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본 발명은 질화물계 발광 소자에 관한 것으로 특히, 발광 소자의 발광 효율과 신뢰성을 향상시킬 수 있는 질화물

계 발광 소자에 관한 것이다. 이러한 본 발명은, 질화물계 발광 소자에 있어서, 반사층과; 상기 반사층 상에 위

치하는 유전체층과; 상기 유전체층 상에 위치하며 발광층을 포함하는 반도체층과; 상기 반도체층 상에 형성된 광

결정을  포함하여  구성되고,  상기  반사층으로부터  상기  발광층의  중심  사이의  거리는  (2m  +  1)λ/4n  ±

λ/8n이며, 상기 m은 0을 포함하는 자연수, λ는 방출되는 빛의 파장, n은 반도체층의 굴절률인 것을 특징으로

한다.

대 표 도 - 도10
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특허청구의 범위

청구항 1 

질화물계 발광 소자에 있어서,

반사층과;

상기 반사층 상에 위치하는 유전체층과;

상기 유전체층 상에 위치하며 발광층을 포함하는 반도체층과;

상기 반도체층 상에 형성된 광결정을 포함하여 구성되고, 

상기 반사층으로부터 상기 발광층의 중심 사이의 거리는 (2m + 1)λ/4n ± λ/8n이며, 상기 m은 0을 포함하는

자연수, λ는 방출되는 빛의 파장, n은 반도체층의 굴절률인 것을 특징으로 하며,

상기 광결정은 상기 반도체층 상에 형성된 홀 패턴 또는 기둥구조를 포함하고,

상기 유전체층은

상기 반사층 상에 제1 투명 전도성 산화물층과, 상기 제1 투명 전도성 산화물층 상에 중간층과, 상기 중간층 상

에 제2 투명 전도성 산화물층을 포함하며,

상기 중간층은 산화물 또는 질화물로 이루어지는 중간층 패턴을 포함하고,

상기 중간층 패턴 중 일부는 상기 광결정의 홀 패턴 또는 기둥구조와 같은 패턴을 포함하는 것을 특징으로 하는

질화물계 발광 소자.

청구항 2 

제 1항에 있어서, 상기 유전체층은, 오믹 전극인 것을 특징으로 하는 질화물계 발광 소자.

청구항 3 

제 1항에 있어서, 상기 유전체층은, 투명 전도성 산화물로 형성된 것을 특징으로 하는 질화물계 발광 소자.

청구항 4 

제  1항에  있어서,  상기  유전체층은,  ITO(Indium-Tin-Oxide),  IZO(Indium-Zinc-Oxide),  AZO(Aluminum-Zinc-

Oxide),  MZO(Magnesium-Zinc-Oxide),  GZO(Gallium-Zinc-Oxide)  중 어느 하나를 포함하는 것을 특징으로 하는

질화물계 발광 소자.

청구항 5 

제 1항에 있어서, 상기 발광층의 두께는 0.05 내지 0.5 λ/n인 것을 특징으로 하는 질화물계 발광 소자.

청구항 6 

제 1항에 있어서, 상기 반사층의 반사율은 50% 이상인 것을 특징으로 하는 질화물계 발광 소자.

청구항 7 

제 1항에 있어서, 

상기 홀 패턴 또는 상기 기둥 구조의 직경은, 상기 광결정의 주기를 a라 할 때, 0.25a 내지 0.45a인 것을 특징

으로 하는 질화물계 발광 소자.

청구항 8 

제 1항에 있어서, 상기 광결정의 주기는 0.7 내지 5 ㎛인 것을 특징으로 하는 질화물계 발광 소자.

청구항 9 

제 1항에 있어서, 상기 반사층은, Ag, Pt, 및 Al 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 질화물계
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발광 소자.

청구항 10 

제 1항에 있어서, 상기 반사층은, 반도체 또는 금속으로 이루어지는 지지층 상에 위치하는 것을 특징으로 하는

질화물계 발광 소자.

청구항 11 

삭제

청구항 12 

제 1항에 있어서, 

상기 중간층 패턴  사이의 공간은 제3 투명 전도성 산화물이 채워지는 것을 특징으로 하는 질화물계 발광 소자.

명 세 서

발명의 상세한 설명

    기 술 분 야

본 발명은 질화물계 발광 소자에 관한 것으로 특히, 발광 소자의 발광 효율과 신뢰성을 향상시킬 수 있는 질화[0001]

물계 발광 소자에 관한 것이다.

    배 경 기 술

발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 잘 알려진 반도체 발광 소자로서, 1962[0002]

년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화 된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통

신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다.

이러한 LED에 의해 방출되는 광의 파장은 LED를 제조하는데 사용되는 반도체 재료에 따른다. 이는 방출된 광의[0003]

파장이 가전자대(valence band) 전자들과 전도대(conduction band) 전자들 사이의 에너지 차를 나타내는 반도체

재료의 밴드갭(band-gap)에 따르기 때문이다. 

질화 갈륨 화합물 반도체(Gallium Nitride: GaN)는 높은 열적 안정성과 폭넓은 밴드갭(0.8 ~ 6.2eV)을 가지고[0004]

있어, LED를 포함한 고출력 전자부품 소자 개발 분야에서 많은 주목을 받아왔다. 

이에 대한 이유 중 하나는 GaN이 타 원소들(인듐(In), 알루미늄(Al) 등)과 조합되어 녹색, 청색 및 백색광을 방[0005]

출하는 반도체 층들을 제조할 수 있기 때문이다.

이와 같이 방출 파장을 조절할 수 있기 때문에 특정 장치 특성에 맞추어 재료의 특징들에 맞출 수 있다. 예를[0006]

들어, GaN를 이용하여 광기록에 유익한 청색 LED와 백열등을 대치할 수 있는 백색 LED를 만들 수 있다. 

이러한 GaN 계열 물질의 이점들로 인해, GaN 계열의 LED 시장이 급속히 성장하고 있다. 따라서, 1994년에 상업[0007]

적으로 도입한 이래로 GaN 계열의 광전자장치 기술도 급격히 발달하였다. 

일반적으로, 반도체 발광 다이오드(LED)의  총 발광효율은 내부양자효율과 외부추출효율로 나눌 수 있다. [0008]

내부양자효율은 LED 소자를 구성하는 물질의 특성과 관련된 양으로, 성장 과정 중에 발생하는 반도체 물질 내의[0009]

결함 여부와 전류 주입의 효율성 등에 의해 정해진다. 

이에 반해 외부추출효율은 반도체 내에서 생성된 빛이 실제로 관찰하고자 하는 외부 매질까지 빠져나오는 효율[0010]

을 일컫는 것으로, 아무런 구조적 변화가 도입되지 않는 경우 단순히 반도체와 외부 매질 사이의 굴절률 차이로

결정된다.

결과적으로, 반도체 LED의 총 발광효율은 내부양자효율과 외부추출효율의 곱으로 나타낼 수 있으며, 고효율 반[0011]

도체 LED 개발을 위해서는 이 두 효율을 동시에 개선하는 노력이 필요하다. 

    발명의 내용
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        해결 하고자하는 과제

본 발명이 이루고자 하는 기술적 과제는, 반사층과 빛이 발생하는 발광층 사이의 거리 조절을 통해 최적의 광[0012]

추출효율을 가질 수 있도록 하는 질화물계 발광 소자를 제공하는 데 있다.

        과제 해결수단

상기 기술적 과제를 이루기 위한 것으로서, 본 발명은, 질화물계 발광 소자에 있어서, 반사층과; 상기 반사층[0013]

상에 위치하는 유전체층과; 상기 유전체층 상에 위치하며 발광층을 포함하는 반도체층과; 상기 반도체층 상에

형성된 광결정을 포함하여 구성되고, 상기 반사층으로부터 상기 발광층의 중심 사이의 거리는 (2m + 1)λ/4n ±

λ/8n이며, 상기 m은 0을 포함하는 자연수, λ는 방출되는 빛의 파장, n은 반도체층의 굴절률인 것을 특징으로

한다. 상기 광결정은 상기 반도체층 상에 형성된 홀 패턴 또는 기둥구조를 포함할 수 있다. 상기 유전체층은 상

기 반사층 상에 제1 투명 전도성 산화물층과, 상기 제1 투명 전도성 산화물층 상에 중간층과, 상기 중간층 상에

제2 투명 전도성 산화물층을 포함할 수 있다. 상기 중간층은 산화물 또는 질화물로 이루어지는 중간층 패턴을

포함할 수 있다. 상기 중간층 패턴 중 일부는 상기 광결정의 홀 패턴 또는 기둥구조와 같은 패턴을 포함할 수

있다. 상기 중간층 패턴  사이의 공간은 제3 투명 전도성 산화물이 채워질 수 있다.

        효 과

본 발명은 다음과 같은 효과가 있는 것이다.[0014]

발광 소자의 반사층과 빛이 발생하는 발광층 사이의 거리 조절을 통해 추출효율 향상과 출력의 방향성을 획득할[0015]

수 있고, 이러한 거리 조절은 반도체층과 유전체층의 증착을 이용하여 효율적으로 조절 가능하다.

특히, 유전체층으로 전도성 산화물층을 도입하는 경우 증착 과정으로 두께가 조절이 가능하므로, 보강간섭 조건[0016]

에 해당하는 거리를 맞추는 것이 상대적으로 용이하다.

또한, 광결정의 식각 깊이에 따라 추출효율이 최대가 되는 최적 주기가 장주기 영역으로 이동하므로, 포토 리소[0017]

그래피을 이용한 광결정 구현이 용이해진다. 

    발명의 실시를 위한 구체적인 내용

이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.[0018]

본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하[0019]

에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발

명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다. 

층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로[0020]

다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다. 표면

과 같은 구성 요소의 일부가 '내부(inner)'라고 표현된다면 이것은 그 요소의 다른 부분들 보다도 소자의 외측

으로부터 더 멀리 있다는 것을 의미한다고 이해할 수 있을 것이다. 

나아가 '아래(beneath)' 또는 '중첩(overlies)'과 같은 상대적인 용어는 여기에서는 도면에서 도시된 바와 같이[0021]

기판 또는 기준층과 관련하여 한 층 또는 영역과 다른 층 또는 영역에 대한 한 층 또는 영역의 관계를 설명하기

위해 사용될 수 있다. 

이러한 용어들은 도면들에서 묘사된 방향에 더하여 소자의 다른 방향들을 포함하려는 의도라는 것을 이해할 수[0022]

있을 것이다. 마지막으로 '직접(directly)'라는 용어는 중간에 개입되는 어떠한 요소가 없다는 것을 의미한다.

여기에서 사용되는 바와 같이 '및/또는'이라는 용어는 기록된 관련 항목 중의 하나 또는 그 이상의 어느 조합

및 모든 조합을 포함한다.

비록 제1, 제2 등의 용어가 여러 가지 요소들, 성분들, 영역들, 층들 및/또는 지역들을 설명하기 위해 사용될[0023]

수 있지만, 이러한 요소들, 성분들, 영역들, 층들 및/또는 지역들은 이러한 용어에 의해 한정되어서는 안 된다

는 것을 이해할 것이다. 

본 발명의 실시예들은 예를 들어, 사파이어(Al2O3)계 기판과 같은 비도전성 기판상에 형성된 질화갈륨(GaN)계 발[0024]

광 소자를 참조하여 설명될 것이다. 그러나 본 발명은 이러한 구조에 한정되는 것은 아니다. 
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본 발명의 실시예들은 도전성 기판을 포함하여 다른 기판을 사용할 수 있다. 따라서 GaP 기판상의 AlGaInP 다이[0025]

오드, SiC 기판상의 GaN 다이오드, SiC 기판상의 SiC 다이오드, 사파이어 기판상의 SiC 다이오드, 및/또는 GaN,

SiC, AlN, ZnO 및/또는 다른 기판상의 질화물계 다이오드 등의 조합이 포함될 수 있다. 더구나 본 발명은 활성

영역은 다이오드 영역의 사용에 한정되는 것은 아니다. 또한 활성영역의 다른 형태들이 본 발명의 일부 실시예

들에 따라서 사용될 수도 있다.

반도체 발광 소자(LED)의 추출효율은 빛이 발생하는 반도체 발광층과 최종적으로 빛을 관측하는 매질(공기 또는[0026]

에폭시) 사이의 굴절률 차이에 의하여 결정된다. 반도체 매질은 통상적으로 높은 굴절률(n > 2)을 가지므로, 광

추출효율은 대개 수 %에 지나지 않는다. 

예를 들어, 질화갈륨(n = 2.4) 기반의 청색 발광 소자의 경우, 외부 물질을 에폭시(n = 1.4)로 가정했을 때 발[0027]

광 소자의 상층부를 통한 광 추출효율은 약 9% 정도에 불과하다. 이를 제외한 나머지 빛들은, 소자 내부에 전반

사 과정에 의해 갇혀 있으면서, 양자우물 층과 같은 흡수층에 의해 소실된다. 

이러한 반도체 발광 소자의 추출효율을 개선하기 위해서는 전반사 과정을 겪는 빛들을 외부로 추출할 수 있도록[0028]

구조를  변형해야  한다.  이러한  구조  변형  중  가장  단순한  방안은  굴절률이  높은  물질로  이루어진  반구

(hemisphere)를 발광 소자 상층부에 덧씌우는 것이다. 

입사각은 빛과 입사면 사이의 각이므로, 반구의 각 점에서는 입사각이 항상 수직이다. 굴절률이 다른 두 매질[0029]

사이의 투과율은 입사각이 수직일 때 가장 높으며, 모든 방향에 대해 전반사 각도는 더 이상 존재하지 않게 된

다. 

실제로, 반도체 발광 소자의 경우, 에폭시로 이루어진 반구를 씌우게 되는데, 이는 표면 보호의 역할뿐만 아니[0030]

라 추출효율 향상에도 기여한다. 

이러한 효과를 더 극명하게 이용하는 방법은, 도 1에서와 같이, 에폭시 층(1)과 반도체 소자(2) 사이에 굴절률[0031]

이 반도체와 유사한 반구(3)를 추가적으로 도입하는 것이다. 이 경우, 도 2에서 도시하는 바와 같이, 추가로 도

입한 반구의 굴절률이 반도체의 굴절률에 접근할수록 추출효율은 점점 증가한다. 

이는 반도체 소자와 추가로 도입한 반구 사이의 임계각이 커졌기 때문이다. 가시광선 영역에서 흡수가 없고, 투[0032]

명한 물질의 한 예로 TiO2를 제안할 수 있다. 가령, 이 물질로 이루어진 반구를 적색 발광 소자에 적용한다고

가정했을 때, 이론적으로 기존대비 약 3배 이상의 추출효율 향상을 얻을 수 있다. 

굴절률이 높은 반구를 추가적으로 도입하는 방법은, 단순하면서도 아주 효과적인 방법이다. 그러나 이러한 방법[0033]

을 적용하기 위해서는 높은 굴절률을 가지면서, 동시에 빛의 발광 파장 영역에서 흡수가 없는 투명한 물질을 찾

아야 한다. 

또한, 발광 소자를 충분히 덮을 수 있는 만큼의 크기를 가진 반구를 제작하고, 이 반구를 부착하는 작업은 난제[0034]

가 될 수 있다. 

결국, 발광 소자의 광 추출 효율 향상을 위해서는 필연적으로 전반사 각도에 해당하는 빛을 추출할 수 있는 구[0035]

조적 장치가 필요하다는 결론에 이른다. 이 역할을 할 수 있는 구조는 광결정과 같은 광 추출 구조가 그 일례가

될 수 있다. 

빛의 투과라는 현상을 운동의 관점에서 보자면, 빛이 굴절률이 서로 다른 물질을 이동하는 것이다. 역학에서의[0036]

물체 이동과 마찬가지로 빛의 이동에도 운동량 보존 법칙이 항상 뒤따른다.

빛의 경우, 운동량은 파수 벡터(k = 2πn/λ)에 해당한다. 다시 말해, 빛이 서로 다른 매질을 이동할 때에는 경[0037]

계면의 평면 방향 운동량 성분이 보존되어야 한다.  이를 전반사 현상에 대입하면 보다 명확하게 이해할 수

있다. 

전반사 현상은 빛이 굴절률이 높은 매질에서 낮은 매질로 이동할 때 발생한다. 굴절률이 높은 매질 내에 속해[0038]

있는 빛은 이미 큰 운동량을 지니고 있으므로, 특정 입사 각도 이상에서는 굴절률이 낮은 매질 내에서 어떠한

각도를 가지더라도 가질 수 없는(평면 성분의) 운동량을 지니게 된다. 

빛의 투과를 위해서는 평면 성분의 운동량이 보존되어야 하므로,  빛이 선택할 수 있는 길은 반사 과정밖에[0039]

없다. 여기서, 운동량을 보존할 수 없는 최소의 입사각도가 바로 임계각에 해당하는 것이다. 

이때, 도 3 및 도 4에서 도시하는 바와 같이, 광결정과 같은 광 추출 구조(50; 이하 광결정을 예를 들어 설명한[0040]
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다.)는 운동량을 보존할 수 없는 전반사 각도의 빛에 대해 자신의 주기성(periodicity)이 생성하는 운동량 성분

을 더하거나 감하여, 외부로 추출할 수 있도록 도와주게 된다. 이는, 분광기에서 말하는 빛의 회절 원리와 동일

하다. 즉, 광결정의 주기에 따라 운동량의 크기가 달라지고, 이에 따라 전반사 각도에 해당하는 빛의 회절 효율

이 달라진다. 

도 5는 일반적인 수직형 GaN 발광 소자에 광결정을 도입할 때, 빛의 진행 거리에 따른 추출 효율의 변화를 나타[0041]

내는 그래프이다. 이 그래프에서, 광결정을 도입하지 않는 평면 구조의 경우, 임계각보다 작은 입사각도를 가진

빛들이 추출된 뒤, 더 이상 추출 효율 향상이 이루어지지 않고 있는 반면에, 광결정 구조가 있는 경우는 빛이

광결정 구조와 만날 때마다 추출 효율이 계속 상승하고 있음을 알 수 있다. 

즉, 광결정은 전반사 각도에 해당하는 빛이라도 추출할 수 있으며, 매 산란 과정마다 일정의 확률을 가지고 추[0042]

출되고 있음을 의미한다. 도 6은 상술한 바와 같이 광결정 주기에 따라 추출 효율이 변하는 양상을 나타내고 있

다. 

추출 효율을 극대화하는 최적 주기가 존재한다는 사실은 광결정을 통한 추출 효율 향상 효과가 빛의 회절 과정[0043]

이라는 것을 반증한다.

광결정에 의한 빛의 추출 효율은 광결정의 주기 외에도 광결정을 이루는 패턴의 깊이, 패턴이 차지하는 면적[0044]

(Filling factor; 패턴을 이루는 단위 구조가 차지하는 면적; 도 7a 및 도 7b), 광결정 격자 구조(도 8a 내지

도 8c) 등과 같은 구조 변수와도 밀접한 상관 관계가 있다.

즉, 도 7a에 비하여 도 7b가 Filling  factor가 큼을 알 수 있다. 또한, 도 8a는 사각 격자, 도 8b는 삼각[0045]

격자,  그리고  도  8c는  아키미디언(Archimedean)  격자를  나타내고  있다.  그  외에  랜덤,  쿼지  크리스탈

(Quasicrystal), 슈도 랜덤(Pseudorandom) 등의 다양한 광결정 격자 구조가 적용될 수 있다.

이와 같이, 반도체 발광 소자 내에서 높은 추출 효율 향상 효과를 얻기 위해서는 최적의 광결정 구조를 고안하[0046]

고 적용하는 것이 매우 중요하다.

일반적으로  발광층과 고  반사율 금속 거울 사이에 떨어진 거리가 발광층에서 발생하는 빛의 파장보다 작게[0047]

되면, 발광층의 특성을 조절할 수 있다. 

도 9a 내지 도 9d는 FDTD 전산모사에 의하여 빛을 생성하는 전기 쌍극자(electric dipole)가 완전 거울과 매우[0048]

가까운 위치에 있을 때 어떠한 현상이 발생할 수 있는지를 묘사하고 있다. 전기 쌍극자는 편광에 따라 특정 방

향으로 진동하고 있는 전자를 뜻한다. 

안테나 이론에 따르면, 전기 쌍극자에서 발생하는 빛은 전자의 진동 방향에 대해 수직 방향을 극대점으로 하는[0049]

방사 패턴을 가진다.  즉,  전기 쌍극자가 고반사율 거울이 존재하지 않는 단일 유전체 공간 내에 놓여 있는

경우, 도 9a 및 도 9c와 같이, 방사 패턴은 각 편광 방향과 수직 방향이 극대점이 되도록 분포한다.

그러나 전기 쌍극자 주변에 고 반사율 거울이 빛의 파장보다 가깝게 위치하면, 발광 특성이 극명하게 변한다.[0050]

전기 쌍극자와 거울 사이의 거리에 따라 때로는 수직 방향을 중심으로 빛이 집중되기도 하며, 때로는 거울의 표

면을 따라 빛이 진행하기도 한다. 

이에 착안하면, 처음부터 발광층인 양자우물 층으로부터 주로 수직 방향 성분의 빛을 생성하는 조건을 적용하여[0051]

광 추출효율을 높일 수도 있다. 또한, 도 9a 내지 도 9d에는 묘사되지 않았지만, 여기 상태에 있는 전자가 바닥

상태로 전이할 때까지 걸리는 시간인 자연 상수(t, 감쇠율은 t의 역수에 해당됨)를 조절할 수 있다.

이와 같이, 발광층의 발광 특성을 조절할 수 있다는 것을 다시 정리하면 다음과 같이 크게 두 가지로 나눌 수[0052]

있다.  

우선, 발광층에서 발생하는 빛과 금속 거울에서 반사된 빛 사이의 간섭 효과에 의해 출력 방사 패턴을 조절할[0053]

수 있다는 것이고, 또한, 발광층 내의 쌍극자(dipole)와 금속 거울에 의해 생성되는 거울 쌍극자(image dipole)

사이의 상호 작용을 통해 감쇠율을 조절할 수 있다.  

첫 번째 특성은, 고전적인 빛의 간섭 현상으로 설명할 수 있다. 발광층 주위에 거울이 존재하지 않거나, 거울과[0054]

발광층 사이의 거리가 충분히 멀어 거울에 의한 간섭 효과를 무시할 수 있는 경우, 발광층에서 발생하는 빛은

모든 방향에 대해 동일한 계수를 가지고 있는 구면파(spherical wave)로 간주할 수 있다. 

만약, 거울이 발광층에 근접해 방사 패턴을 조절할 수 있는 범위 내에 있다면, 수직 방향에 대해 보강 간섭이[0055]
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일어나는 것이 추출효율 측면에서 유리하다. 

도 10은 광 추출 효율이 극대화될 수 있는 수직형 발광 소자의 일례를 나타내고 있으며, 이러한 발광 소자의 구[0056]

조는, 지지층(500) 상에 반사 전극(300)이 위치하고, 이러한 반사 전극(300) 상에는 투명 전도성 산화물과 같은

유전체층(400)이 위치하며, 이러한 유전체층(400) 상에 반도체층(100)이 위치한다. 

또한, 반도체층(100)은 p-형 반도체층(130)과, 발광층(120), 및 n-형 반도체층(110)을 포함할 수 있다.[0057]

이와 같은 수직형 발광 소자의 예를 고려할 때, 발광층(120)과 거울(반사 전극 또는 반사형 오믹 전극; 300) 사[0058]

이의 거리(d)는 p-형 GaN 반도체층(130) 및 유전체층(400)의 두께에 해당한다. 따라서, 전기 특성을 저하하지

않는 범위 내에서, 수직 방향의 방사 패턴이 형성되는 p-형 GaN 반도체층(130) 및 유전체층(400)의 두께를 선택

하는 것이 필요하다.

발광 특성 조절과 관련된 두 번째 특성은 공진기 양자전자 동력학 분야와 관련이 깊다. 그러나 이러한 현상 역[0059]

시 거울의 대칭성을 활용하면 정성적으로 감쇠율을 조절하는 원리를 쉽게 설명할 수 있다.

도 11은 거울(51) 표면 주위에 수직방향과 수평방향의 편광을 가지는 전기 쌍극자가 놓여 있는 모습을 도식화한[0060]

것이다. 전자기장 이론에 따르면, 전기장은 거울(51) 표면에서 항상 0이 되어야 한다. 

이 원리를 이용하면, 거울(51) 주위에 전기 쌍극자가 놓여 있는 상황을 전기 쌍극자와 거울(51) 반대편의 같은[0061]

거리에 놓여 있는 거울 쌍극자의 조합으로 동일하게 구현할 수 있다. 

가령, z 방향의 편광을 가지는 전기 쌍극자의 경우, 거울(51) 표면에서의 전기장 조건을 만족하기 위해 쌍극자[0062]

모멘트(dipole moment) 방향이 일치해야 한다. 따라서 이 전기 쌍극자는 거울(51)과의 거리가 가까워질수록 마

치 2개의 쌍극자가 겹쳐지는 효과가 발생한다. 결국, 이는 감쇠율이 네 배 증가하는 효과를 유발한다. 

반면에, 수평방향의 편광을 가지는 전기 쌍극자는 거울(51) 표면에서의 전기장 조건을 적용하였을 때, 항상 반[0063]

대 방향의 거울 쌍극자를 유도한다. 따라서, 수평방향의 전기 쌍극자는 거울(51)에 접근할수록, 감쇠율이 0에

접근하게 된다. 

도 12에서와 같이, FDTD 전산모사 상에서 거울과 발광층 사이의 거리를 조절하면서 출력 패턴 변화에 의한 추출[0064]

효율 증가분과 발광층의 감쇠율을 산술적으로 계산하였다. 이때, 거울은 100%의 반사율을 가지는 완전 거울로

가정하였으며, 발광층의 두께는 12.5 nm로 설정하였다. 

먼저, 추출효율 증대비에 대한 결과를 살펴보면, 대략 빛의 1/4 파장을 주기로 추출효율의 극대/극소점이 나타[0065]

난다는 것을 알 수 있다. 이는 빛의 간섭 효과에 의해 방사 패턴이 변하며, 이에 따라 추출효율이 조절된다는

것을 알려주는 증거이다. 

실제로, 극대점과 극소점에서의 방사 패턴을 관찰하면, 극대점인 경우 수직 방향으로 강한 방출이 일어나고 있[0066]

는 반면에 극소점인 경우 수직 방향의 빛은 거의 존재하지 않고, 대부분의 빛이 임계각보다 큰 특정 각도로 기

울어진 채 방출된다. 

추출효율이 극대가 되는 조건은 발광층과 거울 사이의 간격이 대략 3/4(λ/n)일 때이고, 대략 λ/4n의 홀수배일[0067]

때, 추출효율이 커짐을 알 수 있다.

만약, 도 10에서 도시하는 바와 같이, p-형 반도체층(130)과 반사층(300) 사이에 유전체층(400; 투명 전극)이[0068]

위치한다면, 상황이 달라질 수 있다.

이러한 유전체층(400)은 전류 확산층 역할을 하는 ITO 층 또는 ITO와 일반적인 유전체의 조합으로 구성될 수 있[0069]

다. 이때, 유전체층(400)은 ITO 층의 경우 굴절률은 대개 1.8 내지 2.0 사이이며, 이는 GaN의 굴절률(2.4)보다

작다. 

도 13은 유전체층(400)이 ITO로 이루어지며, 이러한 ITO의 굴절률을 1.8로 가정하고, p-형 반도체층(130)의 두[0070]

께를 100 nm라 할 때, ITO의 두께에 따라 추출 효율이 어떻게 달라지는지를 묘사하고 있다. 결과에 따르면, ITO

의 두께가 대략 80 nm에 이를 때, 최대 추출효율을 얻을 수 있음을 알 수 있다.

추출효율의 최대값은 대략 1.5배까지로 유전체층(400)의 도입과 관계없이 거의 동일하다. 반면, 추출효율이 최[0071]

대가 되는 반사층(300)과 발광층(120) 사이의 물리적 거리는 유전체층(400) 도입 이후 증가했다는 것을 알 수

있다.

즉, p-형 반도체층(130)만 있는 경우 대략 140 nm 까지가 최적거리였다면, ITO 층과 같은 유전체층(400)을 추가[0072]
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적으로 도입하는 경우, 최적 거리는 p-형 반도체층(130)의 두께와 유전체층(400)의 두께를 더한 180 nm가 된다.

하지만, 두 조건 모두 광학적 거리로 환산하면 3/4(λ/n)를 만족한다는 것을 알 수 있다. 

이와 같은 사항을 고려할 때, 반사층(300)과 발광층(120)의 중심 사이의 거리는 (2m + 1)λ/4n ± α값을 가질[0073]

수 있으며, 이때, m은 0을 포함하는 자연수이다. 여기에서 α값은 반사층(300)의 종류에 따른 변동폭을 나타내

며, 대략 λ/8n의 값을 가질 수 있다.

다만, 여기서 n은 p-형 반도체층(130)을 이루는 GaN의 굴절률이 아닌 p-형 반도체층(130)과 유전체층(400)을 이[0074]

루는 ITO의 굴절률과 두께를 고려하여 얻은 평균 굴절률에 해당한다.

이와 같이, p-형 반도체층(130)과 반사 전극(300) 사이에 굴절률이 작은 유전체층(400; ITO 층)이 위치할 때,[0075]

공정상의 이점은, 도 13의 결과에서 알 수 있듯이, 추출효율이 극대가 되는 유전체층(400) 두께 구간이 넓게 분

포한다는 것이다. 

거울간섭 효과를 이용하기 위해서는 거울(반사 전극; 300)과 발광층(120) 사이의 거리가 중요한데, p-형 반도체[0076]

층(130) 두께 자체는 성장 조건의 최적화에 맞추어 이미 결정된 것이라 볼 수 있다. 

그러나, 유전체층(400)으로서 낮은 굴절률의 ITO 층을 이용하면 간섭효과가 극대가 되는 조건을 공정상에서 용[0077]

이하게 구현할 수 있다. 이는, ITO 층은 스퍼터(Sputter)와 같은 일반적인 증착 장비로 적용 가능하며, 두께 또

한 미세하게 조절할 수 있기 때문이다.

도 14는 이러한 ITO 층이 없거나 두께가 각각 60 nm, 120 nm로 고정될 때, p-형 반도체층(130) 두께에 따른 추[0078]

출효율의 변화를 나타낸 그래프이다. 결과에서 알 수 있듯이, ITO 층의 두께가 증가할수록 추출효율이 극대가

되는 p-형 반도체층(130)의 두께가 얇아지는 방향으로 이동한다. 이는, ITO 층과 p-형 반도체층(130)에 대한 광

학적 두께의 합이 특정한 값을 만족할 때, 추출효율이 극대가 됨을 의미한다.

거울에 의한 간섭 효과를 수직형 GaN  발광 소자 구조에 실제 적용하기 위해서는 전산모사 상에서 가정했던 사[0079]

항을 해결해야 한다. 특히, 전산모사 상에서는 발광층(120)을 근사적으로 점광원으로 가정하였지만, 실제 발광

소자의 양자우물 층은 적층된 쌍(pair)의 수에 따라 50 내지 100 nm 정도의 두께를 가진다.

그러나 발광층(120)의 두께가 0.5 × λ/n보다 커지게 되면, 거울에 의한 간섭 효과는 점점 사라지게 된다. 따[0080]

라서, 내부양자효율은 유지하면서, 양자우물의 두께를 줄이는 성장 기술이 필수적이다. 따라서, 발광층(120)의

두께는 λ/n의 0.05 내지 0.5배 사이에서 유지되는 것이 유리하다.

다음으로, 감쇠율 변화에 대한 결과를 살펴보면, 거울과 발광층(120) 사이의 간극이 작아질수록 감쇠율이 커지[0081]

는 특성이 나타난다. 즉, 발광층(120)에 거울이 접근할수록, 이득 매질의 순환 과정이 빨라진다. 하지만, 여기

서 주목해야 할 점은 감쇠율 변화가 곧 추출효율 증가로 이어진다는 것은 아니라는 점이다. 

감쇠율은 단지, 발광층(120) 내에서 전자와 전공이 결합되었을 때, 얼마나 빠른 시간 내에 빛 에너지로 변환될[0082]

수 있는지를 나타내는 지표일 뿐이다. 따라서, 이를 추출효율과 연관짓기 위해서는 발광층(120) 내의 이득 매질

의 비발광 결합에 의한 감쇠율을 함께 고려해야 한다. 

비록, 감쇠율 변화를 추출효율로 직접 대입하는 것은 어렵지만, 감쇠율이 증가할수록 발광 결합 과정이 활발해[0083]

져서, 즉, 상대적으로 비발광 결합 확률이 감소되어 추출효율 향상으로 이어질 것이라는 정성적인 관계는 유추

할 수 있다.

이하, 컴퓨터 전산모사 계산(3D-FDTD)을 통해 수직형 GaN 발광 소자에 적용할 수 있는 광결정의 구조적 인자를[0084]

결정하고, 각 구조 인자에서 얻을 수 있는 상대적인 추출효율 증대비를 산출하는 과정을 설명한다.

수직형 발광 소자 구조는 수평형 구조와는 달리, 기판 측면을 통한 방사가 존재하지 않으므로, 전체 효율이 곧[0085]

수직방사에 의한 효율에 해당된다. 이때, 전산모사 상에서 분석하기 위한 발광 소자의 구조의 일례는 도 15a와

같이, 광결정(60)이 형성된 발광 소자 반도체층(100)으로 이루어지며, 광결정(60) 외측에는 봉지재로 사용될 수

있는 굴절률 1.4의 에폭시(70)가 위치하는 구조를 이용한다.

일반적인 발광 소자의 크기는 컴퓨터 메모리 한계로 인해 계산 구조 내에 다 포함 할 수가 없다. 이 문제를 해[0086]

결하기 위해 대신 유한 크기(12 ㎛)의 발광 소자 구조의 양끝에 완전 거울(도시되지 않음)이 위치한 경우를 적

용하였다. 

또한, 도 15b에서와 같이, 발광 소자(100)의 발광층(양자우물 층; 22) 내부에는 흡수율(k = 0.045)을 부여하였[0087]
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다. 다만, 구조의 하단부에는 해석의 편의성을 위해 흡수율이 존재하는 실제 금속 거울 대신 역시 100%의 반사

율을 가지는 완전 거울로 대체하였다. 

수직형 구조는 거울에 의한 간섭 효과를 항상 고려해야 하므로, 구조 내에서 거울에 대한 발광층(22)의 상대적[0088]

위치가 중요한 변수가 된다. 거울과 발광층(22) 사이의 간섭 효과에 의해 방사 패턴이 바뀌게 되면, 효과적으로

작용하는 광결정(60) 구조 인자가 달라질 가능성이 있기 때문이다. 즉, 광결정(60) 주기에 따라 회절 과정에 의

해 추출이 효율적으로 일어나는 빛의 각도가 다르다고 할 수 있다. 

여기서는, 거울 효과가 배제된 상태에서 순수하게 광결정(60)에 의한 효과만을 산출하기로 한다. 거울에 의한[0089]

간섭 효과를 배제하기 위해서는 거울과 발광층(22) 사이의 거리를 멀리 설정하거나, 그 거리를 보강 간섭조건과

상쇄 간섭조건의 중간 지점 정도에 설정한다. 

이와 같이, 발광층(22)이 거울의 간섭 효과로부터 자유로울 때의 방사 패턴은 도 16a와 같다. 이러한 방사 패턴[0090]

을 살펴보면, 각도에 따라 미세한 간섭 무늬가 여전히 보이나 근사적으로 구면파로 간주해도 무방할 정도이다. 

광결정(60) 주기에 대한 추출효율 변화를 살펴보면, 도 16b에서와 같이, 최대 추출효율을 얻을 수 있는 광결정[0091]

(60) 주기는 약 800 nm 부근이며, 추출효율의 상대적 증대비는 약 2배 정도이다. 이때, 식각 깊이는 225 nm, 광

결정을 이루는 홀(61)의 반지름은 0.25a로 고정하였다.

다음으로, 광결정(60)을 이루는 홀(61)의 크기에 따른 추출효율의 변화를 보면 도 17과 같다. 이때, 식각 깊이[0092]

는 225  nm로  고정하였으며,  주기는 800  nm를  선택하였다.  결과를 살펴보면,  광결정(60)의  홀(61)의  크기가

0.35a일 때, 추출 효율은 최대가 되며, 상대적 증가분은 2.4배까지 커지는 것을 알 수 있다.

상술한 바와 같이, 수직형 GaN 발광 소자의 장점은 식각 깊이에 대한 제한이 적다는 점이다. 수평형 구조의 최[0093]

대 식각 깊이는 p-형 GaN 반도체층의 두께(실제로는 저항 증가를 고려하여 p-GaN 층 두께의 절반 정도)에 의해

결정되나, 수직형 구조는 상대적으로 이보다 매우 두꺼운 n-형 GaN 반도체층의 두께(대략 3 ㎛)를 활용할 수 있

다. 

이와 같은 수직형 구조의 장점을 이용하기 위하여, 도 18에서와 같이, 광결정 형성을 위한 식각 깊이를 순차적[0094]

으로 변경하면서, 이 식각 깊이에 따른 최적 주기를 조사하였다. 

추출효율은 수평형 구조 연구에서 언급한 대로, 일정 수준 이상의 식각 깊이에 대해서 포화되는 경향이 나타난[0095]

다. 

하지만, 흥미로운 사실은 식각 깊이가 깊어질수록 주기가 큰 광결정 구조에 의한 추출효율은 꾸준히 상승하고[0096]

있다는 점이다. 이는, 식각 깊이를 깊게 하면서 실제 기술적으로 구현이 용이한 주기가 큰 광결정 구조를 활용

할 수 있는 여지가 생긴다는 점에서 주목할 만하다.

이와 같이 식각 깊이가 커짐에 따라 주기가 큰 광결정 구조의 추출효율이 계속 상승하는 이유를 다음과 같이 생[0097]

각할 수 있다. 

첫째,  굴절률이  다른  두  매질을  빛이  투과하기  위해서는  평면  방향의  위상  정합  조건(phase-matching[0098]

condition)을 만족해야 한다.

둘째, 빛이 굴절률이 높은 매질에서 낮은 매질로 진행할 때는, 특정 각도 이상에서 위상정합 조건을 만족할 수[0099]

없다. 이 특정 각도를 임계각이라 부르며, 임계각 이상에서는 전반사가 일어난다.

셋째, 광결정은 전반사 각도에 해당하는 빛을 외부로 추출할 수 있도록 돕는다. 즉, 광결정과 빛이 결합하면,[0100]

광결정의 운동량이 더해져서 전반사에 해당하는 빛이 위상정합 조건을 만족할 수 있다.

넷째, 광결정의 운동량은 주기에 반비례한다. 즉, 주기가 작은 광결정은 큰 운동량을 만들 수 있으므로, 전반사[0101]

에 해당하는 빛 중에서 임계각에서 멀리 떨어진 수평 방향에 가깝게 진행하는 빛을 효과적으로 추출할 수 있다.

반면에, 주기가 큰 광결정은 상대적으로 수직 방향에 가깝게 진행하는 빛을 추출하는 데 효과적이다.

다섯째, 파동 광학 이론에 따르면, 도파로 구조 내의 전반사 과정을 모드에 대응하여 설명할 수 있다. 가령, 수[0102]

평방향에 가까운 입사각도를 가진 빛은 기본 도파로 모드에 해당되며, 입사각도가 수직방향에 가까울수록 고차

모드에 해당한다.

여섯째, GaN 발광 소자 역시 수 마이크론 이상의 두께를 가진 도파로 구조로 간주할 수 있다.[0103]

따라서, 이와 같은 사실을 고려하여 GaN 발광 소자에 광결정을 적용할 때, 주기가 짧은 광결정은 기본 도파로[0104]
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모드를 추출하는데 적합하며, 주기가 긴 광결정은 고차 도파로 모드를 추출하는데 적합하다는 사실을 알 수 있

다.

일반적으로, 기본 도파로 모드는 어느 정도 이상의 광결정 식각 깊이(~λ/n)에 대해 추출효율이 포화되는 경향[0105]

을 나타내는 반면에, 고차모드로 갈수록 광결정 식각 깊이에 대해 추출효율이 꾸준히 상승하는 경향을 보인다.

결론적으로, 식각 깊이가 커질수록, 긴 주기를 가지는 광결정 구조에 의한 고차 모드에 추출효율이 계속 증가하[0106]

게 된다.  

이와 같이 추출효율을 극대화하기 위해, 광결정 구조 인자의 최적화 작업을 컴퓨터 전산모사 계산을 통해 실시[0107]

하였다. 추출효율은 식각 깊이, 구멍 크기, 주기 등과 밀접한 상관 관계가 있을 수 있다.

특히, 수직형 GaN 발광 소자의 경우 상대적으로 두꺼운 n-형 GaN 반도체층이 광결정 형성에 활용되기 때문에,[0108]

식각 깊이에 대한 제약이 사실상 없으며, 이와 같이 깊은 식각 깊이를 도입하면 현재 기술에서 구현하기 쉬운

범위의 주기를 선택할 가능성도 커진다. 

이하, 거울과 발광층 사이의 간극이 보강 간섭 조건에 있을 때 광결정 효과에 대해 설명한다. 보강 간섭 조건은[0109]

간극이 약 3/4(λ/n) 일 때이며, 이때의 방사 패턴은 도 19에 나타나 있다. 이를 도 16b와 비교하면, 상대적으

로 많은 양의 빛이 수직 방향으로 진행하고 있음을 알 수 있다. 

이 조건에서 광결정을 도입했을 때의 추출효율 향상 정도를 조사하면 도 20과 같다. [0110]

먼저, 광결정을 적용하지 않는 구조에 대해, 보강 간섭 조건은 거울 효과가 거의 없는 구면파 조건에 비해 약 2[0111]

배의 추출효율 향상 효과를 나타낸다. 이 값이 앞서 거울의 간섭 효과를 산출할 때(1.6배 증가)보다 더 큰 이유

는 이번 구조에서는 흡수율을 고려하였기 때문이다. 

광결정(주기 = 800nm, 식각 깊이 = 225nm)을 도입한 그래프를 비교하면, 보강 간섭 조건이 적용된 구조가 가장[0112]

우수한 특성을 나타낸다. 

다만, 광결정 전/후의 상대적 증대비는 보강 간섭 조건 구조의 경우에는 최대 약 1.2배 정도이다. 그 이유는 발[0113]

광층에서 발생한 빛이 처음부터 임계각 이내에 대부분 포함되어 광결정을 통해 추출되는 빛의 양이 그만큼 감소

하였기 때문이다.

다음으로, 보강 간섭 조건에 대해 광결정 주기에 따른 추출효율의 변화를 조사하면 도 21과 같다.[0114]

이때, 광결정의 식각 깊이는 225 nm로 고정하였으며, 광결정을 이루는 홀의 크기는 0.25a이다. 보강 간섭 조건[0115]

과 정상 조건의 주기에 대한 효율의 의존성을 알수 있기 위하여 두 결과를 한 그래프에 표시하였다. 

결과를 살펴보면, 보강 간섭 조건에 대한 최적 주기와 정상 조건에 대한 최적 주기는 눈에 띄는 차이를 나타내[0116]

지 않으며, 최적 주기는 800 nm 근처에 형성된다.

이하, 도 22를 참고하여 광결정의 식각 깊이에 따른 추출효율 변화를 설명한다.[0117]

발광층의 출력 패턴이 구면파로 가정할 수 있는 정상 조건인 경우, 주기 약 1㎛을 기준으로 식각 깊이에 대해[0118]

추출효율이 포화되는 주기와 식각 깊이에 비례하여 추출 효율이 계속 증가하는 주기로 나눌 수 있다. 

그 이유는 광결정의 주기가 길어질수록, 임계각에 가까운 전반사 광을 잘 회절 하기 때문이다. 이 원리를 현재[0119]

논의하고 있는 보강 간섭 조건에 적용하면, 이 조건에서는 초기부터 수직 방향 중심의 방사가 이루어지기 때문

에 주기가 긴 광결정의 역할이 더 중대해짐을 예상할 수 있다. 

이 효과를 검증하기 위해 컴퓨터 전산모사 계산을 통해, 도 22 내지 도 24에서와 같이, 식각 깊이를 변화하며[0120]

주기에 대한 추출효율을 산출하였다. 앞선, 정상 조건과 비교하면, 식각 깊이가 커짐에 따라 추출효율이 최대가

되는 최적 주기가 보다 명확하게 긴 쪽으로 이동하고 있음을 알 수 있다. 

가령, 식각 깊이가 900 nm인 경우에는 최적 주기가 2 ㎛ 이상에서 발견된다. 이는 현재 일반적인 포토 리소그래[0121]

피(photo-lithography)의 분해능으로 제작 가능한 구조에 해당하므로, 실용적인 측면에서 큰 의의를 가지고 있

다.

이와 같은 광 추출효율이 극대화될 수 있는 발광 소자의 구조의 일례는 상술한 도 10의 구조와 같다.[0122]

즉, 지지층(500) 상에 반사층(300)이 위치하고, 이러한 반사층(300) 상에는 투명 전도성 산화물과 같은 유전체[0123]

층(400)이 위치하며, 이러한 유전체층(400) 상에 p-형 반도체층(130)과, 발광층(120), 및 n-형 반도체층(110)을
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포함하는 반도체층(100)이 위치한다. 

이때, 유전체층(400)은 p-형 반도체층(130)과 오믹 접촉을 이룰 수 있는 물질로 이루어지며, 투명 전도성 산화[0124]

물이 이용될 수 있다. 이러한 투명 전도성 산화물은 반도체층(100)보다 굴절률이 작은 ITO(Indium-Tin-Oxide)가

이용될 수 있으며, 기타 IZO(Indium-Zinc-Oxide), AZO(Aluminum-Zinc-Oxide), MZO(Magnesium-Zinc-Oxide), 또

는 GZO(Gallium-Zinc-Oxide) 등의 물질이 이용될 수도 있다. 

n-형 반도체층(110) 상에는 다수의 홀(210) 패턴 또는 기둥 구조에 의하여 형성되는 광결정(200)이 위치할 수[0125]

있고, 이 n-형 반도체층(110) 상의 일부에는 n-형 전극(600)이 위치한다. 도시하는 바와 같이, n-형 전극(600)

이 위치하는 부분에는 광결정(200) 패턴이 형성되지 않을 수도 있다.

이러한 광결정(200)은, 상기 홀(210)의 깊이 또는 기둥 구조의 높이는 300 nm 내지 3000 nm일 수 있고, 광결정[0126]

(200)의 주기 또는 평균 주기는 0.7 내지 5 ㎛일 수 있다. 즉, 광결정(200)은 규칙적인 패턴을 가질 수 있고,

평균 주기를 가지는 준 무작위 구조(pseudo-random) 패턴일 수도 있다. 이때, 홀(210) 또는 기둥 구조의 크기

(직경)는 주기를 a라 할 때, 0.25a 내지 0.45a일 수 있다.

상술한 바와 같이, 반사층(300)과 발광층(120)의 중심 사이의 거리(d)는 0.65 내지 0.85 λ/n일 수 있으며, 대[0127]

략 λ/4n의 홀수배를 이룰 수도 있다.

이때, 이러한 반사층(300)과 발광층(120) 사이의 거리의 조절은 결국 p-형 반도체층(130) 및 유전체층(400)에[0128]

의하여 이루어질 수 있다. 즉, 이러한 반사층(300)과 발광층(120) 사이의 거리를 조절하여 광 추출에 있어서 보

강 간섭 조건을 이룰 수 있다.

이와 같이, 투명한 유전체층(400)의 두께를 조절함으로써 보다 용이하게 광 추출 효율을 제어할 수 있다. 즉,[0129]

유전체층(400)의 두께를 제어함으로써 광 추출의 보강 간섭 조건을 보다 용이하게 조절할 수 있음을 의미한다.

이때, 반사층(300)의 반사율은 50% 이상인 것이 유리하며, Ag, Pt, 및 Al 중 어느 하나 이상의 물질을 포함할[0130]

수 있다.

한편, 도 25에서와 같이, 유전체층(400)은 투명 전도성 산화물층(410) 사이에 SiO2, TiO2와 같은 산화물 또는[0131]

Si3N4와 같은 질화물로 이루어지는 중간층(420)이 위치하는 구조를 이룰 수 있다.

또한, 도 26에서와 같이, 이러한 산화물 또는 질화물로 이루어지는 중간층(430)은 특정 패턴을 이룰 수 있고,[0132]

이러한 패턴은 상술한 광결정 패턴과 일치 또는 유사한 패턴일 수 있다. 

이러한 중간층(430) 패턴 사이의 공간은 투명 전도성 산화물이 채워질 수도 있고, 비워질 수도 있다.[0133]

이상과 같은 본 발명은 외부 광 추출효율 개선을 위해 수직형 GaN 발광 소자의 n-형 반도체층(110) 내에 광결정[0134]

(200)을 도입할 때, 반사 전극(300)의 간섭효과와 식각 깊이를 활용하여, 제작이 용이한 긴 주기(1 ㎛ 이상)의

광결정(200)에서 최대 추출효율을 얻을 수 있다. 또한, 반사층(300)의 간섭 효과만으로도 개선된 추출 효율 향

상 효과를 가져올 수 있다.

이와 같은 발광 소자의 구조는 패키지를 이루었을 때,  패키지의 구조와 관계없이 높은 추출효율을 보일 수[0135]

있다.

상기 실시예는 본 발명의 기술적 사상을 구체적으로 설명하기 위한 일례로서, 본 발명은 상기 실시예에 한정되[0136]

지 않으며, 다양한 형태의 변형이 가능하고, 이러한 기술적 사상의 여러 실시 형태는 모두 본 발명의 보호범위

에 속함은 당연하다.

도면의 간단한 설명

도 1은 발광 소자의 광 추출효율을 위한 구조의 일례를 나타내는 단면도이다.[0137]

도 2는 도 1의 반구의 굴절률 증가에 따른 추출효율을 나타내는 그래프이다.[0138]

도 3 내지 도 8c는 광결정에 의한 광 추출효율의 증가를 나타내는 도이다.[0139]

도 9a 내지 도 9d는 전기 쌍극자의 방사 패턴을 나타내는 도이다.[0140]

도 10은 발광 소자 구조의 일 실시예를 나타내는 단면도이다.[0141]
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도 11은 거울면에 대한 쌍극자의 배치를 나타내는 개략도이다.[0142]

도 12는 거울과 발광층의 간격에 따른 추출효율의 증대비와 그에 따른 방사 패턴을 나타내는 도이다.[0143]

도 13은 오믹 전극의 두께에 따른 광 추출효율의 변화를 나타내는 그래프이다.[0144]

도 14는 p-형 반도체층의 두께에 따른 광 추출효율의 변화를 나타내는 그래프이다.[0145]

도 15a는 컴퓨터 전산모사를 위한 수직형 발광 소자 구조의 일례를 나타내는 단면도이다.[0146]

도 15b은 도 15의 구조에서 발광층의 흡수율을 표시한 단면도이다.[0147]

도 16a는 발광층이 거울로부터 충분히 먼 경우의 방사 패턴을 나타내는 도이다.[0148]

도 16b는 광결정의 주기를 변경하면서 광 추출효율을 조사한 그래프이다.[0149]

도 17은 광결정의 홀의 크기에 따른 광 추출효율의 변화를 나타내는 그래프이다.[0150]

도 18은 광결정의 식각 깊이에 따른 광 추출효율의 변화를 나타내는 그래프이다.[0151]

도 19는 발광층과 거울 사이의 간격이 보강 간섭 조건에 있을 때의 방사 패턴을 나타내는 도이다.[0152]

도 20 및 도 21은 보강 간섭 조건을 가지는 구조에서 광결정 도입에 따른 효과를 나타내는 그래프이다.[0153]

도 22 내지 도 24는 식각 깊이에 따른 추출효율의 변화를 나타내는 그래프이다.[0154]

도 25 및 도 26은 유전체층의 다른 실시예를 나타내는 단면도이다.[0155]
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