
THAT THE TOUT UNTUK TA ON AINA HORA TU A TA AN AONTAI
US 20170351504A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2017 / 0351504 A1

RIEDL (43) Pub . Date : Dec . 7 , 2017

(54) INTEGRATED DEVELOPMENT TOOL WITH
PREVIEW FUNCTIONALITY FOR AN
INTERNET OF THINGS (IOT) SYSTEM

(71) Applicant : AFERO , INC . , Los Altos , CA (US)

(72) Inventor : ERHARD RIEDL , San Jose , CA (US)

(21) Appl . No . : 15 / 172 , 459

(52) U . S . CI .
CPC G06F 8 / 65 (2013 . 01) ; G06F 3 / 0484

(2013 . 01) ; H04L 67 / 34 (2013 . 01)
(57) ABSTRACT
A system and method are described for generating an
interactive preview for an IoT device . For example , one
embodiment of a system comprises : an Internet of Things
(IoT) development application comprising a graphical user
interface (GUI) through which a user is to specify a con
figuration for a new loT device , the development application
including a preview GUI component to allow a user to
render a mobile UI preview on a mobile client ; an IoT
service including virtual device generation logic to generate
a virtual device responsive to the configuration specified for
the new IoT device , the virtual device comprising a virtu
alized representation of the new IoT device ; and the virtual
device to establish a communication channel with a mobile
app executed on a client , the virtual device to dynamically
communicate updates to the mobile app as the user makes
changes to IoT device attributes and / or presentation defini
tions from the preview GUI .

(22) Filed : Jun . 3 , 2016

Publication Classification
(51) Int . CI .

G06F 9 / 445
H04L 29 / 08
GOOF 3 / 0484

(2006 . 01)
(2006 . 01)
(2013 . 01)

Avv - WA . . . - MV - Annumm # wvvvm .

+ - TOT
Device

- -

-

TOT
Device
10Z

TOT Hub
110 -

- -

- - Local
Channels

130

User Device With
installed App or

Browser
135

-

-

-

- - - - -

- - - - User Premises User Premises
180

10T
Device
103 Device - - -

-
- Local

Channels -

- - - - - -
- -

-

-

-

101
Device
304

-

- - Internet
-

Local
Channels

130
220 - TOT Hub

111 111 TOT
Device
105

1 Website
130 .

*
V - 4 + xv www - + - + - + vw V + + - + - + * * * * * * *

- + * + - - - - + + - - - + * + - - - + * + - - - - * + - - + * + - - - - - + * - - TOT Service
120 W

107
Device

End User
Database

131
User Premises
181 - - ww www www mv

Local
Channels

107 130
Device Krom Device
192

TOT Hub
190 vwYA Awww Awwww End User

Database
122

*

S R * - *

User Device With Installed App or Browser 135

WiFi / ISP

}
-

-

-

Patent Application Publication

-

-

1 -

116

- -

-

-

TOT Device 101

-

-

-

-

-

-

-

-

-

- -

Local Channels 130
TOT Device 102

IoT Hub 110

Internet 220

Local Channels 130
Local Channels 130

Cell Service 115

Website 130

lot Device

Local Channels 130

Dec . 7 , 2017 Sheet 1 of 47

103

lot Service 120

TOT Device 104

IoT Device

End User Database 131

105

End User Database 122

FIG . 1A

US 2017 / 0351504 A1

JOT Device 101

-

? ? ? ? ??? ??

IoT Device 102

TOT Hub 110

??

Patent Application Publication

? ? ?

User Device With Installed App or Browser

Local Channels 130

?? ?? ? ?

135

-
-

?

-

? ?

TOT Device 103

User Premises 180

-
-

?? ??

-

? ?

-

Local Channels 130
-

??

-

?? ??

-

?

OT Device

? ??

mu

?? ??

104

m

ini

?

local

Internet 220

Channels 130
TOT Hub 111

IoT Device 105

Website 130 a
I DHE

Dec . 7 , 2017 Sheet 2 of 47

+

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

- -

v

-

=

-

=

=

-

-

=

-

=

=

=

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

IoT Service 120

10T Device 191

End User Database 131

www

- User Premises 181

lot Hub

Local Channels 130

vrv Avvvvv

190

IOT Device 192

End User Database 122

-

VAVAVA . AVAVAVAVAVAVA . VAVAVAVAVAVA

US 2017 / 0351504 A1

FIG . 1B

4
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

~

-

lot Device 101

- -

-

-

~

weeV -

-

App Code

~

-

-

~

- -

203

Patent Application Publication

-

- ~

! =

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

- -

- -

- -

-

-

-

-

Local Comm Channel 130

~

-

-

-

-

-

Memory 210
- -

- -

-

Library Code 202 Comm Stack 201

-

-

~

-

-

-

-

- -

Hub 110

-

-

-

Antenna 207

- - -

Barcode Reader - 206

- -

~

- -

-

-

~ ~

- -

Wakeup Receiver 207

-

Low Power Low Power UC 200

~

Rezorers
-

Wakeup Signal

Speaker 205

Wakeup

- - -

~

-

~

-

-

Other I / O

mewn Devices / Sensors 250

Dec . 7 , 2017 Sheet 3 of 47

?

Speaker Low Semeno

Ó é o @ Ch

?

Battery 208

? ? ? ?

~

? ? ?

~ ~

LED 209

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

- -

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

- -

Sensors / Input Devices 210

US 2017 / 0351504 A1

FIG . 2

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

IOT Hub 110

-

Patent Application Publication

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

- -

-

-

-

-

- - -

Program Code & Data 305

- - -

Memory 317

weweweweweewenn

-

- - - - - -

- -

Local

-
1 Dini

-

Device Pairing i
306

E
Comm Stack 308

comm Channel

- - -

-

-

11

Antenna 311

11

Antenna : 310

- - -

+

+

+

+

+

+

+

'

L

-

-

-

-

-

-

-

-

-

-

-

L

TOT Device 101 hogy egyes
130
- - - - - -

Tk

- -

Local Comm Interface 303

Logic / uc 301 La se ha

WAN Interface 302

Cell Service 115

~

Dec . 7 , 2017 Sheet 4 of 47

wwwwwwwwwwww

~ n ~

Wakeup Signal

Power 390

- ~
-

-

-

- -

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

Device Wakeup Transmitter 307

FIG . 3

US 2017 / 0351504 A1

JOT Device 101

Air Conditioner / Heater

IR / RF Blaster 401

430

Patent Application Publication

TOT Hub 110

Temperature , Humidity , etc
V

eter

Sensor (s)
404

TOT Service 120

-

-

-

-

Control 412

Lights 431

Control 421

lot Device 102

-

IR / RF Blaster 402

-

ALLEY

- -
-
-

w

.

. -

.

Control Codes and User Config / Preferences 413

Control Codes , User Config / Preferences 422

w

Brightness

Dec . 7 , 2017 Sheet 5 of 47

www . *

Sensor (s)
405

isiminin

Audiovisual Equipment 432

lot Device 103

Notifications and / or Control

Notifications and / or Control

. . . .

.

.

IR / RF Blaster 403

- -

-

-

-

User Device With Installed App or Browser 135

- -

Sensor (s)
406

Volume / Brightness / Temperature

US 2017 / 0351504 A1

FIG . 4A

Remote Control 495

Patent Application Publication

IOT Hub 110

IR / RF interface
490

Equipment

IOT Device 101

ID

IoT Service 120

Remote Control Codes 413

Control 412

Remote Control Code Learning 491

Remote Control Codes , User Config / Preferences 422

Dec . 7 , 2017 Sheet 6 of 47

Control Codes
Lii

IOT Device 102

Equipment

Sensor Feedback

ID

US 2017 / 0351504 A1

FIG . 4B

lot Device 104

Stove 530

Control (e . g . , OFF) 501

Patent Application Publication

IoT Service 120

TOT Hub 110

Temp

. .

Sensor (s)

. . . .

503

Control 421

www

Control 512

??

* *
*

Sini

Washer / Dryer 531
0 mm *

*

* *

lot Device 105

111111111111111111111111
11111111111111111

User Config / Preferences 422

Dec . 7 , 2017 Sheet 7 of 47

?????????????????????

User Config / Preferences 413
yote

nytt

-

-

Motion Sensor (s) 504
- -

Notifications
FIG . 5

User Device With Installed App or Browser 135

US 2017 / 0351504 A1

Data Sources

Patent Application Publication

Out of Range TOT Device 601

Transmit to loT Service and / or User Devices

Collected Data 605

Temporary Data Repository 605

Data Repository 413

Stationary lot Device which is out of range of loT hub , provides data to portable IoT device when detected within range

w
-
-

-

Mobile Device

IoT Hub 110

Dec . 7 , 2017 Sheet 8 of 47

611

Stationary IoT Device moves
within range of lot

hub and / or connects to lot hub using different communication technology channel ; provides collected data to
IoT hub

-

-
-
-

Temporary Data Repository 615
-
-
-
-

VIIVIT Mobile Device 611

US 2017 / 0351504 A1

FIG . 6

Out of Range IoT Device 601 Collected Data 605

Patent Application Publication

Logic / App Configuration

Intermediary Connection Logic / App 701 -

Dec . 7 , 2017 Sheet 9 of 47

Logic / App Configuration

Intermediary Connection Logic App 711

Intermediary Connection Logic / App 721

Logic / App Configuration

Temporary Data Repository 615

Data Repository 413

Mobile Device 611

lot Hub 110

US 2017 / 0351504 A1

www
FIG . 7

START

Patent Application Publication

V

OUT - OF - RANGE IOT DEVICE
PERIODICALLY COLLECTS DATA 801 PERIODICALLY CHECK FOR CONNECTIVITY 802 CONNECTION TO MOBILE DEVICE ? 802

Dec . 7 , 2017 Sheet 10 of 47

TRANSFER COLLECTED DATA TO MOBILE DEVICE 803 MOBILE DEVICE TRANSFERS DATA TO IOT HUB , SERVICE , AND / OR USER 804 FIG . 8

US 2017 / 0351504 A1

Out of Range IoT Device 01 lot Device Program Code 902

Patent Application Publication

Logic / App Configuration

Intermediary Connection Logic / App 701 Intermediary Connection Logic / App 711

Logic / App Configuration

Dec . 7 , 2017 Sheet 11 of 47

?

"

, , 11 , ??

?

Intermediary Connection Logic / App 721

,

Logic / App Configuration

Temporary Program Code Repository 615

Tot Device Program Code Updates 901

Mobile Device 641

TOT Hub 110

US 2017 / 0351504A1

F6 . 8

START

Patent Application Publication

NEW PROGRAM CODE OR DATA UPDATES AVAILABLE ON IOT DEVICE OR SERVICE 900 MOBILE DEVICE RECEIVES PROGRAM CODE UPDATES ON BEHALF OF IOT DEVICE 901 PERIODICALLY CHECK FOR CONNECTIVITY 902

>

CONNECTION TO MOBILE DEVICE ? 903 VY TRANSFER AND INSTALL UPDATES ON IOT DEVICE 904

Dec . 7 , 2017 Sheet 12 of 47

FIG . 9B

US 2017 / 0351504 A1

IoT Device 101

Patent Application Publication

Security 1002

TOT Hub 110

IoT Service 120

Secure Key Storage 1001

Security 1012

Security 1013

IoT Device 102

Dec . 7 , 2017 Sheet 13 of 47

Security 1004

Secure Key Storage 1011

Secure Key Storage 1021

Secure Key Storage 1003

FIG . 10

US 2017 / 0351504 Al

Patent Application Publication

lot Device 101

TOT Hub 110

Security 1002

TOT Service 120

Security 1012 Programming Logic 1125

Security 1013 - -

KI ??????????

Hub Key (s) & Device Key (s)
1021

SIM Interface 1100

Dec . 7 , 2017 Sheet 14 of 47

Hub Key (s) & Device Key (s)
1011

SIM

Programmable SIM (for key storage) 1101

Programming Interface 1102

FIG . 11

US 2017 / 0351504 A1

User Device With Installed App or Browser

Secure Connection (e . g . , SSL)

Patent Application Publication

135
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- . - . -

- . -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- . -

. - . . . -

-

-

. - . -

- . -

-

-

.

. - - - - - - - - - - -

10T Device 101

www . v

Security 1002

IOT Hub 110

loT Service 120

Barcode / QR Code 1201

Barcode Reader 206

Security 1012

Security 1013

Dec . 7 , 2017 Sheet 15 of 47

PRODUCT ID 123456789012

SIM / Key (s) 1001

Www

(associated with SIM and / or IoT Device)

Hub Key (s) & Device Key (s)
1011

Hub Key (s) & Device Key (s)
1021

FIG . 12A

US 2017 / 0351504 A1

Barcode / QR Code 1201

Patent Application Publication

PRODUCTO 1234567890123

Barcode Reader 1205
lot Hub 110

IOT Device 101 Local Communication (e . g . , BTLE) 1290

Local Communication (e . g . , BTLE) 1280

Dec . 7 , 2017 Sheet 16 of 47

Pairing Data 1295

Pairing Data 1285

H

FIG . 12B

US 2017 / 0351504 A1

START

Patent Application Publication

Receive New lot Device With Blank SIM Card 1301 Insert Blank SIM Card Into loT Hub 1302 Program Blank SIM Card to
Include a Set of Encryption Keys 1303

Dec . 7 , 2017 Sheet 17 of 47

Securely Transmit Key to loT Service 1304 END Fig . 13

US 2017 / 0351504 A1

Patent Application Publication

START Receive New lot Device With Key 1401 Securely Provide Key to 10T Hub Device Which Stores in Secure Keystore 1402

Dec . 7 , 2017 Sheet 18 of 47

Securely Transmit Key to loT Service Which Stores in Secure Keystore 1403 END | END
Fig . 14

US 2017 / 0351504 A1

START IoT Service Encrypts Data / Commands Using IoT Device Public Key to Create lot Device Packet and Encrypts loT Device Packet Using IoT Hub Public Key to Create loT Hub Packet 1501

Patent Application Publication

Transmit IoT Hub Packet to loT Hub 1502 TOT Hub Decrypts loT Hub Packet Using IOT Hub Private Key to Generate lot Device Packet 1503
Transmit IoT Device Packet to loT Device 1504

Dec . 7 , 2017 Sheet 19 of 47

TOT Device Decrypts lot Device Packet Using lot Device Private Key to Generate Data / Commands 1505 lot Device Processes Data / Commands 1506 END Fig . 15

US 2017 / 0351504 A1

TOT Service 120

TOT Device 101

HSM 1630

KSGM 1640

HSM 1631

Patent Application Publication

KSGM 1641

-

-

-

-

-

-

-

-

-

-

SSL

-

-

wie wir v

-

-

-

-

-

*

-

-

-

lot Hub 110

BTLE mann

-

-

-

*

-

-

-

-

Keys 1650 Encryption Engine 1660

Keys 1651 Encryption Engine 1661

*

-

isi viii . W

T

-

-

-

-

Client Device 611

SSL

-

www

:

Then we

w

w

w

w

w

w

w

w

w

w

w

w

w

w

what would

Clear 1601

* *

et

*

Encrypted 1602

Encrypted 1603

Dec . 7 , 2017 Sheet 20 of 47

*

. ??

*

wwwwwwwwww

www w

Encrypted 1604

Encrypted 1605

* *

Clear 1606

* *

ww

Answer . no

*

me on

Fig . 16A

US 2017 / 0351504 A1

TOT Service 120

TOT Device 101

HSM 1630

KSGM 1640

HSM 1631

KSGM 1641

Patent Application Publication

???

???? ??

???

??? ? ??

???? ???

???

???

???

???

??? , ???

???? ???

???

L

-

???

-

-

-

-

-

-

-

-

-

-

-

WW

-

imi ni mimi nini

-

*

-

Keys 1651 Encryption Engine 1661

Keys 1650 Encryption Engine 1660

- -

i ini m

- -

SSL

Client Device 611

BTLE

imieniem

-

L

-

+

-

+

-

+

-

-

+

- +

? ? ? ? ? ?? ? ??

? ?

? ?

?

? ?

? ?? ? ?? ?

4

mr

Clear 1611

SY

. Je

??? ? ???? ??? ???

h o

Encrypted 1612

??? ??? ?

will win

??? ???

Encrypted 1613

Dec . 7 , 2017 Sheet 21 of 47

?

wwwwwwwwwwwwwwwww .

HU

W .

? ? ?

*

Encrypted 1614

-

ingi

n

erte

??

Encrypted 1615

*

??

Z

??

-

?

-

?

Clear 1616

-

??? ??? ? ???

m m

??? ?

m +

Fig . 16B

US 2017 / 0351504 A1

loT Service 120

lot Device 101

HSM 1630

KSGM 1640

HSM 1631

KSGM 1641

Patent Application Publication

wwwveen Keys 1650 Encryption Engine 1660

wwwwww

Keys 1651 Encryption Engine 1661

auNAJ

?? ??? ??

?

? ?

?

? ?? ??

?

?

? ?

?

? ?

?

?

-

-

-

-

-

-

-

-

-

-

-

-

J

www

- =

IoT Service Session Public Key 1701

- -

w

ww ro

N

Dec . 7 , 2017 Sheet 22 of 47

-

w

TOT Device Session Public Key 1702

ww

Generate Secret 1703

Generate Secret 1704
it - -

Vem mot

Use Secret and Counter to Generate Key Stream

Use Secret and Counter to Generate Key Stream 1706

Fig . 17

US 2017 / 0351504 A1

1705

Patent Application Publication Dec . 7 , 2017 Sheet 23 of 47 US 2017 / 0351504 A1

6 bytes Tag 1802

N bytes Encrypted Data 1801 Fig . 18

El 4 bytes Counter 1800

Patent Application Publication

lot Device 101

BT Communication Module 1901

BT Device 1910

Description
Value

Characteristic ID
Name

TOT Device 14

10752 (Ox2400)

BT

IoT Device Application Logic 1902

< 65534 >

Msg Write

< write data >

Communication Module 1903

< 65533 >

Msg Read

< read data >

< 65532 >

Negotiation Write

< neg write data >

Dec . 7 , 2017 Sheet 24 of 47

< 65533

Negotiation Read

< neg read data >

Fig . 19

US 2017 / 0351504 A1

1 byte

1 byte 12 bytes Request Attribute
ID

ID

Patent Application Publication

GET Packet 2001

0x10 1 byte

1 byte 2 bytes Request Attribute L ID

2 bytes Value Length
n bytes Value Data

SET Packet 2002

0x11
STEET

Dec . 7 , 2017 Sheet 25 of 47

1 byte

UPDATE

1 byte 2 bytes Request Attribute
ID

1 byte Update State
2 bytes Value Length
n bytes Value Data

0x12

2

Packet 2003

Fig . 20

US 2017 / 0351504 A1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- - - - -

Patent Application Publication

- -

TOT Device 101

BT Communication Module 1901

lot Service 120

www

-

Low Power MCU 200

- - - -

SET 2101

L

-

-

-

- -

- -

- -

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

VI

-

- - - - -

Set Desired Value 2102

SET 2103

- - - - - -

Perform G Operation 2104
UPDATE 2105

- -

-

Set Actual Value

Dec . 7 , 2017 Sheet 26 of 47

-

-

-

2106

- -

—

-

UPDATE 2107

-

-

-

-

-

-

-

-

-

v

-

e

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Fig . 21

US 2017 / 0351504 A1

START IOT SERVICE CREATES AN ENCRYPTED CHANNEL TO COMMUNICATE WITH THE IOT HUB USING ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA) CERTIFICATES 2201

Patent Application Publication

IOT SERVICE ENCRYPTS DATA / COMMANDS IN IOT DEVICE PACKETS USING A SESSION SECRET TO CREATE ENCRYPTED DEVICE PACKET 2202 TOT SERVICE TRANSMITS ENCRYPTED DEVICE PACKET TO IOT HUB OVER ENCRYPTED CHANNEL
2203 WITHOUT DECRYPTING , IOT HUB PASSES THE ENCRYPT DEVICE PACKET TO IOT DEVICE 2204

Dec . 7 , 2017 Sheet 27 of 47

IOT DEVICE USES SESSION SECRET TO DECRYPT ENCRYPTED DEVICE PACKET 2205 IOT DEVICE PROCESSES DATA / COMMANDS FROM DEVICE PACKET 2206 END

US 2017 / 0351504 A1

Fig . 22

START IOT SERVICE CREATES PACKET CONTAINING SERIAL NUMBER AND PUBLIC KEY OF IOT SERVICE 2301

IOT DEVICE SENDS PACKET OVER
UNENCRYPTED CHANNEL TO 10T HUB

2308

Patent Application Publication

IOT SERVICE SIGNS PACKET USING FACTORY PRIVATE KEY 2302

OT HUB FORWARDS PACKET TO IOT SERVICE OVER ENCRYPTED CHANNEL 2309

IOT SERVICE SENDS PACKET OVER
ENCRYPTED CHANNEL TO IOT HUB

2303

IOT SERVICE VERIFIES SIGNATURE OF PACKET 2310

TO FIG . 23B

«

«

«

«

« «

«

_

IOT HUB FORWARDS PACKTS TO IOT DEVICE OVER UNENCRYPTED CHANNEL 2304

IOT SERVICE GENERATES SESSION KEY PAIR 2311

Dec . 7 , 2017 Sheet 28 of 47

IOT DEVICE VERIFIFES SIGNATURE OF PACKET 2305

IOT SERVICE GENERATES PACKET CONTAINING SESSION PUBLIC KEY 2312

TOT DEVICE GENERATES PACKET CONTAINING SERIAL NUMBER AND PUBLIC KEY OF IOT DEVICE 2306

IOT SERVICE SIGNS PACKET WITH IOT SERVICE PRIVATE KEY 2313

IOT DEVICE SIGNS PACKET USING FACTORY PRIVATE KEY 2307

IOT SERVICE SENDS PACKET TO HUB OVER ENCRYPTED CHANNEL 2314

US 2017 / 0351504 A1

Fig . 23A

IOT HUB FORWARDS PACKET TO IOT DEVICE OVER UNENCRYPTED CHANNEL 2315

TOT SERVICE VERIFIES SIGNATURE OF PACKET 2322

Yerever

Patent Application Publication

ww IOT DEVICE VERIFIES ISGNATURE OF PACKET 2316

IOT SERVICE USES IOT SERVICE PRIVATE KEY AND IOT DEVICE PUBLICE KEY TO GENERATE SESSIONS SECRET 2323

IOT DEVICE GENERATES SESSION KEY PAIR 2317

IOT DEVICE USES IOT DEVICE PRIVATE KEY AND IOT SERVICE PUBLIC KEY TO GENERATE SESSION SECRET 2324

FROM FIG . 23A

.

TO FIG . 230

IOT DEVICE PACKET CONTAINING IOT DEVICE SESSION PUBLIC KEY 2318

IOT GENERATES A RANDOM NUMBER AND ENCRYPTS IS USING SESSION SECRET 2325

Dec . 7 , 2017 Sheet 29 of 47

OT DEVICE SIGNS PACKETS WITHIOT DEVICE PRIVATE KEY 2319

IOT SERVICE SENDS ENCRYPTED PACKET TO IOT HUB OVER ENCRYPTED CHANNEL 2326

+ + + + + + + + + + + + + + + +

+

+

TOT DEVICE SENDS PACKET TO IOT HUB OVER ENCRYPTED CHANNEL 2320

IOT HUB FORWARDS ENCRYPTED PACKET TO IOT DEVICE OVER UNENCRYPTED CHANNEL 2327 V

IOT HUB FORWARDS PACKET TO IOT SERVICE OVER ENCRYPTED CHANNEL 2321

TOT DEVICE DECRYPTS PACKET USING SESSION SECRET 2328

US 2017 / 0351504 A1

Fig . 23B

IOT DEVICE RE - ENCRYPTS PACKET USING SESSION SECRET 2329

Patent Application Publication

IOT DEVICE SENDS ENCRYPTED PACKET TO IOT HUB OVER UNENCRYPTED CHANNEL 2330 TOT HUB FORWARDS ENCRYPTED PACKET TO IOT SERVICE OVER ENCRYPTED CHANNEL 2331

FROM FIG . 23B

+

IOT SERVICE DECRYPTS PACKET USING SESSION SECRET 2332 IOT SERVICE VERIFIES THAT RANDOM NUMBER MATCHES RANDOM NUMBER IT SENT 2333

Dec . 7 , 2017 Sheet 30 of 47

IOT SERVICE SENDS PACKET (NIDCATING PAIRING IS COMPLETE 2334 ALL FUTURE MESSAGES ARE ENCRYPTES USING SESSION SECRET 2335

TORROTONDORIONDORIOONID

US 2017 / 0351504 A1

Fig . 230

Patent Application Publication

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

TOT Device 101

-

-

-

-

- -

-

-

-

-

-

-

-

-

SPl Interface 2410

-

- -

-

-

-

-

-

*

-

-

-

-

-

-

App 2403

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

- -

-

SCK CS

-

-

-

-

-

-

-

-

MCU (Master) 2401

-

Secure Communication Module (Slave) 2402

TOT Hub 110

-

-

-

-

MOSI

-

-

-

-

-

-

-

-

-

-

-

-

MISO

-

Dec . 7 , 2017 Sheet 31 of 47

-

-

-

-

-

-

- -

-

-

-

-

- -

-

-

Control 2410

-

-

-

-

-

-

-

-

-

-

-

-

-

- ?

?

? ?

?

?

?

?

?

?

? ?

?

?

? ?

?

?

.

?

?

? ?

?

?

? ?

?

?

? ?

?

? ?

?

?

?

?

?

?

? ?

?

?

? ?

?

?

?

?

?

? ?

?

?

? ?

?

?

? ?

?

?

? ?

?

?

?

?

? ?

?

?

Fig . 24

US 2017 / 0351504 A1

Fig . 25

US 2017 / 0351504 A1

-

~

-

-

~ .

. .

. V .

WA

W

A

. V . W

WA
~

~

~

.

. .

~

~

. V .

.

We

- - - -

AND -

- INO

- - - - -

HE2503

-

2502 - 22

-

~

- -

~

-

- ~

- - - - - -

-

-

- 2501

Control 2410

- - - -

~

-

Dec . 7 , 2017 Sheet 32 of 47

-

- - - - -

2562 Control

2552 Control

- - -

ve

mind .

~

- - -

ain

*

*

*

Y

w

Ww

*

*

.

-

-

-

??

-

-

*

$

$

-

MISO

?? ??

~

-

2561 Buffer

2551 2551 Buffer

*

-

*

~

Duter

- -

?? . ??? ??

-

-

AMA

2560

MOSI

*

-

-

-

*

110 lot Hub

*

~

-

2550 Interface

-

*

-

*

Interface

- - - - -

CK SCK

*

-

-

-

wwwwww

- - - -

2402 Module (Slave)

Secure Communication

-

2401 MCU (Master) 2403 App

- -

? ?

-

-

?

~

??

-

-

? ???

~

- -

-

-

-

-

-

-

- -

- -

- -

-

-

-

-

- -

-

-

-

-

- -

Patent Application Publication

- -

120 IoT Service

- -

TOT JO } M?0 101

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Jyty

Patent Application Publication

Byte O

Byte 1

Checksum

1 , 00 1 , 0 , nonnil

Byte 2

|

Byte 3

| - - - - - |

Byte 9

|

2601 4

2603
2602

Dec . 7 , 2017 Sheet 33 of 47

Fig . 26

US 2017 / 0351504 A1

Developer

Patent Application Publication

Development Database 2710

Integrated Development Tool Platform 2701

GUI 2721 Development Application 2720

10T Device Engine 2730

Client App Engine 2731

IoT Service Engine 2732

EL E SE have b e

Dec . 7 , 2017 Sheet 34 of 47

TOT Device 102 SCM 2402

lot Device Profile 2740

UX Profile 2741

Cloud API Profile 2742

ht

IT 1 / 0 2407

TOT Device 101

Client Device

TOT Service 120

. .

611

10 2408

MCU 2401

SCM 2402

I / O

- 2407

US 2017 / 0351504 A1

Fig . 27

START DESIGNER ENTERS PARAMETERS FOR
NEW IOT DEVICE IN DEVELOPMENT APPLICATION

2801

Patent Application Publication

USING DATA FROM DEVELOPMENT APPLICATION , IOT DEVICE ENGINE GENERATES IOT DEVICE PROFILE 2802 APPLY IOT DEVICE PROFILE TO IOT DEVICE 2803 USING DATA FROM DEVELOPMENT APPLICATION , CLIENT APP ENGINE GENERATES UX PROFILE 2804

Dec . 7 , 2017 Sheet 35 of 47

APPLY UX PROFILE TO CLIENT 2805 USING DATA FROM DEVELOPMENT APPLICATION , IOT SERVICE ENGINE GENERATES CLOUD API PROFILE 2806 APPLY CLOUD API PROFILE TO IOT SERVICE 2805 END

US 2017 / 0351504 A1

Fig . 28

loT Service 120

IOT Device 101

Priority Notification Processing 2922

Patent Application Publication

+

M

Y

-

RMN

MY

MY

*

-

*

-

*

MCU 2915

-

*

-

-

-

-

-

-

-

-

-

Serial Interface (e . g . , SPI) 2916

-

-

Secure Wireless Communication 2918
BTLE Attributes 2905

-

-

•

-

-

•

-

•

-

•

-

Device Management 2921

•

-

Device Database 2851

-

- -

-

-

-

-

-

-

-

- - -

WAAN

-

App

R

- - -

Attributes 2910

-

-

-

-

- -

- -

-

- -

-

-

-

-

co

- - -

KWK

-

App Attributes 2910

- - - - - -

System Attributes 2911

Dec . 7 , 2017 Sheet 36 of 47

- - - - - -

Attribute Address Decoder 2907

App Attributes 2910

- - -

Priority Notification was Attributes 2912

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

System Attributes - 2911 Priority Notification Attributes 2912

wwwww

Fig . 29

User Devices and External Services 2970

US 2017 / 0351504 A1

Developer
hahahahahahaha

Client 3020
-

Patent Application Publication

-

Patent Application Publicatio

-

-

-

-

Integrated
Development Development

Tool

Database

Platform

2710

2701

Preview GUI 3021 Development Application 2720

-

Mobile App 3022

FEE SEE
- -

YYYY

TOT Device Engine 2730

Client App Engine 2731

10T Service Engine 2732

Fig . 30

-

10T Service 120

? ? ?

-

-

i 10T Device Profile 2740
-

- -

-

-

UX Profile 2741
?

YvaYY

Cloud API Profile 2742

Dec . 7 , 2017 Sheet 37 of 47

-

- -

-

-

?

-

? ?

Av . Wevee

YAenean

Account Channel 3060

Virtual Device 3010 Device Attributes

Virtual Device Generation 3005

Wwwvwwww

3011
-

-

-

-

www .

Presentation Definitions 3012

US 2017 / 0351504 A1

- - - - -

+ + + + + + + + + + + + + + + +

- - - - -

+

Patent Application Publication Dec . 7 , 2017 Sheet 38 of 47 US 2017 / 0351504 A1

App 3022
Lom Mobile

* *

* *

WWWWWWWWWWWWWWWWWWWWW GUI 3021
Fig . 31A

3150 3015 -

Fig . 31B

US 2017 / 0351504 ?1

K 1 2

3

»

3022 App
- Mobile

Dec . 7 , 2017 Sheet 39 of 47

???

* * * * * *

* * * * * * * * * * * * * *

.

: *

: :

???

????
??

3104

3103

3102

3101

Patent Application Publication

3021

3150

GUI

Patent Application Publication Dec . 7 , 2017 Sheet 40 of 47 US 2017 / 0351504 A1

Mobile App 3022

3111

3110
. . .

3104

3103
GUI 3021 Fig . 31C

3102

3101
3150

* *

Patent Application Publication Dec . 7 , 2017 Sheet 41 of 47 US 2017 / 0351504 A1

Mobile App 3022
*

*

* *

Fig . 31D

Patent Application Publication Dec . 7 , 2017 Sheet 42 of 47 US 2017 / 0351504 A1

Mobile App 3022

www

bola de
Fig . 31E

Bu kao

Patent Application Publication Dec . 7 , 2017 Sheet 43 of 47 US 2017 / 0351504 A1

Mobile App 3022
W *

* * * *

TITE

ONTEI

Fig . 31F

Patent Application Publication Dec . 7 , 2017 Sheet 44 of 47 US 2017 / 0351504 A1

Mobile App 3022

KAUX ESTE

25TE

3160 Fig . 31G

:

W

MO WWW

Patent Application Publication

3160
.

Dec . 7 , 2017 Sheet 45 of 47

in Mobile
App 3022

ESTE

2911

US 2017 / 0351504 A1

Fig . 31H

START DEVELOPER INITIATES PREVIEW GUI 2201

Patent Application Publication

SEARCH FOR DEVICE TYPE DEFINITION THAT HAS A SPECIFIC VIRTUAL DEVICE CLASS SET 2202

USE EXISTING DEVICE TYPE DEFINITION 2204

DEVICE TYPE DEFINITION EXISTS ? 2203 VN CREATE NEW DEVICE TYPE DEFINITION 2205

Dec . 7 , 2017 Sheet 46 of 47

EXISTING DEVICE OF DEVICE TYPE ? 2206

USE EXISTING DEVICE 2207

VN CREATE VITUAL DEVICE 2208 GOTO 32B

US 2017 / 0351504 A1

Fig . 32A

FROM 32A ASSOCIATE VIRTUAL DEVICE WITH DEVICE ATTRIBUTES AND PRESENTATION DEFINITIONS 2209

Patent Application Publication

NOTIFY ACCOUNT CHANNEL OF NEW OR UPDATED DEVICE 2210 UPDATE FROM PREVIEW GUI ? 2211
N

UPDATE MOBILE APP OVER ACCOUNT CHANNEL 2212

Dec . 7 , 2017 Sheet 47 of 47

UPDATE FROM MOBILE APP ? 2213 REFLECT UPDATE IN PREVIEW GUI 2214
Fig . 32B

US 2017 / 0351504 A1

US 2017 / 0351504 A1 Dec . 7 , 2017

INTEGRATED DEVELOPMENT TOOL WITH
PREVIEW FUNCTIONALITY FOR AN
INTERNET OF THINGS (IOT) SYSTEM

BACKGROUND

Field of the Invention
[0001] This invention relates generally to the field of
computer systems . More particularly , the invention relates to
an integrated development tool with preview functionality
for an Internet of Things (IoT) system .

Description of the Related Art
[0002] The “ Internet of Things ” refers to the interconnec
tion of uniquely - identifiable embedded devices within the
Internet infrastructure . Ultimately , IoT is expected to result
in new , wide - ranging types of applications in which virtually
any type of physical thing may provide information about
itself or its surroundings and / or may be controlled remotely
via client devices over the Internet .
[0003] IoT development and adoption has been slow due
to issues related to connectivity , power , and a lack of
standardization . For example , one obstacle to IoT develop
ment and adoption is that no standard platform exists to
allow developers to design and offer new IoT devices and
services . In order enter into the IoT market , a developer must
design the entire IoT platform from the ground up , including
the network protocols and infrastructure , hardware , software
and services required to support the desired IoT implemen
tation . As a result , each provider of IoT devices uses
proprietary techniques for designing and connecting the IoT
devices , making the adoption of multiple types of IoT
devices burdensome for end users . Moreover , developers are
expected to generate one set of program code for the IoT
device , another set of program code for an IoT service , and
yet another set of program code for a client - based user
interface , resulting in significant inefficiencies .

[0014] FIG . 9B illustrates an embodiment of a method in
which program code and data updates are provided to the
IoT device ;
[0015] FIG . 10 illustrates a high level view of one embodi
ment of a security architecture ;
[0016] FIG . 11 illustrates one embodiment of an architec
ture in which a subscriber identity module (SIM) is used to
store keys on IoT devices ;
[0017] FIG . 12A illustrates one embodiment in which IoT
devices are registered using barcodes or QR codes ;
[0018] FIG . 12B illustrates one embodiment in which
pairing is performed using barcodes or QR codes ;
[0019] FIG . 13 illustrates one embodiment of a method for
programming a SIM using an IoT hub ;
[0020] FIG . 14 illustrates one embodiment of a method for
registering an IoT device with an IoT hub and IoT service ;
and
10021] FIG . 15 illustrates one embodiment of a method for
encrypting data to be transmitted to an IoT device ;
[0022] FIGS . 16A - B illustrate different embodiments of
the invention for encrypting data between an IoT service and
an IoT device ;
[0023] FIG . 17 illustrates embodiments of the invention
for performing a secure key exchange , generating a common
secret , and using the secret to generate a key stream ;
[0024] FIG . 18 illustrates a packet structure in accordance
with one embodiment of the invention ;
0025) FIG . 19 illustrates techniques employed in one
embodiment for writing and reading data to / from an IoT
device without formally pairing with the IoT device ;
[0026] FIG . 20 illustrates an exemplary set of command
packets employed in one embodiment of the invention ;
[0027] FIG . 21 illustrates an exemplary sequence of trans
actions using command packets ;
[0028] FIG . 22 illustrates a method in accordance with one
embodiment of the invention ; and
100291 FIGS . 23A - C illustrate a method for secure pairing
in accordance with one embodiment of the invention ;
(0030] FIG . 24 illustrates one embodiment of an interface
between a microcontroller unit and a secure communication
module ;
[0031] FIG . 25 illustrates additional details for an embodi
ment of an interface between a microcontroller unit and a
secure communication module ;
[0032] FIG . 26 illustrates a communication format
employed in one embodiment of the invention ;
[0033] FIG . 27 illustrates an integrated development tool
in accordance with one embodiment of the invention ;
[0034] FIG . 28 illustrates a method in accordance with one
embodiment of the invention ;
[0035] FIG . 29 illustrates one embodiment in which dif
ferent types of attributes are utilized and synchronized
between an IoT device and IoT service ;
[0036] FIG . 30 illustrates an one embodiment of the
invention for generating a preview on a mobile app ;
[0037] FIGS . 31A - H illustrates exemplary interactions
between a preview user interface of an integrated develop
ment application and a mobile app ;
[0038] FIGS . 32A - B illustrate a method in accordance
with one embodiment of the invention .

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] A better understanding of the present invention can
be obtained from the following detailed description in
conjunction with the following drawings , in which :
10005) FIGS . 1A - B illustrates different embodiments of an
IoT system architecture ;
[0006] FIG . 2 illustrates an IoT device in accordance with
one embodiment of the invention ;
[0007] FIG . 3 illustrates an IoT hub in accordance with
one embodiment of the invention ;
[0008] FIG . 4A - B illustrate embodiments of the invention
for controlling and collecting data from IoT devices , and
generating notifications ;
[0009] FIG . 5 illustrates embodiments of the invention for
collecting data from IoT devices and generating notifications
from an IoT hub and / or IoT service ;
[0010] FIG . 6 illustrates one embodiment of a system in
which an intermediary mobile device collects data from a
stationary IoT device and provides the data to an IoT hub ;
[0011] FIG . 7 illustrates intermediary connection logic
implemented in one embodiment of the invention ;
[0012] FIG . 8 illustrates a method in accordance with one
embodiment of the invention ;
[0013] FIG . 9A illustrates an embodiment in which pro
gram code and data updates are provided to the IoT device ;

DETAILED DESCRIPTION

[0039] In the following description , for the purposes of
explanation , numerous specific details are set forth in order

US 2017 / 0351504 A1 Dec . 7 , 2017

to provide a thorough understanding of the embodiments of
the invention described below . It will be apparent , however ,
to one skilled in the art that the embodiments of the
invention may be practiced without some of these specific
details . In other instances , well - known structures and
devices are shown in block diagram form to avoid obscuring
the underlying principles of the embodiments of the inven
tion .
[0040] One embodiment of the invention comprises an
Internet of Things (IoT) platform which may be utilized by
developers to design and build new IoT devices and appli
cations . In particular , one embodiment includes a base
hardware / software platform for IoT devices including a
predefined networking protocol stack and an IoT hub
through which the IoT devices are coupled to the Internet . In
addition , one embodiment includes an IoT service through
which the IoT hubs and connected IoT devices may be
accessed and managed as described below . In addition , one
embodiment of the IoT platform includes an IoT app or Web
application (e . g . , executed on a client device) to access and
configured the IoT service , hub and connected devices .
Existing online retailers and other Website operators may
leverage the IoT platform described herein to readily pro
vide unique IoT functionality to existing user bases .
[0041] FIG . 1A illustrates an overview of an architectural
platform on which embodiments of the invention may be
implemented . In particular , the illustrated embodiment
includes a plurality of IoT devices 101 - 105 communica
tively coupled over local communication channels 130 to a
central IoT hub 110 which is itself communicatively coupled
to an IoT service 120 over the Internet 220 . Each of the IoT
devices 101 - 105 may initially be paired to the IoT hub 110
(e . g . , using the pairing techniques described below) in order
to enable each of the local communication channels 130 . In
one embodiment , the IoT service 120 includes an end user
database 122 for maintaining user account information and
data collected from each user ' s IoT devices . For example , if
the IoT devices include sensors (e . g . , temperature sensors ,
accelerometers , heat sensors , motion detector , etc) , the data
base 122 may be continually updated to store the data
collected by the IoT devices 101 - 105 . The data stored in the
database 122 may then be made accessible to the end user
via the IoT app or browser installed on the user ' s device 135
(or via a desktop or other client computer system) and to
web clients (e . g . , such as websites 130 subscribing to the IoT
service 120) .
[0042] The IoT devices 101 - 105 may be equipped with
various types of sensors to collect information about them
selves and their surroundings and provide the collected
information to the IoT service 120 , user devices 135 and / or
external Websites 130 via the IoT hub 110 . Some of the IoT
devices 101 - 105 may perform a specified function in
response to control commands sent through the IoT hub 110 .
Various specific examples of information collected by the
IoT devices 101 - 105 and control commands are provided
below . In one embodiment described below , the IoT device
101 is a user input device designed to record user selections
and send the user selections to the IoT service 120 and / or
Website .
[0043] In one embodiment , the IoT hub 110 includes a
cellular radio to establish a connection to the Internet 220 via
a cellular service 115 such as a 4G (e . g . , Mobile WiMAX ,
LTE) or 5G cellular data service . Alternatively , or in addi
tion , the IoT hub 110 may include a WiFi radio to establish

a WiFi connection through a WiFi access point or router 116
which couples the IoT hub 110 to the Internet (e . g . , via an
Internet Service Provider providing Internet service to the
end user) . Of course , it should be noted that the underlying
principles of the invention are not limited to any particular
type of communication channel or protocol .
(0044] In one embodiment , the IoT devices 101 - 105 are
ultra low - power devices capable of operating for extended
periods of time on battery power (e . g . , years) . To conserve
power , the local communication channels 130 may be imple
mented using a low - power wireless communication tech
nology such as Bluetooth Low Energy (LE) . In this embodi
ment , each of the IoT devices 101 - 105 and the IoT hub 110
are equipped with Bluetooth LE radios and protocol stacks .
[0045] As mentioned , in one embodiment , the IoT plat
form includes an IoT app or Web application executed on
user devices 135 to allow users to access and configure the
connected IoT devices 101 - 105 , IoT hub 110 , and / or IoT
service 120 . In one embodiment , the app or web application
may be designed by the operator of a Website 130 to provide
IoT functionality to its user base . As illustrated , the Website
may maintain a user database 131 containing account
records related to each user .
[004] FIG . 1B illustrates additional connection options
for a plurality of IoT hubs 110 - 111 , 190 In this embodiment
a single user may have multiple hubs 110 - 111 installed
onsite at a single user premises 180 (e . g . , the user ' s home or
business) . This may be done , for example , to extend the
wireless range needed to connect all of the IoT devices
101 - 105 . As indicated , if a user has multiple hubs 110 , 111
they may be connected via a local communication channel
(e . g . , Wifi , Ethernet , Power Line Networking , etc) . In one
embodiment , each of the hubs 110 - 111 may establish a direct
connection to the IoT service 120 through a cellular 115 or
WiFi 116 connection (not explicitly shown in FIG . 1B) .
Alternatively , or in addition , one of the IoT hubs such as IoT
hub 110 may act as a “ master ” hub which provides connec
tivity and / or local services to all of the other IoT hubs on the
user premises 180 , such as IoT hub 111 (as indicated by the
dotted line connecting IoT hub 110 and IoT hub 111) . For
example , the master IoT hub 110 may be the only IoT hub
to establish a direct connection to the IoT service 120 . In one
embodiment , only the “ master ” IoT hub 110 is equipped
with a cellular communication interface to establish the
connection to the IoT service 120 . As such , all communi
cation between the IoT service 120 and the other IoT hubs
111 will flow through the master IoT hub 110 . In this role ,
the master IoT hub 110 may be provided with additional
program code to perform filtering operations on the data
exchanged between the other IoT hubs 111 and IoT service
120 (e . g . , servicing some data requests locally when pos
sible) .
10047] Regardless of how the IoT hubs 110 - 111 are con
nected , in one embodiment , the IoT service 120 will logi
cally associate the hubs with the user and combine all of the
attached IoT devices 101 - 105 under a single comprehensive
user interface , accessible via a user device with the installed
app 135 (and / or a browser - based interface) .
[0048] In this embodiment , the master IoT hub 110 and
one or more slave IoT hubs 111 may connect over a local
network which may be a WiFi network 116 , an Ethernet
network , and / or a using power - line communications (PLC)
networking (e . g . , where all or portions of the network are
run through the user ' s power lines) . In addition , to the IoT

US 2017 / 0351504 A1 Dec . 7 , 2017

us

hubs 110 - 111 , each of the IoT devices 101 - 105 may be
interconnected with the IoT hubs 110 - 111 using any type of
local network channel such as WiFi , Ethernet , PLC , or
Bluetooth LE , to name a few .
[0049] FIG . 1B also shows an IoT hub 190 installed at a
second user premises 181 . A virtually unlimited number of
such IoT hubs 190 may be installed and configured to collect
data from IoT devices 191 - 192 at user premises around the
world . In one embodiment , the two user premises 180 - 181
may be configured for the same user . For example , one user
premises 180 may be the user ' s primary home and the other
user premises 181 may be the user ' s vacation home . In such
a case , the IoT service 120 will logically associate the IoT
hubs 110 - 111 , 190 with the user and combine all of the
attached IoT devices 101 - 105 , 191 - 192 under a single com
prehensive user interface , accessible via a user device with
the installed app 135 (and / or a browser - based interface) .
[0050] As illustrated in FIG . 2 , an exemplary embodiment
of an IoT device 101 includes a memory 210 for storing
program code and data 201 - 203 and a low power microcon
troller 200 for executing the program code and processing
the data . The memory 210 may be a volatile memory such
as dynamic random access memory (DRAM) or may be a
non - volatile memory such as Flash memory . In one embodi
ment , a non - volatile memory may be used for persistent
storage and a volatile memory may be used for execution of
the program code and data at runtime . Moreover , the
memory 210 may be integrated within the low power
microcontroller 200 or may be coupled to the low power
microcontroller 200 via a bus or communication fabric . The
underlying principles of the invention are not limited to any
particular implementation of the memory 210 .
[0051] As illustrated , the program code may include appli
cation program code 203 defining an application - specific set
of functions to be performed by the IoT device 201 and
library code 202 comprising a set of predefined building
blocks which may be utilized by the application developer of
the IoT device 101 . In one embodiment , the library code 202
comprises a set of basic functions required to implement an
IoT device such as a communication protocol stack 201 for
enabling communication between each IoT device 101 and
the IoT hub 110 . As mentioned , in one embodiment , the
communication protocol stack 201 comprises a Bluetooth
LE protocol stack . In this embodiment , Bluetooth LE radio
and antenna 207 may be integrated within the low power
microcontroller 200 . However , the underlying principles of
the invention are not limited to any particular communica
tion protocol .
[0052] The particular embodiment shown in FIG . 2 also
includes a plurality of input devices or sensors 210 to receive
user input and provide the user input to the low power
microcontroller , which processes the user input in accor
dance with the application code 203 and library code 202 . In
one embodiment , each of the input devices include an LED
209 to provide feedback to the end user .
[0053] In addition , the illustrated embodiment includes a
battery 208 for supplying power to the low power micro
controller . In one embodiment , a non - chargeable coin cell
battery is used . However , in an alternate embodiment , an
integrated rechargeable battery may be used (e . g . , recharge
able by connecting the IoT device to an AC power supply
(not shown) .
[0054] A speaker 205 is also provided for generating
audio . In one embodiment , the low power microcontroller

299 includes audio decoding logic for decoding a com
pressed audio stream (e . g . , such as an MPEG - 4 / Advanced
Audio Coding (AAC) stream) to generate audio on the
speaker 205 . Alternatively , the low power microcontroller
200 and / or the application code / data 203 may include digi
tally sampled snippets of audio to provide verbal feedback
to the end user as the user enters selections via the input
devices 210 .
[0055] In one embodiment , one or more other / alternate
I / O devices or sensors 250 may be included on the IoT
device 101 based on the particular application for which the
IoT device 101 is designed . For example , an environmental
sensor may be included to measure temperature , pressure ,
humidity , etc . A security sensor and / or door lock opener may
be included if the IoT device is used as a security device . Of
course , these examples are provided merely for the purposes
of illustration . The underlying principles of the invention are
not limited to any particular type of IoT device . In fact , given
the highly programmable nature of the low power micro
controller 200 equipped with the library code 202 , an
application developer may readily develop new application
code 203 and new I / O devices 250 to interface with the low
power microcontroller for virtually any type of IoT appli
cation .
10056] In one embodiment , the low power microcontroller
200 also includes a secure key store for storing encryption
keys for encrypting communications and / or generating sig
natures . Alternatively , the keys may be secured in a sub
scriber identify module (SIM) .
[0057] Awakeup receiver 207 is included in one embodi
ment to wake the IoT device from an ultra low power state
in which it is consuming virtually no power . In one embodi
ment , the wakeup receiver 207 is configured to cause the IoT
device 101 to exit this low power state in response to a
wakeup signal received from a wakeup transmitter 307
configured on the IoT hub 110 as shown in FIG . 3 . In
particular , in one embodiment , the transmitter 307 and
receiver 207 together form an electrical resonant transformer
circuit such as a Tesla coil . In operation , energy is trans
mitted via radio frequency signals from the transmitter 307
to the receiver 207 when the hub 110 needs to wake the IoT
device 101 from a very low power state . Because of the
energy transfer , the IoT device 101 may be configured to
consume virtually no power when it is in its low power state
because it does not need to continually " listen " for a signal
from the hub (as is the case with network protocols which
allow devices to be awakened via a network signal) . Rather ,
the microcontroller 200 of the IoT device 101 may be
configured to wake up after being effectively powered down
by using the energy electrically transmitted from the trans
mitter 307 to the receiver 207 .
[0058] As illustrated in FIG . 3 , the IoT hub 110 also
includes a memory 317 for storing program code and data
305 and hardware logic 301 such as a microcontroller for
executing the program code and processing the data . A wide
area network (WAN) interface 302 and antenna 310 couple
the IoT hub 110 to the cellular service 115 . Alternatively , as
mentioned above , the IoT hub 110 may also include a local
network interface (not shown) such as a WiFi interface (and
WiFi antenna) or Ethernet interface for establishing a local
area network communication channel . In one embodiment ,
the hardware logic 301 also includes a secure key store for
storing encryption keys for encrypting communications and

US 2017 / 0351504 A1 Dec . 7 , 2017

generating / verifying signatures . Alternatively , the keys may
be secured in a subscriber identify module (SIM) .
[0059] A local communication interface 303 and antenna
311 establishes local communication channels with each of
the IoT devices 101 - 105 . As mentioned above , in one
embodiment , the local communication interface 303 / an
tenna 311 implements the Bluetooth LE standard . However ,
the underlying principles of the invention are not limited to
any particular protocols for establishing the local commu
nication channels with the IoT devices 101 - 105 . Although
illustrated as separate units in FIG . 3 , the WAN interface 302
and / or local communication interface 303 may be embedded
within the same chip as the hardware logic 301 .
[0060] In one embodiment , the program code and data
includes a communication protocol stack 308 which may
include separate stacks for communicating over the local
communication interface 303 and the WAN interface 302 . In
addition , device pairing program code and data 306 may be
stored in the memory to allow the IoT hub to pair with new
IoT devices . In one embodiment , each new IoT device
101 - 105 is assigned a unique code which is communicated
to the IoT hub 110 during the pairing process . For example ,
the unique code may be embedded in a barcode on the IoT
device and may be read by the barcode reader 106 or may
be communicated over the local communication channel
130 . In an alternate embodiment , the unique ID code is
embedded magnetically on the IoT device and the IoT hub
has a magnetic sensor such as an radio frequency ID (RFID)
or near field communication (NFC) sensor to detect the code
when the IoT device 101 is moved within a few inches of the
IoT hub 110 .
[0061] In one embodiment , once the unique ID has been
communicated , the IoT hub 110 may verify the unique ID by
querying a local database (not shown) , performing a hash to
verify that the code is acceptable , and / or communicating
with the IoT service 120 , user device 135 and / or Website
130 to validate the ID code . Once validated , in one embodi
ment , the IoT hub 110 pairs the IoT device 101 and stores the
pairing data in memory 317 (which , as mentioned , may
include non - volatile memory) . Once pairing is complete , the
IoT hub 110 may connect with the IoT device 101 to perform
the various IoT functions described herein .
[0062] In one embodiment , the organization running the
IoT service 120 may provide the IoT hub 110 and a basic
hardware / software platform to allow developers to easily
design new IoT services . In particular , in addition to the IoT
hub 110 , developers may be provided with a software
development kit (SDK) to update the program code and data
305 executed within the hub 110 . In addition , for IoT devices
101 , the SDK may include an extensive set of library code
202 designed for the base loT hardware (e . g . , the low power
microcontroller 200 and other components shown in FIG . 2)
to facilitate the design of various different types of applica
tions 101 . In one embodiment , the SDK includes a graphical
design interface in which the developer needs only to
specify input and outputs for the IoT device . All of the
networking code , including the communication stack 201
that allows the IoT device 101 to connect to the hub 110 and
the service 120 , is already in place for the developer . In
addition , in one embodiment , the SDK also includes a
library code base to facilitate the design of apps for mobile
devices (e . g . , iPhone and Android devices) .
10063] In one embodiment , the IoT hub 110 manages a
continuous bi - directional stream of data between the IoT

devices 101 - 105 and the IoT service 120 . In circumstances
where updates to / from the IoT devices 101 - 105 are per
formed in real time (e . g . , where a user needs to view the
current status of security devices or environmental read
ings) , the IoT hub may maintain an open TCP socket to
provide regular updates to the user device 135 and / or
external Websites 130 . The specific networking protocol
used to provide updates may be tweaked based on the needs
of the underlying application . For example , in some cases ,
where may not make sense to have a continuous bi - direc
tional stream , a simple request / response protocol may be
used to gather information when needed .
[0064] In one embodiment , both the IoT hub 110 and the
IoT devices 101 - 105 are automatically upgradeable over the
network . In particular , when a new update is available for the
IoT hub 110 it may automatically download and install the
update from the IoT service 120 . It may first copy the
updated code into a local memory , run and verify the update
before swapping out the older program code . Similarly ,
when updates are available for each of the IoT devices
101 - 105 , they may initially be downloaded by the IoT hub
110 and pushed out to each of the IoT devices 101 - 105 . Each
IoT device 101 - 105 may then apply the update in a similar
manner as described above for the IoT hub and report back
the results of the update to the IoT hub 110 . If the update is
successful , then the IoT hub 110 may delete the update from
its memory and record the latest version of code installed on
each IoT device (e . g . , so that it may continue to check for
new updates for each IoT device) .
[0065] In one embodiment , the IoT hub 110 is powered via
A / C power . In particular , the IoT hub 110 may include a
power unit 390 with a transformer for transforming A / C
voltage supplied via an A / C power cord to a lower DC
voltage .
10066] . FIG . 4A illustrates one embodiment of the inven
tion for performing universal remote control operations
using the IoT system . In particular , in this embodiment , a set
of IoT devices 101 - 103 are equipped with infrared (IR)
and / or radio frequency (RF) blasters 401 - 403 , respectively ,
for transmitting remote control codes to control various
different types of electronics equipment including air con
ditioners / heaters 430 , lighting systems 431 , and audiovisual
equipment 432 (to name just a few) . In the embodiment
shown in FIG . 4A , the IoT devices 101 - 103 are also
equipped with sensors 404 - 406 , respectively , for detecting
the operation of the devices which they control , as described
below .
[0067] For example , sensor 404 in IoT device 101 may be
a temperature and / or humidity sensor for sensing the current
temperature / humidity and responsively controlling the air
conditioner / heater 430 based on a current desired tempera
ture . In this embodiment , the air conditioner / heater 430 is
one which is designed to be controlled via a remote control
device (typically a remote control which itself has a tem
perature sensor embedded therein) . In one embodiment , the
user provides the desired temperature to the IoT hub 110 via
an app or browser installed on a user device 135 . Control
logic 412 executed on the IoT hub 110 receives the current
temperature / humidity data from the sensor 404 and respon
sively transmits commands to the IoT device 101 to control
the IR / RF blaster 401 in accordance with the desired tem
perature / humidity . For example , if the temperature is below
the desired temperature , then the control logic 412 may
transmit a command to the air conditioner / heater via the

US 2017 / 0351504 A1 Dec . 7 , 2017

IR / RF blaster 401 to increase the temperature (e . g . , either by
turning off the air conditioner or turning on the heater) . The
command may include the necessary remote control code
stored in a database 413 on the IoT hub 110 . Alternatively ,
or in addition , the IoT service 421 may implement control
logic 421 to control the electronics equipment 430 - 432
based on specified user preferences and stored control codes
422 .
[0068] IoT device 102 in the illustrated example is used to
control lighting 431 . In particular , sensor 405 in IoT device
102 may photosensor or photodetector configured to detect
the current brightness of the light being produced by a light
fixture 431 (or other lighting apparatus) . The user may
specify a desired lighting level (including an indication of
ON or OFF) to the IoT hub 110 via the user device 135 . In
response , the control logic 412 will transmit commands to
the IR / RF blaster 402 to control the current brightness level
of the lights 431 (e . g . , increasing the lighting if the current
brightness is too low or decreasing the lighting if the current
brightness is too high ; or simply turning the lights ON or
OFF) .
[0069] IoT device 103 in the illustrated example is con
figured to control audiovisual equipment 432 (e . g . , a tele
vision , A / V receiver , cable / satellite receiver , AppleTVTM
etc) . Sensor 406 in IoT device 103 may be an audio sensor
(e . g . , a microphone and associated logic) for detecting a
current ambient volume level and / or a photosensor to detect
whether a television is on or off based on the light generated
by the television (e . g . , by measuring the light within a
specified spectrum) . Alternatively , sensor 406 may include a
temperature sensor connected to the audiovisual equipment
to detect whether the audio equipment is on or off based on
the detected temperature . Once again , in response to user
input via the user device 135 , the control logic 412 may
transmit commands to the audiovisual equipment via the IR
blaster 403 of the IoT device 103 .
[0070] It should be noted that the foregoing are merely
illustrative examples of one embodiment of the invention .
The underlying principles of the invention are not limited to
any particular type of sensors or equipment to be controlled
by IoT devices .
[0071] In an embodiment in which the IoT devices 101 -
103 are coupled to the IoT hub 110 via a Bluetooth LE
connection , the sensor data and commands are sent over the
Bluetooth LE channel . However , the underlying principles
of the invention are not limited to Bluetooth LE or any other
communication standard .
[0072] In one embodiment , the control codes required to
control each of the pieces of electronics equipment are
stored in a database 413 on the IoT hub 110 and / or a
database 422 on the IoT service 120 . As illustrated in FIG .
4B , the control codes may be provided to the IoT hub 110
from a master database of control codes 422 for different
pieces of equipment maintained on the IoT service 120 . The
end user may specify the types of electronic (or other)
equipment to be controlled via the app or browser executed
on the user device 135 and , in response , a remote control
code learning module 491 on the IoT hub may retrieve the
required IR / RF codes from the remote control code database
492 on the IoT service 120 (e . g . , identifying each piece of
electronic equipment with a unique ID) .
[0073] In addition , in one embodiment , the IoT hub 110 is
equipped with an IR / RF interface 490 to allow the remote
control code learning module 491 to " learn ” new remote

control codes directly from the original remote control 495
provided with the electronic equipment . For example , if
control codes for the original remote control provided with
the air conditioner 430 is not included in the remote control
database , the user may interact with the IoT hub 110 via the
app / browser on the user device 135 to teach the IoT hub 110
the various control codes generated by the original remote
control (e . g . , increase temperature , decrease temperature ,
etc) . Once the remote control codes are learned they may be
stored in the control code database 413 on the IoT hub 110
and / or sent back to the IoT service 120 to be included in the
central remote control code database 492 (and subsequently
used by other users with the same air conditioner unit 430) .
f0074) In one embodiment , each of the IoT devices 101
103 have an extremely small form factor and may be affixed
on or near their respective electronics equipment 430 - 432
using double - sided tape , a small nail , a magnetic attachment ,
etc . For control of a piece of equipment such as the air
conditioner 430 , it would be desirable to place the IoT
device 101 sufficiently far away so that the sensor 404 can
accurately measure the ambient temperature in the home
(e . g . , placing the IoT device directly on the air conditioner
would result in a temperature measurement which would be
too low when the air conditioner was running or too high
when the heater was running) . In contrast , the IoT device
102 used for controlling lighting may be placed on or near
the lighting fixture 431 for the sensor 405 to detect the
current lighting level .
[0075] In addition to providing general control functions
as described , one embodiment of the IoT hub 110 and / or IoT
service 120 transmits notifications to the end user related to
the current status of each piece of electronics equipment .
The notifications , which may be text messages and / or app
specific notifications , may then be displayed on the display
of the user ' s mobile device 135 . For example , if the user ' s
air conditioner has been on for an extended period of time
but the temperature has not changed , the IoT hub 110 and / or
IoT service 120 may send the user a notification that the air
conditioner is not functioning properly . If the user is not
home (which may be detected via motion sensors or based
on the user ' s current detected location) , and the sensors 406
indicate that audiovisual equipment 430 is on or sensors 405
indicate that the lights are on , then a notification may be sent
to the user , asking if the user would like to turn off the
audiovisual equipment 432 and / or lights 431 . The same type
of notification may be sent for any equipment type .
[0076] Once the user receives a notification , he / she may
remotely control the electronics equipment 430 - 432 via the
app or browser on the user device 135 . In one embodiment ,
the user device 135 is a touchscreen device and the app or
browser displays an image of a remote control with user
selectable buttons for controlling the equipment 430 - 432 .
Upon receiving a notification , the user may open the graphi
cal remote control and turn off or adjust the various different
pieces of equipment . If connected via the IoT service 120 ,
the user ' s selections may be forwarded from the IoT service
120 to the IoT hub 110 which will then control the equip
ment via the control logic 412 . Alternatively , the user input
may be sent directly to the IoT hub 110 from the user device
135 .
[0077] In one embodiment , the user may program the
control logic 412 on the IoT hub 110 to perform various
automatic control functions with respect to the electronics
equipment 430 - 432 . In addition to maintaining a desired

US 2017 / 0351504 A1 Dec . 7 , 2017

nicate this information to the end user ' s device 135 (e . g . , by
sending a text message or app - specific notification) .

temperature , brightness level , and volume level as described
above , the control logic 412 may automatically turn off the
electronics equipment if certain conditions are detected . For
example , if the control logic 412 detects that the user is not
home and that the air conditioner is not functioning , it may
automatically turn off the air conditioner . Similarly , if the
user is not home , and the sensors 406 indicate that audio
visual equipment 430 is on or sensors 405 indicate that the
lights are on , then the control logic 412 may automatically
transmit commands via the IR / RF blasters 403 and 402 , to
turn off the audiovisual equipment and lights , respectively .
[0078] FIG . 5 illustrates additional embodiments of IoT
devices 104 - 105 equipped with sensors 503 - 504 for moni
toring electronic equipment 530 - 531 . In particular , the IoT
device 104 of this embodiment includes a temperature
sensor 503 which may be placed on or near a stove 530 to
detect when the stove has been left on . In one embodiment ,
the IoT device 104 transmits the current temperature mea
sured by the temperature sensor 503 to the IoT hub 110
and / or the IoT service 120 . If the stove is detected to be on
for more than a threshold time period (e . g . , based on the
measured temperature) , then control logic 512 may transmit
a notification to the end user ' s device 135 informing the user
that the stove 530 is on . In addition , in one embodiment , the
IoT device 104 may include a control module 501 to turn off
the stove , either in response to receiving an instruction from
the user or automatically (if the control logic 512 is pro -
grammed to do so by the user) . In one embodiment , the
control logic 501 comprises a switch to cut off electricity or
gas to the stove 530 . However , in other embodiments , the
control logic 501 may be integrated within the stove itself .
[0079] FIG . 5 also illustrates an IoT device 105 with a
motion sensor 504 for detecting the motion of certain types
of electronics equipment such as a washer and / or dryer .
Another sensor that may be used is an audio sensor (e . g . ,
microphone and logic) for detecting an ambient volume
level . As with the other embodiments described above , this
embodiment may transmit notifications to the end user if
certain specified conditions are met (e . g . , if motion is
detected for an extended period of time , indicating that the
washer / dryer are not turning off) . Although not shown in
FIG . 5 , IoT device 105 may also be equipped with a control
module to turn off the washer / dryer 531 (e . g . , by switching
off electric / gas) , automatically , and / or in response to user
input .
0080] In one embodiment , a first IoT device with control
logic and a switch may be configured to turn off all power
in the user ' s home and a second IoT device with control
logic and a switch may be configured to turn off all gas in
the user ' s home . IoT devices with sensors may then be
positioned on or near electronic or gas - powered equipment
in the user ' s home . If the user is notified that a particular
piece of equipment has been left on (e . g . , the stove 530) , the
user may then send a command to turn off all electricity or
gas in the home to prevent damage . Alternatively , the control
logic 512 in the IoT hub 110 and / or the IoT service 120 may
be configured to automatically turn off electricity or gas in
such situations .
[0081] In one embodiment , the IoT hub 110 and IoT
service 120 communicate at periodic intervals . If the IoT
service 120 detects that the connection to the IoT hub 110
has been lost (e . g . , by failing to receive a request or response
from the IoT hub for a specified duration) , it will commu

Apparatus and Method for Communicating Data
Through an Intermediary Device

[0082] As mentioned above , because the wireless tech
nologies used to interconnect IoT devices such as Bluetooth
LE are generally short range technologies , if the hub for an
IoT implementation is outside the range of an IoT device , the
IoT device will not be able to transmit data to the IoT hub
(and vice versa) .
[0083] To address this deficiency , one embodiment of the
invention provides a mechanism for an IoT device which is
outside of the wireless range of the IoT hub to periodically
connect with one or more mobile devices when the mobile
devices are within range . Once connected , the IoT device
can transmit any data which needs to be provided to the IoT
hub to the mobile device which then forwards the data to the
IoT hub .
[0084] As illustrated in FIG . 6 one embodiment includes
an IoT hub 110 , an IoT device 601 which is out of range of
the IoT hub 110 and a mobile device 611 . The out of range
IoT device 601 may include any form of IoT device capable
of collecting and communicating data . For example , the IoT
device 601 may comprise a data collection device config
ured within a refrigerator to monitor the food items available
in the refrigerator , the users who consume the food items ,
and the current temperature . Of course , the underlying
principles of the invention are not limited to any particular
type of IoT device . The techniques described herein may be
implemented using any type of IoT device including those
used to collect and transmit data for smart meters , stoves ,
washers , dryers , lighting systems , HVAC systems , and
audiovisual equipment , to name just a few .
[0085] Moreover , the mobile device In operation , the IoT
device 611 illustrated in FIG . 6 may be any form of mobile
device capable of communicating and storing data . For
example , in one embodiment , the mobile device 611 is a
smartphone with an app installed thereon to facilitate the
techniques described herein . In another embodiment , the
mobile device 611 comprises a wearable device such as a
communication token affixed to a neckless or bracelet , a
smartwatch or a fitness device . The wearable token may be
particularly useful for elderly users or other users who do not
own a smartphone device .
[0086] In operation , the out of range IoT device 601 may
periodically or continually check for connectivity with a
mobile device 611 . Upon establishing a connection (e . g . , as
the result of the user moving within the vicinity of the
refrigerator) any collected data 605 on the IoT device 601 is
automatically transmitted to a temporary data repository 615
on the mobile device 611 . In one embodiment , the IoT
device 601 and mobile device 611 establish a local wireless
communication channel using a low power wireless standard
such as BTLE . In such a case , the mobile device 611 may
initially be paired with the IoT device 601 using known
pairing techniques .
[0087] One the data has been transferred to the temporary
data repository , the mobile device 611 will transmit the data
once communication is established with the IoT hub 110
(e . g . , when the user walks within the range of the IoT hub
110) . The IoT hub may then store the data in a central data
repository 413 and / or send the data over the Internet to one
or more services and / or other user devices . In one embodi

US 2017 / 0351504 A1 Dec . 7 , 2017

ment , the mobile device 611 may use a different type of
communication channel to provide the data to the IoT hub
110 (potentially a higher power communication channel
such as WiFi) .
[0088] The out of range IoT device 601 , the mobile device
611 , and the IoT hub may all be configured with program
code and / or logic to implement the techniques described
herein . As illustrated in FIG . 7 , for example , the IoT device
601 may be configured with intermediary connection logic
and / or application , the mobile device 611 may be configured
with an intermediary connection logic / application , and the
IoT hub 110 may be configured with an intermediary con
nection logic / application 721 to perform the operations
described herein . The intermediary connection logic / appli
cation on each device may be implemented in hardware ,
software , or any combination thereof . In one embodiment ,
the intermediary connection logic / application 701 of the IoT
device 601 searches and establishes a connection with the
intermediary connection logic / application 711 on the mobile
device (which may be implemented as a device app) to
transfer the data to the temporary data repository 615 . The
intermediary connection logic / application 701 on the mobile
device 611 then forwards the data to the intermediary
connection logic / application on the IoT hub , which stores
the data in the central data repository 413 .
[0089] As illustrated in FIG . 7 , the intermediary connec
tion logic / applications 701 , 711 , 721 , on each device may be
configured based on the application at hand . For example ,
for a refrigerator , the connection logic / application 701 may
only need to transmit a few packets on a periodic basis . For
other applications (e . g . , temperature sensors) , the connec
tion logic / application 701 may need to transmit more fre
quent updates .

[0090] Rather than a mobile device 611 , in one embodi
ment , the IoT device 601 may be configured to establish a
wireless connection with one or more intermediary IoT
devices , which are located within range of the IoT hub 110 .
In this embodiment , any IoT devices 601 out of range of the
IoT hub may be linked to the hub by forming a " chain " using
other IoT devices .

[0091] In addition , while only a single mobile device 611
is illustrated in FIGS . 6 - 7 for simplicity , in one embodiment ,
multiple such mobile devices of different users may be
configured to communicate with the IoT device 601 . More
over , the same techniques may be implemented for multiple
other IoT devices , thereby forming an intermediary device
data collection system across the entire home .
[0092] Moreover , in one embodiment , the techniques
described herein may be used to collect various different
types of pertinent data . For example , in one embodiment ,
each time the mobile device 611 connects with the IoT
device 601 , the identity of the user may be included with the
collected data 605 . In this manner , the IoT system may be
used to track the behavior of different users within the home .
For example , if used within a refrigerator , the collected data
605 may then include the identity of each user who passes
by fridge , each user who opens the fridge , and the specific
food items consumed by each user . Different types of data
may be collected from other types of IoT devices . Using this
data the system is able to determine , for example , which user
washes clothes , which user watches TV on a given day , the
times at which each user goes to sleep and wakes up , etc . All

of this crowd - sourced data may then be compiled within the
data repository 413 of the IoT hub and / or forwarded to an
external service or user .
[0093] . Another beneficial application of the techniques
described herein is for monitoring elderly users who may
need assistance . For this application , the mobile device 611
may be a very small token worn by the elderly user to collect
the information in different rooms of the user ' s home . Each
time the user opens the refrigerator , for example , this data
will be included with the collected data 605 and transferred
to the IoT hub 110 via the token . The IoT hub may then
provide the data to one or more external users (e . g . , the
children or other individuals who care for the elderly user) .
If data has not been collected for a specified period of time
(e . g . , 12 hours) , then this means that the elderly user has not
been moving around the home and / or has not been opening
the refrigerator . The IoT hub 110 or an external service
connected to the IoT hub may then transmit an alert notifi
cation to these other individuals , informing them that they
should check on the elderly user . In addition , the collected
data 605 may include other pertinent information such as the
food being consumed by the user and whether a trip to the
grocery store is needed , whether and how frequently the
elderly user is watching TV , the frequency with which the
elderly user washes clothes , etc .
[0094] In another implementation , if there is a problem
with an electronic device such as a washer , refrigerator ,
HVAC system , etc , the collected data may include an
indication of a part that needs to be replaced . In such a case ,
a notification may be sent to a technician with a request to
fix the problem . The technician may then arrive at the home
with the needed replacement part .
[0095] A method in accordance with one embodiment of
the invention is illustrated in FIG . 8 . The method may be
implemented within the context of the architectures
described above , but is not limited to any particular archi
tecture .
[0096] At 801 , an IoT device which is out of range of the
IoT hub periodically collects data (e . g . , opening of the
refrigerator door , food items used , etc) . At 802 the IoT
device periodically or continually checks for connectivity
with a mobile device (e . g . , using standard local wireless
techniques for establishing a connection such as those
specified by the BTLE standard) . If the connection to the
mobile device is established , determined at 802 , then at 803 ,
the collected data is transferred to the mobile device at 803 .
At 804 , the mobile device transfers the data to the IoT hub ,
an external service and / or a user . As mentioned , the mobile
device may transmit the data immediately if it is already
connected (e . g . , via a WiFi link) .
[0097] In addition to collecting data from IoT devices , in
one embodiment , the techniques described herein may be
used to update or otherwise provide data to IoT devices . One
example is shown in FIG . 9A , which shows an IoT hub 110
with program code updates 901 that need to be installed on
an IoT device 601 (or a group of such IoT devices) . The
program code updates may include system updates , patches ,
configuration data and any other data needed for the IoT
device to operate as desired by the user . In one embodiment ,
the user may specify configuration options for the IoT device
601 via a mobile device or computer which are then stored
on the IoT hub 110 and provided to the IoT device using the
techniques described herein . Specifically , in one embodi
ment , the intermediary connection logic / application 721 on

US 2017 / 0351504 A1 Dec . 7 , 2017

the IoT hub 110 communicates with the intermediary con
nection logic / application 711 on the mobile device 611 to
store the program code updates within a temporary storage
615 . When the mobile device 611 enters the range of the IoT
device 601 , the intermediary connection logic / application
711 on the mobile device 611 connects with the intermedi
ary / connection logic / application 701 on the IoT device 601
to provide the program code updates to the device . In one
embodiment , the IoT device 601 may then enter into an
automated update process to install the new program code
updates and / or data .
10098] A method for updating an IoT device is shown in
FIG . 9B . The method may be implemented within the
context of the system architectures described above , but is
not limited to any particular system architectures .
10099] At 900 new program code or data updates are made
available on the IoT hub and / or an external service (e . g . ,
coupled to the mobile device over the Internet) . At 901 , the
mobile device receives and stores the program code or data
updates on behalf of the IoT device . The IoT device and / or
mobile device periodically check to determine whether a
connection has been established at 902 . If a connection is
established , determined at 903 , then at 904 the updates are
transferred to the IoT device and installed .

Embodiments for Improved Security
[0100] In one embodiment , the low power microcontroller
200 of each IoT device 101 and the low power logic /
microcontroller 301 of the IoT hub 110 include a secure key
store for storing encryption keys used by the embodiments
described below (see , e . g . , FIGS . 10 - 15 and associated text) .
Alternatively , the keys may be secured in a subscriber
identify module (SIM) as discussed below .
10101] FIG . 10 illustrates a high level architecture which
uses public key infrastructure (PKI) techniques and / or sym
metric key exchange / encryption techniques to encrypt com
munications between the IoT Service 120 , the IoT hub 110
and the IoT devices 101 - 102 .
[0102] Embodiments which use public / private key pairs
will first be described , followed by embodiments which use
symmetric key exchange / encryption techniques . In particu
lar , in an embodiment which uses PKI , a unique public /
private key pair is associated with each IoT device 101 - 102 ,
each IoT hub 110 and the IoT service 120 . In one embodi
ment , when a new IoT hub 110 is set up , its public key is
provided to the IoT service 120 and when a new IoT device
101 is set up , it ' s public key is provided to both the IoT hub
110 and the IoT service 120 . Various techniques for securely
exchanging the public keys between devices are described
below . In one embodiment , all public keys are signed by a
master key known to all of the receiving devices (i . e . , a form
of certificate) so that any receiving device can verify the
validity of the public keys by validating the signatures . Thus ,
these certificates would be exchanged rather than merely
exchanging the raw public keys .
[0103] As illustrated , in one embodiment , each IoT device
101 , 102 includes a secure key storage 1001 , 1003 , respec
tively , for security storing each device ' s private key . Secu
rity logic 1002 , 1304 then utilizes the securely stored private
keys to perform the encryption / decryption operations
described herein . Similarly , the IoT hub 110 includes a
secure storage 1011 for storing the IoT hub private key and
the public keys of the IoT devices 101 - 102 and the IoT
service 120 ; as well as security logic 1012 for using the keys

to perform encryption / decryption operations . Finally , the
IoT service 120 may include a secure storage 1021 for
security storing its own private key , the public keys of
various IoT devices and IoT hubs , and a security logic 1013
for using the keys to encrypt / decrypt communication with
IoT hubs and devices . In one embodiment , when the IoT hub
110 receives a public key certificate from an IoT device it
can verify it (e . g . , by validating the signature using the
master key as described above) , and then extract the public
key from within it and store that public key in it ' s secure key
store 1011 .
[0104] By way of example , in one embodiment , when the
IoT service 120 needs to transmit a command or data to an
IoT device 101 (e . g . , a command to unlock a door , a request
to read a sensor , data to be processed / displayed by the IoT
device , etc) the security logic 1013 encrypts the data /
command using the public key of the IoT device 101 to
generate an encrypted IoT device packet . In one embodi
ment , it then encrypts the IoT device packet using the public
key of the IoT hub 110 to generate an IoT hub packet and
transmits the IoT hub packet to the IoT hub 110 . In one
embodiment , the service 120 signs the encrypted message
with it ' s private key or the master key mentioned above so
that the device 101 can verify it is receiving an unaltered
message from a trusted source . The device 101 may then
validate the signature using the public key corresponding to
the private key and / or the master key . As mentioned above ,
symmetric key exchange / encryption techniques may be used
instead of public / private key encryption . In these embodi
ments , rather than privately storing one key and providing a
corresponding public key to other devices , the devices may
each be provided with a copy of the same symmetric key to
be used for encryption and to validate signatures . One
example of a symmetric key algorithm is the Advanced
Encryption Standard (AES) , although the underlying prin
ciples of the invention are not limited to any type of specific
symmetric keys .
[0105] Using a symmetric key implementation , each
device 101 enters into a secure key exchange protocol to
exchange a symmetric key with the IoT hub 110 . A secure
key provisioning protocol such as the Dynamic Symmetric
Key Provisioning Protocol (DSKPP) may be used to
exchange the keys over a secure communication channel
(see , e . g . , Request for Comments (RFC) 6063) . However ,
the underlying principles of the invention are not limited to
any particular key provisioning protocol .
[0106] Once the symmetric keys have been exchanged ,
they may be used by each device 101 and the IoT hub 110
to encrypt communications . Similarly , the IoT hub 110 and
IoT service 120 may perform a secure symmetric key
exchange and then use the exchanged symmetric keys to
encrypt communications . In one embodiment a new sym
metric key is exchanged periodically between the devices
101 and the hub 110 and between the hub 110 and the IoT
service 120 . In one embodiment , a new symmetric key is
exchanged with each new communication session between
the devices 101 , the hub 110 , and the service 120 (e . g . , a new
key is generated and securely exchanged for each commu
nication session) . In one embodiment , if the security module
1012 in the IoT hub is trusted , the service 120 could
negotiate a session key with the hub security module 1312
and then the security module 1012 would negotiate a session
key with each device 120 . Messages from the service 120

US 2017 / 0351504 A1 Dec . 7 , 2017

would then be decrypted and verified in the hub security
module 1012 before being re - encrypted for transmission to
the device 101 .
0107] In one embodiment , to prevent a compromise on
the hub security module 1012 a one - time (permanent) instal
lation key may be negotiated between the device 101 and
service 120 at installation time . When sending a message to
a device 101 the service 120 could first encrypt / MAC with
this device installation key , then encrypt / MAC that with the
hub ' s session key . The hub 110 would then verify and extract
the encrypted device blob and send that to the device .
[0108] In one embodiment of the invention , a counter
mechanism is implemented to prevent replay attacks . For
example , each successive communication from the device
101 to the hub 110 (or vice versa) may be assigned a
continually increasing counter value . Both the hub 110 and
device 101 will track this value and verify that the value is
correct in each successive communication between the
devices . The same techniques may be implemented between
the hub 110 and the service 120 . Using a counter in this
manner would make it more difficult to spoof the commu
nication between each of the devices (because the counter
value would be incorrect) . However , even without this a
shared installation key between the service and device
would prevent network (hub) wide attacks to all devices .
[0109] In one embodiment , when using public / private key
encryption , the IoT hub 110 uses its private key to decrypt
the IoT hub packet and generate the encrypted IoT device
packet , which it transmits to the associated IoT device 101 .
The IoT device 101 then uses its private key to decrypt the
IoT device packet to generate the command / data originated
from the IoT service 120 . It may then process the data and / or
execute the command . Using symmetric encryption , each
device would encrypt and decrypt with the shared symmetric
key . If either case , each transmitting device may also sign
the message with it ' s private key so that the receiving device
can verify it ' s authenticity .
[0110] A different set of keys may be used to encrypt
communication from the IoT device 101 to the IoT hub 110
and to the IoT service 120 . For example , using a public /
private key arrangement , in one embodiment , the security
logic 1002 on the IoT device 101 uses the public key of the
IoT hub 110 to encrypt data packets sent to the IoT hub 110 .
The security logic 1012 on the IoT hub 110 may then decrypt
the data packets using the IoT hub ' s private key . Similarly ,
the security logic 1002 on the IoT device 101 and / or the
security logic 1012 on the IoT hub 110 may encrypt data
packets sent to the IoT service 120 using the public key of
the IoT service 120 (which may then be decrypted by the
security logic 1013 on the IoT service 120 using the ser
vice ' s private key) . Using symmetric keys , the device 101
and hub 110 may share a symmetric key while the hub and
service 120 may share a different symmetric key .
[0111] While certain specific details are set forth above in
the description above , it should be noted that the underlying
principles of the invention may be implemented using
various different encryption techniques . For example , while
some embodiments discussed above use asymmetric public /
private key pairs , an alternate embodiment may use sym
metric keys securely exchanged between the various IoT
devices 101 - 102 , IoT hubs 110 , and the IoT service 120 .
Moreover , in some embodiments , the data / command itself is
not encrypted , but a key is used to generate a signature over

the data / command (or other data structure) . The recipient
may then use its key to validate the signature .
[0112] As illustrated in FIG . 11 , in one embodiment , the
secure key storage on each IoT device 101 is implemented
using a programmable subscriber identity module (SIM)
1101 . In this embodiment , the IoT device 101 may initially
be provided to the end user with an un - programmed SIM
card 1101 seated within a SIM interface 1100 on the IoT
device 101 . In order to program the SIM with a set of one
or more encryption keys , the user takes the programmable
SIM card 1101 out of the SIM interface 500 and inserts it
into a SIM programming interface 1102 on the IoT hub 110 .
Programming logic 1125 on the IoT hub then securely
programs the SIM card 1101 to register / pair the IoT device
101 with the IoT hub 110 and IoT service 120 . In one
embodiment , a public / private key pair may be randomly
generated by the programming logic 1125 and the public key
of the pair may then be stored in the IoT hub ' s secure storage
device 411 while the private key may be stored within the
programmable SIM 1101 . In addition , the programming
logic 525 may store the public keys of the oT hub 110 , the
IoT service 120 , and / or any other IoT devices 101 on the
SIM card 1401 (to be used by the security logic 1302 on the
IoT device 101 to encrypt outgoing data) . Once the SIM
1101 is programmed , the new IoT device 101 may be
provisioned with the IoT Service 120 using the SIM as a
secure identifier (e . g . , using existing techniques for regis
tering a device using a SIM) . Following provisioning , both
the IoT hub 110 and the IoT service 120 will securely store
a copy of the IoT device ' s public key to be used when
encrypting communication with the IoT device 101 .
[0113] The techniques described above with respect to
FIG . 11 provide enormous flexibility when providing new
IoT devices to end users . Rather than requiring a user to
directly register each SIM with a particular service provider
upon sale / purchase (as is currently done) , the SIM may be
programmed directly by the end user via the IoT hub 110 and
the results of the programming may be securely communi
cated to the IoT service 120 . Consequently , new IoT devices
101 may be sold to end users from online or local retailers
and later securely provisioned with the IoT service 120 .
[0114] While the registration and encryption techniques
are described above within the specific context of a SIM
(Subscriber Identity Module) , the underlying principles of
the invention are not limited to a “ SIM ” device . Rather , the
underlying principles of the invention may be implemented
using any type of device having secure storage for storing a
set of encryption keys . Moreover , while the embodiments
above include a removable SIM device , in one embodiment ,
the SIM device is not removable but the IoT device itself
may be inserted within the programming interface 1102 of
the IoT hub 110 .
10115] In one embodiment , rather than requiring the user
to program the SIM (or other device) , the SIM is pre
programmed into the IoT device 101 , prior to distribution to
the end user . In this embodiment , when the user sets up the
IoT device 101 , various techniques described herein may be
used to securely exchange encryption keys between the IoT
hub 110 / IoT service 120 and the new IoT device 101 .
[0116] For example , as illustrated in FIG . 12A each IoT
device 101 or SIM 401 may be packaged with a barcode or
QR code 1501 uniquely identifying the IoT device 101
and / or SIM 1001 . In one embodiment , the barcode or QR
code 1201 comprises an encoded representation of the

US 2017 / 0351504 A1 Dec . 7 , 2017

public key for the IoT device 101 or SIM 1001 . Alterna
tively , the barcode or QR code 1201 may be used by the IoT
hub 110 and / or IoT service 120 to identify or generate the
public key (e . g . , used as a pointer to the public key which is
already stored in secure storage) . The barcode or QR code
601 may be printed on a separate card (as shown in FIG .
12A) or may be printed directly on the IoT device itself .
Regardless of where the barcode is printed , in one embodi
ment , the IoT hub 110 is equipped with a barcode reader 206
for reading the barcode and providing the resulting data to
the security logic 1012 on the IoT hub 110 and / or the
security logic 1013 on the IoT service 120 . The security
logic 1012 on the IoT hub 110 may then store the public key
for the IoT device within its secure key storage 1011 and the
security logic 1013 on the IoT service 120 may store the
public key within its secure storage 1021 to be used for
subsequent encrypted communication) .
10117] In one embodiment , the data contained in the
barcode or QR code 1201 may also be captured via a user
device 135 (e . g . , such as an iPhone or Android device) with
an installed IoT app or browser - based applet designed by the
IoT service provider . Once captured , the barcode data may
be securely communicated to the IoT service 120 over a
secure connection (e . g . , such as a secure sockets layer (SSL)
connection) . The barcode data may also be provided from
the client device 135 to the IoT hub 110 over a secure local
connection (e . g . , over a local WiFi or Bluetooth LE con
nection) .
[0118] The security logic 1002 on the IoT device 101 and
the security logic 1012 on the IoT hub 110 may be imple
mented using hardware , software , firmware or any combi
nation thereof . For example , in one embodiment , the secu
rity logic 1002 , 1012 is implemented within the chips used
for establishing the local communication channel 130
between the IoT device 101 and the IoT hub 110 (e . g . , the
Bluetooth LE chip if the local channel 130 is Bluetooth LE) .
Regardless of the specific location of the security logic 1002 ,
1012 , in one embodiment , the security logic 1002 , 1012 is
designed to establish a secure execution environment for
executing certain types of program code . This may be
implemented , for example , by using Trust Zone technology
(available on some ARM processors) and / or Trusted Execu
tion Technology (designed by Intel) . Of course , the under
lying principles of the invention are not limited to any
particular type of secure execution technology .
[0119] In one embodiment , the barcode or QR code 1501
may be used to pair each IoT device 101 with the IoT hub
110 . For example , rather than using the standard wireless
pairing process currently used to pair Bluetooth LE devices ,
a pairing code embedded within the barcode or QR code
1501 may be provided to the IoT hub 110 to pair the IoT hub
with the corresponding IoT device .
[0120] FIG . 12B illustrates one embodiment in which the
barcode reader 206 on the IoT hub 110 captures the barcode /
QR code 1201 associated with the IoT device 101 . As
mentioned , the barcode / QR code 1201 may be printed
directly on the IoT device 101 or may be printed on a
separate card provided with the IoT device 101 . In either
case , the barcode reader 206 reads the pairing code from the
barcode / QR code 1201 and provides the pairing code to the
local communication module 1280 . In one embodiment , the
local communication module 1280 is a Bluetooth LE chip
and associated software , although the underlying principles
of the invention are not limited to any particular protocol

standard . Once the pairing code is received , it is stored in a
secure storage containing pairing data 1285 and the IoT
device 101 and IoT hub 110 are automatically paired . Each
time the IoT hub is paired with a new IoT device in this
manner , the pairing data for that pairing is stored within the
secure storage 685 . In one embodiment , once the local
communication module 1280 of the IoT hub 110 receives the
pairing code , it may use the code as a key to encrypt
communications over the local wireless channel with the IoT
device 101 .
[0121] Similarly , on the IoT device 101 side , the local
communication module 1590 stores pairing data within a
local secure storage device 1595 indicating the pairing with
the IoT hub . The pairing data 1295 may include the pre
programmed pairing code identified in the barcode / QR code
1201 . The pairing data 1295 may also include pairing data
received from the local communication module 1280 on the
IoT hub 110 required for establishing a secure local com
munication channel (e . g . , an additional key to encrypt com
munication with the IoT hub 110) .
[0122] Thus , the barcode / QR code 1201 may be used to
perform local pairing in a far more secure manner than
current wireless pairing protocols because the pairing code
is not transmitted over the air . In addition , in one embodi
ment , the same barcode / QR code 1201 used for pairing may
be used to identify encryption keys to build a secure con
nection from the IoT device 101 to the IoT hub 110 and from
the IoT hub 110 to the IoT service 120 .
[0123] A method for programming a SIM card in accor
dance with one embodiment of the invention is illustrated in
FIG . 13 . The method may be implemented within the system
architecture described above , but is not limited to any
particular system architecture .
10124] At 1301 , a user receives a new IoT device with a
blank SIM card and , at 1602 , the user inserts the blank SIM
card into an IoT hub . At 1303 , the user programs the blank
SIM card with a set of one or more encryption keys . For
example , as mentioned above , in one embodiment , the IoT
hub may randomly generate a public / private key pair and
store the private key on the SIM card and the public key in
its local secure storage . In addition , at 1304 , at least the
public key is transmitted to the IoT service so that it may be
used to identify the IoT device and establish encrypted
communication with the IoT device . As mentioned above , in
one embodiment , a programmable device other than a
" SIM ” card may be used to perform the same functions as
the SIM card in the method shown in FIG . 13 .
[0125] A method for integrating a new IoT device into a
network is illustrated in FIG . 14 . The method may be
implemented within the system architecture described
above , but is not limited to any particular system architec
ture .
[0126] At 1401 , a user receives a new IoT device to which
an encryption key has been pre - assigned . At 1402 , the key
is securely provided to the IoT hub . As mentioned above , in
one embodiment , this involves reading a barcode associated
with the IoT device to identify the public key of a public !
private key pair assigned to the device . The barcode may be
read directly by the IoT hub or captured via a mobile device
via an app or browser . In an alternate embodiment , a secure
communication channel such as a Bluetooth LE channel , a
near field communication (NFC) channel or a secure WiFi
channel may be established between the IoT device and the
IoT hub to exchange the key . Regardless of how the key is

US 2017 / 0351504 A1 Dec . 7 , 2017

transmitted , once received , it is stored in the secure keystore
of the IoT hub device . As mentioned above , various secure
execution technologies may be used on the IoT hub to store
and protect the key such as Secure Enclaves , Trusted Execu
tion Technology (TXT) , and / or Trustzone . In addition , at
803 , the key is securely transmitted to the IoT service which
stores the key in its own secure keystore . It may then use the
key to encrypt communication with the IoT device . One
again , the exchange may be implemented using a certificate !
signed key . Within the hub 110 it is particularly important to
prevent modification / addition / removal of the stored keys .
[0127] A method for securely communicating commands /
data to an IoT device using public / private keys is illustrated
in FIG . 15 . The method may be implemented within the
system architecture described above , but is not limited to
any particular system architecture .
10128] At 1501 , the IoT service encrypts the data / com
mands using the IoT device public key to create an IoT
device packet . It then encrypts the IoT device packet using
IoT hub ' s public key to create the IoT hub packet (e . g . ,
creating an IoT hub wrapper around the IoT device packet) .
At 1502 , the IoT service transmits the IoT hub packet to the
IoT hub . At 1503 , the IoT hub decrypts the IoT hub packet
using the IoT hub ' s private key to generate the loT device
packet . At 1504 it then transmits the IoT device packet to the
IoT device which , at 1505 , decrypts the IoT device packet
using the IoT device private key to generate the data /
commands . At 1506 , the IoT device processes the data /
commands .
[0129] . In an embodiment which uses symmetric keys , a
symmetric key exchange may be negotiated between each of
the devices (e . g . , each device and the hub and between the
hub and the service) . Once the key exchange is complete ,
each transmitting device encrypts and / or signs each trans
mission using the symmetric key before transmitting data to
the receiving device .

device session keys 1651 on the IoT device 101 include a
public key of the IoT service 120 and a private key of the IoT
device 101 . As discussed in detail below , in one embodi
ment , to establish a secure communication session , the
public / private session key pairs , 1650 and 1651 , are used by
each encryption engine , 1660 and 1661 , respectively , to
generate the same secret which is then used by the SKGMs
1640 - 1641 to generate a key stream to encrypt and decrypt
communication between the IoT service 120 and the IoT
device 101 . Additional details associated with generation
and use of the secret in accordance with one embodiment of
the invention are provided below .
10132] In FIG . 16A , once the secret has been generated
using the keys 1650 - 1651 , the client will always send
messages to the IoT device 101 through the IoT service 120 ,
as indicated by Clear transaction 1611 . “ Clear ” as used
herein is meant to indicate that the underlying message is not
encrypted using the encryption techniques described herein .
However , as illustrated , in one embodiment , a secure sockets
layer (SSL) channel or other secure channel (e . g . , an Internet
Protocol Security (IPSEC) channel) is established between
the client device 611 and IoT service 120 to protect the
communication . The encryption engine 1660 on the IoT
service 120 then encrypts the message using the generated
secret and transmits the encrypted message to the IoT hub
110 at 1602 . Rather than using the secret to encrypt the
message directly , in one embodiment , the secret and a
counter value are used to generate a key stream , which is
used to encrypt each message packet . Details of this embodi
ment are described below with respect to FIG . 17 .
[0133] As illustrated , an SSL connection or other secure
channel may be established between the IoT service 120 and
the IoT hub 110 . The IoT hub 110 (which does not have the
ability to decrypt the message in one embodiment) transmits
the encrypted message to the IoT device at 1603 (e . g . , over
a Bluetooth Low Energy (BTLE) communication channel) .
The encryption engine 1661 on the IoT device 101 may then
decrypt the message using the secret and process the mes
sage contents . In an embodiment which uses the secret to
generate a key stream , the encryption engine 1661 may
generate the key stream using the secret and a counter value
and then use the key stream for decryption of the message
packet .
[0134] The message itself may comprise any form of
communication between the IoT service 120 and IoT device
101 . For example , the message may comprise a command
packet instructing the IoT device 101 to perform a particular
function such as taking a measurement and reporting the
result back to the client device 611 or may include configu
ration data to configure the operation of the IoT device 101 .
[0135] If a response is required , the encryption engine
1661 on the IoT device 101 uses the secret or a derived key
stream to encrypt the response and transmits the encrypted
response to the IoT hub 110 at 1604 , which forwards the
response to the IoT service 120 at 1605 . The encryption
engine 1660 on the IoT service 120 then decrypts the
response using the secret or a derived key stream and
transmits the decrypted response to the client device 611 at
1606 (e . g . , over the SSL or other secure communication
channel) .
[0136] FIG . 16B illustrates an embodiment which does not
require an IoT hub . Rather , in this embodiment , communi
cation between the IoT device 101 and IoT service 120
occurs through the client device 611 (e . g . , as in the embodi

Apparatus and Method for Establishing Secure
Communication Channels in an Internet of Things

(IoT) System
[0130] In one embodiment of the invention , encryption
and decryption of data is performed between the IoT service
120 and each IoT device 101 , regardless of the intermediate
devices used to support the communication channel (e . g . ,
such as the user ' s mobile device 611 and / or the IoT hub
110) . One embodiment which communicates via an IoT hub
110 is illustrated in FIG . 16A and another embodiment
which does not require an IoT hub is illustrated in FIG . 16B .
[0131] Turning first to FIG . 16A , the IoT service 120
includes an encryption engine 1660 which manages a set of
" service session keys ” 1650 and each IoT device 101
includes an encryption engine 1661 which manages a set of
" device session keys ” 1651 for encrypting / decrypting com
munication between the IoT device 101 and IoT service 120 .
The encryption engines may rely on different hardware
modules when performing the security / encryption tech
niques described herein including a hardware security mod
ule 1630 - 1631 for (among other things) generating a session
public / private key pair and preventing access to the private
session key of the pair and a key stream generation module
1640 - 1641 for generating a key stream using a derived
secret . In one embodiment , the service session keys 1650
and the device session keys 1651 comprise related public /
private key pairs . For example , in one embodiment , the

US 2017 / 0351504 A1 Dec . 7 , 2017

ments described above with respect to FIGS . 6 - 9B) . In this
embodiment , to transmit a message to the IoT device 101 the
client device 611 transmits an unencrypted version of the
message to the IoT service 120 at 1611 . The encryption
engine 1660 encrypts the message using the secret or the
derived key stream and transmits the encrypted message
back to the client device 611 at 1612 . The client device 611
then forwards the encrypted message to the IoT device 101
at 1613 , and the encryption engine 1661 decrypts the mes
sage using the secret or the derived key stream . The IoT
device 101 may then process the message as described
herein . If a response is required , the encryption engine 1661
encrypts the response using the secret and transmits the
encrypted response to the client device 611 at 1614 , which
forwards the encrypted response to the IoT service 120 at
1615 . The encryption engine 1660 then decrypts the
response and transmits the decrypted response to the client
device 611 at 1616 .
[0137] FIG . 17 illustrates a key exchange and key stream
generation which may initially be performed between the
IoT service 120 and the IoT device 101 . In one embodiment ,
this key exchange may be performed each time the IoT
service 120 and IoT device 101 establish a new communi
cation session . Alternatively , the key exchange may be
performed and the exchanged session keys may be used for
a specified period of time (e . g . , a day , a week , etc) . While no
intermediate devices are shown in FIG . 17 for simplicity ,
communication may occur through the IoT hub 110 and / or
the client device 611 .
[0138] In one embodiment , the encryption engine 1660 of
the IoT service 120 sends a command to the HSM 1630 (e . g . ,
which may be such as a CloudHSM offered by Amazon®)
to generate a session public / private key pair . The HSM 1630
may subsequently prevent access to the private session key
of the pair . Similarly , the encryption engine on the IoT
device 101 may transmit a command to the HSM 1631 (e . g . ,
such as an Atecc508 HSM from Atmel Corporation®) which
generates a session public / private key pair and prevents
access to the session private key of the pair . Of course , the
underlying principles of the invention are not limited to any
specific type of encryption engine or manufacturer .
[0139] In one embodiment , the IoT service 120 transmits
its session public key generated using the HSM 1630 to the
IoT device 101 at 1701 . The IoT device uses its HSM 1631
to generate its own session public / private key pair and , at
1702 , transmits its public key of the pair to the IoT service
120 . In one embodiment , the encryption engines 1660 - 1661
use an Elliptic curve Diffie - Hellman (ECDH) protocol ,
which is an anonymous key agreement that allows two
parties with an elliptic curve public - private key pair , to
establish a shared secret . In one embodiment , using these
techniques , at 1703 , the encryption engine 1660 of the IoT
service 120 generates the secret using the IoT device session
public key and its own session private key . Similarly , at
1704 , the encryption engine 1661 of the IoT device 101
independently generates the same secret using the IoT
service 120 session public key and its own session private
key . More specifically , in one embodiment , the encryption
engine 1660 on the IoT service 120 generates the secret
according to the formula secret = IoT device session pub
key * IoT service session private key , where " * ' means that
the IoT device session public key is point - multiplied by the
IoT service session private key . The encryption engine 1661
on the IoT device 101 generates the secret according to the

formula secret = IoT service session pub key * IoT device
session private key , where the IoT service session public key
is point multiplied by the IoT device session private key . In
the end , the IoT service 120 and IoT device 101 have both
generated the same secret to be used to encrypt communi
cation as described below . In one embodiment , the encryp
tion engines 1660 - 1661 rely on a hardware module such as
the KSGMs 1640 - 1641 respectively to perform the above
operations for generating the secret .

[0140] Once the secret has been determined , it may be
used by the encryption engines 1660 and 1661 to encrypt
and decrypt data directly . Alternatively , in one embodiment ,
the encryption engines 1660 - 1661 send commands to the
KSGMs 1640 - 1641 to generate a new key stream using the
secret to encrypt / decrypt each data packet (i . e . , a new key
stream data structure is generated for each packet) . In
particular , one embodiment of the key stream generation
module 1640 - 1641 implements a Galois / Counter Mode
(GCM) in which a counter value is incremented for each
data packet and is used in combination with the secret to
generate the key stream . Thus , to transmit a data packet to
the IoT service 120 , the encryption engine 1661 of the IoT
device 101 uses the secret and the current counter value to
cause the KSGMs 1640 - 1641 to generate a new key stream
and increment the counter value for generating the next key
stream . The newly - generated key stream is then used to
encrypt the data packet prior to transmission to the IoT
service 120 . In one embodiment , the key stream is XORed
with the data to generate the encrypted data packet . In one
embodiment , the IoT device 101 transmits the counter value
with the encrypted data packet to the IoT service 120 . The
encryption engine 1660 on the IoT service then communi
cates with the KSGM 1640 which uses the received counter
value and the secret to generate the key stream (which
should be the same key stream because the same secret and
counter value are used) and uses the generated key stream to
decrypt the data packet .
10141] In one embodiment , data packets transmitted from
the IoT service 120 to the IoT device 101 are encrypted in
the same manner . Specifically , a counter is incremented for
each data packet and used along with the secret to generate
a new key stream . The key stream is then used to encrypt the
data (e . g . , performing an XOR of the data and the key
stream) and the encrypted data packet is transmitted with the
counter value to the IoT device 101 . The encryption engine
1661 on the IoT device 101 then communicates with the
KSGM 1641 which uses the counter value and the secret to
generate the same key stream which is used to decrypt the
data packet . Thus , in this embodiment , the encryption
engines 1660 - 1661 use their own counter values to generate
a key stream to encrypt data and use the counter values
received with the encrypted data packets to generate a key
stream to decrypt the data .
[0142] In one embodiment , each encryption engine 1660
1661 keeps track of the last counter value it received from
the other and includes sequencing logic to detect whether a
counter value is received out of sequence or if the same
counter value is received more than once . If a counter value
is received out of sequence , or if the same counter value is
received more than once , this may indicate that a replay
attack is being attempted . In response , the encryption
engines 1660 - 1661 may disconnect from the communication
channel and / or may generate a security alert .

US 2017 / 0351504 A1 Dec . 7 , 2017
13

0143] FIG . 18 illustrates an exemplary encrypted data
packet employed in one embodiment of the invention com
prising a 4 - byte counter value 1800 , a variable - sized
encrypted data field 1801 , and a 6 - byte tag 1802 . In one
embodiment , the tag 1802 comprises a checksum value to
validate the decrypted data (once it has been decrypted) .
10144] As mentioned , in one embodiment , the session
public / private key pairs 1650 - 1651 exchanged between the
IoT service 120 and IoT device 101 may be generated
periodically and / or in response to the initiation of each new
communication session .
[0145] One embodiment of the invention implements
additional techniques for authenticating sessions between
the IoT service 120 and IoT device 101 . In particular , in one
embodiment , hierarchy of public / private key pairs is used
including a master key pair , a set of factory key pairs , and
a set of IoT service key pairs , and a set of IoT device key
pairs . In one embodiment , the master key pair comprises a
root of trust for all of the other key pairs and is maintained
in a single , highly secure location (e . g . , under the control of
the organization implementing the IoT systems described
herein) . The master private key may be used to generate
signatures over (and thereby authenticate) various other key
pairs such as the factory key pairs . The signatures may then
be verified using the master public key . In one embodiment ,
each factory which manufactures IoT devices is assigned its
own factory key pair which may then be used to authenticate
IoT service keys and IoT device keys . For example , in one
embodiment , a factory private key is used to generate a
signature over IoT service public keys and IoT device public
keys . These signature may then be verified using the corre
sponding factory public key . Note that these IoT service !
device public keys are not the same as the " session " public /
private keys described above with respect to FIGS . 16A - B .
The session public / private keys described above are tempo
rary (i . e . , generated for a service / device session) while the
IoT service / device key pairs are permanent (i . e . , generated at
the factory) .
[0146] With the foregoing relationships between master
keys , factory keys , service / device keys in mind , one
embodiment of the invention performs the following opera
tions to provide additional layers of authentication and
security between the IoT service 120 and IoT device 101 :
10147] A . In one embodiment , the IoT service 120 initially
generates a message containing the following :

10148] 1 . The IoT service ' s unique ID :
10149) The IoT service ' s serial number ;
10150] a Timestamp ;
[0151] The ID of the factory key used to sign this
unique ID ;

[0152] a Class of the unique ID (i . e . , a service) ;
[0153] IoT service ' s public key
[0154] The signature over the unique ID .

[0155] 2 . The Factory Certificate including :
(0156] A timestamp
[0157] The ID of the master key used to sign the

certificate
[0158] The factory public key
[0159] The signature of the Factory Certificate

[0160] 3 . IoT service session public key (as described
above with respect to FIGS . 16A - B)

[0161] 4 . IoT service session public key signature (e . g . ,
signed with the IoT service ' s private key)

(0162] B . In one embodiment , the message is sent to the
IoT device on the negotiation channel (described below) .
The IoT device parses the message and :

[0163] 1 . Verifies the signature of the factory certificate
(only if present in the message payload)

[0164] 2 . Verifies the signature of the unique ID using
the key identified by the unique ID

[0165] 3 . Verifies the IoT service session public key
signature using the IoT service ' s public key from the
unique ID

10166) 4 . Saves the IoT service ' s public key as well as
the IoT service ' s session public key

[0167] 5 . Generates the IoT device session key pair
10168] . C . The IoT device then generates a message con
taining the following :

[0169] 1 . IoT device ' s unique ID
[0170] IoT device serial number
[0171] Timestamp
[0172] ID of factory key used to sign this unique ID
[0173] Class of unique ID (i . e . , IoT device)
[0174] IoT device ' s public key
[0175] Signature of unique ID

[0176] 2 . IoT device ' s session public key
[0177] 3 . Signature of (IoT device session public key +

IoT service session public key) signed with IoT
device ' s key

[0178] D . This message is sent back to the IoT service . The
IoT service parses the message and :

[0179] 1 . Verifies the signature of the unique ID using
the factory public key

[0180] 2 . Verifies the signature of the session public
keys using the IoT device ' s public key

[0181] 3 . Saves the IoT device ' s session public key
[0182] E . The IoT service then generates a message con
taining a signature of (IoT device session public key + IoT
service session public key) signed with the IoT service ' s
key .
[0183] F . The IoT device parses the message and :

[0184] 1 . Verifies the signature of the session public
keys using the IoT service ' s public key

10185) 2 . Generates the key stream from the IoT device
session private key and the IoT service ' s session public
key

[0186] 3 . The IoT device then sends a “ messaging
available ” message .

[0187] G . The IoT service then does the following :
10188] 1 . Generates the key stream from the IoT service

session private key and the IoT device ' s session public
key

[0189] 2 . Creates a new message on the messaging
channel which contains the following :
[0190) Generates and stores a random 2 byte value
[0191] Set attribute message with the boomerang

attribute Id (discussed below) and the random value
f0192] H . The IoT device receives the message and :

[0193] 1 . Attempts to decrypt the message
101941 2 . Emits an Update with the same value on the

indicated attribute Id
[0195] I . The IoT service recognizes the message payload
contains a boomerang attribute update and :

10196] 1 . Sets its paired state to true
[0197] 2 . Sends a pairing complete message on the

negotiator channel

US 2017 / 0351504 A1 Dec . 7 , 2017
14

[0198] J . IoT device receives the message and sets his
paired state to true
[0199] While the above techniques are described with
respect to an “ IoT service ” and an “ IoT device , " the under
lying principles of the invention may be implemented to
establish a secure communication channel between any two
devices including user client devices , servers , and Internet
services .
[0200] The above techniques are highly secure because the
private keys are never shared over the air (in contrast to
current Bluetooth pairing techniques in which a secret is
transmitted from one party to the other) . An attacker listen
ing to the entire conversation will only have the public keys ,
which are insufficient to generate the shared secret . These
techniques also prevent a man - in - the - middle attack by
exchanging signed public keys . In addition , because GCM
and separate counters are used on each device , any kind of
" replay attack ” (where a man in the middle captures the data
and sends it again) is prevented . Some embodiments also
prevent replay attacks by using asymmetrical counters .

Techniques for Exchanging Data and Commands
without Formally Pairing Devices

[0201] GATT is an acronym for the Generic Attribute
Profile , and it defines the way that two Bluetooth Low
Energy (BTLE) devices transfer data back and forth . It
makes use of a generic data protocol called the Attribute
Protocol (ATT) , which is used to store Services , Character
istics and related data in a simple lookup table using 16 - bit
Characteristic IDs for each entry in the table . Note that while
the “ characteristics ” are sometimes referred to as “ attri
butes . ”
10202] On Bluetooth devices , the most commonly used
characteristic is the devices " name " (having characteristic
ID 10752 (0x2A00)) . For example , a Bluetooth device may
identify other Bluetooth devices within its vicinity by read
ing the “ Name ” characteristic published by those other
Bluetooth devices using GATT . Thus , Bluetooth device have
the inherent ability to exchange data without formally pair
ing / bonding the devices (note that " paring ” and “ bonding ”
are sometimes used interchangeably ; the remainder of this
discussion will use the term “ pairing ”) .
[0203] One embodiment of the invention takes advantage
of this capability to communicate with BTLE - enabled IoT
devices without formally pairing with these devices . Pairing
with each individual IoT device would extremely inefficient
because of the amount of time required to pair with each
device and because only one paired connection may be
established at a time .
[0204] FIG . 19 illustrates one particular embodiment in
which a Bluetooth (BT) device 1910 establishes a network
socket abstraction with a BT communication module 1901
of an IoT device 101 without formally establishing a paired
BT connection . The BT device 1910 may be included in an
IoT hub 110 and / or a client device 611 such as shown in FIG .
16A . As illustrated , the BT communication module 1901
maintains a data structure containing a list of characteristic
IDs , names associated with those characteristic IDs and
values for those characteristic IDs . The value for each
characteristic may be stored within a 20 - byte buffer identi
fied by the characteristic ID in accordance with the current
BT standard . However , the underlying principles of the
invention are not limited to any particular buffer size .

[0205] In the example in FIG . 19 , the “ Name ” character
istic is a BT - defined characteristic which is assigned a
specific value of “ IoT Device 14 . ” One embodiment of the
invention specifies a first set of additional characteristics to
be used for negotiating a secure communication channel
with the BT device 1910 and a second set of additional
characteristics to be used for encrypted communication with
the BT device 1910 . In particular , a “ negotiation write "
characteristic , identified by characteristic ID < 65532 > in the
illustrated example , may be used to transmit outgoing nego
tiation messages and the “ negotiation read ” characteristic ,
identified by characteristic ID < 65533 > may be used to
receive incoming negotiation messages . The “ negotiation
messages ” may include messages used by the BT device
1910 and the BT communication module 1901 to establish
a secure communication channel as described herein . By
way of example , in FIG . 17 , the IoT device 101 may receive
the IoT service session public key 1701 via the “ negotiation
read ” characteristic < 65533 > . The key 1701 may be trans
mitted from the IoT service 120 to a BTLE - enabled IoT hub
110 or client device 611 which may then use GATT to write
the key 1701 to the negotiation read value buffer identified
by characteristic ID < 65533 > . IoT device application logic
1902 may then read the key 1701 from the value buffer
identified by characteristic ID < 65533 > and process it as
described above (e . g . , using it to generate a secret and using
the secret to generate a key stream , etc) .
[0206] If the key 1701 is greater than 20 bytes (the
maximum buffer size in some current implementations) ,
then it may be written in 20 - byte portions . For example , the
first 20 bytes may be written by the BT communication
module 1903 to characteristic ID < 65533 > and read by the
IoT device application logic 1902 , which may then write an
acknowledgement message to the negotiation write value
buffer identified by characteristic ID < 65532 > . Using GATT ,
the BT communication module 1903 may read this acknowl
edgement from characteristic ID < 65532 > and responsively
write the next 20 bytes of the key 1701 to the negotiation
read value buffer identified by characteristic ID < 65533 > . In
this manner , a network socket abstraction defined by char
acteristic IDs < 65532 > and < 65533 > is established for
exchanging negotiation messages used to establish a secure
communication channel .
[0207] In one embodiment , once the secure communica
tion channel is established , a second network socket abstrac
tion is established using characteristic ID < 65534 > (for
transmitting encrypted data packets from IoT device 101)
and characteristic ID < 65533 > (for receiving encrypted data
packets by IoT device) . That is , when BT communication
module 1903 has an encrypted data packet to transmit (e . g . ,
such as encrypted message 1603 in FIG . 16A) , it starts
writing the encrypted data packet , 20 bytes at a time , using
the message read value buffer identified by characteristic
ID < 65533 > . The IoT device application logic 1902 will then
read the encrypted data packet , 20 bytes at a time , from the
read value buffer , sending acknowledgement messages to
the BT communication module 1903 as needed via the write
value buffer identified by characteristic ID < 65532 > .
[0208] In one embodiment , the commands of GET , SET ,
and UPDATE described below are used to exchange data
and commands between the two BT communication mod
ules 1901 and 1903 . For example , the BT communication
module 1903 may send a packet identifying characteristic
ID < 65533 > and containing the SET command to write into

US 2017 / 0351504 A1 Dec . 7 , 2017
15

the value field / buffer identified by characteristic ID < 65533 >
which may then be read by the IoT device application logic
1902 . To retrieve data from the IoT device 101 , the BT
communication module 1903 may transmit a GET command
directed to the value field / buffer identified by characteristic
ID < 65534 > . In response to the GET command , the BT
communication module 1901 may transmit an UPDATE
packet to the BT communication module 1903 containing
the data from the value field / buffer identified by character
istic ID < 65534 > . In addition , UPDATE packets may be
transmitted automatically , in response to changes in a par
ticular attribute on the IoT device 101 . For example , if the
IoT device is associated with a lighting system and the user
turns on the lights , then an UPDATE packet may be sent to
reflect the change to the on / off attribute associated with the
lighting application .
[0209] FIG . 20 illustrates exemplary packet formats used
for GET , SET , and UPDATE in accordance with one
embodiment of the invention . In one embodiment , these
packets are transmitted over the message write < 65534 > and
message read < 65533 > channels following negotiation . In
the GET packet 2001 , a first 1 - byte field includes a value
(0x10) which identifies the packet as a GET packet . A
second 1 - byte field includes a request ID , which uniquely
identifies the current GET command (i . e . , identifies the
current transaction with which the GET command is asso
ciated) . For example , each instance of a GET command
transmitted from a service or device may be assigned a
different request ID . This may be done , for example , by
incrementing a counter and using the counter value as the
request ID . However , the underlying principles of the inven
tion are not limited to any particular manner for setting the
request ID .
[0210] A 2 - byte attribute ID identifies the application
specific attribute to which the packet is directed . For
example , if the GET command is being sent to IoT device
101 illustrated in FIG . 19 , the attribute ID may be used to
identify the particular application - specific value being
requested . Returning to the above example , the GET com
mand may be directed to an application - specific attribute ID
such as power status of a lighting system , which comprises
a value identifying whether the lights are powered on or off
(e . g . , l = on , O = off) . If the IoT device 101 is a security
apparatus associated with a door , then the value field may
identify the current status of the door (e . g . , l - opened ,
O = closed) . In response to the GET command , a response
may be transmitting containing the current value identified
by the attribute ID .
[0211] The SET packet 2002 and UPDATE packet 2003
illustrated in FIG . 20 also include a first 1 - byte field iden
tifying the type of packet (i . e . , SET and UPDATE) , a second
1 - byte field containing a request ID , and a 2 - byte attribute
ID field identifying an application - defined attribute . In addi
tion , the SET packet includes a 2 - byte length value identi
fying the length of data contained in an n - byte value data
field . The value data field may include a command to be
executed on the IoT device and / or configuration data to
configure the operation of the IoT device in some manner
(e . g . , to set a desired parameter , to power down the IoT
device , etc) . For example , if the IoT device 101 controls the
speed of a fan , the value field may reflect the current fan
speed .
0212] The UPDATE packet 2003 may be transmitted to

provide an update of the results of the SET command . The

UPDATE packet 2003 includes a 2 - byte length value field to
identify the length of the n - byte value data field which may
include data related to the results of the SET command . In
addition , a 1 - byte update state field may identify the current
state of the variable being updated . For example , if the SET
command attempted to turn off a light controlled by the IoT
device , the update state field may indicate whether the light
was successfully turned off .
[0213] FIG . 21 illustrates an exemplary sequence of trans
actions between the IoT service 120 and an IoT device 101
involving the SET and UPDATE commands . Intermediary
devices such as the IoT hub and the user ' s mobile device are
not shown to avoid obscuring the underlying principles of
the invention . At 2101 , the SET command 2101 is transmit
ted form the IoT service to the IoT device 101 and received
by the BT communication module 1901 which responsively
updates the GATT value buffer identified by the character
istic ID at 2102 . The SET command is read from the value
buffer by the low power microcontroller (MCU) 200 at 2103
(or by program code being executed on the low power MCU
such as IoT device application logic 1902 shown in FIG . 19) .
At 2104 , the MCU 200 or program code performs an
operation in response to the SET command . For example ,
the SET command may include an attribute ID specifying a
new configuration parameter such as a new temperature or
may include a state value such as on / off (to cause the IoT
device to enter into an “ on ” or a low power state) . Thus , at
2104 , the new value is set in the IoT device and an UPDATE
command is returned at 2105 and the actual value is updated
in a GATT value field at 2106 . In some cases , the actual
value will be equal to the desired value . In other cases , the
updated value may be different (i . e . , because it may take
time for the IoT device 101 to update certain types of
values) . Finally , at 2107 , the UPDATE command is trans
mitted back to the IoT service 120 containing the actual
value from the GATT value field .
[0214] FIG . 22 illustrates a method for implementing a
secure communication channel between an IoT service and
an IoT device in accordance with one embodiment of the
invention . The method may be implemented within the
context of the network architectures described above but is
not limited to any specific architecture .
[0215] At 2201 , the IoT service creates an encrypted
channel to communicate with the IoT hub using elliptic
curve digital signature algorithm (ECDSA) certificates . At
2202 , the IoT service encrypts data / commands in IoT device
packets using the a session secret to create an encrypted
device packet . As mentioned above , the session secret may
be independently generated by the IoT device and the IoT
service . At 2203 , the IoT service transmits the encrypted
device packet to the IoT hub over the encrypted channel . At
2204 , without decrypting , the IoT hub passes the encrypted
device packet to the IoT device . At 22 - 5 , the IoT device uses
the session secret to decrypt the encrypted device packet . As
mentioned , in one embodiment this may be accomplished by
using the secret and a counter value (provided with the
encrypted device packet) to generate a key stream and then
using the key stream to decrypt the packet . At 2206 , the IoT
device then extracts and processes the data and / or com
mands contained within the device packet .
[0216] Thus , using the above techniques , bi - directional ,
secure network socket abstractions may be established
between two BT - enabled devices without formally pairing
the BT devices using standard pairing techniques . While

US 2017 / 0351504 A1 Dec . 7 , 2017

complete at 2334 and all subsequent messages are encrypted
using the session secret at 2335 .
[0223] While a dedicated IoT hub 110 is illustrated in
many embodiments above , a dedicated IoT hub hardware
platform is not required for complying with the underlying
principles of the invention . For example , the various IoT
hubs described above may be implemented as software
executed within various other networking devices such as
iPhones and Android devices (e . g . , an IoT device App) .
In fact , the IoT hubs described herein may be implemented
on any device capable of communicating with IoT devices
(e . g . , using BTLE or other local wireless protocol) and
establishing a connection over the Internet (e . g . , to an IoT
service using a WiFi or cellular data connection) .

these techniques are described above with respect to an IoT
device 101 communicating with an IoT service 120 , the
underlying principles of the invention may be implemented
to negotiate and establish a secure communication channel
between any two BT - enabled devices .
[0217] FIGS . 23A - C illustrate a detailed method for pair
ing devices in accordance with one embodiment of the
invention . The method may be implemented within the
context of the system architectures described above , but is
not limited to any specific system architectures .
[0218] At 2301 , the IoT Service creates a packet contain
ing serial number and public key of the IoT Service . At
2302 , the IoT Service signs the packet using the factory
private key . At 2303 , the IoT Service sends the packet over
an encrypted channel to the IoT hub and at 2304 the IoT hub
forwards the packet to IoT device over an unencrypted
channel . At 2305 , the IoT device verifies the signature of
packet and , at 2306 , the IoT device generates a packet
containing the serial number and public key of the IoT
Device . At 2307 , the IoT device signs the packet using the
factory private key and at 2308 , the IoT device sends the
packet over the unencrypted channel to the IoT hub .
[0219] At 2309 , the IoT hub forwards the packet to the IoT
service over an encrypted channel and at 2310 , the IoT
Service verifies the signature of the packet . At 2311 , the IoT
Service generates a session key pair , and at 2312 the IoT
Service generates a packet containing the session public key .
The IoT Service then signs the packet with IoT Service
private key at 2313 and , at 2314 , the IoT Service sends the
packet to the IoT hub over the encrypted channel .
[0220] Turning to FIG . 23B , the IoT hub forwards the
packet to the IoT device over the unencrypted channel at
2315 and , at 2316 , the IoT device verifies the signature of
packet . At 2317 the IoT device generates session key pair
(e . g . , using the techniques described above) , and , at 2318 , an
IoT device packet is generated containing the IoT device
session public key . At 2319 , the IoT device signs the IoT
device packet with IoT device private key . At 2320 , the IoT
device sends the packet to the IoT hub over the unencrypted
channel and , at 2321 , the IoT hub forwards the packet to the
IoT service over an encrypted channel .
[0221] At 2322 , the IoT service verifies the signature of
the packet (e . g . , using the IoT device public key) and , at
2323 , the IoT service uses the IoT service private key and
the IoT device public key to generate the session secret (as
described in detail above) . At 2324 , the IoT device uses the
IoT device private key and IoT service public key to
generate the session secret (again , as described above) and ,
at 2325 , the IoT device generates a random number and
encrypts it using the session secret . At 2326 , the IoT service
sends the encrypted packet to IoT hub over the encrypted
channel . At 2327 , the IoT hub forwards the encrypted packet
to the IoT device over the unencrypted channel . At 2328 , the
IoT device decrypts the packet using the session secret .
[0222] Turning to FIG . 23C , the IoT device re - encrypts the
packet using the session secret at 2329 and , at 2330 , the IoT
device sends the encrypted packet to the IoT hub over the
unencrypted channel . At 2331 , the IoT hub forwards the
encrypted packet to the IoT service over the encrypted
channel . The IoT service decrypts the packet using the
session secret at 2332 . At 2333 the IoT service verifies that
the random number matches the random number it sent . The
IoT service then sends a packet indicating that pairing is

Interface and Method for Efficient Communication
Between a Microcontroller and a Communication

Module
[0224] As mentioned , in one embodiment , each IoT device
includes a secure communication module for establishing a
secure communication channel with an IoT service and a
microcontroller unit (MCU) which executes program code
to perform application - specific functions (e . g . , in accor
dance with the specific functions to be performed by the IoT
device) . In one embodiment , a serial communication inter
face is communicatively coupled between the MCU and the
secure communication module .
[0225) FIG . 24 illustrates one particular embodiment in
which a serial peripheral interface (SPI) 2410 is used to
provide bi - directional communication between the MCU
2401 and secure communication module 2402 . An SPI
interface 2410 is a synchronous serial communication inter
face specification used for short distance communication ,
primarily in embedded systems . In one embodiment , the
MCU 2401 operates as the Master and the secure commu
nication module 2402 operates as a Slave in accordance with
the SPI communication protocol . Accordingly , in some
embodiments described below , the MCU will simply be
referred to as the “ Master ” and the secure communication
module will be referred to as the “ Slave . "
(0226] As used herein the SPI interface 2410 refers to both
the SPI bus lines connecting the Master 2401 with the Slave
2402 and the SPI interface circuitry on the Master and Slave
(described in greater detail below) . The communication bus
lines of the SPI interface 2410 include a system clock (SCK)
generated by the Master 2401 , a chip select (CS) controlled
by the Master 2401 , a Master - out - Slave - In (MOSI) commu
nication line for transmitting data from the Master 2401 to
the Slave 2402 and a Master - in - Slave - out (MISO) commu
nication line for transmitting data from the Slave 2402 to the
Master 2041 .
[0227] . The standard SPI protocol requires the Master to
initiate all communication with the Slave . Thus , to receive
data from the Slave , the Master must control the chip select
(CS) line and indicate to the slave that it needs data or needs
to transmit data . After a period of time (which may be as
much as 2 ms) , when the Slave is ready to respond , it will
send the data . Because of the amount of handshaking and
waiting time in order to coordinate the communication
between the Master and Slave , the current SPI protocol is
inefficient , particularly when large amounts of data need to
be streamed between the Master and the Slave .
(0228] As such , in one embodiment , a control line 2410 is
added to improve the speed at which the SPI interface can

US 2017 / 0351504 A1 Dec . 7 , 2017

be run between the Master 2401 and the Slave 2402 . In
particular , when either the Master 2401 or the Slave 2402
has data that needs to be transmitted to the other , it pulls the
control line 2410 low , informing the other that it is ready to
send data . This coordinates all of the transactions on the SPI
interface 2410 in a more efficient manner because if the
Slave 2402 wants to send data , it pulls the control line 2401
low and , upon seeing that the line is low , the Master 2401
initiates the transaction using the SPI interface 2410 . The
Slave 2402 then transmits the data . In one embodiment , the
transaction is bi - directional so data can be streamed con
currently in both directions . When the transaction is com
plete , bother the Master 2401 and the Slave 2402 release the
control line 2410 , which goes high again , indicating to both
the Master and Slave that either party may initiate a new
transaction .
[0229] FIG . 25 illustrates additional details of one
embodiment of the invention including interface circuitry
2550 on the Master 2401 and interface circuitry 2560 on the
Slave 2402 which include components such as bus drivers to
transmit and receive digital data over the MOSI and MISO
bus lines . Control logic 2552 , 2562 controls the communi
cation as described above by pulling the control line 2410
low when either the Master 2401 or the Slave 2402 needs to
initiate a new transaction . In the illustrated embodiment , the
control logic 2562 of the Slave is electrically coupled to the
base of a first transistor 2402 and the control logic 2552 of
the Master 2401 is electrically coupled to the base of a
second transistor 2503 . The drain of each transistor is
connected to ground (GND) and the source of each transistor
is coupled to a pull up resistor 2501 on a line to which a
voltage is supplied (V) . The transistors 2502 - 2503 may be
any type of transistors including bipolar junction transistors
(BJTs) or field - effect transistors (FETs) .
[0230] In operation , when neither the Master nor the Slave
need to initiate a transaction , the control logic 2552 and
2562 keeps the transistors 2503 and 2502 , respectively , in an
off state , thereby pulling the control line 2410 high (i . e . ,
pulled up to a voltage V) . When either the Master or the
Slave need to initiate a transaction , the control logic 2552 ,
2562 applies a voltage to the base of a respective transistor
2503 , 2502 , which allows current to flow through the
transistor , thereby pulling the control line 2410 to ground .
[0231] Thus , either the Master 2401 or the Slave 2402 may
pull the control line low , indicating that a transaction is in
progress . In addition , in one embodiment , neither the Master
nor the slave will attempt to initiate a transaction when the
control line is pulled low , thereby ensuring coordination
between the Master 2401 and Slave 2402 .
[0232] In one embodiment , this coordination is used to
establish a bi - directional streaming interface between the
Master 2401 and the Slave 2402 operating at a significantly
greater speed than current SPI interfaces . In one embodi
ment , the Master 2401 and Slave 2402 include small (e . g . ,
10 Byte) data buffers , 2551 and 2561 , respectively , to buffer
data streamed between the Master 2401 and the Slave 2402 .
Consequently , when an amount of data greater than the size
of the data buffers 2551 , 2561 needs to be transmitted
between the Master and the Slave , the control line 2410 may
be pulled and maintained low by the party initiating the
transaction to ensure that the other party does not attempt to
take control of the interface before the transaction is com
plete . For example , if the Slave 2402 has 100 Bytes to
transmit to the Master 2401 , it may take control by pulling

the control line 2410 low , transmit the first 10 Bytes , and
keep the control line low 2410 while the Master receives the
first 10 Bytes . When the Master indicates that it can accept
more data , the Slave 2402 transmits the next 10 Bytes . After
the entire 100 Bytes of data has been provided to the Master
2401 in 10 Byte increments , the Slave 2402 releases the
control line 2410 (allowing it to be pulled high) to indicate
that the Master may take control . The Master may also keep
the control line 2410 low while it is receiving and processing
each 10 Byte buffer of data . Once it has completed receiving
and processing the data , it will release the control line 2410 .
[0233] In one embodiment , a general purpose input / output
(GPIO) line may be shared between the Master 2401 and
Slave 2402 to enable this communication . The GPIO line
may operate in substantially the same manner as described
above i . e . , when one party wants to enter into a transac
tion , it pulls the GPIO line low informing the other party that
a transaction is in process .
[0234] One embodiment of the invention utilizes a special
arrangement of bytes to enable bi - direction communication
and signaling between the Master 2401 and the Slave 2402 .
FIG . 26 illustrates an exemplary 10 Byte segment , identified
as Bytes 0 - 9 , in which Bytes 0 and 1 are used for error
correction and control and Bytes 2 - 9 are used for data . In
particular , Byte 0 comprises a checksum over the Bytes 1 - 9 ,
which may be used by the receiving party to detect trans
mission errors . For example , the receiving party may cal
culate its own checksum over Bytes 1 - 9 and compare the
result with the checksum in Byte 0 . If the result is the same ,
then it may be assumed that no errors were introduced . If the
checksum is not the same , then the receiving party may
request retransmission of the 10 Byte segment .
[0235] In one embodiment , Byte 1 is arranged into a
predetermined sequence of bits 2601 (e . g . , 001 in the
example) used by the receiving party to identify the begin
ning of the data sequence . In one embodiment , the fourth bit
2602 is used to indicate whether the transmission is the end
of a data packet . For example , in as discussed above for a
data packet of 100 Bytes , the value 2602 may be set to 1
when the last 10 Bytes is transmitted . The receiving party
will then know when the packet transmission is complete . In
one embodiment , the next four bytes 2603 (identified as
nnnn) are set to indicate the number of Bytes of valid data
stored in Bytes 2 - 9 . For example , if only Byte 2 includes
valid data , then the value of 2603 may be 0001 ; if both Bytes
2 and 3 include valid data , then the value of 2603 may be
0010 , and so on . The receiving side will then process only
the valid data and ignore the rest . In one embodiment ,
whenever a transaction occurs between the Master and the
Slave , the 10 Byte segment is transmitted in both directions
(i . e . , one from the Master to the Slave and one from the
Slave to the Master) . However , if a party has no data to send ,
it will simply set the nnnn value 2603 equal to 0000 . If both
parties have data to send then they will each send the data
concurrently , and indicate the number of valid Bytes by
adjusting the nnnn value 2603 .
[0236] The above techniques significantly increase the
speed at which current SPI interfaces are capable of running ,
establishing a bi - directional streaming protocol over stan
dard SPI bus lines . Using these techniques , an application
2503 running on the MCU 2401 can efficiently stream data
to the IoT service 120 and , at the same time , the IoT service
can efficiently stream data to the application 2403 . In
addition , in one embodiment , the secure communication

US 2017 / 0351504 A1 Dec . 7 , 2017

module 2402 establishes a secure communication channel
with the IoT service 120 using the various techniques
described above with respect to FIGS . 16A - 23C .

Integrated Development Tool for an Internet of
Things (IoT) System

[0237] One embodiment of the invention includes an
integrated development tool to allow IoT developers to
readily design new IoT devices , services , and client apps for
end users . In particular , in one embodiment , the integrated
development tool allows the developer to indicate the input /
output functions to be performed by each IoT device , the
GUI features to be available to end users , and the back - end
functions to be performed by the loT service . In response ,
the integrated development tool generates a first profile for
the IoT device , a second profile for a client device app , and
a third profile for the IoT service to realize an end - to - end ,
fully - functional IoT implementation with limited effort .
[0238] FIG . 27 illustrates one embodiment of an inte
grated development tool platform 2701 which includes a
development application 2720 with a graphical user inter
face 2721 usable by a developer to design new IoT imple
mentations . In one embodiment , the integrated development
tool (IDT) platform 2701 comprises a computer system with
a storage device and memory for storing program code of the
development application 2720 and a processor for process
ing the program code during runtime . In addition , the
various other modules illustrated in FIG . 27 (e . g . , 2730
2732) may be implemented as program code executed by the
processor .
[0239] A development database 2710 is loaded and con
tinually updated with data related to different IoT device
configurations , user interface features for client - side apps ,
and IoT service configurations . For example , the develop
ment database 2710 may include data related to different
types of input / output (I / O) functions to be performed by
each of the IoT devices 101 - 102 including , but not limited
to analog - to - digital (A / D) functions (e . g . , capturing an ana
log voltage level) , digital - to - analog (D / A) functions (e . g . ,
providing an analog voltage output) , binary on / off functions
(e . g . , unlocking a door , triggering an alarm , turning on a
light , etc) , and various General Purpose I / O (GPIO) func
tions .
[0240] In addition , as discussed below , the developer may
specify whether the IoT device 102 is to be designed with a
stand - alone secure communication module 2402 or whether
the IoT device 101 is to be designed with both a secure
communication nodule 2402 and MCU 2401 (e . g . , intercon
nected via an SPI interface as discussed above) . A stand
alone implementation may be used for relatively simpler IoT
implementations such as those which perform simple on / off
functions (e . g . , a switch integrated on a lightbulb) whereas
the MCU implementation may be used for more complex
data collection and monitoring (e . g . , a remotely - controllable
video camera triggered by a motion sensor) .
[0241] In one embodiment , once the developer has speci
fied the particular I / O functions to be performed by an IoT
device via the development application 2720 , an IoT device
engine 2730 uses the configuration data provided from the
development application to generate an IoT device profile
2740 , specifying the configuration parameters for the secure
communication module 2402 . This may include , for
example , the mode that the secure communication module is
in , including whether the secure communication module

2402 is in a stand - alone mode or coupled to an MCU 2401 .
If in stand - alone mode , the IoT device profile 2740 config
ures the various I / O lines 2407 of the secure communication
module 2402 to perform the functions required by the IoT
device 102 . If used with an MCU 2401 , the IoT device
profile 2740 may configure the I / O lines 2407 of the secure
communication module 2402 and the I / O lines 2408 of the
MCU and may also specify how the secure communication
module 2402 is to interact with the MCU 2401 (e . g . ,
communicating over an SPI bus to exchange data and
commands with the application executed on the MCU as
described above) .
[0242] In one embodiment , the IoT device profile 2740
may be loaded into a non - volatile memory on the secure
communication module 2402 (e . g . , Flash memory) to imple
ment the IoT functions (see , e . g . , FIG . 2 showing app code
203 , library code 202 , and communication stack code 201
executed by the low power uC 200) . In alternate embodi
ments , the IoT device profile 2740 may be used to configure
an application - specific integrated circuit or field - program
mable gate array (FPGA) . The underlying principles of the
invention are not limited to any particular configuration for
secure communication module 2402 .
[0243] In addition to configuring the IoT device , in one
embodiment , once the developer has specified the particular
I / O functions to be performed by an IoT device via the
development application 2720 , an IoT device engine 2730
uses the configuration data from the development applica
tion to generate a user experience (UX) profile 2741 to be
used to implement the IoT app or application on the client
device 611 . The UX profile , for example , may specify
various graphical I / O elements to be displayed within the
GUI of the IoT app or application and the configurations to
be used for those graphical I / O elements . For example , if the
IoT device 102 is a light switch (or other simple on / off
device such as a door lock) , then the UX profile may include
a simple on / off switch to control the IoT device 102 . If the
IoT device 101 is a video capture device then the UX profile
may specify a graphical element to cause video to be
displayed on the client 611 and the specific parameters for
displaying the video (e . g . , scaling to be used , location on the
client display , etc) . A virtually unlimited number of different
user interface features may be specified by the UX profile
while still complying with the underlying principles of the
invention .

[0244] In addition , in one embodiment , an IoT service
engine 2732 generates a cloud API profile 2742 to accom
modate the service - side requirements of the new IoT devices
101 - 102 . This may include , for example , the manner in
which the IoT service 120 is to exchange commands and
data with the new IoT devices and / or notifications to be sent
to the user ' s client device 611 in response to data received
from the IoT devices . For example , if the IoT device is a
door lock , then the cloud API profile may specify that a
notification is to be sent to the client device 611 whenever
the door is opened and the user is not home . In addition , the
cloud API profile 2742 may specify the commands to be
used to control the new IoT devices . In one embodiment , the
cloud API profile 2742 specifies the manner in which the IoT
service 120 is to communicate with external IoT services
such as the IoT services run by the designer of the new IoT
devices 101 - 102 (e . g . , exposing an API to the external IoT
services) .

US 2017 / 0351504 A1 Dec . 7 , 2017

[0245] A method implemented by an integrated develop -
ment tool for an IoT system is illustrated in FIG . 28 . The
method may be implemented within the context of the
system architectures described above , but is not limited to
any particular system architecture .
[0246] At 2801 , the designer enters parameters for the new
IoT device via the GUI of the development application . This
may include , for example , the I / O functions to be performed
by the IoT device and the manner in which the loT device
is to interact with the IoT service . At 2802 , using data from
the development application , the IoT device engine gener
ates an IoT device profile . In addition to the I / O function
specification , this may include an indication as to whether
the secure communication module is in stand - alone mode or
used with an MCU . At 2803 , the IoT device profile is applied
to the IoT device . In one embodiment , this involves copying
the program code to a non - volatile storage on the IoT device .
[0247] At 2804 , using data from the development appli
cation , the client app engine generates a UX profile speci
fying (among other things) the user interface to be displayed
on the client when interacting with the new IoT devices . At
2805 , the UX profile is applied to the client .
[0248] At 2806 , using data from the development appli
cation , the IoT service engine generates a cloud API profile
specifying the manner in which the IoT service is to inter
operate with the new IoT devices , the client device and / or
any external IoT services . For example , as described above ,
the IoT service may expose an API to enable communication
with one or more external IoT services . At 2805 , the cloud
API profile is applied to the IoT cloud service .
[0249 Thus , using the integrated development techniques
described herein , a developer can concurrently program a
new IoT device , an IoT service , and a user app , thereby
saving a significant amount of time and effort compared with
current implementations in which each component must be
independently programmed and configured .
[0250] ce and / or installing a software update on the IoT
device .

device . In particular , in the example shown in FIG . 29 , the
attributes include application attributes 2910 , system attri
butes 2911 , and priority notification attributes 2912 . In one
embodiment , the application attributes 2910 comprise attri
butes related to the application - specific function performed
by the IoT device 101 . For example , if the IoT device
comprises a security sensor , then the application attributes
2910 may include a binary value indicating whether a door
or window has been opened . If the IoT device comprises a
temperature sensor , then the application attributes 2910 may
include a value indicating a current temperature . A virtually
unlimited number of other application - specific attributes
may be defined . In one embodiment , the MCU 2915
executes application - specific program code and is only
provided with access to the application - specific attributes
2910 . For example , an application developer may purchase
the IoT device 101 with the secure wireless communication
module 2918 and design application program code to be
executed by the MCU 2915 . Consequently , the application
developer will need to have access to application attributes
but will not need to have access to the other types of
attributes described below .
[0254] In one embodiment , the system attributes 2911 are
used for defining operational and configuration attributes for
the IoT device 101 and the IoT system . For example , the
system attributes may include network configuration set
tings (e . g . , such as the flow control parameters discussed
above) , the device ID , software versions , advertising inter
val selection , security implementation features (as described
above) and various other low level variables required to
allow the IoT device 101 to securely communicate with the
IoT service .
[0255] In one embodiment , a set of priority notification
attributes 2912 are defined based on a level of importance or
severity associated with those attributes . For example , if a
particular attribute is associated with a hazardous condition
such as a temperature value reaching a threshold (e . g . , when
the user accidentally leaves the stove on or when a heat
sensor in the user ' s home triggers) then this attribute may be
assigned to a priority notification attribute class . As men
tioned above , priority notification attributes may be treated
differently than other attributes . For example , when a par
ticular priority notification attribute reaches a threshold , the
IoT hub may pass the value of the attribute to the IoT
service , regardless of the current flow control mechanisms
being implemented by the IoT hub . In one embodiment , the
priority notification attributes may also trigger the IoT
service to generate notifications to the user and / or alarm
conditions within the user ' s home or business (e . g . , to alert
the user of a potentially hazardous condition) .
[0256] As illustrated in FIG . 29 , in one embodiment , the
current state of the application attributes 2910 , system
attributes 2911 and priority notification attributes 2912 are
duplicated / mirrored within the device database 2851 on the
IoT service 120 . For example , when a change in one of the
attributes is updated on the IoT device 101 , the secure
wireless communication module 2918 communicates the
change to the device management logic 2921 on the IoT
service 120 , which responsively updates the value of the
attribute within the device database 2851 . In addition , when
a user updates one of the attributes on the IoT service (e . g . ,
adjusting a current state or condition such as a desired
temperature) , the attribute change will be transmitted from
the device management logic 2921 to the secure wireless

System and Method for Managing Internet of
Things (IoT) Devices and Traffic Using Attribute

Classes

[0251] Different IoT devices may be used to perform
different functions in a given location . For example , certain
IoT devices may be used to collect data such as temperature
and status (e . g . , on / off status) and report this data back to the
IoT service , where it may be accessed by an end user and / or
used to generate various types of alert conditions . To enable
this implementation , one embodiment of the invention man
ages collected data , system data , and other forms of data
using different types of attribute classes .
[0252] FIG . 29 illustrates one embodiment of an IoT
device which includes a secure wireless communication
module 2918 which communicates with a microcontroller
unit (MCU) 2915 over a serial interface 2916 such as an
Serial Peripheral Interface (SPI) bus . The secure wireless
communication module 2918 manages the secure commu
nication with the IoT service 120 using the techniques
described above and the MCU 2915 executes program code
to perform an application - specific function of the IoT device
101 .
[0253] In one embodiment , various different classes of
attributes are used to manage the data collected by the IoT
device and the system configuration related to the IoT

US 2017 / 0351504 A1 Dec . 7 , 2017
20

communication module 2918 which will then update its
local copy of the attribute . In this way , the attributes are
maintained in a consistent manner between the IoT device
101 and the IoT service 120 . The attributes may also be
accessed from the IoT service 120 via a user device with an
IoT app or application installed and / or by one or more
external services 2970 . As mentioned , the IoT service 120
may expose an application programming interface (API) to
provide access to the various different classes of attributes .
[0257] In addition , in one embodiment , priority notifica
tion processing logic 2922 may perform rule - based opera
tions in response to receipt of a notification related to a
priority notification attribute 2912 . For example , if a priority
notification attribute indicates a hazardous condition (e . g . ,
such as an iron or stove being left on by the user) , then the
priority notification processing logic 2922 may implement a
set of rules to attempt to turn off the hazardous device (e . g . ,
sending an “ off ” command to the device if possible) . In one
embodiment , the priority notification processing logic 2922
may utilize other related data such as the current location of
the user to determine whether to turn off the hazardous
device (e . g . , if the user is detected leaving the home when
the hazardous device in an “ on ” state) . In addition , the
priority notification processing logic 2922 may transmit an
alert condition to the user ' s client device to notify the user
of the condition . Various other types of rule sets may be
implemented by the priority notification processing logic
2922 to attempt to address a potentially hazardous or oth
erwise undesirable condition .
[0258] Also shown in FIG . 29 is a set of BTLE attributes
2905 and an attribute address decoder 2907 . In one embodi
ment , the BTLE attributes 2905 may be used to establish the
read and write ports as described above with respect to
FIGS . 19 - 20 . The attribute address decoder 2907 reads a
unique ID code associated with each attribute to determine
which attribute is being received / transmitted and process the
attribute accordingly (e . g . , identify where the attribute is
stored within the secure wireless communication module
2918) .

sentation of the IoT device 3010 . The resulting virtual
representation may then be rendered within the client mobile
app 3022 .
10261] In one embodiment , the user may modify the
device attributes 3011 and / or presentation definitions 3012
via a preview graphical user interface (GUI) 3021 of the
development application 2720 (some examples of which are
provided below) . As described in detail below , in one
embodiment , after making modifications to the device attri
butes 3011 and / or presentation definitions 3012 , the user
manually transfers those changes to the service 120 , either
by initiating a preview via a preview button 3150 or by
publishing them via a publish option 3151 (shown , for
example , in FIG . 31G) . In another embodiment , any changes
made by the user may be automatically transferred to the
service in real time or periodically .
[0262] Once the client 3020 has been logged in to the IoT
service 120 via an account channel 3060 (i . e . , a channel
established between the client 3020 and IoT service 120 and
associated with the user ' s account) , the virtual device 3010
will apply the changes made by the user via the preview GUI
3021 and the attributes and presentation features will be
updated within the mobile app 3022 .
[0263] While some embodiments of the invention are
described in the context of a virtual device 3010 , the same
principles may be implemented within the context of a real
IoT device . For example , in one embodiment , the preview
UI button 3150 may be used to update attributes on an IoT
device which will then be dynamically reflected in the
mobile app 3022 . Similarly , as discussed below , the user
may modify attributes from the mobile app 3022 (e . g . , by
selecting graphical elements) and view the modifications
within the preview GUI 3021 .
[0264] FIG . 31A illustrates one embodiment of the pre
view GUI 3021 of the development application 2720 com
prising a plurality of graphical elements 3015 which may be
selected and updated by the user , and a preview UI button
3150 for generating a preview of the updates on the mobile
client 3020 . The graphical elements 3015 comprise a group
of controls or widgets representing one or more attributes to
be managed by the IoT device and synchronized with the
IoT service as described above . In one embodiment , when a
user makes changes to the attributes and / or graphical fea
tures associated with the graphical elements 3015 , and then
selects the preview UI button 3150 , those changes are
updated within the virtual device 3010 on the IoT service
and transmitted to the mobile client 3020 over the account
channel (where they are reflected in the UI of the mobile app
3022) .
[0265] In FIG . 31B , the user has selected a particular
graphical element (an “ LED ” element to turn an LED
ON / OFF) revealing an " attribute tester " window which
includes a plurality of fields 3101 - 3104 through which the
user can make changes to the attribute . In this particular
example , the user may change the attribute name 3101 , the
data type 3102 used to store data associated with the
attribute , and the current attribute Value 3103 . In one
embodiment , the user can only change the value of writable
attributes on this screen . Read - only attributes are displayed
only to show the user value changes on the device side .
Read - only attributes and fields may be grayed out . An
update button 3104 is provided to implement the changes . In
FIG . 31B , the preview user interface generated on the client
3020 shows graphical elements 3110 - 3111 associated with

Integrated Development Platform with Advanced
Preview Functionality

[0259] One embodiment of the invention generates a pre
view of client device and IoT device functionality from
within the integrated development application . In particular ,
one embodiment allows developers to preview a user inter
face defined within the development application (e . g . , the
UX profile 2741 discussed above) including different attri
bute definitions on all mobile apps where they are logged in
with the same user account .
[0260] FIG . 30 illustrates one embodiment in which vir
tual device generation logic 3005 on the IoT service 120
generates a virtual device 3010 using the IoT device profile
2740 and the user experience profile 2741 specified by the
user within the development application 2720 . The user may
then interact with and test the virtual device 3010 via the
development application 2720 and / or a mobile app 3022
executed on a mobile client device 3020 . In one embodi
ment , the virtual device 3010 includes virtualization pro
gram code which interprets the device attributes 3011 of the
IoT device profile 2740 and the presentation definitions
3012 from the UX profile 2741 to render a virtual repre

US 2017 / 0351504 A1 Dec . 7 , 2017

this particular attribute _ i . e . , an ON element 3110 to indi
cate when the LED is on and an OFF element 3111 to
indicate when the LED is off . In FIG . 31B , the attribute
value is initially set to 0 , resulting in an ON state displayed
within the preview GUI (i . e . , element 3110 is highlighted) .
In FIG . 31C , the user has modified the attribute value to a 1
and , after selecting the update button 3104 , the OFF graphi
cal element 3111 becomes highlighted within the preview
GUI on the client 3020 (and the highlight is removed from
the ON graphical element 3110) , thereby dynamically
reflecting the changes entered by the user . In operation , the
attribute value change is first reflected within the device
attributes 3011 of the virtual device 3010 and is then
propagated out to the client 3020 via the account channel .
[0266] As shown in FIG . 31D the user may select a
particular graphic , causing the preview GUI 3021 to open a
field 3120 for modifying the name of the graphical element
(in this case the LED element) . In addition , an icon button
3121 is provided which generates a window containing a
plurality of selectable icons 3130 as shown in FIG . 31E .
Selecting a particular icon 3130 causes the icon to be
displayed within the graphical element , as shown at 3140 of
FIG . 31F . In one embodiment , the new icon is updated
within the presentation definitions 3012 of the virtual device
3010 . Depending on the embodiment , this change may or
may not be dynamically propagated over the account chan
nel to the client 3020 , resulting in the new icon 3141 being
rendered in FIG . 31F .
[0267] In one embodiment , the updates transmitted over
the account channel connecting the client 3020 to the IoT
service 120 are bi - directional . As such , user input provided
by the user via the mobile app 3022 may be updated within
the virtual device 3010 or real IoT device and reflected
within the Attribute Tester dialog shown in FIGS . 31B - C .
For example , if the user changes an attribute from within the
mobile app 3022 , the attribute change will be updated within
the device attributes 3011 of the virtual device 3010 or real
IoT device and displayed within the Attribute Tester dialog .
In this manner , the user can test the operation of the mobile
app 3022 and review the results within the Attribute Tester
dialog .
[0268] . This mode of operation is illustrated in FIGS .
31G - H . In particular , in FIG . 316 , when the user initially
selects button 3051 , the corresponding OFF button 3153 is
highlighted and the corresponding attribute value 3160 is
displayed within the preview GUI (a value of 1 in the
example) . In FIG . 31H , the user has selected an ON button
3152 from within the mobile app 3022 , thereby changing the
attribute value . The change is propagated through the device
attributes 3011 of the virtual device 3010 and displayed
within the attribute value field 3160 of the preview GUI
3021 (a value of 0 in the example) .
[0269] Thus , in response to the user choosing to preview
a GUI and associated attributes , the IoT service searches for
a corresponding virtual IoT device and , if none is found ,
configures a virtual IoT device with the given device attri
butes and presentation and associates it to the user ' s account .
The IoT service then sends a notification on the account
channel about this new device . Any listener on the account
channel may act on this message , including the mobile app
3022 which will refresh its UI and display a new device on
the user ' s account with the new UI . The user can interact
with the preview device , but no real action will be taken . In
one embodiment , if the user closes the mobile app and opens

it again , the preview device will be reset to its default state .
The user can then remove this preview device from their
account as they would for any other device .
[0270] A method in accordance with one embodiment of
the invention is illustrated in FIG . 32A . The method may be
implemented within the context of the architectures
described above but is not limited to any particular archi
tecture .
[0271] At 2201 , the user chooses to view a preview GUI
from within the development application . At 2202 , a search
is performed for a device type definition that has a specific
virtual device class set (i . e . , “ Preview VirtualClass ") . For
example , an internet - accessible database of loT devices may
be provided by the user ' s partner (i . e . , the business entity or
individual who designed , manufactured or sold the IoT
device) . Of course , the underlying principles of the inven
tion are not limited to any particular business arrangement
between a user and a partner (and , in fact , the user and
partner may be the same entity or individual) .
[0272] At 2203 , if the device type definition does not exist ,
then a new one is created at 2205 . If one does exist , then at
2204 , the existing device type definition is used .
[0273] At 2206 , the user ' s account is then searched first
for an existing device of the aforementioned type . The
preview device type of the user ' s partner may also be
searched for a device that is not associated with an account .
If found , then at 2207 , the existing device is used . If not , then
at 2208 , a virtual device of the preview device type is created
and associated with the user ' s account .
[0274] At 2209 , the uploaded device description (e . g . ,
device attributes) and presentation are then associated with
the preview device . The account channel is then notified of
the new or updated device at 2210 . Any listener on the
account channel such as the mobile app 3022 will receive
and process the notification .
0275] Once the connection has been made , bi - directional
interaction between the preview GUI 3021 and the mobile
app 3022 may be performed using raw attribute values as
discussed above . For example , if an update to an attribute is
provided from the preview GUI at 2211 , then the mobile app
is updated over the account channel at 2212 . For example ,
if the user modifies the device attribute , the effect of that
modification will be presented to the user within the mobile
app (e . g . , highlighting a different button within the GUI) .
[0276] At 2213 a determination is made as to whether an
update has been made on the mobile app . For example , the
user may navigate and generate updates through the user
interface of the mobile app (see , e . g . , FIG . 31G - H and
associated text) . If so , then at 2214 the update is reflected in
the preview GUI .
02771 The embodiments of the invention described herein

allow users such as developers to interact with any device on
their account using the development application 2720 . In
one embodiment , the development application 2720 does
not communicate through the account channel as other apps
do . As discussed above , the development application 2720
may render a hierarchical UI of all control groups , their
controls and the attributes which allows users to then enter
the raw attribute value for a particular attribute and send it
to the device . As this value is propagating through the
platform all mobile apps will display the changes and the
device will act on the value sent . In one embodiment , the
development application 2720 monitors the attribute history

US 2017 / 0351504 A1 Dec . 7 , 2017

and updates the attribute values on the preview GUI 3021 to
changes initiated , for example , by a mobile app or on the
device itself .
[0278] Embodiments of the invention may include various
steps , which have been described above . The steps may be
embodied in machine - executable instructions which may be
used to cause a general - purpose or special - purpose proces
sor to perform the steps . Alternatively , these steps may be
performed by specific hardware components that contain
hardwired logic for performing the steps , or by any combi
nation of programmed computer components and custom
hardware components .
[0279] As described herein , instructions may refer to spe
cific configurations of hardware such as application specific
integrated circuits (ASICs) configured to perform certain
operations or having a predetermined functionality or soft
ware instructions stored in memory embodied in a non
transitory computer readable medium . Thus , the techniques
shown in the figures can be implemented using code and
data stored and executed on one or more electronic devices
(e . g . , an end station , a network element , etc .) . Such elec
tronic devices store and communicate (internally and / or with
other electronic devices over a network) code and data using
computer machine - readable media , such as non - transitory
computer machine - readable storage media (e . g . , magnetic
disks ; optical disks ; random access memory ; read only
memory ; flash memory devices ; phase - change memory) and
transitory computer machine - readable communication
media (e . g . , electrical , optical , acoustical or other form of
propagated signals — such as carrier waves , infrared signals ,
digital signals , etc .) . In addition , such electronic devices
typically include a set of one or more processors coupled to
one or more other components , such as one or more storage
devices (non - transitory machine - readable storage media) ,
user input / output devices (e . g . , a keyboard , a touchscreen ,
and / or a display) , and network connections . The coupling of
the set of processors and other components is typically
through one or more busses and bridges (also termed as bus
controllers) . The storage device and signals carrying the
network traffic respectively represent one or more machine
readable storage media and machine - readable communica
tion media . Thus , the storage device of a given electronic
device typically stores code and / or data for execution on the
set of one or more processors of that electronic device . Of
course , one or more parts of an embodiment of the invention
may be implemented using different combinations of soft
ware , firmware , and / or hardware .
[0280] Throughout this detailed description , for the pur
poses of explanation , numerous specific details were set
forth in order to provide a thorough understanding of the
present invention . It will be apparent , however , to one
skilled in the art that the invention may be practiced without
some of these specific details . In certain instances , well
known structures and functions were not described in elabo
rate detail in order to avoid obscuring the subject matter of
the present invention . Accordingly , the scope and spirit of
the invention should be judged in terms of the claims which
follow .
What is claimed is :
1 . A system comprising :
an Internet of Things (IoT) development application com

prising a graphical user interface (GUI) through which
a user is to specify a configuration for a new IoT device ,
the development application including a preview GUI

component to allow a user to render a mobile UI
preview on a mobile client ;

an IoT service including virtual device generation logic to
generate a virtual device responsive to the configura
tion specified for the new IoT device , the virtual device
comprising a virtualized representation of the new IoT
device ; and

the virtual device to establish a communication channel
with a mobile app executed on a client , the virtual
device to dynamically communicate updates to the
mobile app as the user makes changes to IoT device
attributes and / or presentation definitions from the pre
view GUI .

2 . The system as in claim 1 wherein the mobile app is to
open a first communication channel with the IoT service , the
IoT service to associate the first communication channel
with the user ' s account .

3 . The system as in claim 2 wherein the development
application is to open a second communication channel with
the IoT service , the second communication channel inde
pendent of the first communication channel .

4 . The system as in claim 3 wherein the IoT service
initially performs a query to determine whether an existing
virtual IoT device exists to which the configuration may be
applied and generates the virtual IoT device responsive to
determining that a virtual IoT device does not yet exist .

5 . The system as in claim 2 wherein the preview GUI
comprises one or more fields displaying current attribute
values and allowing the user to modify the current attribute
values , wherein upon detecting a modification to an attribute
to a new attribute value , the new attribute value is to be
updated within the virtual device , and propagated out to the
mobile app over the first communication channel .

6 . The system as in claim 5 wherein the first communi
cation channel is to provide updates bi - directionally ,
wherein in addition to providing updates from the virtual
device to the mobile app , updates are provided from the
mobile app to the virtual device responsive to user interac
tions with the mobile app .

7 . The system as in claim 6 wherein at least one interac
tion comprises the user modifying an attribute value .

8 . The system as in claim 1 wherein the preview GUI
includes one or more graphical elements associated with one
or more IoT device attributes , wherein selecting a graphical
element generates a window to test the IoT device attributes ,
the window including a plurality of user - modifiable fields
associated with the attributes .

9 . The system as in claim 8 wherein the fields include an
attribute name field to specify an attribute name , a data type
field to specify a data type for the attribute , and a value field
to specify a current attribute value .

10 . The system as in claim 8 wherein the preview GUI
further comprises one or more menus or windows to provide
a set of selectable icons to be used to represent the attribute .

11 . The system as in claim 1 further comprising :
a development database comprising configuration data

related to different IoT device configurations , the IoT
development application to utilize the data in the devel
opment database based on the configuration specified
by the developer for the new IoT device ;

an IoT device engine to generate an IoT device profile
responsive to the development application specifying

US 2017 / 0351504 A1 Dec . 7 , 2017
23

input / output functions to be performed by the new IoT
device , the IoT device profile including the IoT device
attributes ;

a client app engine to generate a user experience (UX)
profile responsive to the development application
specifying features of a client app or application related
to operation of the new IoT device , the UX profile
including the presentation definitions ; and

an IoT service engine to generate a cloud application
programming interface (API) profile responsive to the
development application specifying features of an IoT
service related to operation of the new IoT device .

12 . The apparatus as in claim 11 wherein the IoT device
profile is stored in a non - volatile storage memory of the new
IoT device , the IoT device comprising a controller for
executing program code to implement the IoT device profile .

13 . The apparatus as in claim 11 wherein the input / output
functions comprise at least one analog - to - digital function
and / or digital - to - analog function .

14 . The apparatus as in claim 11 wherein the input / output
functions comprise at least one on / off input or output func

16 . A method comprising :
generating a virtual IoT device responsive to a configu

ration specified for a new IoT device , the virtual device
comprising a virtualized representation of the new IoT
device ; and

establishing a communication channel with a mobile app
executed on a client , the virtual device to dynamically
communicate updates to the mobile app as a user makes
changes to attributes and / or presentation definitions
associated with the new IoT device .

17 . The method as in claim 16 wherein the mobile app is
to open a first communication channel with an IoT service
on which the virtual IoT device is executed , the IoT service
to associate the first communication channel with the user ' s
account .

18 . The method as in claim 17 wherein the configuration
is specified for the new IoT device from a development
application , the development application to open a second
communication channel with the IoT service , the second
communication channel independent of the first communi
cation channel .

19 . The method as in claim 18 wherein the IoT service
initially performs a query to determine whether an existing
IoT device exists to which the configuration may be applied
and generates the virtual device responsive to determining
that an IoT device does not yet exist .

20 . The method as in claim 17 wherein the preview GUI
comprises one or more fields displaying current attribute
values and allowing the user to modify the current attribute
values , wherein upon detecting a modification to an attribute
to a new attribute value , the new attribute value is to be
updated within the virtual device , and propagated out to the
mobile app over the first communication channel .

* * * * *

tion .
15 . The apparatus as in claim 11 wherein the IoT device

profile specifies whether the IoT device is to operate in a
stand - alone mode in which the input / output functions are
performed by a secure communication module or in a
microcontroller unit (MCU) mode in which at least some
input / output functions are performed by software executed
on the MCU .

