PCI‘ WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5.

(11) International Publication Number:

GO6F 11/32 Al (43) International Publication Date:

WO 93/10495

27 May 1993 (27.05.93)

(21) International Application Number: PCT/US92/10066 | (81) Designated States: AU, JP, European patent (AT, BE, CH,

(22) International Filing Date: 20 November 1992 (20.11.92)

(30) Priority data:
07/797,121 22 November 1991 (22.11.91) US

(71) Applicant: CABLETRON SYSTEMS, INC. [US/US]; 35
Industrial Way, Rochester, New Hampshire 03867 (US).

(72) Inventors: DEV, Roger, H. ; 64 Bagdad Road, Durham,
NH 03824 (US). NELSON, Mark, H. ; 53 Tibbetts
Road, Fremont, NH 03044 (US).

(74) Agent: MCCLELLAN, William, R.; Wolf, Greenfield &
Sacks, Federal Reserve Plaza, 600 Atlantic Avenue, Bos-
ton, MA 02210 (US).

Published
With international search report.

DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

(54) Title: METHOD AND APPARATUS FOR MONITORING THE STATUS OF NON-POLLABLE DEVICES IN A

COMPUTER NETWORK

(57) Abstract

A network management system includes a user interface (10), a
virtual network (12) and a device communication manager (14). The vir-
tual network (12) includes models (130-135) which represent network
entities (30-35) and model relations which represent relations between
network entities. Each model (130-135) includes network data relating
to a corresponding network entity (30-35) and one or more inference
handlers for processing the network data to provide user information.
The system can poll or communicate with certain network entities (510,
520, 530, 540, 550) and can infer the status of network connector and
other entities (500) for which polling is impossible or impractical. The
system performs a fault isolation technique wherein the fault status of
the network device is suppressed when it is determined that the device is
not defective. User displays include hierarchical location views and top-
ological views of the network configuration. Network devices are repre-
sented on the displays by multifunction icons (330, 332, 334) which per-
mit the user to select additional displays showing detailed information
regarding different aspects of the corresponding network device.

12

Ke——————> DATABASE
MANAGER

19

20
)
VIEW
PERSONALITY
MODULE
USER
INTERFACE
i
22\
DEVICE
PERSONALITY|— S
MODULE
VIRTUAL
NETWORK
MACHINE
24] 1k
PERSONALIT OEvIcE
LITYH— COMMUNICATION
MODULE MANAGER

/8)

NETWORK

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ

BR
CA
CF
cG
CH
Ci

CcM
cs
[or4
DE
DK
ES
FI

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Canada
Central African Republic
Congo
Switzerfamd
Cote d'lvoire
Cameroon
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

FR
GA
GB
GN
GR
HU
iE
T
P
KP

KR
KZ
Ll
LK
LU
MC
MG
ML
MN

France

Gabon

United Kingdom
Guinca

Greeee

Hungary

Ireland

Maly

Japan

Democratic People’s Republic
ol Korea

Republic of Korea
Kazakhstan
Licchtenstein

Sri Lanka
Luxembourg
Monaco
Mudaigzm:ar

Mali

Mongolia

Mauritania
Malawi
Nctherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Stovak Republic
Senegal

Sovict Union

Chad

Togo

Ukraine

United States of America
Viet Nam

Ky

WO 93/10495 PCT/US92/10066

METHOD AND APPARATUS FOR MONITORING
THE STATUS OF NON-POLLABLE DEVICES
IN A COMPUTER NETWORK

CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of
application Serial No. 07/583,509 filed September
17, 1990.

FIELD OF THE INVENTION
This invention relates to systems for management

of computer networks and, more particularly, to
methods and apparatus for monitoring the status of a
network entity without communicating with the

network entity.

BACKGROUND OF THE INVENTION

Computer networks are widely used to provide
increased computing power, sharing of resources and
communication between users. Computer systems and

computer system components are interconnected to
form a network. Networks may include a number of
computer devices within a room, building or site
that are interconnected by a high speed local data

WO 93/10495 PCT/US92/10066

1ink such as local area network (LAN), token ring,
Ethernet, or the like. Local networks in different
locations may be jnterconnected by techniques such
as packet switching, microwave links and satellite
1inks to form a world-wide network. A network may
jnelude several hundred or more interconnected
devices.

In computer networks, a number of issues arise,
including traffic overload on parts of the network,
optimum placement of network resources, security,
4solation of network faults, and the like.

These issues become more complex and difficult as
networks become larger and more complex. For
example, if a network device is not sending
messages, it may be difficult to determine whether

the fault is in the network device itself, the data

communication link or an jntermediate network device

between the sending and receiving network devices.
Network management systems have been utilized in
the past in attempts to address such issues. Prior
art network management systems typically operated by
remote access to and monitoring of information from
network devices. The network management system
collected large volumes of jnformation which
required evaluation by a network administrator.
Prior art network management systems place a
+remendous burden on the network administrator. He
must be a networking expert in order to understand
the implications of a change in a network device
parameter. The administrator must also understand

WO 93/10495 PCT/US92/10066

the topology of each section of the network in order
to understand what may have caused the change. In
addition, the administrator must sift through reams
of information and false alarms in order to
determine the cause of a problem.

It is therefore desirable to provide a network
management system which can systematize the
knowledge of the networking expert such that common
problems can be detected, isolated and repaired,
either automatically or with the involvement of less
skilled personnel. Such a system must have certain
characteristics in order to achieve this goal. The
system must have a complete anc srecise
representation of the network a1 the networking
technologies involved. It is insufficient to extend
prior art network management systems to include
connections between devices. A network is much more
than the devices and the wires which connect them.
The network involves the network devices, the network
protocols and the software running on the devices.
Without consideration of these aspects of the
network, a model is incomplete. A system must be
flexible and extendable. It must allow not only for
the modeling of new devices, but must allow for the
modeling of new technologies, media applications and
protocol. The system must provide a facility for
efficiently encapsulating the expert's knowledge
into the system.

It is a general object of the present invention
to provide improved methods and apparatus for

WO 93/10495 PCT/US92/10066

managing networks.
It is another object of the present invention to

provide network management systems which utilize
models of network entities and interrelationships
between network entities.

1t is a further object of the present invention
to provide methods and apparatus for inferring
information about network entities with which
communication is impossible or impractical.

It is a further object of the present invention
to provide methods and apparatus for determining the
operational status of network devices, such as
connectors, cables, buses, and the like, that are
not capable of communication.

SUMMARY OF THE INVENTION
According to the present invention, these and

other objects and advantages are achieved in a
method for managing a network comprising '
interrelated network entities including
communicating network entities and at least one
non—-communicating network entity. The method of the

present jnvention permits the status of network
entities such as coaxial segments, connectors,
buses, rings, optical fiber segments, wide area
segments, multiplexers, and the like, to be
monitored by the network management system, even
though such network entities cannot be directly
polled. In accordance with the invention, the
method for monitoring the status of the

WO 93/10495

non-communicating network entity comprises the steps
of providing an electronic network management
system, the network management system communicating
with the communicating network entities to obtain
operational information as to the communicating
network entities, and the network management system
using the operational information as to the
communicating network entities and information as to
relations between the non-communicating network
entity and the communicating network entities to
infer the status of the non-communicating network
entity. The status of the non-communicating network
entity is inferred from information as to network
entities connected to the non-communicating network
entity.

The network management system preferably
includes a representation of the network, including
models and relations between models. The models
include models of communicating network entities and
inferred models of non-communicating network
entities. Each model includes inference handlers.
The inference handlers in the inferred models update
status information in response to information |
obtained from the models of the communicating
network entities.

When all network entities connected to the
non-communicating network entity have a lost contact
status, the contact status of the non-communicating
network entity is inferred as lost. When at least
one network entity connected to the
non-communicating network entity has an established

PCT/US92/10066

WO 93/10495 PCT/US92/10066

contact status, the contact status of the
non-communicating network entity is inferred as
established. The contact status of the
non-communicating network entity can be provided to
a user in the same manner as information relating to

communicating network entities.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present
jnvention, together with other and further objects,
advantages and capabilities thereof, reference is
made to the accompanying drawings which are)
incorporated herein by reference and in which:

FIG. 1 is a block diagram of a network
management system jn accordance with the invention;

FIG. 2 is a block diagram showing an example of

a network;
FIG. 3 is a schematic diagram showing the

structure of models and the relations between models;

FIG. 4 is a block diagram showing a portion of
the representation of the network of FIG. 2 in the
virtual network machine;

FIG. 5 is a flow chart jllustrating an example
of operation of the virtual network machine;

FIG. 6 is a flow chart of a fault isolation
technique in accordance with the present invention;

FIGS. 7A-7C show examples of location display
views provided by the network management system;

FIGS. 8A and 8B show examples of topological
display views provided by the network management

WO 93/10495 PCT/US92/10066

system;

FIG. 9 is a schematic diagram of a multifunction
icon employed in the user display views; and

FIG. 10 shows an example of an alarm log display
provided by the network management system.

FIGS. 11-13 are block diagrams of a network
which illustrate the operation of an inferred
connector model of a coaxial segment.

DETAILED DESCRIPTION OF THE INVENTION

‘A block diagram of a network management system
in accordance with the present invention is shown in
FIG. 1. The major components of the network

management system are a user interface 10, a virtual
network machine 12, and a device communication
manager l4.

The user interface 10, which may include a video
display screen, keyboard, mouse and printer,
provides all interaction with the user. The user
interface controls the screen, keyboard, mouse and
printer and provides the user with different views
of the network that is being managed. The user
interface receives network information from the
virtual network machine 1l2.

The virtual network machine 12 contains a
software representation of the network being
managed, including models that rspresent the devices
and other entities associated with the network, and
relations between the models. The virtual network
machine 12 is associated with a database manager 16

WO 93/10495 PCT/US92/10066

which manages the storage and retrieval of
disk-based data. Such data includes configuration
data, an event log, statistics. history and current
state information.

The device communication manager 14 is connected
to a network 18 and handles communication between
the virtual network machine 12 and network devices.
The data received from the network devices is
provided by the device communication manager to the
virtual network machine 12. The device
communication manager 14 converts generic requests
from the virtual network machine 12 to the required
network management protocol for communicating with
each network device. Existing network management
protocols include Simple Network Management Protocol
(SNMP), Internet Control Message Protocol (ICMP) and
many proprietary network management protocols.
Certain types of network devices are designed to
communicate with a network management system using
one of these protocols.

A view personality module 20 connected to the
user interface 10 contains a collection of data
modules which permit the user interface to provide
different views of the network. A device
personality module 22 connected to the virtual
network machine 12 contains a collection of data
modules which permit devices and other network
entities to be configured and managed with the
network management system. A protocol personality
module 24 connected to the device communication

P

WO 93/10495 PCT/US92/10066

manager contains a collection of data modules which
permit communication with all devices that
communicate using the network management protocols
specified by the module 24.

The personality modules 20, 22 and 24 provide a
system that is highly flexible and user
configurable. By altering the personality module
20, the user can specify customized views or
displays. By changing the device personality module
22, the user can add new types of network devices to
the system. Similarly, by changing the protocol
personality module 24, the network management system
can operate with new or different network management
protocols. The personality modules permit the
system to be reconfigured and customized without
changing the basic control code of the system.

The overall software architecture of the present
invention is shown in FIG. 1. The hardware for
supporting the system of FIG. 1 is typically a
workstation such as a Sun Model 3 or 4, or a 386 PC
compatible computer running Unix. In this
embodiment, a minimum of 8 megabytes of memory is
required with a display device which supports a
minimum of 640 x 680 pixels x 256 color resolution.
The basic software includes a Unix release that
supports sockets, X-windows and Open Software
Foundation Motif 1.0. The network management system
of the present invention is implemented using the
C++ programming language, but could be implemented
in other object-oriented languages such as Eiffel,

WO 93/10495 PCT/US92/10066

-10-

Smalltalk, ADA, or the like. The virtual network
machine 12 and the device communication manager 14
may be run on a separate computer from the user
interface 10 for increased operating speed or
increased reliability. It is understood that the
present invention is in no way limited to any
particular hardware, e.9.. Sun Model 3 or 4, or
operating system, e.9.. Unix.

An example of a network ijs shown in FIG. 2.
The network includes workstations 30, 31, 32, 33 and
disk units 34 and 35 interconnected by a data bus
36. Workstations 30 and 31 and disk unit 34 are
located in a room 38, and workstations 32 and 33 and
disk unit 35 are located in a room 40. The rooms 38
and 40 are located within a building 42. Network
devices 44, 45 and 46 are interconnected by a data
bus 47 and are located in a building 48 at the same
site as building 42. The network portions in
buildings 42 and 48 are interconnected by a bridge
50. A building 52 remotely located (in a different
city. state or country) from buildings 42 and 48,
contains network devices 53, 54, 55 and 56
interconnected by a data bus 57. The network
devices in building 52 are interconnected to the
network in building 48 by interface devices 59 and
60, which may communicate by a packet switching
system, a microwave 1ink or a satellite link. The
network management system shown in FIG.1 and
described above is connected to the network of FIG.
2 at any convenient point, such as data bus 36.

WO 93/10495 PCT/US92/10066

-11-

In general, the network management system shown
in FIG. 1 performs two major operations during
normal operation. It services user requests entered
by the user at user interface 10 and provides
network information such as alarms and events to
user interface 10. In addition, the virtual network
machine 12 polls the network to obtain information
for updating the network models as described
hereinafter. In some cases, the network devices
send status information to the network management
system automatically without polling. In other
cases the device models infer status information
from data gathered for other models. In any case,
the information received from the network is
processed so that the operational status, faults and
other information pertaining to the network are
presented to the user in a systematized and
organized manner.

As indicated above, the network entities that
make up the network that is being managed by the
network management system are represented by
software models in the virtual network machine 12.
The models represent network devices such as printed
circuit boards, printed circuit board racks,
bridges, routers, hubs, cables and the like. The
models also represent locations or topologies.
Location models represent the parts of a network
geographically associated with a building, country,
floor, panel, rack, region, room, section, sector,
site or the world. Topological models represent the

WO 93/10495 PCT/US92/10066

-12-

network devices that are topologically associated
with a local area network or subnetwork. Models can
also represent components of network devices such as
individual printed circuit boards, ports and the
jike. In addition, models can represent software
applications such as data relay. network monitor,
terminal server and end point operatioms. In
general, models can represent any network entity
that is of interest in connection with managing or
monitoring the network.

The virtual network machine includes a
collection of models which represent the various
network entities. In a preferred embodiment, the
models themselves are collections of C++ objects.
The virtual network machine also includes model
relations which define the interrelationships
between the various models. Several types of
relations can be specified. A "connects to"
relation is used to specify an interconnection
between network devices. For example, the
interconnection between two workstations is
specified by a "connects to" relation. A "contains”
relation is used to specify a network entity that 1is
contained within another network entity. Thus for
example, a workstation model may be contained in a
room, building or local network model. An "executes”
relation is used to specify the relation between a
software application and the network device on which
it runs. An "is part of" relation specifies the
relation between a network device and its components.

WO 93/10495 PCT/US92/10066

~13-

For example, a port model may be part of a board
model or a card rack model.

Relations are specified as pairs of models,
known as associations. The relations can specify
peer-to-peer
associations and hierarchical associations.

Each model includes a number of attributes and
one or more inference handlers. The attributes are
data which define the characteristics and status of
the network entity being modeled. Basic attributes
include a model name, a model type name, a model
type handle, a polling interval, a
next-time-to-poll, a retry count, a contact status,
an activation status, a time-of-last-poll and
statistics pertaining to the network entity which is
being modeled. Polling of network devices will be
described hereinafter. In addition, attfibutes that
are unique to a particular type of network device
can be defined. For example, a network bridge
contains a table that defines the devices that are
located on each side of the bridge. A model of the
network bridge can contain, as one of its attributes,
a copy of the table.

In a preferred embodiment of the invention, each
attribute contained in a model type includes the
following:

(1) An attribute name that identifies the
attribute.

WO 93/10495

(2)

(3)

(4)

(5)

PCT/US92/10066

An attribute type that defines the kind of
attribute. Attribute types may include
Boolean values, integers, counters, dates,
text strings, and the like.

Attribute flags indicate how the attribute
is to be manipulated. A memory flag
jndicates that the attribute is stored in
memory. A database flag indicates that the
attribute is maintained in the database of
the virtual network machine. An external
flag indicates that the attribute is
maintained in the device being modeled. A
polled flag indicates that the attributes’
value should be periodically surveyed or
polled by the device being modeled. The
flags also indicate whether the attribute
is readable or writable by the user. .

Object identifier is the identifier used to
access the attribute in the device. It is
defined by the network management protocol
used to access the device.

Attribute help string is a text string
which contains a description of the defined
attribute. When the user asks for help
regarding this attribute, the text string
appears on the user interface screen.

AN

WO 93/10495

(6) Attribute value is the value of the
attribute.

The models used in the virtual network machine
also include one or more inference handlers. An
inference handler in this embodiment is a C++ object
which performs a specified computation, decision,
action or inference. The inference handlers
collectively constitute the intelligence of the
model. An individual inference handler is defined
by the type of processing performed, the source or

sources of the stimulus and the destination of the

result. The result is an output of an inference
handler and may include attribute changes, creation
or destruction of models, alarms or any other valid
output. The operation of the inference handler is
initiated by a trigger, which is an event occurring
in the virtual network machine. Triggers include
attribute changes in the same model, attribute
changes in another model, relation changes, events,
model creation or destruction, and the like. Thus,
each model includes inference handlers which perform
specified functions upon the occurrence of
predetermined events which trigger the inference
handlers.

A schematic diagram of a simple model
configuration is shown in FIG. 3 to illustrate the
concepts of the present invention. A device model
80 includes attributes 1 to x and inference
handlers 1 to y. A device model 82 includes

PCT/US92/10066

WO 93/10495 PCT/US92/10066

attributes 1 to u and inference handlers 1 to v.

A connect relation 84 indicates that models 80 and
82 are connected in the physical network. A room
model 86 includes attributes 1 tom and inference
handlers 1 to n. A relation 88 indicates that
model 80 is contained within room model 86, and a
relation 90 indicates that model 82 is contained
within room model 86. Each of the models and the
model relations shown in FIG. 3 is implemented as a
C++ object. It will be understood that a
representation of an actual network would be much
.more complex than the configuration shown in FIG. 3
and, as noted above, that the present invention is
not limited to a particular programming language.

As discussed above, the collection of models

and model relations in the virtual network machine
form a representation of the physical network being
managed. The models represent not only the
configuration of the network, but also represent its
status on a dynamic basis. The status of the network
and other information and data relating to the
network is obtained by the models in a number of
different ways. A primary technique for obtaining
information from the network involves polling. At
specified intervals, a model in the virtual network
machine 12 requests the device communication manager
14 to poll the network device which corresponds to
the model. The device communication manager 14
converts the request to the necessary protocol for
communicating with the network device. The network

4

WO 93/10495 PCT/US92/10066

-]7-

device returns the requested information to the
device communication manager 14, which extracts the
device information and forwards it to the virtual
network machine 12 for updating one or more
attributes in the model of the network device. The
polling interval is specified individually for each
model and corresponding network device, depending on
the importance of the attribute, the frequency with
which it is likely to change, and the like. The
polling interval, in general, is a compromise
between a desire that the models accurately reflect
the present status of the network device and a
desire to minimize network management traffic which
could adversely impact normal network operation.

According to another technique for updating the
information contained in the models, the network
devices automatically transmit information to the
network management system upon the occurrence of
significant events without polling. This requires
that the network devices be pre-programmed for such
operation.

It will be understood that communication between
a model and its corresponding network entity is
possible only for certain types of devices such as
bridges, card racks, hubs, etc. In other cases, the
network entity being modeled is not capable of
communicating its status to the network management
system. For example, models of buildings or rooms
containing network devices and models of cables
cannot communicate with the corresponding network

WO 93/10495 PCT/US92/10066

-18-

entities. In this case, the status of the network
entity is inferred by the model from information
contained in models of other network devices. Since
successful polling of a network device connected to
a cable may indicate that the cable is functioning
properly, the status of the cable can be inferred
from information contained in a model of the
attached network device. Similarly, the operational
status of a room can be inferred from the operational
status contained in models of the network devices
located within the room. In order for a model to
make such inferences, it is necessary for the model
to obtain information from related models. In a
function called a model watch, an attribute in one
model is monitored or watched by one or more other
models. A change in the watched attribute may
trigger inference handlers in the watching,models.

The virtual network machine also includes an
event log, a statistics log and an alarm log. These
logs permit information contained in the models to
be organized and presented to the user and to be
recorded in the database.

The event message provides specific information
about events, including alarms that have occurred in
a given model. The events pass from the model to an
event log manager which records the event in the
external database. An event message is also sent to
the user interface based on event filters, as
discussed below. The user can request event
information from the database. An event message

WO 93/10495 PCT/US92/10066

-19-

includes a model handle, a model-type handle, an
event date and time, an event type and subtype, an
event severity, a model name, a model-type name, an
event user name, an event data count and event
variable data. The event variable data permits
additional information to be provided about the -
event.

Event messages sent to the user interface can
utilize a filter process that is specified by the
user. The user can specify model types and a
minimum event severity for which events will be
displayed on the user screen. Events from
unspecified model types or less than the minimum
severity will not be displayed. Many other event
selection or filtering criteria can be used. In
general, any information contained in the event
message can be used for event filtering.

Statistics history messages are similar to the
event messages described above. The statistics
information includes any model parameters or
functions which the user wishes to monitor. A
statistics history message passes from the model to
a statistics log manager and subsequently to the
external database. The statistics message is also
sent to the user interface based upon predefined
filter parameters. The user can request the
statistics log manager to obtain and display
statistics information from the external database.
Statistics messages are compiled whenever a device

read procedure occurs.

WO 93/10495 PCT/US92/10066

-20-

When an alarm event occurs in a model, a notice
of the alarm event is sent to an alarm log and to
the event log. The alarm log selects the most
severe alarm for each model which is registering an
alarm. The alarms are sent to an alarm window in
the user interface. The user can obtain more
information on the alarm message by pressing an
appropriate button on the window display. Alarm log
messages include the following parameters: alarm
condition, alarm cause, alarm status, alarm security
data, alarm clear switch and alarm unique ID.

" An example will now be given to jllustrate the
operation of the virtual network machine 12. A
portion of the virtual machine 12 is shown
schematically in FIG. 4. The models shown in FIG. 4
correspond to network entities shown in FIG. 2. A
flow chart illustrating the example is shown in FIG.
5. Each network device has a model in the virtual
network machine 12. Thus, for example, model 144
corresponds to network device 44, model 145
corresponds to network device 45, etc. Models 144
and 145 are related by connection relation 147 which
corresponds to data bus 47. Room model 148 is
related to models 144 and 145 by a contains relation.

In operation, at a specified time model 144
initiates polling of network device 44 in step 200
in order to obtain an update of the status of
network device 44. The model 144 sends a request to
the device communication manager 14 to poll network
device 44. The device communication manager 14

R

WO 93/10495

-21-

converts the request to the required protocol for
communication with network device 44 and sends the
message. The requested information may, for example,
be the number of packets sent on the network in a
given time and the number of errors that occurred.
When the requested information is returned to model
144, the corresponding attributes in model 144 are
updated in step 206 and an error rate inference
handler is triggered. The error rate inference
handler in step 208 calculates the error rate for
network device 44. If the error rate is within
prescribed limits (step 210), an error rate
attribute is updated, and the new information is
logged into the database (step 212). If the
calculated error rate is above a predetermined
limit, an error alarm inference handler is
triggered. The error alarm inference handler may
shut off the corresponding network device 44 and
send an alarm to the user interface 1in step 214.

The alarm is also logged in the database. If the
network device 44 is shut off in response to a high
error rate, a condition attribute in model 144 1is
updated to reflect the off condition in step 216.

If no response was received from the network device
44 when it was polled (step 218), a fault isolation
inference handler is triggered in step 220. The
fault isolation inference handler operates as
described below to determine the network component
which caused network device 44 to fail to respond to
the poll. When the cause of the fault is determined,

PCT/US92/10066

WO 93/10495 PCT/US92/10066

—22—

a fault message is sent to the user interface.

Polling of network device 44 is repeated at
intervals specified by an attribute contained in
model 144. In addition, other network devices are
polled at intervals which may be different for each
network device. The information returned to each
model is processed by the inference handlers for
that model and by inference handlers in other models
that are watching such information. In general,
each model type may include a different set of
inference handlers. -

As described above, an attribute change in one
model can trigger an inference handler in one or
more other models and thereby produce a chain of
actions or responses to the attribute change. For
example, if a fault occurs in a network device, the
condition attribute of that device is changed in the
corresponding model. The condition change may
trigger a condition change in the model of the room
which contains the device. Likewise, the condition
change in the room may trigger a condition change in
the building or site model. The condition attribute
in each model may have a different level of
significance. For example, failure of a device may
have a high significance in the network device model
but a relatively low significance in the site model.

The software models and model relations that are
representative of a network as described herein are
highly flexible and adaptable to new network
configurations and new management functions.

WO 93/10495 PCT/US92/10066

-23-

New models and model relations are easily added to
the virtual network machine to accommodate the needs
of the user. The use of the C++ programming
language permits new model types to be derived from
existing model types. Thus, the virtual network
machine 12 can be customized for a particular
application. As noted above, the present invention
should not be construed as limited to any particular
programming language.

A model type editor is used to modify and
control the models in the virtual network machine
12. The following functions are provided:

(1) Describe () describes some aspect of the
specified model type.

(2) Create () creates a new model for the
specified model type.
(3) Destroy () removes the specified model from

the configuration.

(4) Read '} reads the value of the specified
attribute from a model.

(5) Write () writes the given values to the
attributes of the model.

(6) Action () performs the specified action.

(7) Generate event () creates an event messade.

WO 93/10495 PCT/US92/10066

Similarly, the model relations can be edited by
the user. The following functions can be performed

on model relations.

(1) Describe () describes an aspect of the
specified relation.

(2) Read () reads a set of associations.
(3) Add-() adds an association.
(4) Remove () removes a set of associationé.

(5) Count () returns the number of associations
t+hat match the selection criteria.

(6) Read rule () reads a set of relation rules.

As indicated above, each inference handler is
triggered by the occurrence of a specified event or
events. The user must register the inference
handler to receive the trigger. An inference handler
can be triggered upon the creation or destruction of
a model, the activation or jnitializing of a model,
the change of an attribute in the same model, the
change of an attribute in a watched model, the
addition or removal of a relation, the occurrence of
a. specified event or a user—-defined action.

The virtual network machine described above

» WO 93/10495 PCT/US92/10066

including models and model relations provides a very
general approach to network management. By
customizing the virtual network machine, virtually
any network management function can be implemented.
Both data (attributes) and intelligence (inference
handlers) are encapsulated into a model of a network
entity. New models can be generated by combining or
modifying existing models since the models are
implemented in the C++ programming language. A
model can be identified by a variety of different
dimensions or names, depending on the attributes
specified. For example, a particular network device
can be identified as a device, a type of device, or
by vendor or model number. Models are interrelated
with each other by different types of relations.

The relations permit stimulus-response chaining.

The model approach provides loosely-coupled
intelligent models with interaction between models
according to specified triggers. The system has
data location independence. The data for operation
of the virtual network machine may reside in the
database, memory or in the physical network which 1s
being modeled.

An important function of a network management
system is the identification and isolation of
faults. When the network management system loses
contact with a network device, the reason for the
loss of contact must be determined so that
appropriate action, such as a service call, can be
taken. In a network environment, loss of contact

WO 93/10495 PCT/US92/10066

-26—

with a network device may be due to failure of that

network device or to failure of another network
device that is involved in transmission of the
message. For example, with reference to FIG. 2,
assume that contact is lost with network device 53.
The loss of contact could be due to the failure of
network device 53, but could also be due to the
failure of network devices 50, 60 or 59. In prior
art network management systems, the network
administrator was typically'provided with a list of
possible causes of a fault and was required to
jsolate the fault based on his experience and
knowledge of the network.

In accordance with a feature of the present
jinvention, the network management system isolates
network faults using a technique known as status
suppression. When contact between a model and its
corresponding network device is lost, the model sets
a fault status and initiates the fault isolation
technique. According to the fault isolation
technique, the model (first model) which lost
contact with its corresponding network device (first
network device) determines whether adjacent models
have lost contact with their corresponding network
devices. In this context, adjacent network devices
are defined as those which are directly connected to
a specified network device. If adjacent models
cannot contact the corresponding network devices,
then the first network device cannot be the cause of
the fault, and its fault status in the first model

WO 93/10495 PCT/US92/10066

-27 -

is suppressed or overridden. By suppressing the
fault status of the network devices which are
determined not to be defective, the defective
network device can be identified.

The fault isolation technique is advantageously
implemented in the conjunction with the model-based
representation of the network and polling of network
devices as described above. In a preferred
embodiment of the fault isolation technique, each
model that is capable of polling its corresponding
network device maintains a fault status for that
device. If contact with the device is lost, the
fault status is set. Each such model also maintains
a count of the number of network devices that are
directly connected to the network device. In
addition, each such model maintains a count of the
number of adjacent network devices for which contact
has been lost. This information is determined by
each model watching the fault status in models
corresponding to adjacent network devices. When a
given model loses contact with its corresponding
network device, two operations are performed.

First, the fault status of the model is set.
Second, the count of total adjacent devices is
compared with the count of adjacent devices for
which the fault status is set. If the counts are
equal, all adjacent models have lost contact with
their corresponding network devices, and the fault
status of the first model is suppressed.

Since models that are capable of polling network

WO 93/10495 PCT/US92/10066

~28-

devices perform polling regularly on an asynchronous
basis, the fault status of each such model is
reqularly updated. However, when the fault
jsolation technique described above is used, the
fault status is suppressed in those models which are
determined not to be defective. Thus, the fault
status contained in the models is an accurate
representation of defective network devices.

A flow chart of the fault isolation technique is
shown in Fig. 6. When a model D loses contact with
the corresponding network device D (step 250), model
D sets its fault status in step 252. Model D then
obtains the fault status of all devices which are
adjacent to device D in step 252. The fault status
of adjacent devices is determined from the fault
status maintained in models of adjacent devices. In
step 256 the number of adjacent devices NA
adjacent to device D is compared with the number of
adjacent devices having a fault Ng. If Ny is
not equal to N, contact can be made with at least
one device adjacent to device D, and the fault
status of device D is maintained: If N, = Ng,
contact has been lost with all devices adjacent to
device D and the fault status of device D is
suppressed in step 238. As described above, this
procedure is performed each time a model loses
contact with its corresponding network device.

By way of example, assume that model 144 (Fig.
4) is unable to contact its corresponding network
device 44 (Fig. 2). The model 144 sets its fault

WO 93/10495 PCT/US92/10066

—29-

status and obtains the fault status of adjacent
devices 45, 46, 60 and 50 from the corresponding
models. Assume in this case that the cause of the
fault is the bridge device 50. Since the adjacent
devices 45, 46, 60 and 50 cannot be contacted by the
corresponding models, the fault status of these
devices will be set in the corresponding models.
Model 144 will therefore determine that the fault
status of all adjacent devices is set and will
suppress its own fault status. In this example, the
topological configuration of the network and the
corresponding models are used to isolate the source
of a fault and to suppress the fault status of
downstream network devices.

The fault isolation technique described above
can also be applied in a geographical
configuration. For example, assume that contact is
lost with network devices 30, 31 and 34 in room 38
as shown in FIG. 2. In this case, it is likely that
all devices within the room have failed due to a
power loss or a failure of data bus 36. In this
case, the fault status of devices 30, 31 and 34 is
suppressed in corresponding models 130, 131 and 134,
and the fault status of room 42 is maintained.

The above examples relate to hardware faults.
The fault isolation technique of the invention can
also be applied to isolation of software faults. As
indicated above, the virtual network machine may
include models of application software running on
the network devices. Assume, for example, that

WO 93/10495 PCT/US92/10066

contact is lost with an electronic mail application
running on a specified network device. The
electronic mail application may depend on other
software, such as a file transfer module, for its
operation. The electronic mail application may have
failed to respond because of a failure of the file
transfer module. The technique described above can
be utilized to isolate the software application
having a fault.

The fault isolation technique described above is
particularly useful in a network management system
utilizing model-based intelligence as described
above. However, the fault jsolation technigque is
not limited to such use. The fault isolation
technique of determining the fault status of
adjacent devices and suppressing the fault status of
the first device when the fault status of all
adjacent devices is set, can be applied in a network
management system that does not use models of
network entities. Furthermore, the fault isolation
technique is not limited to network management
systems. The technique is more generally applicable
to any system where it is desired to determine and
isolate the cause of a problem or fault by
suppressing symptomatic information.

As indicated above, the user interface 10
provides information concerning the network to a
user. The primary device for presenting network
information to the user is a video display screen.
The display screen utilizes a high resolution,

WO 93/10495 PCT/US92/10066

-31-

window-based display system to provide different
views or displays of the network configuration and
operation. The user display is based on the X-Window
system which includes routines for generating the
appropriate display or view based on input data.

The X-Window system is a standard window controller
developed by the X-Consortium at Massachusetts
Institute of Technology. The display screen is used
in conjunction with a mouse to permit the user to
select different views of the network. It will be
understood that the user interface can be
implemented using other window-based systems.

The network management system provides multiple
views, including location views, topological views
and generic views, of the network.

Multifunction icons are used in some views to
represent different network entities. The location
and topological views are organized in a .
hierarchical manner. By clicking on specified
elements of a view, the user can obtain a view of
the next lower level in the hierarchy. As used
herein, "clicking" refers to using the mouse to move
the cursor to a specified location on the display
screen and then depressing the mouse button.

In the location views, the highest level may
show a map of the world with network locations
indicated thereon. Intermediate views may show a
map of a country or a region, while lower level
views may show the floor plan of a building or room
that contains network devices. At the lowest level,

WO 93/10495 PCT/US92/10066

-32—

the user may obtain a pictorial view of an
individual device.

Examples of location views are shown in Figs.
7A-7C. A map 300 of the northeast region, with
network locations indicated by icons 302, is shown
in FIG. 7A. The icons 302 each include a name label
304 pointing to a circle 306 which indicates a
network location. The color of the circle 306
indicates a status of that location. For example,
green may indicate a normal status, whereas red may
indicate a fault or trouble status. By clicking on
one of the network locations, the next lower level
location view can be obtained. In this example, a
floor plan 310 of the headquarters network is shown
in FIG. 7B. Locations of network devices are
indicated by icons 312 which are similar to ions 302
described above. By clicking on one of the icons
312 shown in FIG. 7B, a location view of a single
room 318 is displayed as shown in FIG. 7C. In this
case, the network devices contained within a
computer lab are represented by multifunction icons
320, 322, which will be described in detail
hereinafter.

In the topological views, a similar hierarchy is
utilized, and the connections between network
elements are shown. At the highest level, network
interconnections at a worldwide or national level
are shown. At each lower level, more detailed
views, such as local area networks and subnetworks,

are shown.

WO 93/10495 PCT/US92/10066

-33-

Examples of topological views are shown in FIGS.
8A and 8B. In FIG. 8A, a topological view of a
corporate site is shown. An administration network
icon 330 and an engineering network icon 332 are
interconnected to an Internet icon 334 by links
336. Each network is represented by a multifunction
icon. By clicking on the engineering network icon
332, a view of the details of the engineering
network is obtained, as shown in FIG. 8B. The
network devices in the engineering network are
represented by multifunction icons 340, 342, 344,
and the interconnections 346 between network devices
are shown.

The location and topological views represent
different dimensions of the same network. The user
can traverse between location and topological views
to obtain any necessary information regarding the
configuration of the network. The user display also
provides generic views such as an alarm log, an
event log, a text display, a chart, or any other way
of displaying attribute information. The user
traverses between available views to obtain required
network information. There are two basic ways of
traversing between views. As indicated above, the
user can click on icons in the location and
topological views to traverse to the next lower
level in the hierarchy of views. Also, the
different views include pull-down menus, as commonly
used in window-based displays, which permit
selection of any desired view.

WO 93/10495 PCT/US92/10066

-34-

Each view that is available to the user has a
corresponding view ménager in the user interface.
Similarly, each icon has a corresponding icon
manager in the user interface. The view manager
serves as the common parent for all parent icon

managers associated with a given view. The view
manager saves icon screen placement information and
the associated virtual network'machine model handles
that the icons represent. The view manager
determines other views to which a user may traverse
from the current view. The view manager displays
appropriate menu items and allows the user to select
other views. The view manager may permit the user

to traverse from a location view to a topological
view, or vice versa.

The icon manager class is an instantiated C++
class with one or more icon managers controlling
each icon. Each icon manager controls some part of
the on-screen display, such as a ba;_graph, an arrow
or the entire background of an icon. The icon '
manager represents a model within the virtual
network machine and contains a representation of the
virtual network machine model at the current time.
The icon manager can communicate with the virtual
network machine model that it represents. When
attribute data within the virtual network machine
model changes, the appropriate icon manager is
notified of the change and modifies the icon
appearance to reflect the new state, the new
statistics or appropriate error conditions. Thus,

WO 93/10495 PCT/US92/10066

-35-

the icon manager displays data from the virtual
machine model which it represents.

Icon managers are structured in a hierarchical
manner. A parent icon manager may control a
background picture of an icon, and the parent
typically has a group of children icon managers
attached it. Each icon manager has associated with
it the model handle of the virtual network machine
model which it represents.

The icon manager can place a watch on the
virtual network machine model that it represents.
The watch informs the model that an icon manager now
represents that model within the user interface.
Any changes in the state of the model are forwarded
to the corresponding icon manager. The watch
includes a parameter that specifies the severity
level of the watch. A change in model attribute
data must be equal to or greater than the severity
level set within the model before the icon manager
receives notification of a change in attribute
data. Another way to place a watch on a virtual
network machine model is for the icon manager to set
a timer to poll the model periodically. A watch is
generic in that the data received from a watch
includes a selected set of attribute data for the
corresponding model. The data in a model may have
changed extensively since the icon manager was last
notified. When the icon manager polls a model, it
reads attribute data from the model and performs
required actions.

WO 93/10495 PCT/US92/10066

-36—

When the user clicks on an icon to proceed to
another view, the icon manager determines the view
class and the next view. The jcon manager then
jssues a new view by passing the view class and the
appropriate virtual network machine model ID to the
view executive, thereby causing the current view to
be destroyed.

The user interface 10 and the virtual network
machine 12 communicate via Unix sockets. Messages
between these two components are encoded in a
machine independent format. A user interface object
such as an icon manager or a view manager may
communicate with a model, model type or model
relation in the virtual network machine in order to
retrieve attribute data. It is to be understood
that alternative embodiments may utilize any of a
variety of software communication methods and that
the present invention is in no way limited to any
particular operating system or any particular
software communication protocol.

The multifunction icons used in the network

: management system provide a highly flexible
technique for presenting information to the user.
As shown in FIG. 9, a multifunction icon 400 can
include an area 402 for a device name, an area 404
for model type information, bar graphs 406 and 408
for indicating performance parameters such as number
of packets and error rate, an area 410 for displaying
an iconic or symbolic representation 412 of the
device, a background area 414 for representing the

WO 93/10495 PCT/US92/10066

-37-

status of the network device by different colors and
a figure 416 that is used for traversing to a
pictorial representation of the device. Some or all
of the areas of the icon can be clicked upon to
obtain additional information regarding the network
device.

In a preferred embodiment, a view showing
general configuration information relating to the
network device is provided when the user clicks on
area 402 or 404 of icon 400. A view showing status
information pertaining to the device is provided
when the user clicks on area 410, and a view showing
performance information is provided when the user
clicks on bar graphs 406 and 408. As indicated
above, a pictorial representation of the network
device is provided when the user clicks on figure
416. It will be understood that the multifunction
jcon can include different information and areas,
depending on the device being represented and the
information that is required, and that different
information and display views can be provided by
clicking on different areas of the icon.

The multifunction icons shown and described
herein are used in an alarm log view that is shown
in FIG. 10. The alarm log view includes an area 420
for listing of current alarms, an area 422 for
display of information pertaining to a selected
alarm and a button panel 432 which displays options
available for an alarm. The user may click on a
particular alarm in the listing of current alarms to

WO 93/10495 PCT/US92/10066

-38~

obtain more information. A multifunction icon 424
representing the network device having a fault is
displayed in area 422 with one or more text fields
426 and 428 which provide information to the user
regarding the cause of the alarm and the status of
the device. By clicking on specified areas of the
icon 424, the user can obtain further information
regarding the device for which an alarm is
registered, as described above in connection with
jcon 400. The user can also traverse to the
location or topological view from the alarm log
view. By clicking on other alarms in the alarm
1ist, similar information ig obtained regarding
other alarm conditions.

The user interface of the network management
system is highly flexible and permits new views of
the network to be added to the network management
system. New views require new view managers and
jcon managers to be instantiated. Since the views
are implemented as C++ objects, new views and icons
are easily derived from existing views and icons.
New views and modifications of existing views are
easily provided by additions or changes to
parameters and data which control the views, without
changes to the control code.

Certain devices, such as coaxial ("coax")
segments, connectors, buses, rings, fiber segments.,
wide area segments, multiplexers, etc., lack the
built-in intelligence to communicate with the
network management system in any manner. Other

WO 93/10495 PCT/US92/10066

-39-

devices can communicate with the network management
system, but only at tremendous cost to the network
in terms of network performance. Yet, it is
desirable for the network management system to
obtain information concerning such devices. The
present invention includes a model and methodology
for inferring this information from other
information received by the network management
system.

Devices for which direct communication is
impossible or impractical are represented in the
network management system by inferred connector
models. The inferred connector models construct
information without polling the network entity.
This is necessary because some network entities are
non-pollable. For other entities, polling is
technologically possible but is extremely costly in
terms of its impact on network performance. The
inferred connector models differ in some respects
from the models described above. As used herein,
the term "connector model"” is not limited to models
of network connectors, but includes a model of any
network entity in which the information is inferred,
as opposed to information obtained by direct
communication with the entity. As indicated above,
such network entities include coak segments,
connectors, buses, rings, fiber segments, wide area
segments, multiplexers, etc. Similarly, the term
"connector" is used herein to refer to the above

WO 93/10495 PCT/US92/10066

—-40-

types of network entities. The present invention
also includes a methodology wherein polling requests
are substantially minimized. (How?)

The connector models preferably employ model-
based intelligence and include inference handlers.
By receiving selected information from the network
management system, the connector models infer
contact status as well as other information
pertaining to the-connectors within the network.
Information as to the status of a connector (a
non-communicating network entity) is inferred from
relation or connection information as to the network
entities that are related to the connector and
operational information as to the status of those
network entities that are related to the connector.
The operational information is usually obtained by
polling. The inferred information can be accessed
or viewed via the user interface, or can trigger
other routines within the network management
system. By providing more particular information
about the connectors within a network, the connector
models allow the network management system to better
diagnose network problems.

In general, the inference handlers of each
connector model are triggered either when a device
is connected to a modeled connector, Or by a change
in status for any entity that is connected to a
modeled connector. A detailed description of the
routines within the connector model 1is provided

below.

WO 93/10495 PCT/US92/10066

-41-

It is useful to define certain terminology that
relates to the connector models. Contact status is
an attribute, i.e., data, within each of the
models. The various states of contact status
describe the capability of the corresponding network
entity to perform on the network. When a device is
"established”, the network management system has
determined that this device is capable of sending
and receiving messages. This may be determined
through a simple polling request. When a device is
“lost", the network management system has determined
that, at least for the moment, the device is unable
to respond to polling requests. As described below,
the inability to communicate can be the fault of the
device itself or it can be the fault of the
connector to which the device is connected. When a
device is in an "initial" state, the network
management system has not yet determined whether the
device is established or lost. For example, when a
device is first added to a network, a model is
created for that device, and the attributes of the
model are initialized. Among the attributes to be
jnitialized is contact status, which receives a
value of "initial" and remains in this state until a
polling request has been sent to the device to
determine otherwise.

From the perspective of the connector models,
network devices are divided into two general
categories: non-ported and ported. A personal
computer (PC), for example, is a non-ported device.

WO 93/10495 PCT/US92/10066

—-42—

The contact status for the PC adequately describes
the ability of the PC to communicate on the

network. A hub is a ported device, and contact
status by itself is inadequate for connector model
purposes. Ported devices generally have many ports,
e.g., a hub may have 100 ports. At any given
instant, some of the ports may be inoperative, while
the remainder continue to function. Contact status
for the hub does not contain enough information to
indicate the status of the hub ports. Consequently,
besides having a contact status to describe the
overall status of the ported device, each port
within the ported device has an associated port link
status. The status is determined by polling
different information within the ported device. For
example, the contact status is determined by polling
snformation that relates to the hub itself, while
port link status is determined by polling
information particular to that port.

The connector model classifies ports into two
types. First, there are repeater ports. Repeater
ports are extremely common entities within a
network. For instance, a network hub may have 100
repeater ports. The connector model, however,
requires information from only a relatively few of
"the repeater ports. More specifically, the
connector model requires information from only those
repeater ports that are connected to a connector
with a corresponding inferred connector model. It
is therefore advantageous to limit polling regquests

WO 93/10495 PCT/US92/10066

43

to those repeater ports that are connected to
modeled connectors. In a preferred embodiment, the
connector models poll only those repeater ports that
- are connected to a modeled connector. Second, there
are Internet Interface ports, which are far less
common than repeater ports in a network system. In
the preferred embodiment all Internet Interface
ports are polled, as the relative infrequency of
these ports does not warrant the extra complexity of
optimizing software. It is understood, however,
that the same technique applied to repeater port
polling optimization can easily be applied to
Internet Interface ports.

The Internet Interface »ort specific routines
utilize names that reflect the terms used within the
art. Specifically, admin_status and operational_
status are attributes within the Management
Information Base (MIB) of Internet Interface ports.
The connector models utilize these names.
Operational_status represents the actual status of
the port. Admin_status represents the desired
status of the port. It should be noted that
individual ports can be turned off by the management
system. When this is done, admin_status is "down";
admin_status or operational_status of "up" indicates
that the port is operative.

In the descriptions below, the following naming
convention applies. Routine names use capitals and
an underscore to connect the words forming the
name. Data names, or attributes, use lower case.

WO 93/10495 PCT/US92/10066

44—

For instance, "CHILD_COUNT" refers to the routine
which determines data called "child count". The
actual software comprising the present invention
use a different naming methodology and/or different

can

names.
Set forth below are descriptions of the

preferred routines which constitute the connector

model:

1. A CHILD COUNT routine counts the number of
models that are connected to the particular
connector model. By doing so, the routine tracks
the number of actual devices that are connected to
the corresponding connector. Devices can be added
and deleted during the life of the network. Thus,
child count is dynamic. When a device is either
connected to or disconnected from the connector, the
network management system should be updated via the
user interface. When the network management system
is updated, this routine is triggered so that child_
count is changed accordingly.

2. An INITIAL CHILD_COUNT routine counts the
number of models that have a contact_status of
njpnitial" and are connected to the. particular
connector. This routine has two basic triggering
events. First, this routine is triggered when -a
device is connected to or disconnected from a
particular connector, and determines whether the
connecting or disconnecting device has a contact_

WO 93/10495 PCT/US92/10066

status of "initial." If it does, initial_child_
count is changed accordingly. Second, the INITIAL_
CHILD COUNT routine is triggered when a model that
is already connected to the connector changes its
contact_status. For instance, a model corresponding
to a PC that is connected to a connector starts out
with its contact_status as "initial."” Some time
later, after a polling request to the PC, the
contact_status of the PC changes, for example, to
"established.” When this occurs, INITIAL_CHILD_
COUNT is triggered, and initial_child_count is
changed accordingly.

3. A LOST CHILD_COUNT routine has a
functionality that is identical to that for INITIAL_
CHILD_COUNT with one difference. The difference is
that LOST_CHILD_COUNT is concerned with a contact
status of "lost" rather than "initial". When a
device is connected to or disconnected from a
connector, this routine determines whether the
contact_status of that device is "lost”. Likewise,
for any devices that are already connected to this
connector, the routine determines whether the
contact_status of the device has changed to or from

"lost".

4., A BAD LINK_STATUS_COUNT routine is
concerned with ported devices and the ports
connected to a modeled connector. This routine
counts the number of port models which have a port_

WO 93/10495 PCT/US92/10066

link_status of "bad" and are connected to the
modeled connector. The function of this routine is
very similar to counting the lost_child count for
non-ported devices. However, connector models are
concerned with the individual status of the ports
rather than the overall contact_status of the ported

device.

5. A REPEATER_PORT;LINK_STATUS routine
determines the port_link status for all repeater
ports that are connected to an inferred connector
model. This routine obviates the need for polling
each repeater port in the ported device. It does so
by watching certain polling control variables within
the network management system. From this
information, this routine determines when the ported
device is to be polled. At the polling interval,
this routine reads the total traffic object for only
the connected repeater ports. The total traffic
object is a data value that can be read from each
repeater port and that jndicates the volume of
traffic through that port. If there is a change in
the traffic count from the last polled value, this
routine infers that the port_link status is "good."
If there is no change in the traffic count, this
routine sets port_link_status to "bad."” It should
be noted that when contact_status is "lost" for the
ported device itself, port_link_ status for the
jndividual ports is set to "unknown." This action
is taken so that double counting does not occur when

WO 93/10495 PCT/US92/10066

—47-

computing the number of operative devices or ports
connected to a modeled connector. This is more
fully described below in the discussion of COMPOSITE_

BAD_COUNT.

6. An INTERFACE INTERNAL_LINK STATUS routine
determines the port link_status for Internet
Interface ports that are connected to a modeled
connector. This routine polls operational_status
for those ports. When the operational_status is
"down" and the admin_status is "up" after polling,
this recutine sets port_link status to "bad";
otherwise port link status is set to "good". It
should be noted that a port can be turned off by the
management system. When this is done, admin_status
is set to "down." It follows that for connector
model purposes, when the desired status, i.e., admin_
status, is down for a particular port, an
operational_status of down for that port should not
be construed as the port being inoperative. For the
reasons discussed above, when contact_status is
"lost" for the ported device, port_link_status is

set to "unknown."

7. A COMPOSITE_BAD COUNT routine computes the
sum of bad_link_status_count and lost_child_count
for the particular connector model. When either bad_
link_status_count or lost_child_count changes,
COMPOSITE BAD_COUNT is triggered and composite_bad_
count is changed accordingly. Within the virtual

WO 93/10495 7 PCT/US92/10066

network, both a ported device and an individual port
within that device can be regarded as connected to
the same modeled connector. Yet, in reality there
is only one device connected to the connector. When
the contact_status of the ported device changes to
lost, LOST CHILD_COUNT for that connector model is
triggered. At the same time, the REPEATER_PORT LINK_
STATUS and INTERFACE_INTERNAL_LINK_STATUS routines
discussed above change port_link status to
"unknown."” This is done to prevent the port_link_
status from being- changed to bad and thereby
prevents double counting. For example, when a hub
has one of its ports connected to a modeled
connector, both the hub and the port have a model
relationship indicating that they are connected

to the connector. When the hub loses contact
status, LOST CHILD_COUNT for the connector is
triggered and consequently COMPOSITE_BAD_COUNT is
also triggered. In addition, it is highly likely
that when the hub loses contact status all the ports
will become "bad.” If the previously discussed
routines did not change the status to “unknown,” a
"pad"” port status likewise triggers COMPOSITE_BAD_
COUNT. The result is that, although in reality only
one connection to the modeled connector has become
inoperative, COMPOSITE_BAD_COUNT would indicate that
two connections have become "bad" .

8. A CONTACT STATUS routine infers the contact_
status of the particular connector model. The

WO 93/10495 PCT/US92/10066

—49-—

result of this routine is an inference of whether
the actual connector being modeled is operational,
i.e., established. The contact_status for the
particular connector model is determined by the
following formula:

If ((composite bad_count GTR= (child_count - initial_
child_count)) and (composite_bad_count GIR 0))
contact_status = lost

else if (initial child_count EQL child_count)
contact_status = initial

else
contact_status = established,

where "GTR=" means greater than or equal to, and
"EQL" means equal to.

The formula makes the following inferences.
First, if all entities connected to a connector are
either "lost," known "bad," or "initial," the
connector is inferred to be "lost."” This inference
is sound because, if the connector is "lost," this
can account for all of the devices having their
contact status as "lost” or their port_link_status
as "bad." Second, if all the devices on the
connector are still in an initial state, then the
connector is best described as being in an initial
state, i.e., it is not yet known whether the
connector is properly connected. It should be noted

WO 93/10495 PCT/US92/10066

-50-

that models do not remain in an "jnitial" state for
very long. Contact_status changes from "initial”
after the next polling interval. Polling intervals
ordinarily occur on the order of every minute, but
as previously stated the polling interval is
programmable. Finally, if any device connected to
+he connector is "established", then the connector
must be established, as there is no other way in
which the device could have that contact_status.

The following examples illustrate the connector
model in -operation.

Referring to FIG. 11, five pollable devices 510,
520, 530, 540, 550 (including four PC's and one
bridge) are connected to a coax segment 500. Each
of the pollable devices 510, 520, 530, 540, 550 has
a corresponding model within the previously
described virtual network. A model of the coax
segment 500 is an inferred connector model. The
model of each device has an attribute to reflect the
current, or at least the last polled, contact
status. Assume models of all five devices have a
contact_status of winitial." The routines described
above infer that the coax segment 500 has a contact
status of "initial." Some time later, the devices
will have performed some actual work. The network
management system, likewise, will have polled these
devices to determine their status.

Referring to FIG. 12, the devices 520, 530, 540
and 550 connected to the coax segment 500 now have a
contact_status of "lost": the device 510 has a

WO 93/10495 PCT/US92/10066

-51-—

contact status of "established". Since it is
impossible for the device 510 to have a contact_
status of "established" without having a functioning
coax segment to determine this, the coax segment 500
likewise must have an inferred contact status of
“established.” The contact_status of the device 510
is determined by polling requests that travel via
the coax segment 500.

~ Now assume that at the next polling interval no
response is received from PC 510. The current state
of the network is illustrated in FIG. 13. When no
response is received from PC 510, the following
changes occur in the virtual network. Contact_
status within the model for PC 510 changes to
"lost". This change triggers LOST_CHILD_COUNT in
the model for the coax segment 500. LOST_CHILD_
COUNT, accordingly, changes the data value lost_
child count. The change in lost_ child_count
triggers COMPOSITE_BAD_COUNT within the same model.
COMPOSITE_BAD_COUNT changes the data value composite_
bad_count accordingly. The change in composite_bad_
count triggers CONTACT_STATUS within the same
model. Finally, the contact_status for the coax
segment 500 changes to "lost," as all the devices
connected to that coax segment are now lost. This
change in contact_status can then be sent to the
network management system where it is likely to be
immediately relayed to the video display as an
alarm. It should be noted that the coax segment 300
is not necessarily defective. However, an

WO 93/10495 PCT/US92/10066

—52—

intelligent inference, made by the connector models,
reasons that all five devices 510, 520, 530, 540,
550 have a contact_status of "lost" because the coax
segment 500 connecting them together is "lost."” It
is more probable that the coax segment 500 is a
single point of failure than that five devices have
independently and concurrently become inoperable.

1t should be noted that the inferred connector
models described herein are not limited to use in
the network management system described above. The
connector model can operate with any network
management system that is capable of supplying the
required information to it. The network management
system must be capable of providing information when
new devices are added to or deleted from the
connector and when the status of any connected
device changes.

While there have been shown and described what
are at present considered the preferred embodiments
of the present invention, it will be obvious to
those skilled in the art that various changes and
modifications may be made therein without departing
from the scope of the invention as defined by the

éppended claims.

WO 93/10495 PCT/US92/10066

-53—

CLAIMS
What is claimed is:

1. In a network comprising interrelated network
entities including communicating network entities
and at least one non-communicating network entity, a
method for monitoring the status of the
non-communicating network entity, comprising the
steps of:

providing an electronic network management
system;

said network management system communicating
with said communicating network entities to obtain
operational information as to the communicating
network entities; and '

said network management system using the
operational information as to the communicating
network entities and information as to relations
between said non-communicating network entity and
said communicating network entities to infer the
status of the non-communicating network entity.

2. A method as defined in claim 1 wherein the step
of communicating with said communicating network
entities includes said network management system
polling said network entities at predetermined

intervals.

3. A method as defined in claim 1 wherein the step

WO 93/10495 PCT/US92/10066

of providing an electronic network management system

jncludes the step of maintaining in the network
management system & representation of the network
including models and relations between models, said
models including models of said communicating
network entities and inferred models of said
non-communicating network entity, each model
including one or more inference handlers, said
ijnference handlers in said inferred models updating
status information in response to information
obtained from the models of said communicating

network entities.

4. A method as defined in claim 1 further including

the step of providing the status of the
non-communicating network entity to a user.

5. A method as defined in claim 1 wherein the step
of inferring the status of the non-communicating
network entity includes inferring a lost contact
status when all network entities connected to the
non-communicating network entity have a lost contact

status.

6. A method as defined in claim 1 wherein the step
of inferring the status of the non-communicating
network entity includes inferring an established
contact status when at least one network entity
connected to the non-communicating network entity
has an established contact status.

WO 93/10495 PCT/US92/10066

~55—-

7. A method as defined in claim 1 wherein the step
of inferring the status of the non-communicating
entity includes inferring an initial contact status
when all network entities connected to the
non-communicating network entity have an initial

contact status.

8. A method as defined in claim 1 further including
the step of updating the information as to relations
between said non-communicating network entity and
said communicating network entities when a network
entity is added to or removed from said network.

9. A method as defined in claim 1 wherein the step
of obtaining operational information as to the
communicating network entities includes periodically
updating a contact status of said communicating
network entities.

10. A method as defined in claim 1 wherein the step
of obtaining operational information as to the
communicating network entities includes updating a

contact status of ports in a ported network entity.

WO 93/10495

Fig. 1

20}

VIEW
PERSONALITY
MODULE

PCT/US92/10066

1714

22\

DEVICE
PERSONALITY
MODULE

——

USER
INTERFACE

[.

—> DATABASE

4

]

PROTOCOL

MANAGER

VIRTUAL
NETWORK
MACHINE

U //4

DEVICE

PERSONALITY
MODULE

COMMUNICATION
MANAGER

A9>

 — NETWORK

SUBSTITUTE SHEET

PCT/US92/10066

WO 93/10495

2/14

Fig. 2

,————

3/

S B

38

TO NETWORK

pl
Ay

MANAGEMENT
SYSTEM

T i e n
_ |
| 3| | |
_ ~ | | _
| _9)
_ _ | _
1Q _ _ @ |
| _ _ o |
_ rdo_ _4\1 _
| v O |
| N _ -
_M S ! | 8|
|
_ _ s |
I | |3 J,._/J |
/ | _
% | |
NS e L

SUBSTITUTE SHEET

WO 93/10495 PCT/US92/10066
) 3/14
Fr1g.3
ROOM MODEL
86
ATTR. 1
ATTR. 2
}
|
ATTR. M
INF. HAND. 1
INF. HAND. 2
i A
]
88 ‘ 90
g INF. HAND. N v
CONTAINS CONTAINS
RELATION RELATION
N\
?wEo\ggE ATTR. 1 ?A%\I/DIEE ATTR. I
ATTR. 2 ATTR.2
50_ E 82~ :
| I
|
ATTR. X ATTR. U
CONNECT
INF. HAND. 1 (RELATION INF. HAND. 1
INF, HAND. 2 84 INF. HAND. 2
i |
1l {
i !
INF. HAND. y INF. HAND. V

SUBSTITUTE SHEET

WO 93/10495 PCT/US92/10066
' 4/14
F/g. 4 /38 140
S U 1
| 1503 13/ | /32y /331 |
| | |
| |
| | |
. | l |
} /367 : |
|
| | |
|
l /34 l /35 U501
e - A
- - - -
/48\: 199y 1455 |
l
| |
| |
| |
: Py }
| |
| I
: /46 /60’ |
N I -

SUBSTITUTE SHEET

WO 93/10495

Fig.5

S/14

200~

MODEL 144 POLLS
NETWORK DEVICE 44

2/

PCT/US92/10066

RESPONSE NO

RECEIVED
3

206

UPDATE MODEL 144
ATTRIBUTES

\

208 —_

CALCULATE ERROR
RATE

210

ERROR

RATE
ACCEPTABLE
P

YES

PERFORM 2z0
FAULT /

ISOLATION

LOG ERROR | €72
RATE L/

2~

SHUT DEVICE OFF
AND GENERATE ALARM

N

216 —_

ATTRIBUTE INMODEL 144

UPDATE CONDITION

SUBSTITUTE SHEET

WO 93/10495

Fig. 6

6/14

PCT/US92/10066

CONTACT WITH
DEVICE D LOST

| 250

SET FAULT STATUS OF |—292
DEVICE D IN MODEL D

y

OBTAIN FAULT STATUS
OF ADJACENT DEVICES

| 254

256

NO

SUPPRESS FAULT

STATUS OF DEVICE

D

L -258

DONE

SUBSTITUTE SHEET

WO 93/10495 PCT/US92/10066

7/14

Fig. 74

FILE VIEW

Northeast Region

BOSTON AREA

NEW YORK CITY

[ATLANTIC CITY
{

306

Fig. 7B

FILE EDIT TOOLS

NIE J.\l Floor -1
@OFTWARE GROUPI , T

I
s

m - J'fIELECTRIC CLOSET

e
3/0 3/2\7 -

[COMPUTER LAB-1] §

1

'—W [IADM MSTRATI ON

N 1T T |
| |j— ARDWARE GROUP [_H_H_H_
PRESIDENT JHLRl_I.l_Ll J,Tl-”
JTTTTTTT

F 7

SUBSTITUTE SHEET

PCT/US92/10066

WO 93/10495

8714

/€ —

cce

f@oo.mm NINaYV |

oF
I | (351 | =
08

-

NP
15 w@ @@

) r_:o\wuzmmpz_]

S

oce

D)

=

E NH WY1IN3D
\ -

; _ od wc_><o

qoT] 42indwo)) UID

11X3

< 5140434
TANT 4

TTOLHOVLLY

11d3/350710

ST1004L Lid3d (314

SUBSTITUTE SHEET

2/ br4

PCT/US92/10066

WO 93/10495

9/14

TUVINYOAIMY O MN

L NVM

_ MN 1T

&

00l
002
00%
0[0, 4

anvg

431n0Y4 00810)

9£¢

(2] Jxmm

JINHILINI

(95g

1239

suorsinlg y4oddng s sajpg

L
ﬁ o [&]

ajpso0dion

¥

[

¢ 208]

7T

0

o

=

[ONIH33INIONT |

/
2ee

400714 181

siaj4onbpoay

c08 |

m.
7

0%
00¢{ |[&]
00b

13N ‘NInGY |

H4001d ANZ

MIIA 37114

SUBSTITUTE SHEET

ve b+

PCT/US92/10066

WO 93/10495

10714

yiom}apn burisauibuj

dNOYS ININJOT3IAIA JHYM L H0S

L4

Ré
-
Ces

S = ar=l

Soa— | E—
cre

ﬂQVm,

[=

Al
|

—

[]=

— () Lope
dNOY9 LNIWO1IAIA JHYMWYIL / TYYMAYYH

—/— I
[= (=
C— [—— Lopg

MYHOMLIN 1SIL-IONVHNSSY ALINVNO

L1
L13NH3LIN!I

S700L4L 1143 374

SUBSTITUTE SHEET

g8 014

WO 93/10495 PCT/US92/10066

/14

Fig. 9
L — 402
408
4067 o
4/6 HE
400—¥ — 4/4
SNMP_IRM_MMA 1} —
g 1404
Fig. 10 223
FILE VIEW -~
[[Brineez || 7]SYMPTOM/ PROBABLE CAUSE
S| 2 | B
TED ON AN i
™| 140 A ATTEMPT T0 POLLORAN 19
[N | v CURRENT STATUS
—) 424 STATUS UNKNOWN @ 428
4
ALARMS |
16:39:14 FRI 13 JUL CONDITION RED
16:40:24 FRI I3 JUL CONDITION RED o 420
6 :40:14 FRI I3 JUL CONDITION RED
END OF CURRENT ALARMS LIST

SUBSTITUTE SHEET

PCT/US92/10066

WO 93/10495

|DHIUl= SN}D}S ~}0D}UOD

05¢
p—0d

P

ors
¢—-Jd

[DI}IUI=SN}D}S ~ }ODJUOD

[DI}1Ul =SN}D}S
12DJU0D paJiaju|
00s

IN3N93S

XVO0OD
AN

12714

[D1}IUI=SN}DJS ~ $2D}U0D

05S
2-2d

[DI}IUI=SN}D}S ~}OD}JUOD

0%
1-390148

B
7]
T
()]
1]
b=
- |
=
) -
] o
M
=
(/2]
|DI}IUI=SN}D}S ~ }ODJU0D
o
I -Od
4/ DI

PCT/US92/10066

WO 93/10495

}SO| =SN}D}JS ~}IDIUOD

0ss
t-0d

Pays!|qo}S9=Snyn}s
}ODJUOD pailayuyy
00s
ININO3S

X¥00 .

{SO[=SN§DJST}1IDJUOD

N~

949
¢-0d

a

13714

}SO|=SN{D}S ~ 2D} UOD

S

0ogs
Z¢-02d

1S0|=SN}DJS ~}IDJU0D

0z
1~390148

SUBSTITUTE SHEET

‘015
1~ Jd

PaysI|qD}Sa=SN}§ DS ~JIDJUOD

cl bl

PCT/US92/10066

WO 93/10495

1SO| =SN}D}S ~}ODJUOID

N

0ss
v -0d

}SO| = SNYD|S

}ODJUOD pallaju|

14/14

00s
IN3IWO3S

XV0D ///;
)

1SO|=SN} DS ~}ID}UOD

T ~——

949
¢-3d

{SO|=SN}D}S ~ }ID}U0D

()
2-0d

SUBSTITUTE SHEET

}1SO|=SN}D§S~}ID}U0D

o~
ocs
1-390148

1SO| = SN|DJS —} IDJUOD

ois
l-0d

o b4

INTERNATIONAL SEARCH REPORT

PCT/US92/10066

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :GOGF 11/32
US CL :395/575

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 395/575; 370/825.08, 13; 340/825.06; 395/200, 275, 325, 600, 800; 371/151, 20.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
APS (USPAT, JPOABS) [MS File Search for 364 Dig. 1 and Dig. 2] (NETWORK? (2A) MODEL?) and (DATABASE#) OR

DataBase#) and (Status) and (entit### or resource #) and NODE#)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US, A, 4,827,411 (ARROWOOD ET AL.) 02 May 1989. See col.
2 (lines 42-56), col. 5, (line 51-et seq.), col. 3, (line 47- et seq.),
col. 2, (lines 21-23), col. 7, (line 1 - et seq.). col. 7, (line 26 - et

seq.)

1-10

D Further documents are listed in the continuation of Box C.

D See patent family annex.

d Specinl categories of cited documents: T ;!::doampubhheduﬁcrmmmuomlﬁlm;dnempmmy
and not in conflict with the jon but cited to und
‘A" document defining the gencral state of the art which is not considered
10 be part of part 're principie or theory underlying the invention
e : : i . . °X* document of particular rel ; the claimed i cannot be
E earlier document published on or afier the international filing date oouiderudmvclorannmbcmiieredminvo:euinvmﬁvcnep
L document which mylhmwdwbuonpmmychm(l)orwhschu when the document is taken alone
cited to cstablish the date of r other X . . .
special reason (as w,ﬁed) Y docu;nent of plmeuhr nlcylnee;‘d\e claimed inveation cannot be
considered to involve an inventive step when the document is
"0° document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
°p* document published prior to the international filing date but ister than < g° i
the priority date clai & document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
29 DECEMBER 1992 A e A
Name and mailing address of the ISA/ U§ Authorized officer
Commissioner of Patents and Trademarks — : :! gg . AM petr Lo
Box PCT A\ ROBERT B. HARRELL 24 ©.COC=EQ
Washington, D.C. 20231 . INT2TC . TIONAL DIVISIOR
Facsimile No. NOT APPLICABLE Telephone No. (703) 308-3028

Form PCT/ISA/210 (second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

