(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 102694068 A
(43) 申请公布日 2012.09.26

(21) 申请号 201210162587.7
(22) 申请日 2012.05.23
(71) 申请人 中南大学
 地址 410083 湖南省长沙市岳麓区麓山南路
 932 号
(72) 发明人 赖延清 陈志伟 张坤 刘芳洋
 赵联波 蒋良兴 李勍 刘业翔
(74) 专利代理机构 长沙市融智专利事务所
 43114
 代理人 邓建辉

(51) Int. Cl.
 H01L 31/18 (2006.01)
 H01L 31/032 (2006.01)

(54) 发明名称
 一种铜铟镓硒薄膜表面修饰的方法

(57) 摘要
 一种铜铟镓硒薄膜表面修饰的方法，涉及光电功能材料和新能源技术领域。本发明的特点在于：在铜铟镓硒薄膜上沉积一定厚度的金属薄膜或合金薄膜，再将其置于反应性气氛下高温退火，沉积的金属或合金与铜铟镓薄膜表面的铜硒二次相（Cu₃Se）反应形成宽带隙的铜硒多元金属化合物，达到除去 Cu₃Se

目的。该表面修饰方法避免了传统修饰方法采用 KCN 裁蚀 Cu₃Se 有剧毒不环保的缺点，具有成本低、重现性好和适合薄膜大面积生长等优点，可实现薄膜表面带隙宽度的提高和等度带隙的形成，且明显降低 pn 结界面复合，有效提高器件的开路电压。
1. 一种铜铟镓硒薄膜表面修饰的方法，其特征在于：在铜铟镓硒薄膜上沉积金属或合金薄膜，再将其置于反应性气氛下高温退火，所述的金属或合金薄膜含有锌（Zn）、铝（Al）、锡（Sn）、锑（Sb）、铋（Bi）中的一种或多种元素，所述的金属或合金薄膜的厚度为100nm～2000nm；所述的反应性气氛为含硒或/和硫的气氛，所述的高温退火的温度为200～1000℃，时间为0.01～4h。

2. 根据权利1所述的铜铟镓硒薄膜表面修饰的方法，其特征在于：所述的金属或合金薄膜的沉积方式为电沉积、溅射或蒸镀中的一种。

3. 根据权利2所述的铜铟镓硒薄膜表面修饰的方法，其特征在于：所述的电沉积方式为恒电位电沉积、恒电流电沉积或者脉冲电沉积中的一种，沉积温度为10～100℃，沉积时间为0.1～5h；采用恒电位沉积时电流密度为-3.0V～-0.1V(vs. SCE)；采用恒电流沉积时电流密度为-10～-0.1mA/cm²；采用脉冲沉积法沉积时，脉冲电位波形为方波、三角波或正弦波，脉冲电位为-3.0～-0.1V(vs. SCE)，占空比为5%～100%，脉冲周期为1～1500ms。

4. 根据权利2所述的铜铟镓硒薄膜表面修饰的方法，其特征在于：所述的溅射方式为单靶溅射或多靶溅射，溅射时间为0.1～10h，溅射功率为1～600W，溅射时腔体内气压为0.1～20Pa。

5. 根据权利2所述的铜铟镓硒薄膜表面修饰的方法，其特征在于：所述的蒸发方式为一步蒸发、两步蒸发或三步蒸发中的一种，蒸发材料选用粉末、球形颗粒和线性材料中的至少一种，蒸发材料纯度为99.9%～99.999%；蒸发舟距基片距离为1～100cm，蒸发电流为10～200A，工作压强为1×10⁻¹～1×10⁻³Pa，预蒸镀时间为10s～1000s，蒸发工作时间为10s～1200s，基底温度为25～1000℃。

6. 根据权利1或2所述的铜铟镓硒薄膜表面修饰的方法，其特征在于：所述的反应性气氛中的硒化硒、硒化氢或二乙基硒中的至少一种作为硒源提供。

7. 根据权利1或2所述的铜铟镓硒薄膜表面修饰的方法，其特征在于：所述的反应性气氛中的硫化硒、硫粉、硫化锡或硫化锡中的至少一种作为硫源提供。

8. 根据权利1或2所述的铜铟镓硒薄膜表面修饰的方法，其特征在于：所述的高温退火的硒源、硫源通过载气运输，所述的载气选自氢气、氮气、氯气中的至少一种，载气流量为1～20000scm。
说明 书

一种铜铟镓硒薄膜表面修饰的方法

技术领域
[0001] 本发明涉及一种薄膜表面修饰的方法，并特别涉及一种铜铟镓硒薄膜表面修饰的方法。

背景技术
[0002] 太阳电池是解决日益严重的能源危机和环境保护的有效途径，基于薄膜技术的第二代薄膜太阳电池可大幅度节省原材料，具有低成本优势，因而成为研发热点。在众多薄膜太阳电池中，以具有黄铜矿结构的硫化物铜铟镓硒（化学式为 CuIn_{1-x}Ga_{x}Se_{2}，x=0~1）作为光吸收层的薄膜太阳电池（简称 CIGS 太阳电池）由于其转换效率高，稳定性好，制备简单等特点，最受人们关注，成为研究的热点和重点。
[0003] 国内外科研工作者对此进行了大量的研究，并取得了巨大的进展，基于 CIGS 系薄膜太阳电池最高转化效率已经达到 20.3%，已经接近目前市场占有率最高的硅太阳电池的效率。但是，CIGS 系薄膜太阳电池仍没有得到大规模化的产业运作，其自身仍然存在很多难题亟待解决。
[0004] 其中主要存在两个难以解决的问题，第一个问题是：在沉积过程中，薄膜表面易生成高电导率、恶化器件性能的 Cu_{3}Se 二次相团簇和氧化物 In_{2}O_{5} 等，破坏薄膜形貌和均匀性。
[0005] 第二个问题是难以实现 CIGS 薄膜带隙的梯度分布。高效率电池用薄膜的带隙要求在厚度方向（纵向）上呈双梯度分布，即带隙在表面较宽（提高开路电压并降低界面复合），内部逐渐降低（增强长波响应，提高短路电流密度），而在基底附近又逐渐上升（促进少子分离和抑制界面复合）。这就要求决定 Ga/(In+Ga) 也呈表面和内部高而内部低的双梯度分布，而目前所选用的沉积方法本身在 Ga 就比较困难，而对这种元素的双梯度分布更是难以实现。
[0006] 第一个问题通常采用化学处理除去薄膜表面硫化物的方法来解决。最常用的化学处理方式之一是采用一定浓度的 KCN 溶液化学刻蚀退火处理后的 CIGS 薄膜。KCN 仅刻蚀除去二次相 Cu_{3}Se，并不会对 In 的其他化合物产生较大的影响。但 KCN 有剧毒，而且刻蚀容易导致薄膜形貌的恶化，造成器件性能的下降。因此在一定程度上限制了 CIGS 薄膜电池产业化中的应用与推广。
[0007] 目前解决第二个问题的主要思路是物理气相沉积（PVD）沉积技术在 CIGS 预制层中沉积额外的同组分元素 In、Ga 和 Se，形成富 In、Ga 而贫 Cu 的 CIGS 薄膜。这实际上是一种多步沉积的方式，仅对薄膜整体成分进行调整，并不属于表面修饰范畴。并且由于引入了先进复杂昂贵的 PVD 技术，导致成本飙升，精确控制困难，工艺流程冗长，而且重现性很差，难以实现大面积和大规模制备。

发明内容
[0008] 本发明所要解决的技术问题是提供一种环境友好、成本低、精确控制容易、工艺流程短、能实现大面积和大规模制备的铜铟镓硒薄膜表面修饰的方法。
为了解决上述技术问题，本发明提供的铜铟镓硒薄膜表面修饰的方法，在铜铟镓硒薄膜上沉积金属或合金薄膜，再将其置于反应性气氛下高温退火，所述的金属或合金薄膜含有锌（Zn）、铝（Al）、锡（Sn）、镉（Cd）、铋（Bi）中的一种或多种元素，所述的金属或合金薄膜的厚度为100nm ~ 2000nm；所述的反应性气氛为含硒或/和硫的气氛，所述的高温退火的温度为200 ~ 1000℃，时间为0.01 ~ 4h。

所述的金属或合金薄膜的沉积方式为电沉积、溅射或蒸镀中的一种。

所述的电沉积方式为恒电位电沉积、恒电流电沉积或者脉冲电沉积中的一种，沉积温度为10 ~ 100℃，沉积时间为0.1 ~ 5h；采用恒电位沉积时电极电位为-3.0V ~ -0.1V（vs. SCE）；采用恒电流沉积时电流密度为-10 ~ -0.1mA/cm²；采用脉冲法沉积时，脉冲电位波形为方波、三角波或正弦波，脉冲电位为-3.0 ~ -0.1V（vs. SCE），占空比为5% ~ 100%，脉冲周期为1 ~ 1500ms。

所述的溅射方式为单靶溅射或多靶溅射，溅射时间为0.1 ~ 10h，溅射功率为1 ~ 600w，溅射时腔体内气压为0.1 ~ 20Pa。

所述的蒸发方式为一步蒸发，两步蒸发或三步蒸发中的一种，蒸发材料选用粉末、球形颗粒和线性材料中的至少一种，蒸发材料纯度为99.9% ~ 99.999%；蒸发舟距基片距离为1 ~ 100cm，蒸发电流为10 ~ 200A，工作压强为1×10⁻¹ ~ 1×10⁻⁴Pa，预蒸发时间为10s ~ 1000s，蒸发工作时间为10s ~ 1200s，基底温度为25 ~ 1000℃。

所述的反应性气氛中的硒由硒粉、硒化氢或二乙基硒中的至少一种作为硒源提供。

所述的反应性气氛中的硫由硫化氢、硫粉、二硫化锡或硫化锡中的至少一种作为硫源提供。

所述的高温退火的硒源、硫源通过载气运输，所述的载气选自氧、氮、氢、氖气中的至少一种，载气流量为1 ~ 20000sccm。

采用上述技术方案的铜铟镓硒薄膜表面修饰的方法，由于在铜铟镓硒薄膜上沉积一定厚度的金属薄膜或合金薄膜，再将其置于反应性气氛下高温退火。高温下Cu₆Se₂二次相将在预置层扩散形成团簇富集，沉积的一定厚度的金属或合金薄膜在高温反应性气氛（含硒、含硫或同时含硒和硫）下将与这些Cu₆Se₂二次相反应生成铜硒多金属化合物（Cu₆M₆Se₁₂₄₄，其中M为锌（Zn）、铝（Al）、锡（Sn）、镉（Cd）、硫（Sb）、铋（Bi）的至少一种且x,y=0 ~ 1）。该方法有效地避免了Cu₆Se₂二次相损害器件性能，且反应产物具有更高的带隙宽度，可有效提高薄膜表面的带隙宽度和器件的开路电压。同时，在高反应性气氛下高温退火处理下，不同金属元素在铜铟镓硒化合物中的扩散速度不一致，这将促进薄膜形成金属元素梯度分布即带隙宽度梯度分布的优质吸收层材料。该薄膜修饰方法避免了传统修饰方法采用KCN刻蚀铜硒二次相（Cu₆Se₂）有剧毒不环保的缺点，具有成本低、重现性强和适合薄膜大面积生长等优点，可实现薄膜的表面带隙宽度的提高和梯度带隙的形成，有效提高器件的开路电压，且明显降低pn结界面复合。

其有益效果在于以下几点：

1. 本发明与传统表面修饰方法相比，能够有效去除薄膜表面的Cu₆Se₂二次相，避免了采用KCN刻蚀有剧毒不环保的问题，克服了PVD技术设备昂贵、工艺流程冗长、重现性差且难以大面积和大规模制备的缺点。
2. Cu(In, Ga)Se$_2$ 中 Ga 替代 In 起到调高带隙宽度的作用，使铜铟镓硒薄膜更加接近太阳能电池材料对带隙宽度需求的理想值 1.45eV。研究表明，元素锌 (Zn)、铝 (Al)、锡 (Sn)、锑 (Sb)、铋 (Bi) 也可以替代 In 起到提高带隙宽度的作用。本发明采用来源广、丰度大、制备容易且成本低廉的金属替代 Ga，有效提高铜铟镓硒薄膜表面的带隙宽度和器件的开路电压；同时，高温下这些金属比 Ga 更容易扩散至半导体薄膜内部，并且不同金属元素在铜铟镓硒化合物中的扩散速度不一致，这将促进薄膜形成金属元素梯度分布即带隙宽度梯度分布的优质吸收层材料。

3. 本发明能够为新一代无镉薄膜太阳能电池器件提供必要的技术支持。沉积的锌 (Zn)、铝 (Al)、锡 (Sn)、锑 (Sb)、铋 (Bi) 金属或合金薄膜在高温反应性气氛下容易与铜铟镓硒薄膜表面的铜化生成 (Cu$_2$Se) 发生化学反应生成铜锌硒 (CuZnSe$_2$，禁带宽度 3.4eV)、铜铝硒 (CuAlSe$_2$，禁带宽度介于 2.5eV～2.7eV)、铜锡硒 (CuSnSe$_2$，禁带宽度 2.36eV)、铜锑硒 (CuSbSe$_2$，禁带宽度 1.5eV)、铜铋硒 (CuBiSe$_2$，禁带宽度 1.4～1.6eV) 等，这些可能生成的 Cu$_x$M$_{1-x}$Se$_2$，x=0～1) 致密均匀分布在铜铟镓硒表面，与铜铟镓硒吸收层形成带隙宽度梯度结构，调节吸收层与窗口层晶格匹配。当优化工艺控制生成 Cu$_x$M$_{1-x}$Se$_2$，x=0～1) 薄膜的厚度至 50nm，其可取代 CdS 充当缓冲层。

具体实施方式

下面结合实施例对本发明作进一步说明。

实施例 1:

该实施例说明本发明提供的一种铜铟镓硒薄膜表面修饰的方法。

步骤 (a): 铜铟镓硒预制层沉积制备

采用恒电位电沉积制备 Cu(In, Ga)Se$_2$，分别以 1cm ×1cm 镀 Mo 的玻璃、高纯石墨片、饱和甘汞 (SCE) 作为工作电极，对电极和参考电极。电解液由 CuCl$_2$、InCl$_3$、GaCl$_3$、H$_2$SeO$_3$ 以及一定量的 NH$_4$SO$_4$Na 组成。利用 PAR273A 进行恒电位电化学沉积，电极电位为 -3.0V～-0.1V (vs. SCE)，沉积时间为 2h，沉积温度为 45℃，沉积过程不搅拌。沉积制备的预置层用去离子水洗涤后干燥。所述恒电位电沉积工艺，其技术为本领域技术人员所公知。

本发明对电沉积制备方法没有特殊要求，制备所得铜铟镓硒预制层厚度为 1500～3200nm。

步骤 (b): 预制层硒化退火处理

将经过上述步骤处理的预置层置于管式电阻炉中下高温硒化退火，采用硒粉提供硒气氛。退火温度为 120℃，退火时间为 4h。载气为 Ar，通气速率为 140sccm，退火处理得到铜铟镓硒薄膜。

步骤 (c): 铜铟镓硒薄膜的表面镀膜修饰

使用纯度为 99.95% 铝粒作为蒸发材料，打开电阻式蒸发镀膜机，将步骤 (b) 制备所得铜铟镓硒薄膜置于蒸发设备基座上，蒸发舟基片距离为 92cm，抽腔体真空至 5.4×10$^{-4}$Pa。加热衬底温度至 900℃，打开蒸发电流控制键，旋转电流调节开关使电流达到 130A，预蒸发 15s，随后快速调整电流至 185A (电流大小通过电流监测表监测)，蒸发 240S，
镀膜厚度为 370nm。

步骤 (d)：修饰后铜铟镓硒薄膜在反应性气氛下退火处理

步骤 (e)：将经过上述步骤处理的修饰后铜铟镓硒薄膜置于管式电阻炉，在同时含硒和硫的气氛下高温退火，硒气和硫气氛分别采用硒粉和硫粉提供。退火温度为 500℃，退火时间为 1h。载气为 Ar，通气速率为 920sccm。

所述修饰方法有效去除了铜铟镓硒薄膜表面的 Cu₂Se 二次相，以其作为光吸收层制得了开路电压为 278 ～ 402mV 的薄膜太阳电池器件。

实施例 2：

该实施例说明本发明提供的一种铜铟镓硒薄膜表面修饰的方法。

步骤 (a)：铜铟镓硒预制层沉积制备

采用 DM2450A 型真空镀膜机制备铜铟镓硒预制层，在真空室内安装自行设计加工的 Cu, In, Ga 和 Se 独立蒸发源、衬底支架和衬底加热器。蒸发源由陶瓷圆柱型坩埚、缠绕在坩埚外的钨丝加热器以及坩埚底部的热电偶组成，采用自动温度控制仪控温。蒸发所用材料均为球形颗粒状，纯度为 99.999%，蒸发源呈金刚石形排列，均倾斜一个微小的角度，衬底距离蒸发源 28cm。硒蒸发源安装的位置高于 Cu, In 和 Ga 蒸发源，抽腔体真空至 3.7×10⁻³Pa。具体工艺步骤为：

第一步：共蒸发沉积 In, Ga 和 Se, 衬底温度保持在 270℃，调节电流至 120A，沉积 960s。

第二步：共蒸发 Cu 和 Se。衬底温度从 270℃升至 650℃，改为恒功率加热衬底，调节电流至 150A，工作 300s，此时形成了富铜的 CIGS 薄膜。

第三步：蒸发沉积 In, Ga 和 Se，调节电流至 140A，共 800s，使表面形成轻微富 In 层。沉积制备的预置层用去离子水洗涤后干燥。

本发明对蒸发镀膜机制备铜铟镓硒预制层没有特殊要求，本发明对蒸镀方法没有特殊要求，制备所得铜铟镓硒预制层厚度为 850 ～ 1250nm。

步骤 (b)：铜铟镓硒薄膜的表面镀膜修饰

采用磁控溅射沉积 Sb-Bi 合金膜对铜铟镓硒薄膜进行表面修饰，溅射时间分别为 0.2h, 3h, 溅射功率为 550, 200W，溅射腔体内气压分别为 5Pa, 10Pa，沉积的合金膜厚度为 6850nm。

步骤 (c)：修饰后铜铟镓硒薄膜在反应性气氛下退火处理

将经过上述步骤处理的铜铟镓硒薄膜置于电阻炉，在硒气氛下高温退火，采用硒化氢提供硒气氛。退火温度为 950℃，退火时间为 0.04h。载气为氢气，通气速率为 450sccm。

所述修饰方法有效去除了铜铟镓硒薄膜表面的 Cu₂Se 二次相，以其作为光吸收层制得了开路电压为 518 ～ 552mV 的薄膜太阳电池器件。

实施例 3：

该实施例说明本发明提供的一种铜铟镓硒薄膜表面修饰的方法。

步骤 (a)：铜铟镓硒预制层沉积制备

采用喷涂热解法制备铜铟镓硒预制层，其方法为本技术领域人员所公知。本发明对镀锌处理的方法没有特殊要求，本实施例用该方法制备得到厚度为 300nm 的铜铟镓硒预制层。
步骤 (b): 预制层真空退火处理

步骤 (a): 步骤得到的预制层薄膜置于管式电阻炉中真空退火, 退火温度为 650℃, 退火时间为 0.25h。退火处理得到铜铟镓硒薄膜。

步骤 (c): 铜铟镓硒薄膜的表面镀膜修饰

采用脉冲电沉积进行修饰。在溶胀组成为 NaCl, 0.04mol / L NH₄Cl, 0.1mol / L KCl, 0.1mol / L H₂SO₄, 0.01mol / L SeO₂ 的 500ml 水溶液中, 用稀 HCl 将溶液 pH 调整至 2.2; 采用单槽电解槽, 以退火处理后得到的半导体薄膜作为工作电极, 大面积 Pt 网为对电极, 饱和甘汞电极 (SCE) 为参比电极; 电流密度参数如下: 脉冲电流波形为方波, 脉冲电位 -0.9 ~ -0.1V (vs. SCE), 占空比 20 ~ 80%, 脉冲周期 10 ~ 630ms; 电沉积溶剂温度为 12℃, 沉积时间为 5h。所述脉冲电沉积工艺, 其技术为本领域技术人员所公知。

步骤 (d): 本发明对电沉积处理的方法没有特殊要求, 本实施例制备所得 Sn-Se 二元合金薄膜厚度为 1.200 ~ 1500nm。

实施例 4:

该实施例说明本发明提供的一种铜铟镓硒薄膜表面修饰的方法。

步骤 (a): 预制层沉积制备

步骤 (b): 预制层沉积退火处理形成铜铟镓硒薄膜

步骤 (c): 铜铟镓硒薄膜的表面镀膜修饰

步骤 (d): 修饰后铜铟镓硒薄膜在反应性气氛下退火处理

将经过上述步骤处理的铜铟镓硒薄膜置于电阻炉中, 在同时含硒和硫的气氛下高温退火, 采用二乙基硒作为退火硒源和硫化氢气氛分别提供硒气氛和硫气氛。退火温度为 600℃, 退火时间为 1.4h。载气均为氮气, 通气速率 450sccm。

所述修饰工艺得以有效去除了铜铟镓硒薄膜表面的 Cu,Se 二次相, 以其作为光吸收层在薄膜太阳能电池中制得了开路电压为 608~617mV 的薄膜太阳能电池器件。
退火，采用硒化氢和二硫化锡分别提供硒气和硫气。退火温度为 400，退火时间为 1h，载气均为氩气，通气速率为 380sccm。

[0071] 所述修饰方法有效除去了铜铟镓硒薄膜表面的 Cu₂Se 二次相，以其作为光吸收层制得了开路电压为 572 ~ 634mV 的薄膜太阳能电池器件。

[0072] 实施例 5：

[0073] 该实施例说明本发明提供的一种铜铟镓硒薄膜表面修饰的方法。

[0074] 步骤 (a)：铜铟镓硒制备层沉积制备

[0075] 采用恒电流电沉积制备 CuInSe₂，实验以 1cm×1cm 的金属基片为基底电沉积制备薄膜，高纯石墨片为对电极。由 PAR273A 电化学工作站提供恒电流。电解液由一定浓度的 CuCl₂、InCl₃、H₂SeO₃、LiCl（支持电解质）组成；用浓盐酸调节 pH 值为 2.0；95℃常压下无搅拌一步电沉积 0.5h，电流密度为 -10 ~ -0.1mA/cm²。沉积制备的预置层用去离子水洗涤后干燥。所述恒电流电沉积工序，其技术为本领域技术人员所公知。

[0076] 本发明对电沉积制备方法没有特殊要求，制备所得铜铟镓硒制备层厚度为 1000 ~ 2700nm。

[0077] 步骤 (b)：铜铟镓硒薄膜的表面镀膜修饰

[0078] 使用纯度为 99.995% 锡粒，线性材料锑丝作为蒸发材料，打开电阻式蒸发镀膜机，将步骤 (b) 制备所得半导体置于蒸发设备基底上，蒸发舟距基片距离为 10cm，抽腔体真空至 2.6×10⁻⁴Pa，保持 30min。加热衬底温度至 50℃，打开蒸发电流控制键，快速旋转电流调节开关使电流达到 20A，预蒸镀 300s，随后调整电法工作电流至 135A（电流大小通过电流监测表监测），蒸发 1200s，使用台阶仪（型号为 dektak150）测得铝锡合金镀膜厚度为 730nm。

[0079] 步骤 (c)：修饰后铜铟镓硒薄膜在反应性气氛下退火处理

[0080] 将经过上述步骤处理的铜铟镓硒薄膜置于管式电阻炉中，在含硒和硫气氛下高温退火，采用硒粉和硫化锡分别提供硒气和硫气。退火温度为 980℃，退火时间为 0.75h。载气为氢气，通气速率为 12000sccm。

[0081] 所述修饰方法有效除去了铜铟镓硒薄膜表面的 Cu₂Se 二次相，以其作为光吸收层制得了开路电压为 545 ~ 582mV 的薄膜太阳能电池器件。

[0082] 实施例 6：

[0083] 该实施例说明本发明提供的一种铜铟镓硒薄膜表面修饰的方法。

[0084] 步骤 (a)：铜铟镓硒制备层沉积制备

[0085] 采用丝网印刷技术制备铜铟镓硒制备层，其方法为本技术领域人员所公知，本发明对该方法没有特殊要求，本实施例制得厚度为 4682nmCIGS 制备层。

[0086] 步骤 (b)：制备层硒化退火处理形成铜铟镓硒薄膜

[0087] 将经过上述两步骤处理的铜铟镓硒薄膜置于管式电阻炉下高温硒化退火。退火温度为 370℃，退火时间为 2.6h。采用硒化氢气体作为退火硒源，载气为氢气，通气速率为 385sccm，退火处理得到铜铟镓硒薄膜。

[0088] 步骤 (c)：铜铟镓硒薄膜的表面镀膜修饰

[0089] 采用在盛有 400 ~ 500ml 二甲基亚砜 (DMSO) 和 0 ~ 100ml 水的单槽电解槽中溶解 0.05mol ZnO, 0.02mol SeO₂, 0.5mol NaSO₃；以铜铟镓硒薄膜为工作电极，大面积 Pt 网为对电极，双盐桥系统连接的饱和甘汞电极 (SCE) 为参比电极；采用如下电沉积参数；脉冲电位
波形为三角波，脉冲电位 -2.8 ~ -1.0V(vs SCE)，占空比 5 ~ 30%，脉冲周期 900 ~ 1450ms；电沉积溶液温度为 72℃，沉积时间为 1.2h。所述脉冲电沉积工序，其技术为本领域技术人员所公知。

【0090】本发明对电沉积处理的方法没有特殊要求，制备所得用于表面修饰的 Zn-Se 合金金属薄膜厚度为 127 ~ 345nm。

【0091】步骤 (d): 修饰后铜铟镓硒薄膜在反应性气氛下退火处理

【0092】将经过上述两步骤处理的铜铟镓硒薄膜置于管式电阻炉中，在含硒气氛下高温退火，采用硒化氢气体提供硒气氛。退火温度为 870℃，退火时间为 0.5h。载气为氢气，通气速率为 1782sccm。

【0093】所述修饰方法有效除去铜铟镓硒薄膜表面的 Cu,Se 二次相，以其作为光吸收层制得的开路电压为 543 ~ 595mV 的薄膜太阳能电池器件。

【0094】实施例 7：

【0095】该实施例说明本发明提供的一种铜铟镓硒薄膜表面修饰的方法。

【0096】步骤 (a): 铜铟镓硒预制层沉积制备

【0097】采用恒电位电沉积制备 Cu(In, Ga)Se₂, 分别以 1cm×1cm 镀 Mo 的玻璃、溅射电极、饱和甘汞 (SCE) 作为工作电极、对电极和参考电极。电解液由 CuCl₂, InCl₃, GaCl₃, H₂SeO₃ 及一定量的 KSCN 组成。利用 PAR273A 进行恒电位电化学沉积，电极电位为 -2.8V ~ -0.5V (vs. SCE), 沉积时间为 2.5h, 沉积温度为 55℃, 沉积过程中不搅拌。沉积制备的预置层用去离子水洗涤后干燥。所述恒电位电沉积工艺，其技术为本领域技术人员所公知。

【0098】本发明对电沉积制备方法没有特殊要求，制备所得铜铟镓硒预制层厚度为 1800 ~ 3500nm。

【0099】步骤 (b): 预制层硒化退火处理

【0100】将经过上述步骤处理的预置层置于管式电阻炉中下高温硒化退火，采用硒粉提供硒气氛。退火温度为 220℃，退火时间为 3.5h。载气为 Ar, 通气速率为 320sccm, 退火处理得到铜铟镓硒薄膜。

【0101】步骤 (c): 铜铟镓硒薄膜的表面镀膜修饰

【0102】使用纯度为 99.95% 锗粒作为蒸发材料，打开电阻式蒸发镀膜机，将步骤 (b) 制备所得铜铟镓硒薄膜置于蒸发设备基底上，蒸发舟距基片距离为 55cm, 抽腔体真空至 3.2×10⁻³Pa。加热至温度至 850℃, 打开蒸发电流控制键, 旋转电流调节开关使电流达到 120A, 预蒸发 18s, 随后快速调整电流至 165A (电流大小通过电流监测表监测), 蒸发 260s, 镀膜厚度为 520nm。

【0103】步骤 (d): 修饰后铜铟镓硒薄膜在反应性气氛下退火处理

【0104】将经过上述步骤处理的修饰后铜铟镓硒薄膜置于管式电阻炉中，在同时含硒和硫的气氛下高温退火，硒气氛和硫气氛分别采用硒粉和硫粉提供。退火温度为 1000℃，退火时间为 0.01h。载气为氮气，通气速率为 20000sccm。

【0105】所述修饰方法有效除去铜铟镓硒薄膜表面的 Cu,Se 二次相，以其作为光吸收层制得的开路电压为 309 ~ 432mV 的薄膜太阳能电池器件。

【0106】实施例 8：

【0107】该实施例说明本发明提供的一种铜铟镓硒薄膜表面修饰的方法。
步骤 (a): 铜铟镓硒预制层沉积制备

采用真空镀膜机制备铜铟镓硒预制层，在真空室内部安装自行设计加工的 Cu, In, Ga 和 Se 独立蒸发源、衬底支架和衬底加热器。蒸发源由陶瓷圆柱形坩埚、缠绕在坩埚外的钨丝加热器以及坩埚底部的热电偶组成，采用自动温度控制仪控温。蒸发所用材料均为球形颗粒状，纯度为 99.999%，蒸发源晶粒形排列，均倾斜一个微小的角度，衬底距离蒸发源 28cm。硒蒸发源安装的位置高于 Cu, In 和 Ga 蒸发源，抽腔体真空至 1.2×10^{-3} Pa。具体工艺步骤为：

第一步: 共蒸发沉积 In, Ga 和 Se，衬底温度保持在 250℃，调节电流至 150A，沉积 850s。

第二步: 共蒸发 Cu 和 Se。衬底温度从 250℃升至 600℃，改为恒功率加热衬底，调节电流至 120A，工作 400s，此时形成了富铜的 CIGS 薄膜。

第三步: 蒸发沉积 In, Ga 和 Se，调节电流至 150A，共 850s，使表面形成轻微富 In 层。沉积制备的预置层用去离子水洗涤后干燥。

本发明对蒸发镀膜机制备铜铟镓硒预制层没有特殊要求，本发明对蒸镀方法没有特殊要求，制备所得铜铟镓硒预制层厚度为 1000 ～ 1370nm。

步骤 (b): 铜铟镓硒薄膜的表面镀膜修饰

采用磁控溅射沉积 Sb-Zn 合金膜对铜铟镓硒薄膜进行表面修饰，溅射时间分别为 0.5h、2.5h，溅射功率为 350、120W，溅射腔体内气压分别为 2.5Pa、5Pa，沉积的合金膜厚度为 1600nm。

步骤 (c): 修饰后铜铟镓硒薄膜在反应性气氛下退火处理

经过上述步骤处理的铜铟镓硒薄膜置于电阻炉，在硒气氛下高温退火，采用硒化氢提供硒气氛。退火温度为 200℃，退火时间为 4h。载气为氮气，通气速率为 1sccm。

所述修饰方法有效除去了铜铟镓硒薄膜表面的 Cu, Se 二次相，以其作为光吸收层制得了开路电压为 522 ～ 573mV 的薄膜太阳能电池器件。