发明名称
低检测下限砷在线分析仪及其分析方法

摘要
本发明公开了一种低检测下限砷在线分析仪，包括比色皿、设置在比色皿一侧的测量光源以及设置在比色皿另一侧与测量光源对应位置的光电转换模块，所述比色皿接通一多通道的进出口管，所述进出口的其它进出口管分别按接有硫酸试剂瓶、蒸馏水瓶、显色剂瓶、样品瓶、屏蔽试剂试剂瓶、稀释瓶、废液桶、定量装置。所述定量装置接有蠕动泵，多通道电连接有控制模块，该控制模块电连接定量装置、蠕动泵以及人机接口。本发明还公开了使用低检测下限砷在线分析仪对水样进行分析的方法。本发明具有精确定量、能有效降低测量误差、低成本且能有效地降低砷的检测下限的优点。
1. 一种低检测下限总砷在线分析仪，包括比色皿、设置在比色皿一侧的测量光源以及设置在比色皿另一侧与测量光源对应位置的光电转换模块，其特征在于：所述比色皿管接一多通阀的进出口管、该多通阀的其它进出口管分别管接有硫酸试剂瓶、蒸馏水瓶、显色试剂瓶、样品瓶、屏蔽剂试剂瓶、稀释室、废液桶、定量装置，所述定量装置管接有蠕动泵，多通阀电连接有控制模块，该控制模块电连接定量装置、蠕动泵以及人机接口。

2. 根据权利要求1所述的低检测下限总砷在线分析仪，其特征在于：所述比色皿内设置有至少带二个喷洗面的喷洗头，该喷洗头的其中二个喷洗面分别面向测量光线进出比色皿的内壁处。

3. 根据权利要求1或2所述的低检测下限总砷在线分析仪，其特征在于：所述比色皿内设置有搅拌器。

4. 根据权利要求1或2所述的低检测下限总砷在线分析仪，其特征在于：所述控制模块为PLC。

5. 根据权利要求1或2所述的低检测下限总砷在线分析仪，其特征在于：所述定量装置为一安装有位移计的定量管。

6. 根据权利要求1或2所述的低检测下限总砷在线分析仪，其特征在于：所述多通阀的进出口管为进口改型聚四氟乙烯透明软管，其管径大于1.5mm。

7. 一种使用低检测下限总砷在线分析仪进行总砷在线分析的方法，其特征在于分析步骤为：

砷浓度标定点的测定

(1)、由控制模块控制蠕动泵通过多通阀向定量管泵入蒸馏水定量至检测容器，再由蠕动泵通过多通阀的相应通道将定量管内的蒸馏水泵入比色室，采集空白对比数据；

(2)、由控制模块控制蠕动泵和多通阀向比色室泵入硫酸溶液、屏蔽剂、显色剂，而后由控制模块控制蠕动泵和多通阀向比色室不断地泵入空气，使各试剂间、样品与试剂间充分混合；

(3)、然后由控制模块控制测量光源和光电转换模块对比色室内的溶液进行光电测量，由控制模块采集到溶液的检测数据并贮存在控制模块；

(4)、将比色室内已检测过的溶液泵入废液桶，而后由喷洗头向比色室内喷射冲洗液，喷洗头的其中二个喷洗面分别面向测量光线进出比色皿的内壁处，然后将比色室内的冲洗液泵入废液桶；

(5)、向稀释室注入砷标准溶液作为母液，由控制模块控制蠕动泵通过多通阀从稀释室向定量管泵入标准体积的砷标准溶液，再向定量管泵入蒸馏水定量至检测容器，由蠕动泵通过多通阀的相应通道将定量管内的砷溶液泵入比色室，重复步骤(2)、(3)和(4)得到砷标准溶液的砷浓度＊标准体积／检测容量的检测数据；

(6)、由控制模块控制蠕动泵通过多通阀从稀释室向定量管泵入标准体积倍数的砷标准溶液，再向定量管泵入蒸馏水定量至检测容器，由蠕动泵通过多通阀的相应通道将定量管内的砷溶液泵入比色室，重复步骤(2)、(3)和(4)得到砷标准溶液砷浓度＊倍数＊标准体积／检测容量的检测数据，将所得数据在光强和砷浓度的坐标上标出，连接得到砷浓度的标定曲线；

水样中砷的测定

2
（7）由控制模块控制蠕动泵通过多通阀从样品瓶向定量管泵入检测容量的水样，由蠕动泵通过多通阀的相应通道将定量管内的砷溶液泵入比色室，重复步骤（2）、（3）和（4）得到样品的检测数据，通过步骤（6）中得到的砷浓度的标定曲线计算出样品中总砷的含量。

8. 根据权利要求7所述的使用总砷在线分析的方法，其特征在于所述分析步骤（2）中的显色剂为：

![显色剂结构式]
低检测下限总砷在线分析仪及其分析方法

技术领域

【0001】本发明涉及一种总砷分析仪，尤其是涉及一种低检测下限总砷在线分析仪及其分析方法。

背景技术

【0002】砷（As）是人体非必需元素，砷元素砷的毒性较低，而砷的化合物均有剧毒，三价砷化合物比五价砷化合物毒性更强，且有机砷对人体和生物都有剧毒。砷通过呼吸道、消化道和骨骼、肌肉等部位，特别是在毛发、指甲中蓄积，从而引起慢性砷中毒，潜伏期可达数年甚至几十年。慢性砷中毒有消化系统症状、神经系统症状和皮肤病变等。砷还有致癌作用，能引起皮肤癌。在一般情况下，土壤、水、空气、植物和人体中都含有微量的砷。砷的污染主要来源于采矿、冶金、化工、化学制药、农药生产、纺织、玻璃、制革等部门的工业废水。砷是我国实施排放总量控制的重要指标之一。

【0003】水中砷的测定目前可采用原子吸收法、原子荧光法、等离子发射光谱法、比色法和电化学方法（阳极溶出伏安法）等。原子吸收法、原子荧光法和等离子发射光谱法具有灵敏度高、简便、快速、干扰较少的优点，但由于这种方法用于在线监测的开发成本高、技术难度大，目前仍难以广泛使用。砷的自动在线监测，所以水质总砷的自动在线监测主要是利用比色法和电化学方法实现的。对于采用电化学方法的在线监测仪目前仍停留在汞电极的水平上，而非汞电极的制造工艺，电极本身对污染水源样的抗干扰能力及电极表面的自动清洗技术等问题还难以满足自动在线监测的技术要求，相比之下，比色法具有稳定性好、仪器开发成本低、操作及维护方便的优点。但国内目前所有采用比色法的重金属系列水质在线监测仪器在监测灵敏度方面仍然不够理想，尤其是总砷在线分析仪，由于其显色过程及控制过程尚存在众多缺陷，使得检测下限不能很好的满足综合污水处理标准（GB8978-1996）规定的不得检出限0.5mg/L，明显满足不了生活饮用水卫生标准（GB5749-2006）规定的不得检出限0.01mg/L。

发明内容

【0004】针对以上问题，本发明目的在于提供一种高灵敏、低成本且低检测下限的低检测下限总砷在线分析仪及其分析方法。

【0005】本发明通过以下技术措施实现的，一种低检测下限总砷在线分析仪，包括比色皿、设置在比色皿一侧的测量光源以及设置在比色皿另一侧与测量光源对应位置的光电转换模块；所述比色皿包括接一多通阀的进气口管，该多通阀的其它进气口管分别管接有硫酸试剂瓶、蒸馏水瓶、显色剂瓶、样品瓶、屏蔽试剂瓶、稀释室、废液桶、定量装置，所述定量装置出口接有蠕动泵，多通阀电连接有控制模块，该控制模块电连接定量装置、蠕动泵以及人机接口。

【0006】其中比色皿内设置有至少带二个喷洗面的喷洗头，该喷洗头的其中二个喷洗面分别面向测量光源进气比色皿的内壁处；比色皿内还可设置有搅拌器；控制模块优选PLC；定
量装置优选一安装有液位计的定量管，以实现微量试剂、样品的精确定量；多通道的进出口管优选管径大于1.5mm的进口改型聚四氟乙烯透明软管，能有效减少水样颗粒堵塞的几率。

【0007】本发明还公开了使用低检测下限总砷在线分析仪对水样进行分析的方法，其步骤为：

【0008】砷浓度标定点的测定

【0009】（1）由控制模块控制蠕动泵通过多通阀向定量管泵入蒸馏水定量至检测容量，再由蠕动泵通过多通阀的对应通道将定量管内的蒸馏水泵入比色室，采集空白对比数据；

【0010】（2）由控制模块控制蠕动泵和多通阀向比色室泵入硫酸溶液、屏蔽剂、显色剂，而后由控制模块控制蠕动泵和多通阀向比色室不断地泵入空气，使各试剂间、样品与试剂间充分混合，使比色室中的混合液和空气充分接触以交换气态物质和去除混合液中挥发性物质，从而对比色室中的混合液产生曝气的作用；

【0011】（3）然后由控制模块控制测量光源和光电转换模块对比色室内的溶液进行光电测量，由控制模块采集到溶液的检测数据并贮存在控制模块；

【0012】（4）将比色室内已检测过的溶液泵入废液桶，而后由喷洗头向比色室喷射冲洗液，喷洗头的其中二个喷洗面分别面向测量光线进出比色皿的内壁处，然后将比色室内的冲洗液泵入废液桶；

【0013】（5）向稀释室注入砷标准溶液作为母液，由控制模块控制蠕动泵通过多通阀从稀释室向定量管泵入标准体积的砷标准溶液，再向定量管泵入蒸馏水定量至检测容量，由蠕动泵通过多通阀的对应通道将定量管内的砷溶液泵入比色室，重复步骤（2）、（3）和（4）得到砷标准溶液的砷浓度 * 标准体积 / 检测容量的检测数据；

【0014】（6）由控制模块控制蠕动泵通过多通阀从稀释室向定量管泵入标准体积倍数的砷标准溶液，再向定量管泵入蒸馏水定量至检测容量，由蠕动泵通过多通阀的对应通道将定量管内的砷溶液泵入比色室，重复步骤（2）、（3）和（4）得到砷标准溶液砷浓度 * 倍数 * 标准体积 / 检测容量的检测数据，将所得数据在光强和砷浓度的坐标上标出，连接得到砷浓度的标定曲线；

【0015】水样中总砷的测定

【0016】（7）由控制模块控制蠕动泵通过多通阀从样品瓶向定量管泵入检测容量的水样，由蠕动泵通过多通阀的对应通道将定量管内的砷溶液泵入比色室，重复步骤（2）、（3）和（4）得到样品的检测数据，通过步骤（6）中得到的砷浓度的标定曲线计算出样品中总砷的含量。

【0017】其中分析步骤（2）中的显色剂优选：
该显色剂显色反应的选择性较其它像钼、酸铵之类的更具选择性，无机砷和有机砷均能与该显色剂在室温下迅速完成，配合物的吸光度至少可以稳定存在3小时，不仅大大有利于在线仪器测量的稳定性，而且还可省去样品的消化，不过若是测量特别脏的水质，考虑到比色皿的洁净性，在预处理阶段还是要加一消化装置以破坏带粘性的一些有机物。
具体实施方式

[0021] 下面结合实施例并附图对本发明作进一步详细说明。

[0022] 参照图 1 的低检测下限总砷分析仪，包括比色皿 11，设置在比色皿 11 一侧的
测量光源 9 以及设置在比色皿 11 另一侧与测量光源 9 对应位置的光电转换模块 12，比色皿
11 管接有一多通阀 7 的进气口，多通阀 7 的进气口管为管径大于 1.5mm 的进口改型聚四
氟乙烯透明软管，该多通阀 7 的其它进气口管分别管接有硫酸试剂瓶 1、蒸馏水瓶 3、显色剂
瓶 4、样品瓶 5、屏蔽剂试剂瓶 8、稀释剂 6、废液桶 14 和定量管 13，定量管 13 内安装有液位
计 2 并管接有蠕动泵 15，多通阀 7 电连接有 PLC 模块 16，该 PLC 模块 16 电连接液位计
2、蠕动泵 15 以及人机接口 17，其中比色皿 11 内设置有至少带两侧喷洗面的喷洗头 10，该喷洗
头 10 的其中二侧喷洗面分别面向测量光源进行比色皿 11 的内壁处。

[0023] 使用本发明进行饮用水总砷在线分析的步骤为：

[0024] 硫浓度标定点的测定

[0025] (1)，由 PLC 模块 16 控制蠕动泵 15 通过多通阀 7 从蒸馏水瓶 3 向定量管 13 泵入
蒸馏水定量至 50ml，再由蠕动泵 15 通过多通阀 7 的相应通道将定量管 13 内的蒸馏水泵入
比色室 11，通过下一步骤采集空白对比数据；

[0026] (2)，由 PLC 模块 16 控制蠕动泵 15 和多通阀 7 从硫酸试剂瓶 1 显色剂瓶 4、屏蔽剂
试剂瓶 8 向比色室 11 泵入硫酸溶液、显色剂、屏蔽剂，而后由 PLC 模块 16 控制蠕动泵 15 和
多通阀 7 向比色室 11 不断地泵入空气，使各试剂间、样品与试剂间充分混合；

[0027] (3)，然后由 PLC 模块 16 控制测量光源 9 和光电转换模块 12 对比色室 11 内的溶
液进行光电测量，由 PLC 模块 16 采集到光电测量数据并贮存在 PLC 模块 16 内的贮存器中；

[0028] (4)，将比色室 11 内已检测过的溶液泵入废液桶 14，而后由喷洗头 10 向比色室 11
内喷射冲洗液，喷洗头 10 的二侧喷洗面分别面向测量光源进行比色皿 11 的内壁处，然后将
比色室 11 内的冲洗液泵入废液桶 14；

[0029] (5)，向稀释剂 6 注入 100ml 浓度为 1μg/ml 硫标准溶液作为母液，由 PLC 模块 16
控制蠕动泵 15 通过多通阀 7 从稀释剂 6 向定量管 13 泵入 1ml 的硫标准溶液，再向定量管
13 泵入蒸馏水定量至 50ml，由蠕动泵 15 通过多通阀 7 的相应通道将定量管 13 内的硫溶液
泵入比色室 11，重复步骤 (2)、(3) 和 (4) 得到含硫为 0.02μg/ml 硫标准溶液的检测数据；

[0030] (6)，分四次重复步骤 (5) 由 PLC 模块 16 控制蠕动泵 15 通过多通阀 7 从稀释剂 6
向定量管 13 泵入 2.5ml、5ml、7.5ml、10ml 的硫标准溶液，每次都向定量管 13 泵入蒸馏水定
量至 50ml，由蠕动泵 15 通过多通阀 7 的相应通道将定量管 13 内的硫溶液泵入比色室 11，
每次重复步骤 (2)、(3) 和 (4)，从而得到含硫分别为 0.05μg/ml、0.1μg/ml、0.15μg/ml、
0.2μg/ml 硫标准溶液的的检测数据，将所得数据在光强和硫浓度的坐标上标出，连接得到
硫浓度的标定曲线；

[0031] 水样中总砷的测定

[0032] (7)，由 PLC 模块 16 控制蠕动泵 15 通过多通阀 7 从样品瓶 5 向定量管 13 泵入 50ml
的待测水样，由蠕动泵 15 通过多通阀 7 的相应通道将定量管 13 内的硫溶液泵入比色室 11，
重复步骤 (2)、(3) 和 (4) 得到样品的检测数据，通过步骤 (6) 中得到的硫浓度的标定曲线
calculating the sample total arsenic content.
其中分析步骤（2）中的显色剂为：

```
\[
\text{H}_{2}\text{C} \quad \text{N} \quad \text{C} = \text{S} \quad \text{N} \quad \text{CH}_{2} \text{H}_{2} \\
\text{H}_{2}\text{C} \quad \text{S} \quad \text{C} \quad \text{N} \quad \text{CH}_{2} \\
\text{CH}_{3} \quad \text{CH}_{3}
\]
```

以上是对本发明低检测下限总砷在线分析仪的结构进行了阐述，用于帮助理解本发明。但本发明的实施方式并不受上述实施例的限制，本发明还可用于比色法检测其它重金属元素。在步骤（2）中还可以在比色室内使用磁力搅拌等搅拌装置替代向比色室中充气的方式，本发明中的还可改为多个蠕动泵、注射器加上多通阀、多个单通阀等其它结构，其中光源部分可根据实际情况设计成双光源使得在硬件上实现实时参比测量，也可设计成单光源在 PLC 控制下实现参比测量。任何未背离本发明原理下所作的改变、修饰、替代、组合、简化，均应为等效的置换方式，都包含在本发明的保护范围之内。
图 1