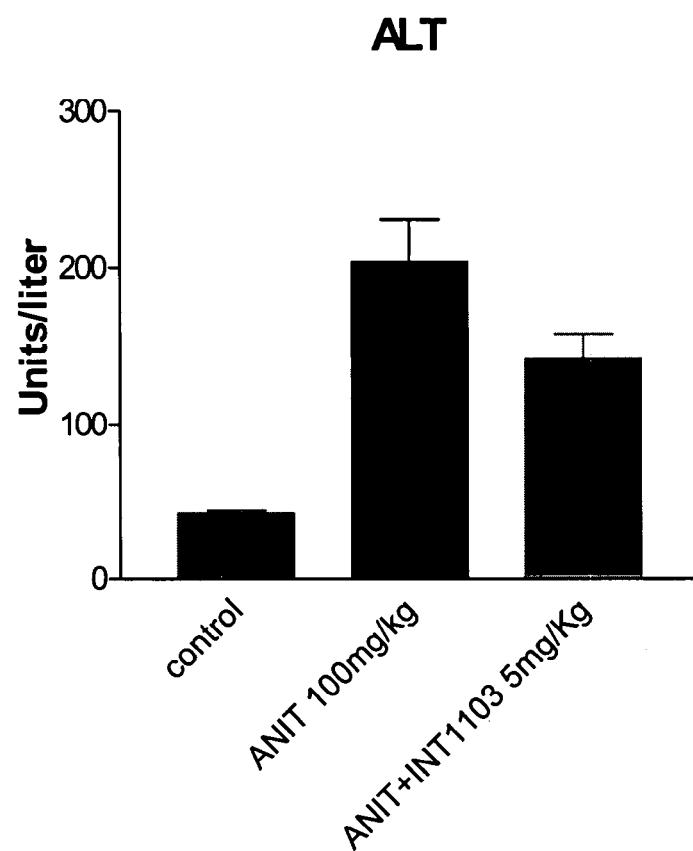


Figure 20

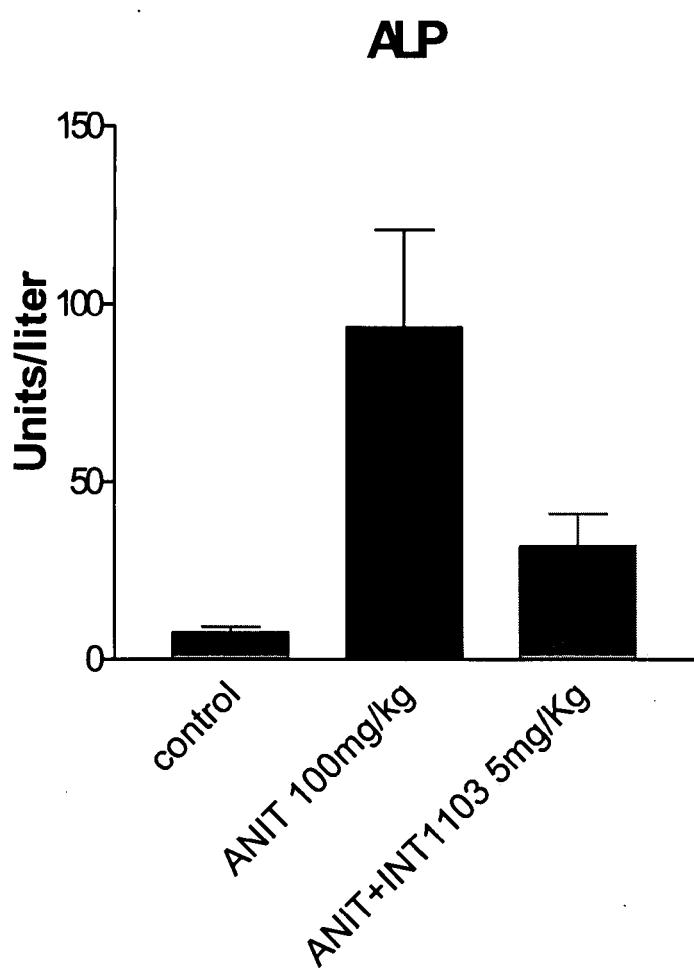


Figure 21

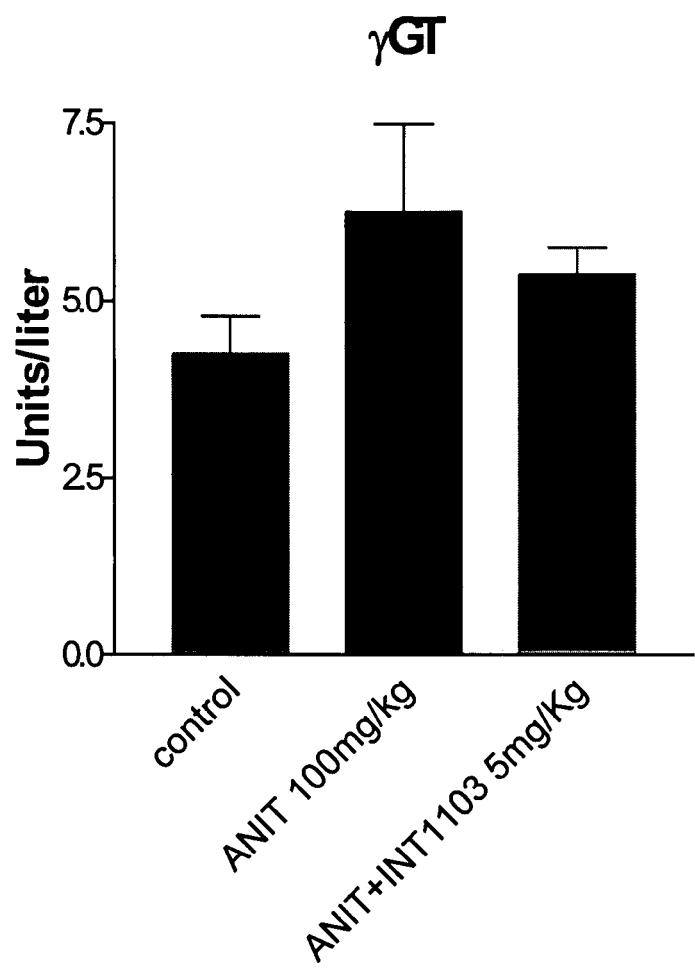


Figure 22

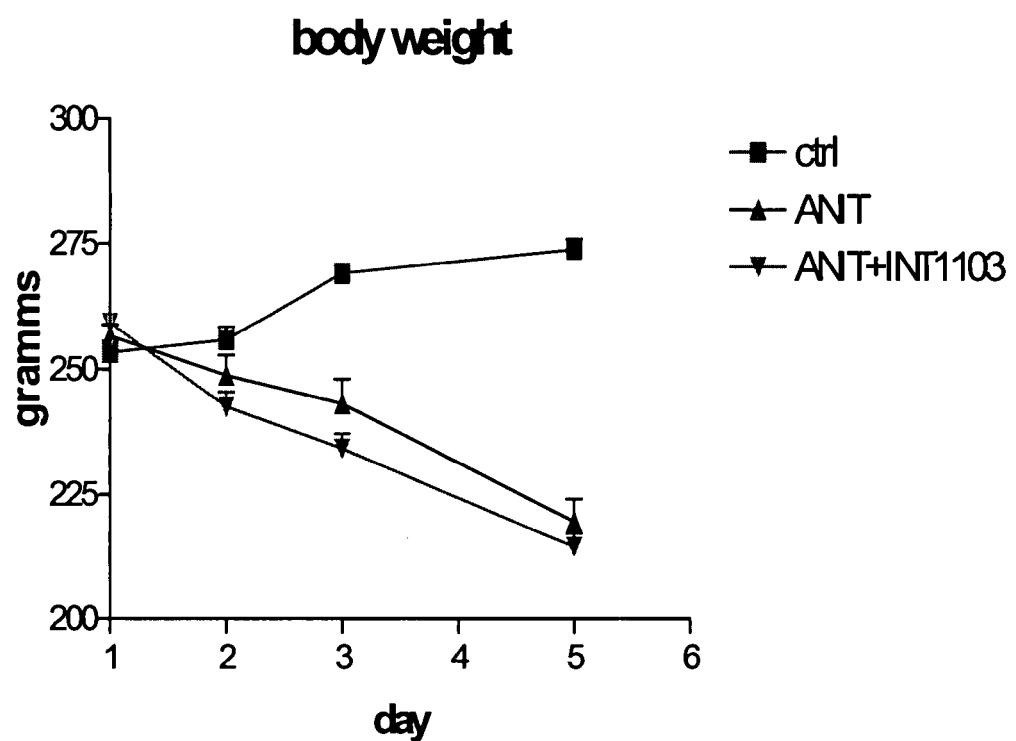


Figure 23

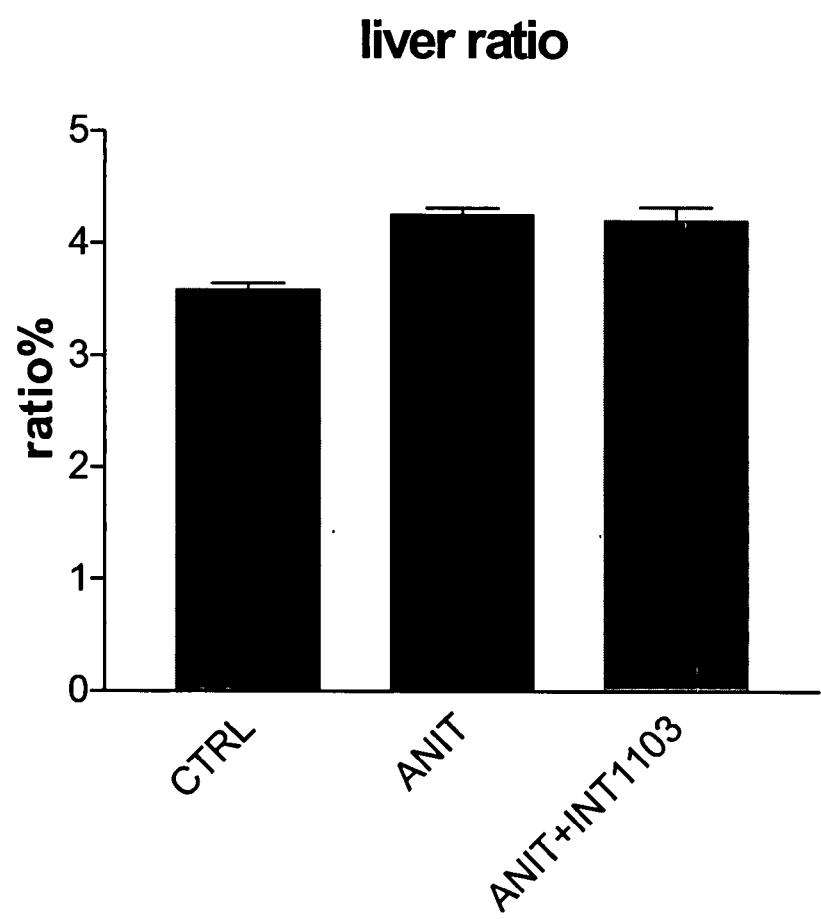
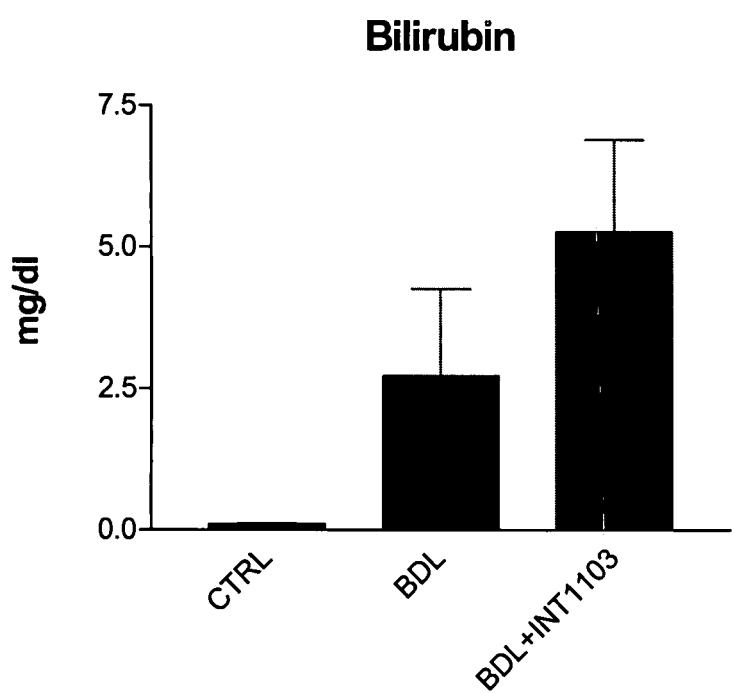
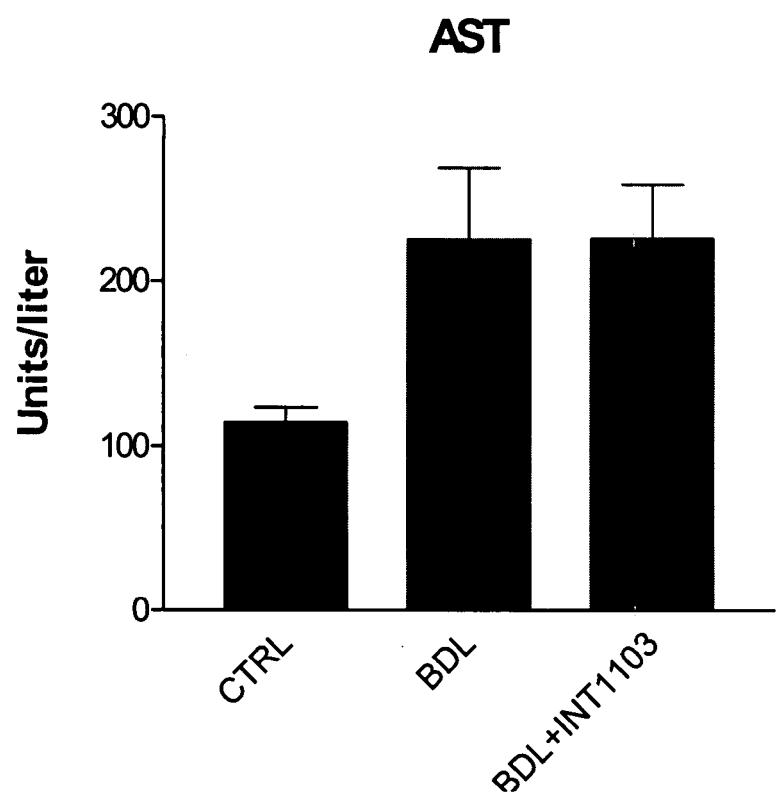




Figure 24

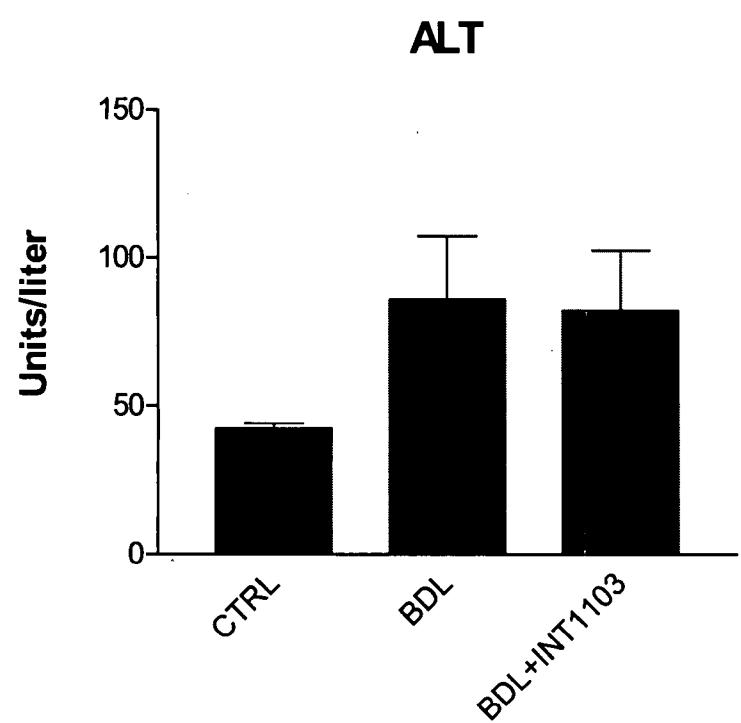

24/48

Figure 25

25/48

Figure 26

26/48

Figure 27

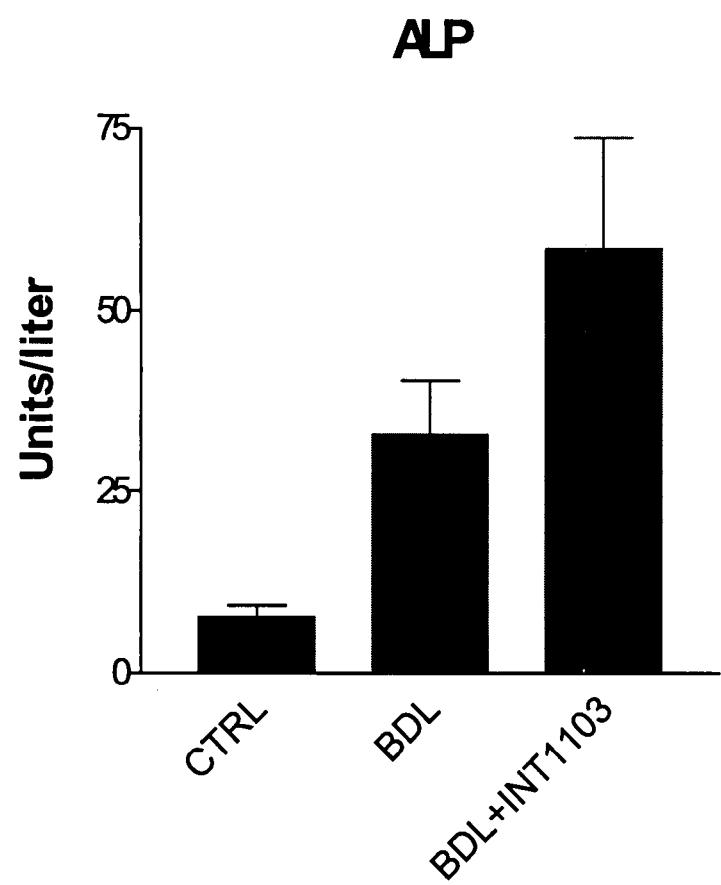
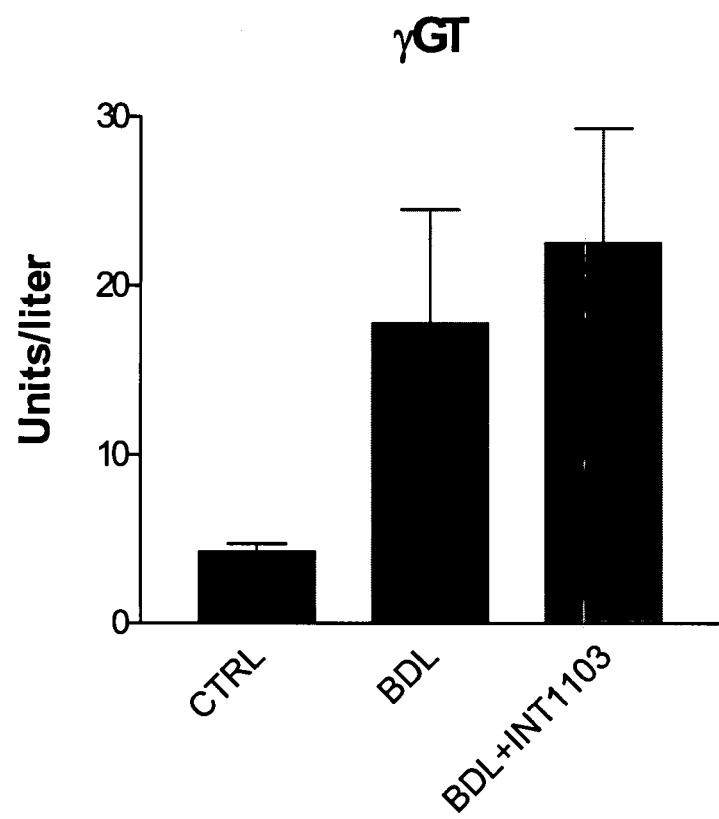



Figure 28

28/48

Figure 29

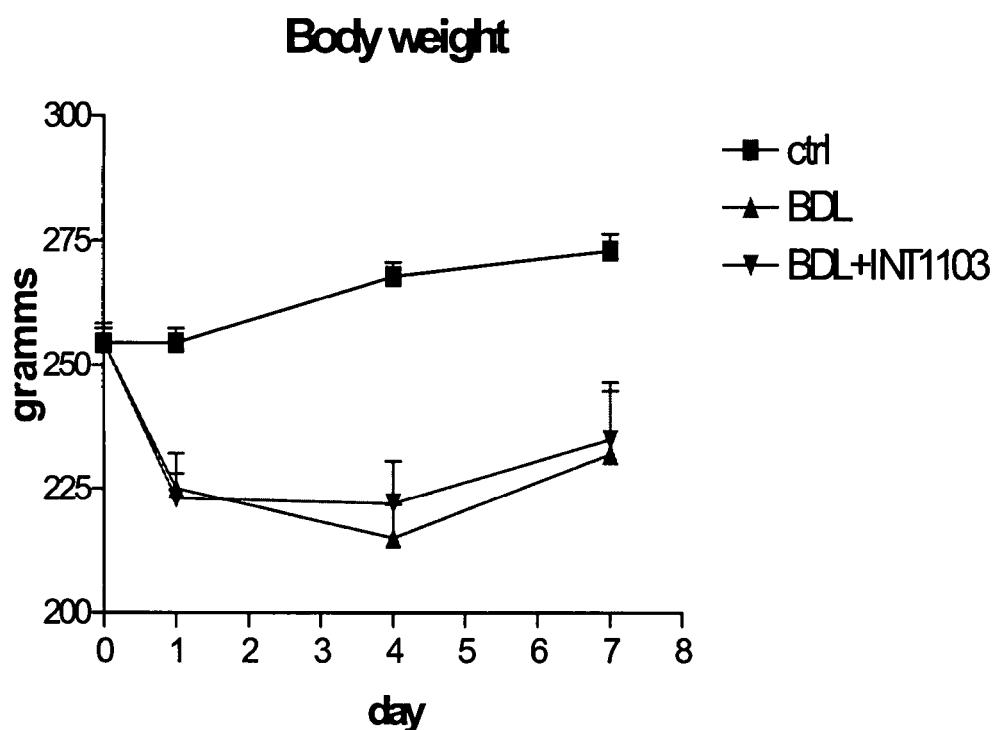
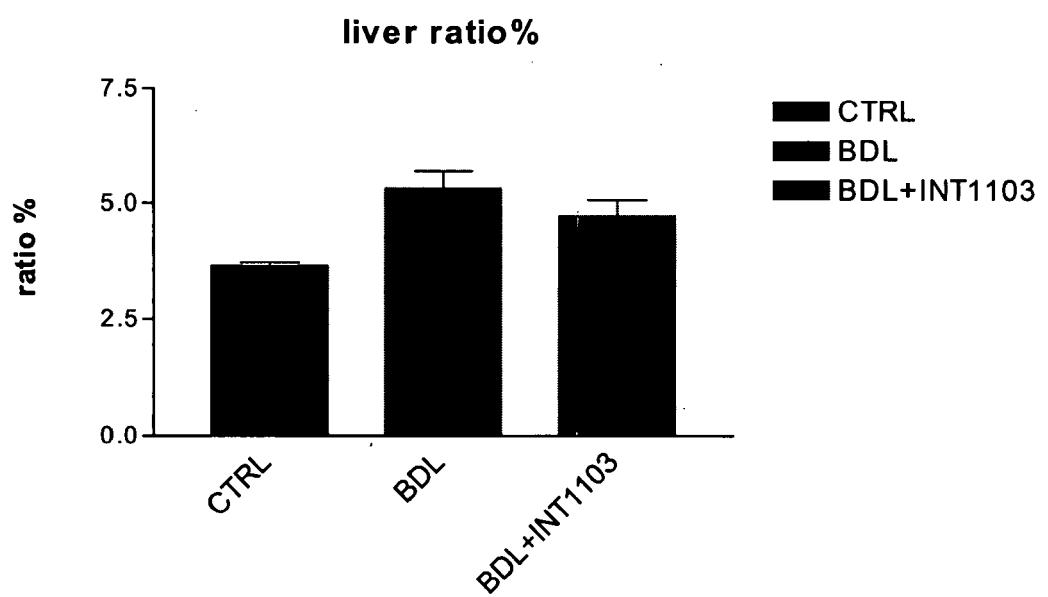



Figure 30

30/48

Figure 31

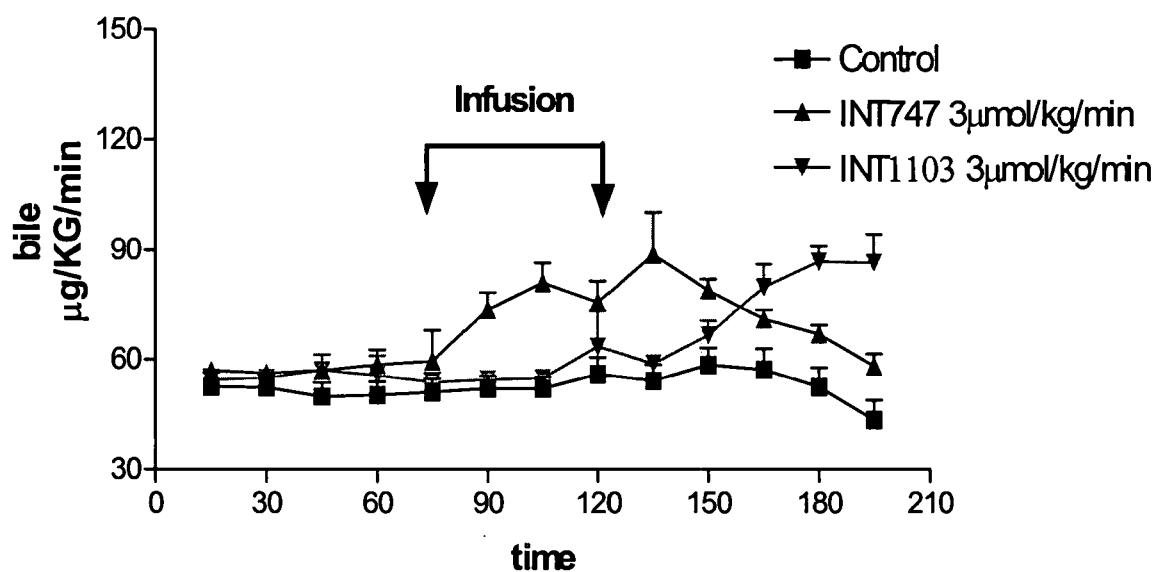


Figure 32

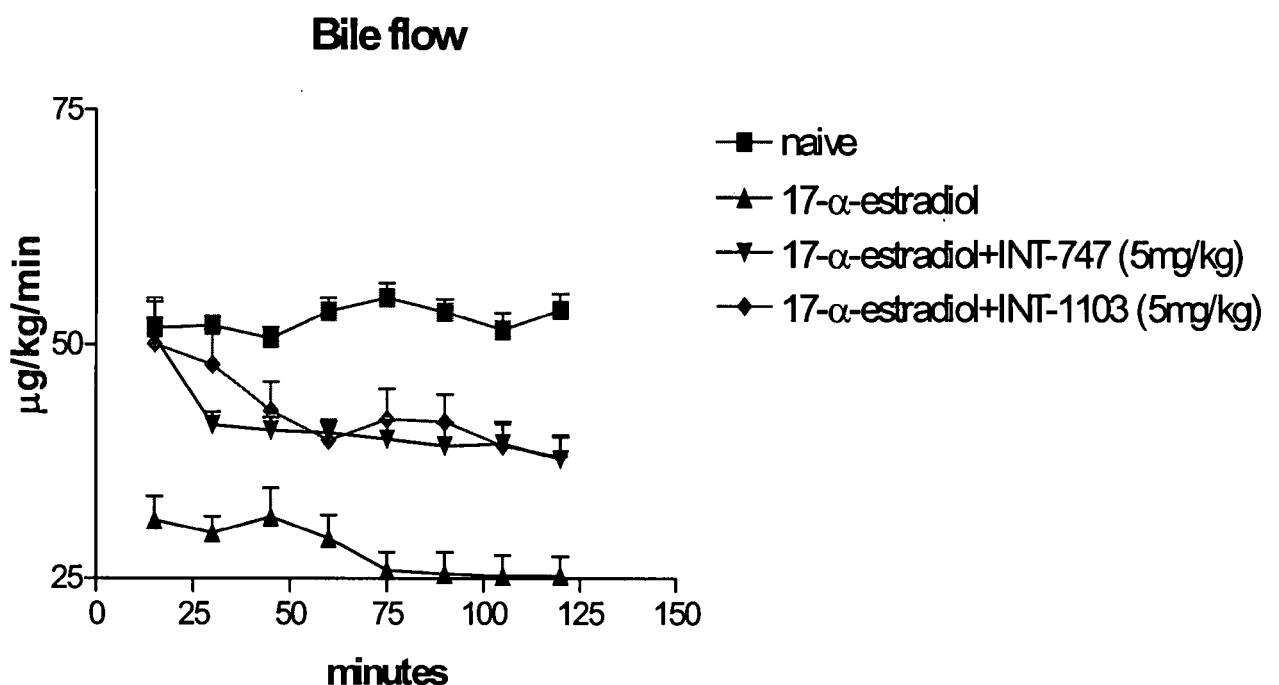


Figure 33

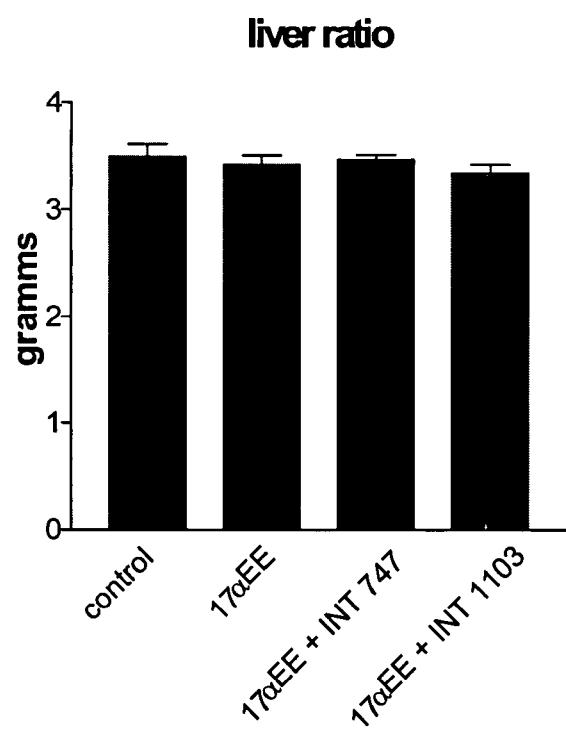


Figure 34

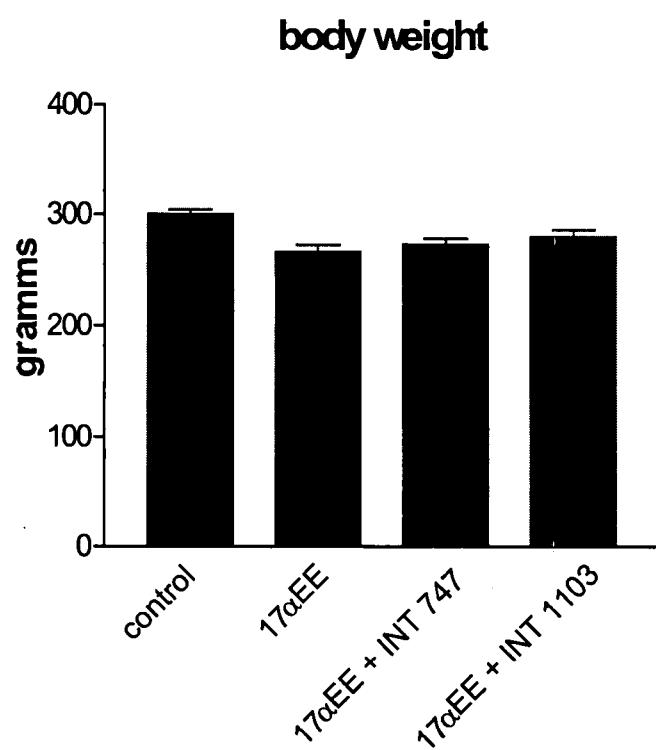


Figure 35

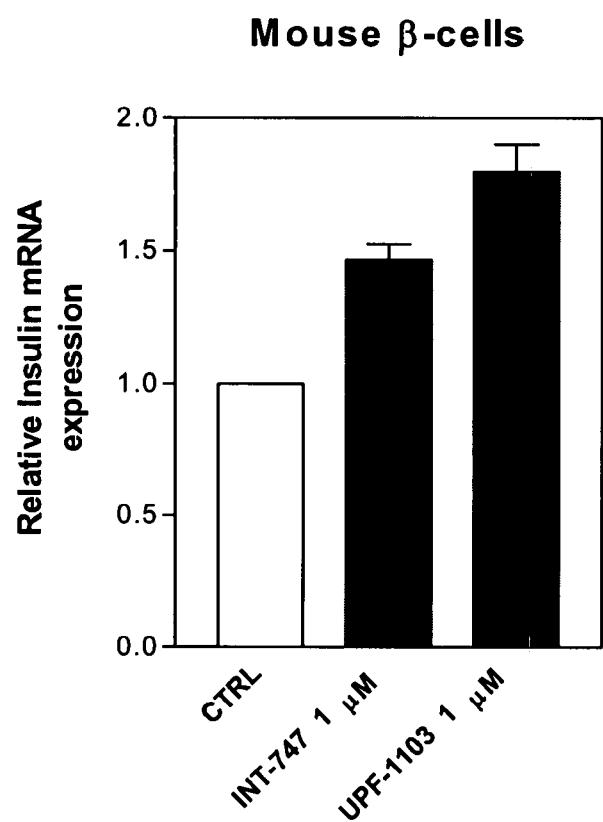


Figure 36

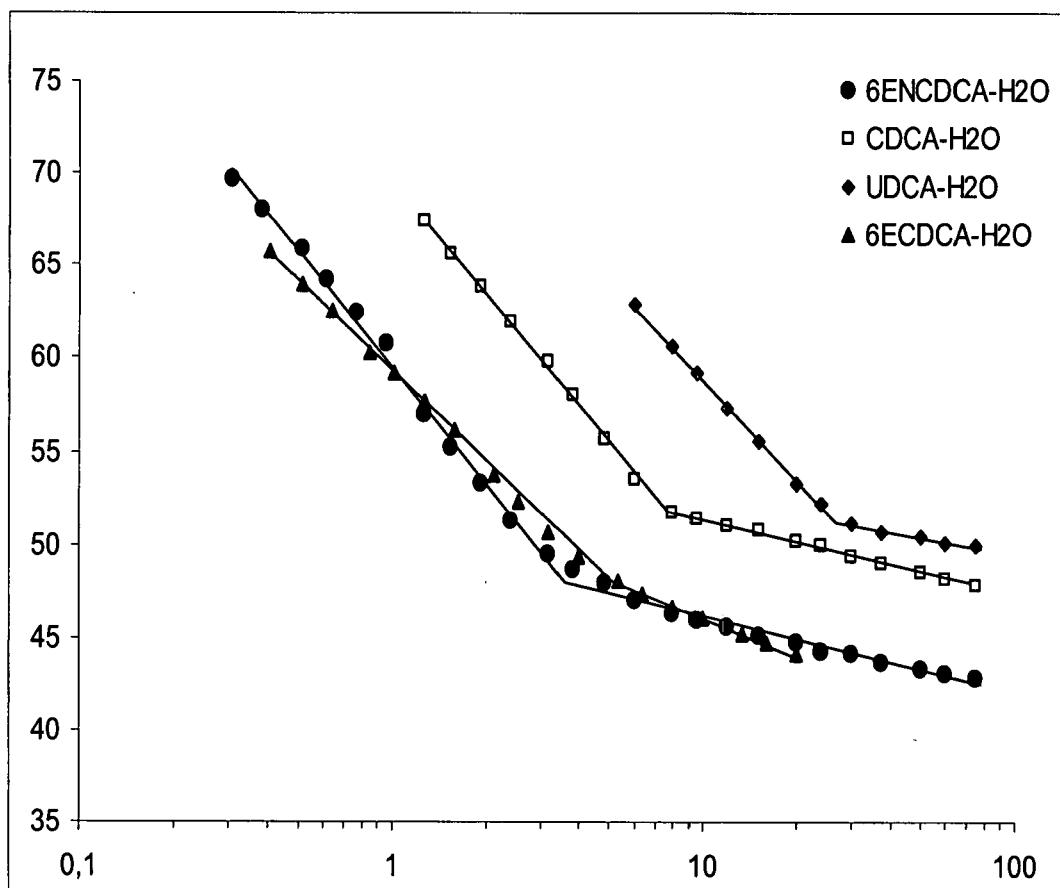


Figure 37

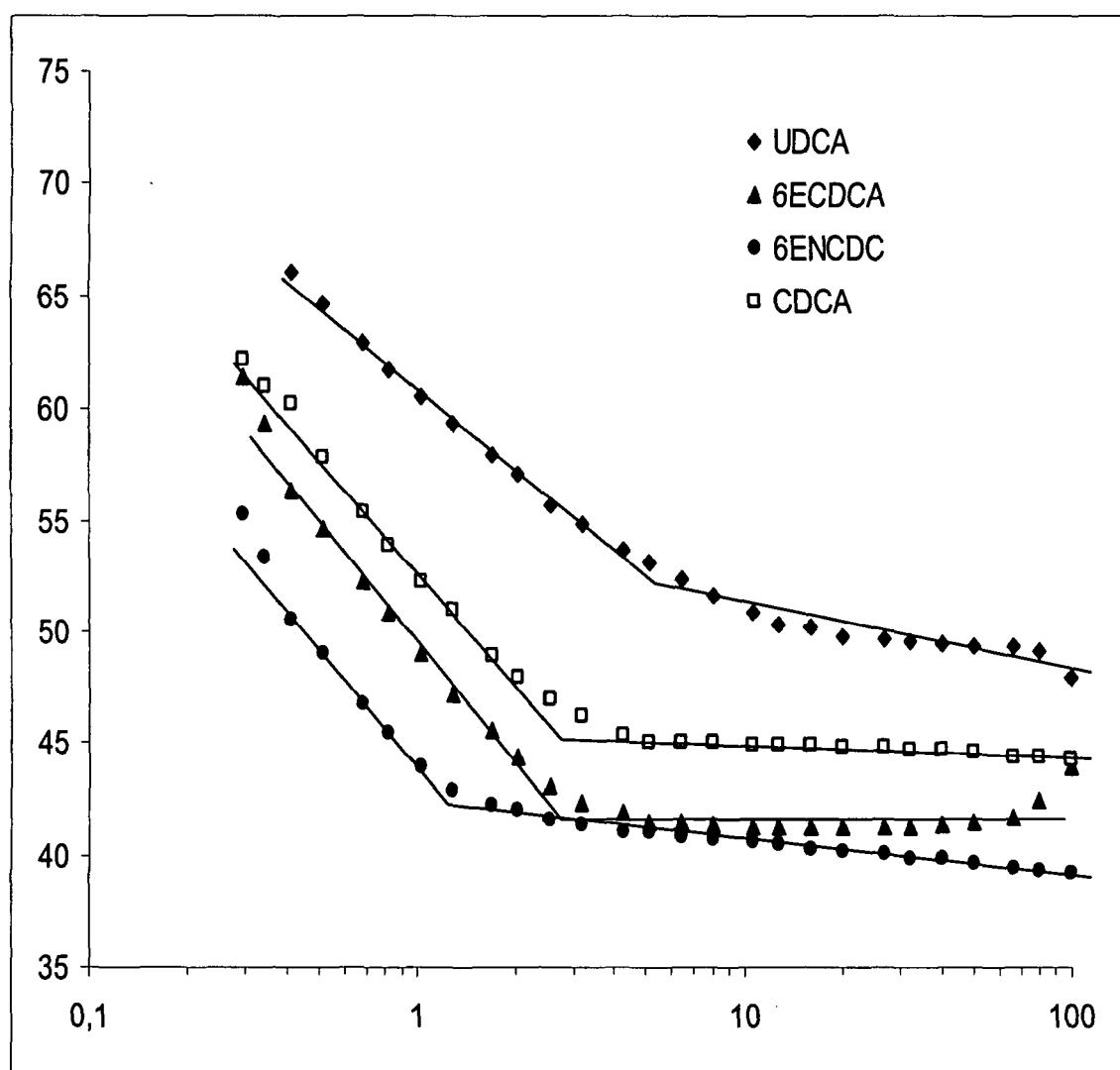


Figure 38

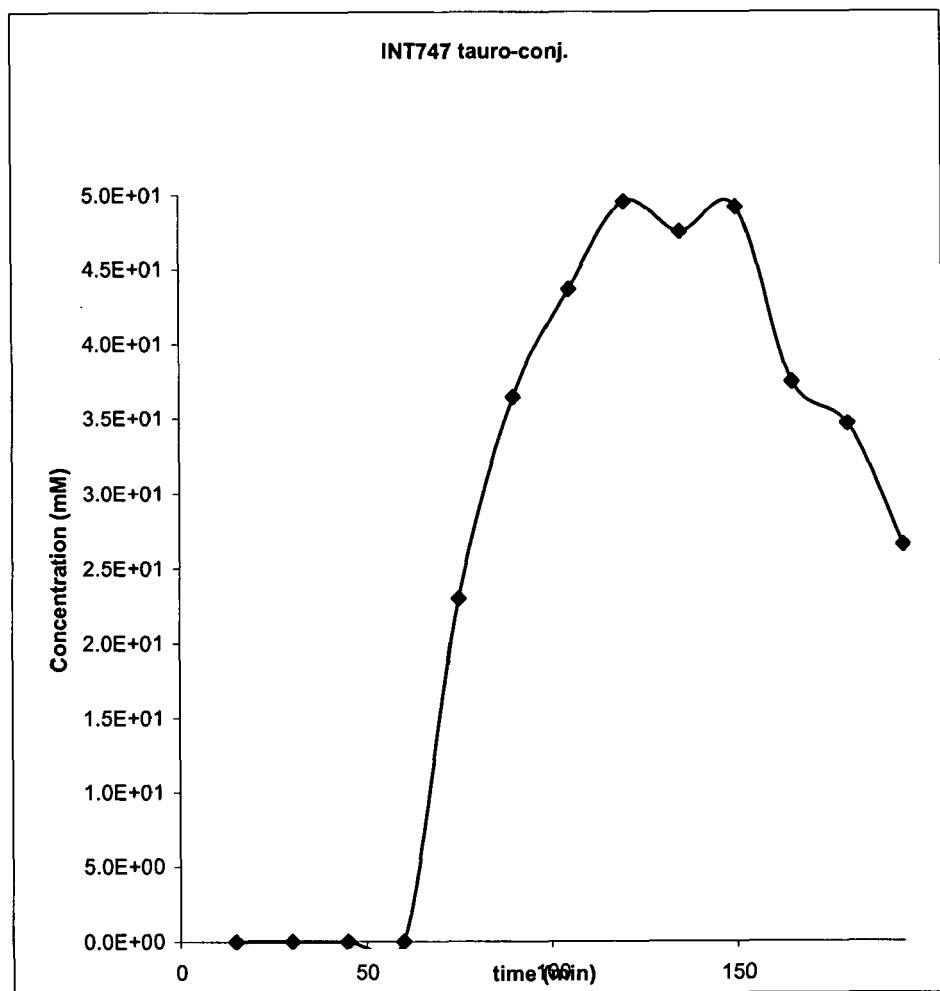


Figure 39

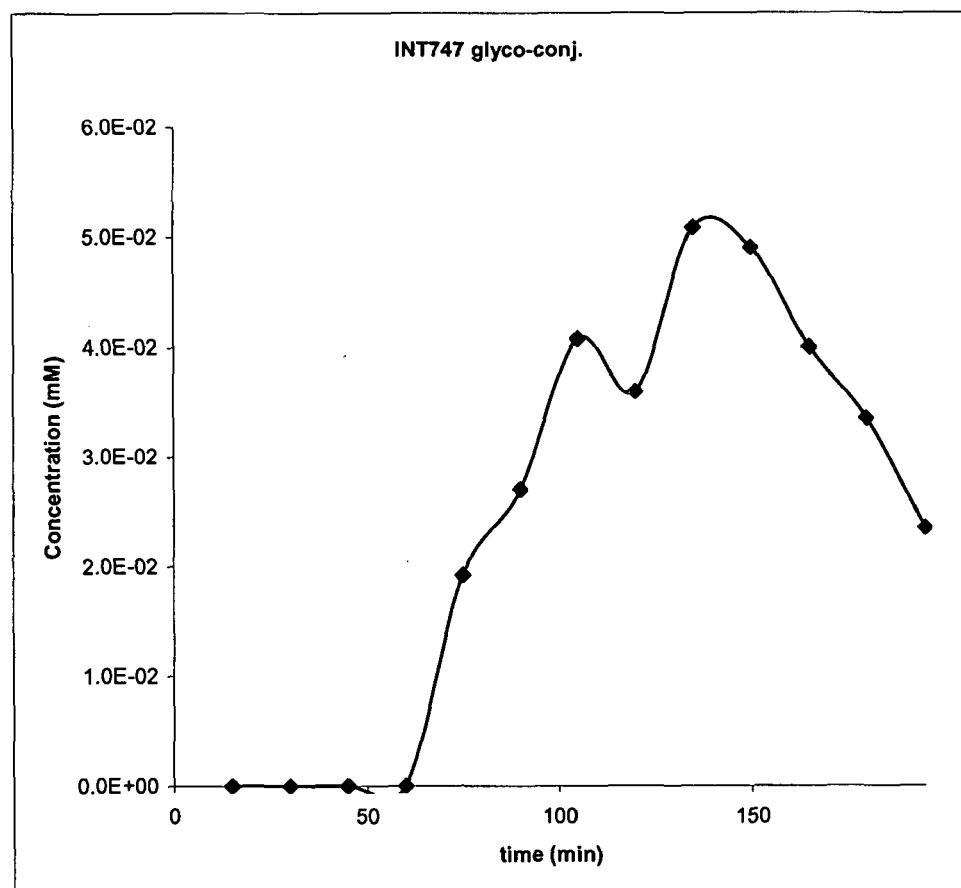


Figure 40

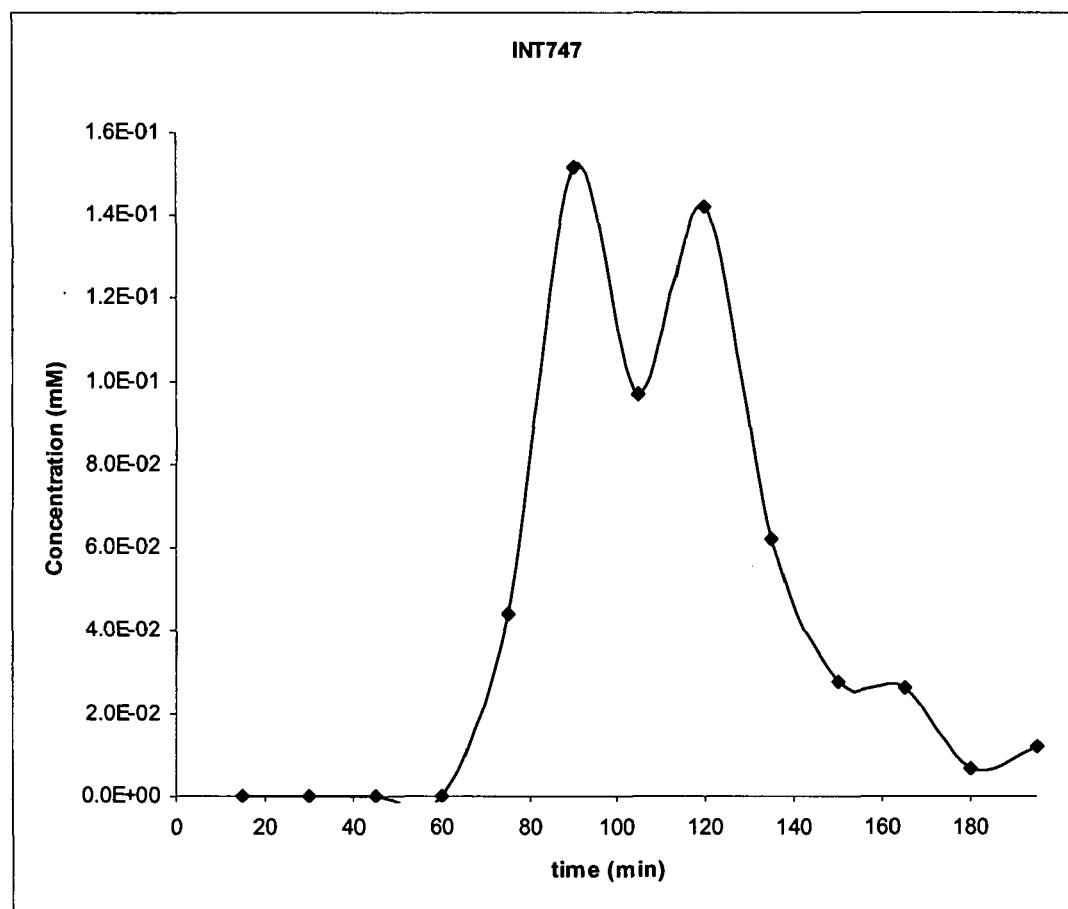


Figure 41

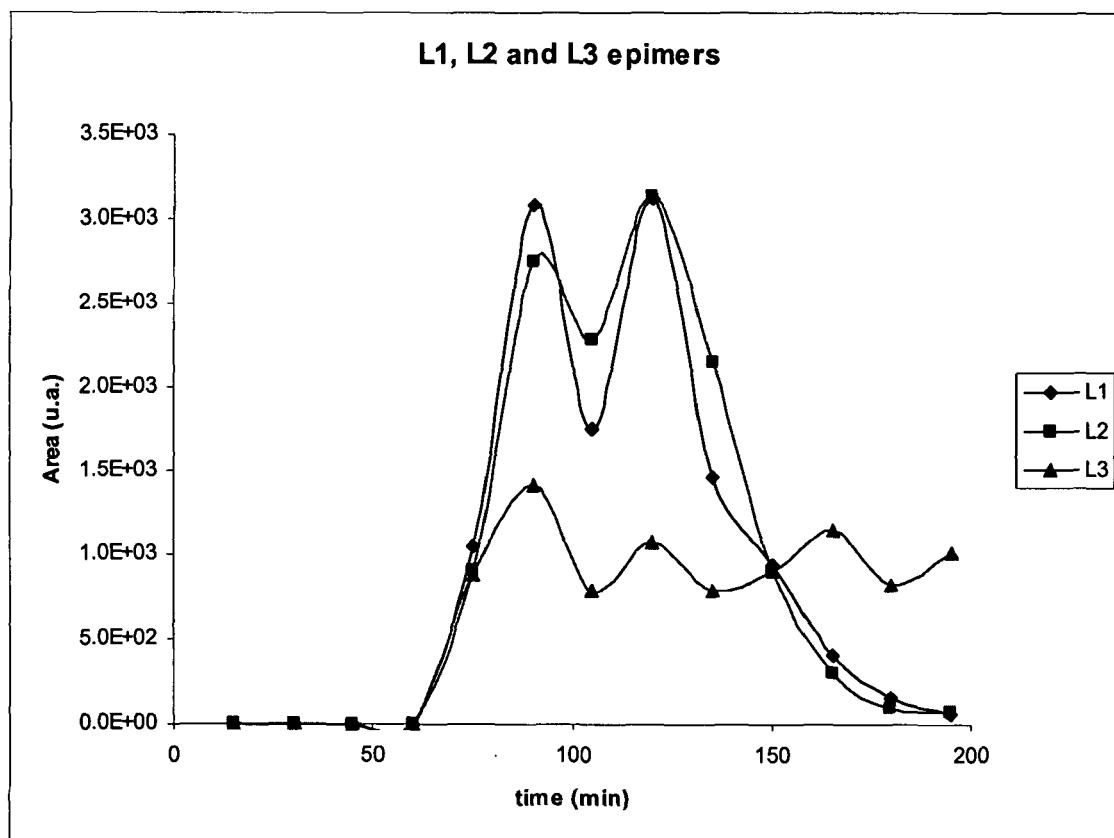


Figure 42

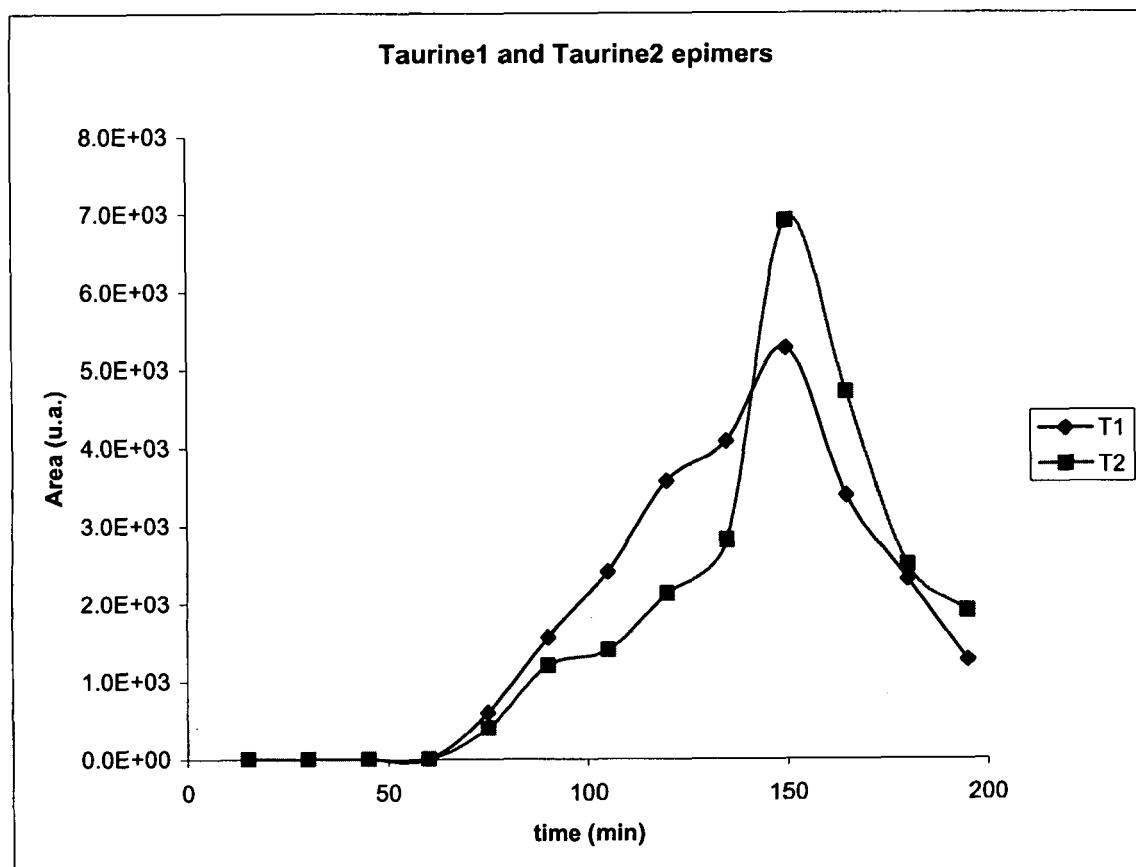


Figure 43

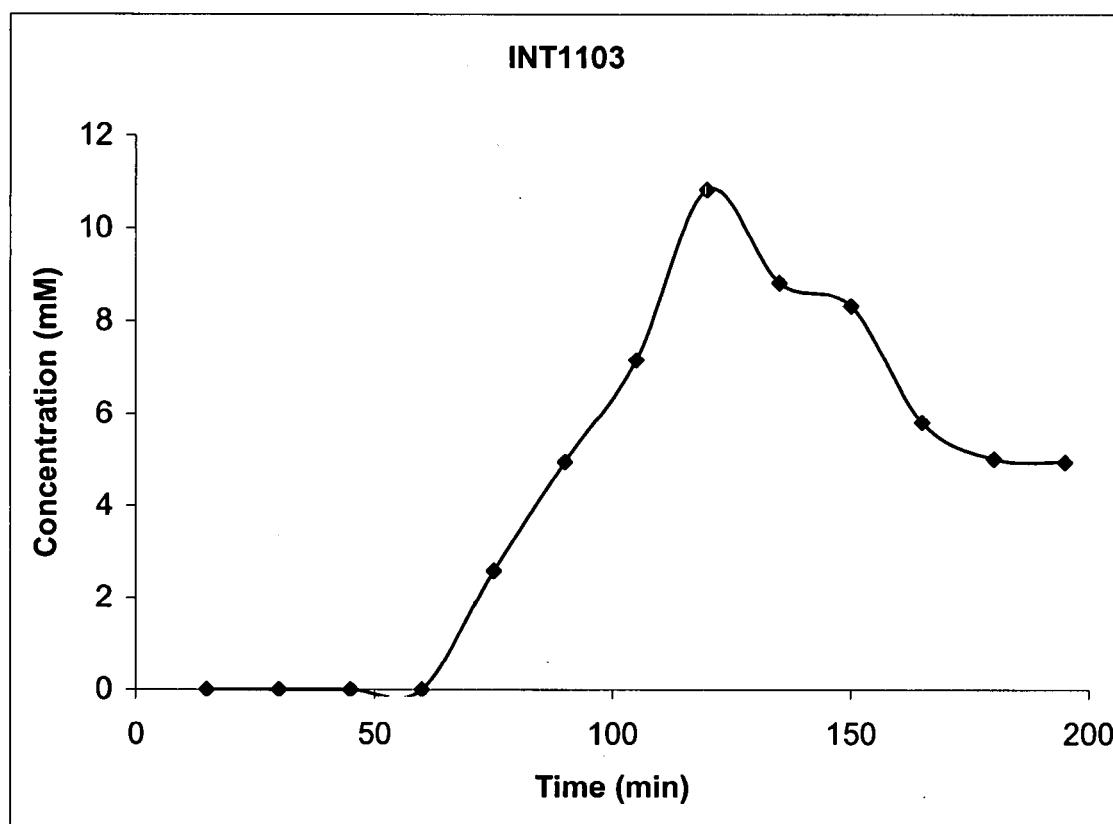


Figure 44

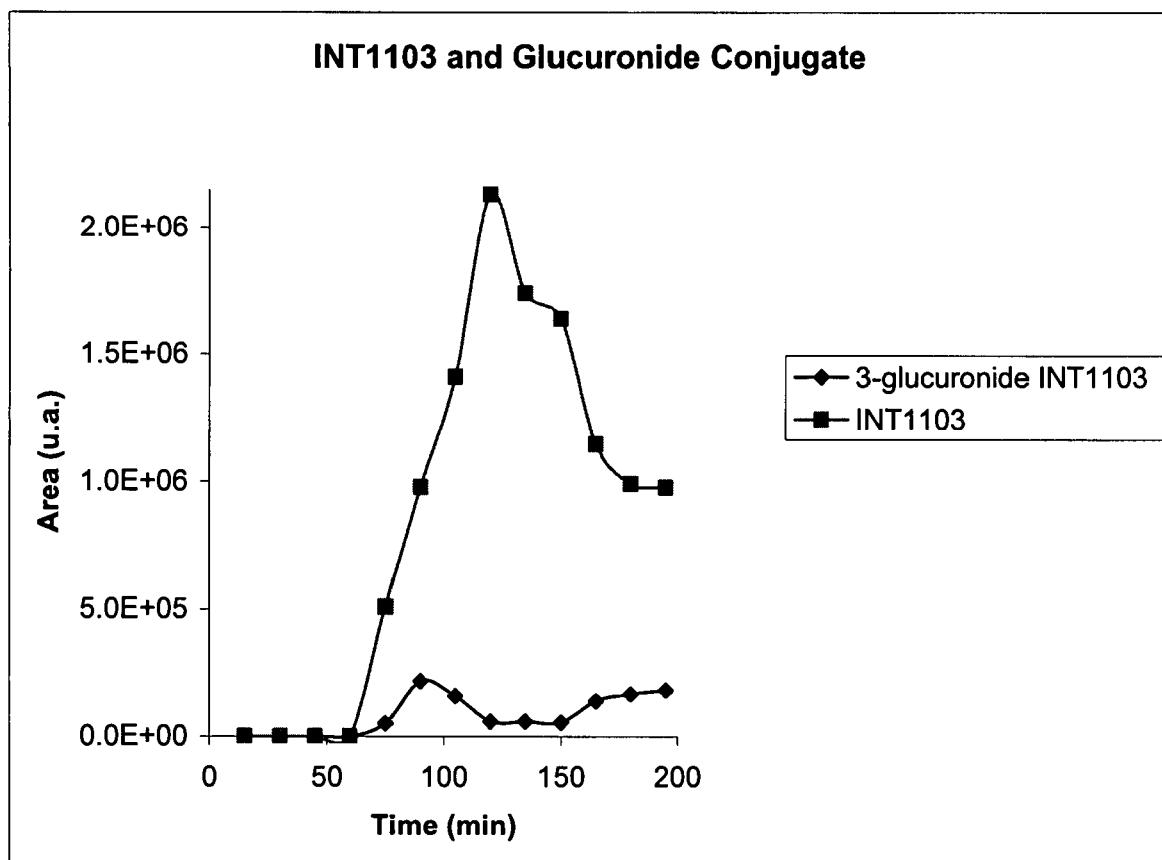


Figure 45

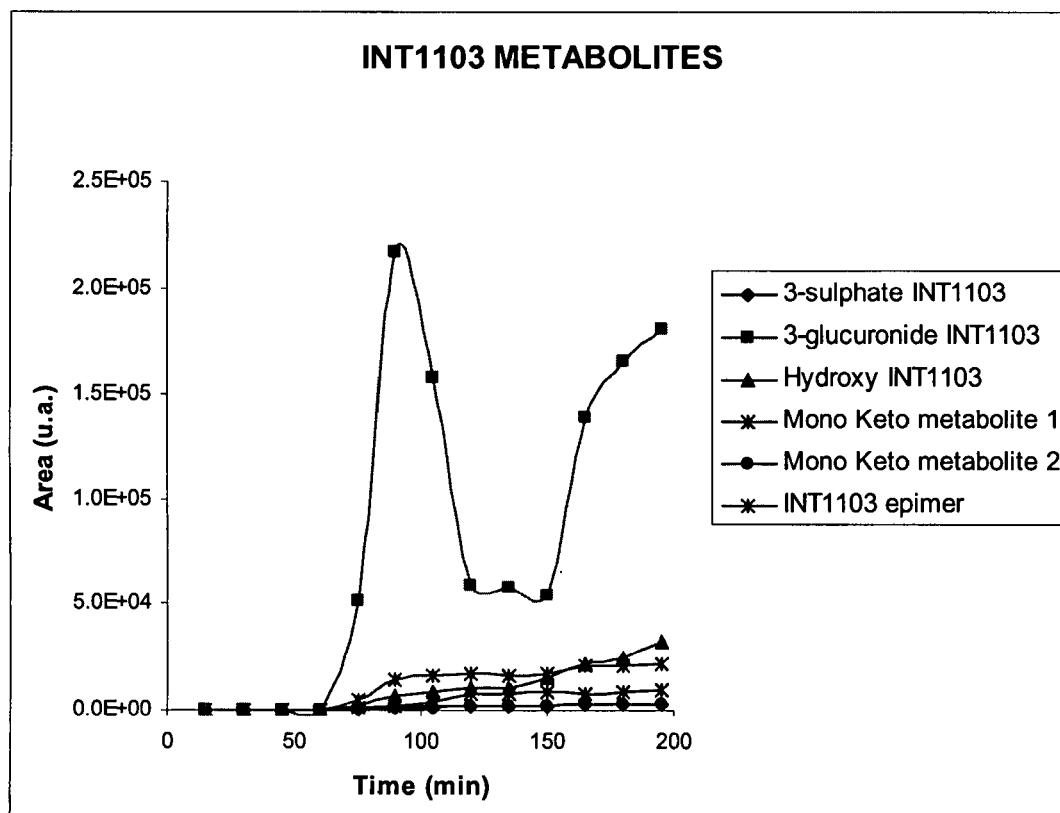


Figure 46

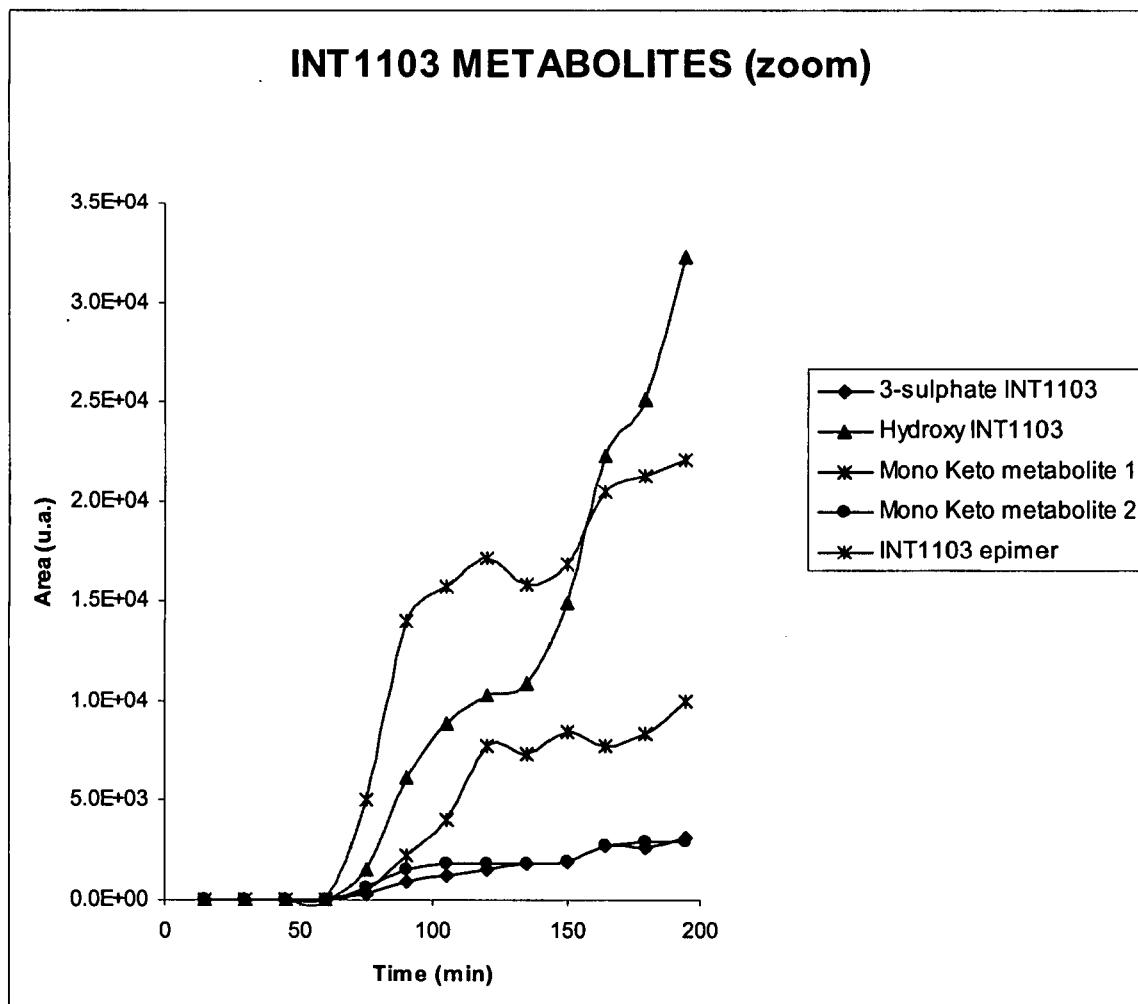


Figure 47

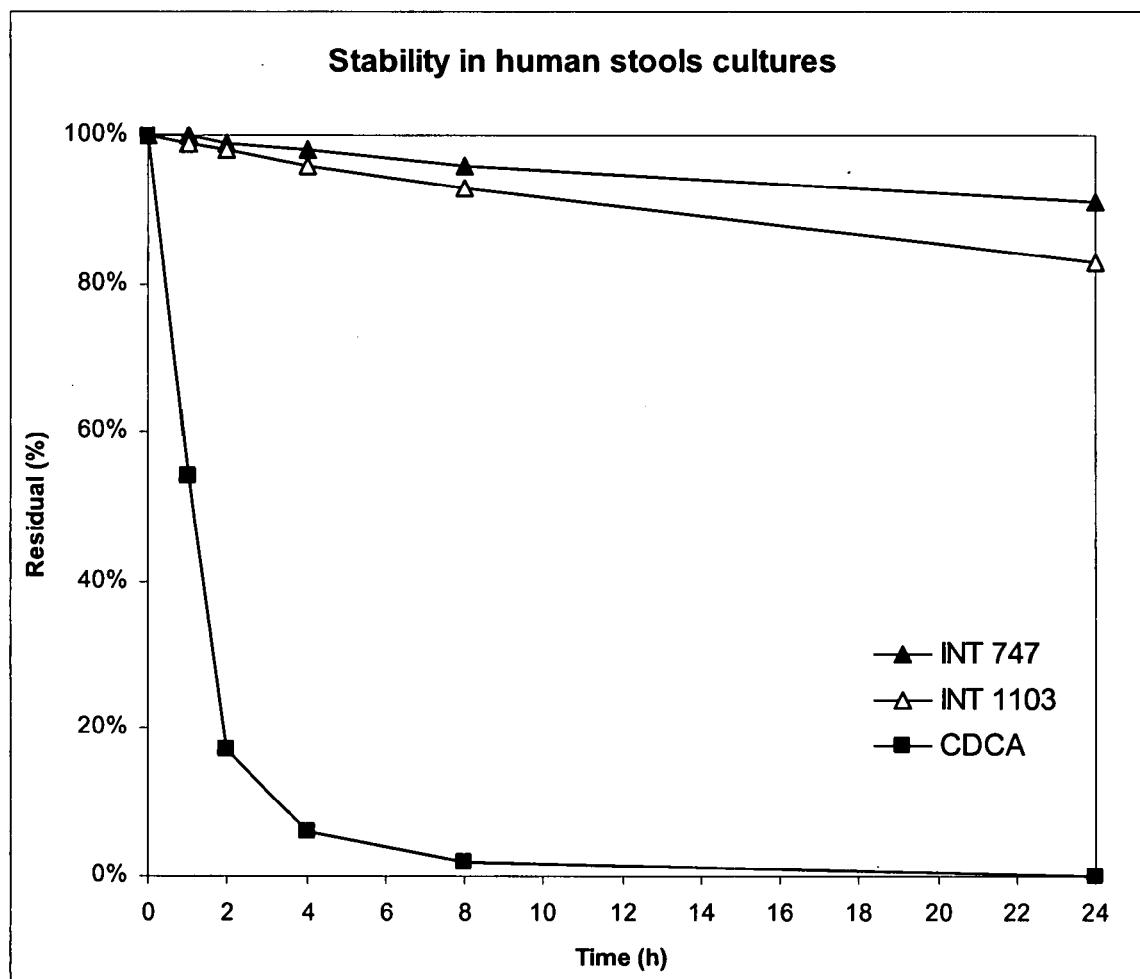
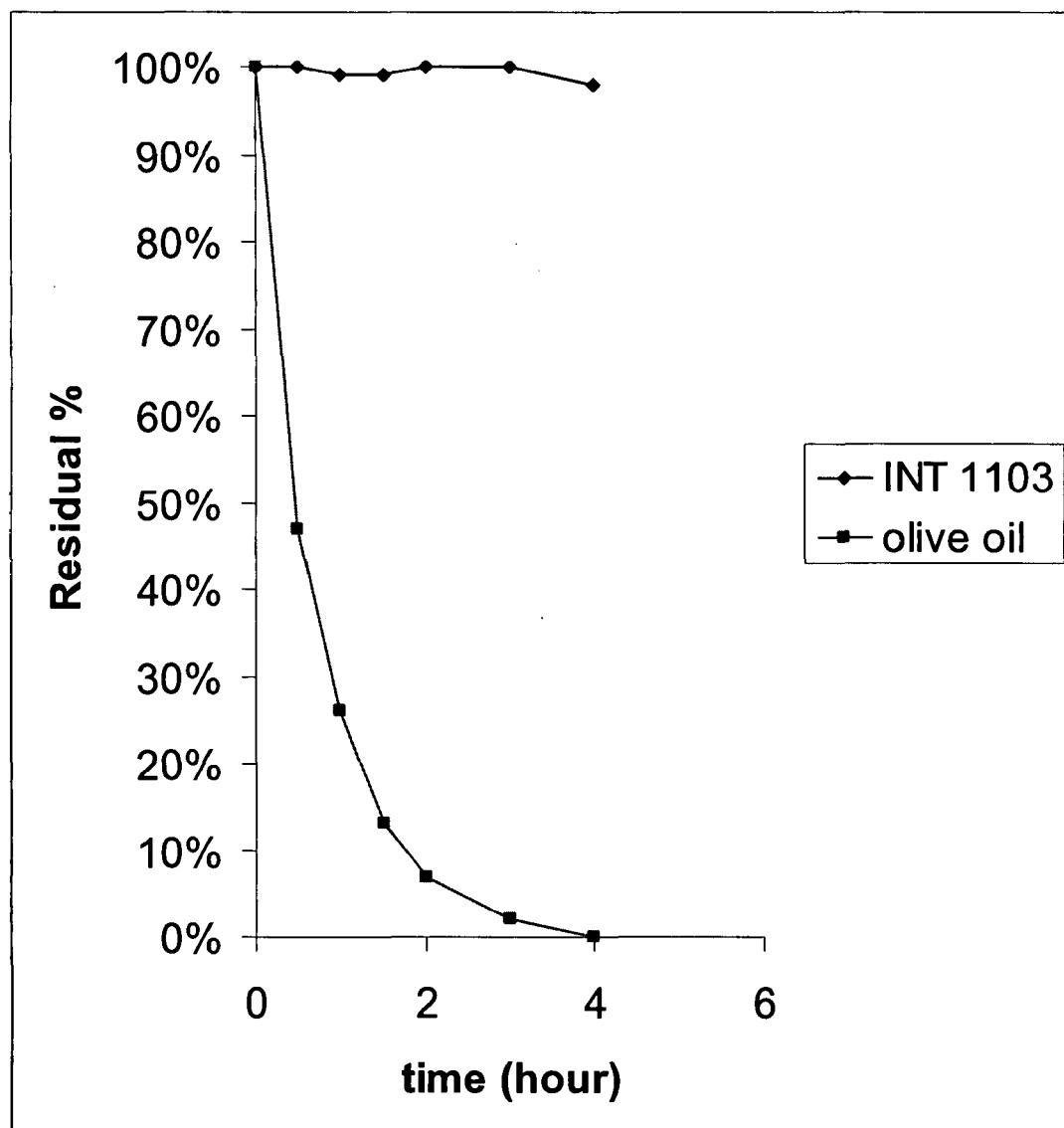



Figure 48

