This invention relates to a salvage device, and in particular to a device for conserving the residual fluid remaining in cans, as in service stations, after dispensing the contents into the crankcase of a motor. The viscosity of the oil is such that complete drainage of the can would be prohibitive in the matter of time, so that it is customary to compromise the time permitted for emptying of the contents. The quantity remaining in the can may be considerable as negligible, in the case of a single can, and in fact the loss to the customer is no worse than it was in the days when service stations dispensed oil through the use of a measuring cup. However, in the case of canned oil, the residual oil would represent a complete economic waste if unsalvaged, and while this is negligible in the case of a single can, it becomes appreciable, cumulatively, during the course of a day in service station operations.

It is, therefore, a general object of the invention to provide a salvage means for residual oil packaged containers. Proposals looking to a solution of this problem have been made heretofore, and it is, therefore, a further object of this invention to provide a salvaging device which is more efficient and effective than those heretofore known. Yet another object is to provide a salvage device in which several containers may be permitted to drain simultaneously. A still further object is to provide a long-period drainage device which also doubles as a repository for empty cans, a related object being to achieve a visual effect wherein such a device appears to be nothing more than a repository for cans.

It is among the objects to provide a device as aforesaid, which is, additionally, simple in structure, low in cost, and easy of manufacture, operation and maintenance.

These and other objects, which will be apparent, are attained by the present invention, a preferred form of which is described in the following specification, as illustrated in the drawing, in which:

FIGURE 1 is a top plan view of the salvage system, showing a draining oil can in dash lines,

FIGURE 2 is a sectional view, taken on the plane of the line 2--2 of FIGURE 1,

FIGURE 3 is a sectional view taken on the plane of the line 3--3 of FIGURE 2,

FIGURE 4 is an enlarged view of a fragment of FIGURE 3, showing the draining can in solid lines, and partly broken away,

FIGURE 5 is a bracketed view, in perspective, of the parts of the salvage system, in exploded form, which are used in association with a trash barrel or the like, and

FIGURE 6 is a view similar to FIGURE 2, showing a modified form of collector for the salvaged oil.

Referring to the drawings by characters of reference, there is shown a cylindrical, steel barrel or container 10, of conventional construction, such as those commonly placed in the general pump area of a service station, for collection of general refuse. In the past this refuse has sometimes indiscriminately included incompletely drained oil cans, where the operators had neither the means nor the inclination to salvage the contents. In the use of the present invention, the common trash barrel can be utilized in the salvaging process. Thus, there is shown, in association with the barrel, a gang holder 12, in the form of an endless chain or a circularly disposed or split, ring-form tube. The tube 12, which may be closed, or split, as at 14, is suspended in the barrel or container 10 in an upwardly-sloping direction by hanger means which is operatively connected to the tube 12 at a plurality of spaced points thereabout and which is dependingly supported from the open top of the container. Specifically, the hanger means comprises three brackets 16, 18, 20, the first two being secured to the circular tube on about 120° spacing, and having looped ends 22 for hanging over the beaded rim 24 of the barrel. The third bracket 26, by its looped end 25, supports the tube through the intermediary of the drainage can 26 (FIGURE 2) and to this end is provided with a U-form lower end 28, to which is attached a U-form strap 30 at right angles, to provide a basket for the can 26. The latter has a top, filler opening 32, and, as seen in FIGURE 2, the circular tube is arranged at an oblique angle to the horizontal, with its lowermost point adjacent the filler opening 32 of the drainage can. At this low point, the tube is bored on its underside, for drainage, and in the bore is secured a tube or spout 34, adapted to be receiving in top filler opening 32, for precise, and leakproof positioning of the parts.

For manifold operation, the circular tube 12 is provided with a plurality of drainage stations, each comprising a segmental form of opening, with a straight chordal edge 36, and an arcuate edge 38. The opening may also be crescentic. With such an opening, a drained oil can 40 is conveniently set in the leaning position shown in FIGURE 4, with the round side of the can cooperating with arcuate side 38 of the opening, and beaded bottom edge 42 dwelling on flat side 36 of the opening, and with the can leaning against the inner surface of the barrel 10. In this position, the dispensing opening 44 of the can 40 overlies the opening in the manifold, the draining oil drips through the latter, and runs downhill through tube 12, and ultimately into can 26, the drainage proceeding at leisure, consistent with the over-all traffic in engine oil, which, of course, will vary from time-to-time, but the drainage periods may be stabilize over a long interval, such as a day's run. At the end of the allotted time the cans are dropped through the tube ring, to the bottom of the barrel. It should be noted that with the particular arrangement shown, the cans have the usual appearance of having been discarded, or trash. This is not to imply that decet is involved, but merely the avoidance of the possibility that this retrieval of what would otherwise be a distinct loss to everyone, might give rise to the suspicion on the part of the customer that he is being exploited.

In the modification shown in FIGURE 6, the can 26 is placed on the bottom of the barrel, a third hook 46 similar to hooks 16, 18 is secured to the tube near the spout 34, and the latter is provided with a flexible drain tube 48 of oil-resistant material, leading to the top opening 33 in can 26. It is also possible to run the tube 48 through the barrel 16, to a receptacle located outside of the barrel, whereby its condition of filling may be readily observed, and interchange easily made.

While a certain, preferred embodiment has been shown and described, various modifications will be apparent, in the light of this disclosure, and the invention should not, therefore, be deemed as limited, except insofar as shall appear from the spirit and scope of the appended claims.

What is claimed is:

1. A salvage device comprising an open top container having a bottom adapted to rest upon a ground surface, a gang holder embodying an endless chain disposed or split, ring-form tube, the tube 12, which may be closed, or split, as at 14, is suspended in the barrel or container 10 in an upwardly-sloping direction, hanger means operatively connected to said tube at a plurality of spaced points thereabout and dependingly supend.
3,156,270

3. The salvage device according to claim 1 wherein said drainage receptacle is supported by said further bracket.

2. The salvage device according to claim 1 wherein said hanger means comprises a pair of brackets rising from and secured at spaced points to said tube and dependingly supported from the open top of said container, and a further bracket spaced from said pair of brackets and dependingly supported from the open top of said container, and wherein said drainage receptacle is supported by said further bracket.

4. wherein said drainage receptacle is supported by said further bracket.

References Cited by the Examiner

UNITED STATES PATENTS

496,537 5/93 Purrington ----------- 141—364
2,025,639 12/35 Bradford ---------- 141—106 X
2,337,292 12/43 Champion --------- 141—375 X
2,781,065 2/57 Hofacer ----------- 141—364 X

LAVERNE D. GEIGER, Primary Examiner.