03/067798 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 August 2003 (14.08.2003)

PCT

(10) International Publication Number

WO 03/067798 A2

(51) International Patent Classification”: HO04L

(21) International Application Number: PCT/US03/03291

(22) International Filing Date: 4 February 2003 (04.02.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/354.,405 4 February 2002 (04.02.2002) US

(71) Applicant: FAST-CHIP, INC. [US/US]; 950 Kifer Road,
Sunnyvale, CA 94086-05206 (US).

(72) Inventors: HENDERSON, Alex; 40 Denise Drive, Hills-
borough, CA 94010 (US). CROFT, Walter; 2311 Ticon-
deroga Drive, San Mateo, CA 94402 (US).

(74) Agents: SUEOKA, Greg, T. . et al.; Fenwick & West
LLP, Silicon Valley Center, 801 California Street, Mountain
View, CA 94041 (US).

(81) Designated States (rational): AE, AG, AL, AM, AT, AU,
AZ,BA,BB, BG, BR, BY, BZ, CA, CH, CO, CR, CU, CZ,
DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, KE, KG, KP,KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,
NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
TI1, T™, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
M, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: STATE RECORD PROCESSING

Packet In (including

110 250 control packefs) 260
I ﬁ signment Packet Input Unit 1\
Table Entry Packet d Releasc 210 Wrie] |
l Processor Conltexts I
202 204 -
Lixtrac| Rqque: .
et Koot Tield Extraction r
. cagl Data
l Packet Processing Extfact Response Unit 212 |
| Controlier 200 (racker l
Operations, Scheduler. Pachet " State Access Uni
| Contexts and Data Path St :t yrﬂ: & ae 2L]C:S< Unit \IR_/_’_Data 9 !
Low Level Control
l Heirarchy st 0‘? ’2(2)8 - . Cache & .
206 ore fidit “insjrdetions” Editing Unit 216 <‘k W Pata > Memory R/W Data Ml\e’::on !
I o Controlier 108 Ty
ucuc By
Search Request/ @ “instructions™ 230
| J\ /L 4> Search Response I
Search Queuc Qperations RAW Dala_
I Processor On Chip Scarch Unit 218 '
240 Resources (BAM?) v
I Output Scheduler ’
e % 4}_ - 220 R/W Data
| —= |
Route Expand Module (Off chip Packet Qutput
search resources) 112 l Unit 222 Rggd Data l
g J

Packet Out (including control packets)

250 = Control bus, 260 = cache

O (57) Abstract: The invention provides apparati and methods for quickly modifying state information. Preprocessing prepares the
state information to be modified. A logic unit modifies the state information. Postprocessing then puts the modified state information

=

in proper form for output.

WO 03/067798 PCT/US03/03291

STATE RECORD PROCESSING
Inventor:
Alex E. Henderson
Walter E. Croft
BACKGROUND
Related Applications

[0001] This application claims priority from U.S. provisional application number
60/354,405 filed on February 4, 2002, which is incorporated by reference herein in its
entirety.

Field of the Invention

[0002] This invention relates to network communications, and more particularly to an
efficient and adaptable system for processing packets.

Backeground of the Invention

[0003] When data packets are sent through a network, the packets often must be
processed or modified between their source and destination. For example, when a packet
flows from a LAN (local area network) port to an MPLS (multiprotocol layer switching)
port, the packet may have to be converted into an Ethernet over MPLS format, and the
traffic fields in the internal header may have to be modified. Other modifications or
processing may also be necessary.

[0004] State information within a packet processor stores information that is relevant to
more than just a single processed packet and thus has a stored lifetime for longer than the
processing of a single packet. As packets are processed, the state information frequently is
changed to reflect what occurs during processing. What is needed is a system and method

for modifying state information quickly and inexpensively.

WO 03/067798 PCT/US03/03291

SUMMARY OF THE INVENTION
[0005) The invention employs a table and context based architecture to provide a
powerful and flexible way to process packets. Each packet that arrives at a services
processor is assigned a packet context that contains information about the packet, state
information related to the packet, and about the actions to be done to the packet. This
context identifies the next action to be taken in processing the packet. Packet processing
follows a table based scheme. Action tables contain actions to be performed on the packet.
Lookup tables are used in conjunction with lookup actions as branching functions to
determine the next action or action table to be used in the process, among other things.
State tables contain information that is stored for longer than the time one packet is
processed.
[0006] Information within the state tables is often modified in real time as packets are
processed. A multiple-path state information update system is used to allow multiple
modifications to stored state information to be made at once. This increases the speed at
which state information can be updated, so that processing of packets is not unduly delayed.
Each path within the state information update system will typically include preprocessing
modules that prepare a piece of state information for modification, and arithmetic logic unit
for modifying the piece of state information, and postprocessing modules for placing the

modified piece of state information in proper form for output.

WO 03/067798 PCT/US03/03291

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Fig. 1 is a block diagram that illustrates a 10 gigabit services processor as part of
a highly integrated Ethernet MAN access switch.
[0008] Fig. 2 is a block diagram that illustrates one embodiment for the services
processor in more detail.
[0009] Fig. 3 is a block diagram that illustrates a packet and the packet context
associated with that particular packet.
[0010] Fig. 4 is a block diagram that illustrates an exemplary packet and the location
within the packet to which the encapsulation pointers point.
[0011] Fig. 5 is a block diagram that illustrates the packet after editing, and the locations
within the edited packet to which the encapsulation pointers point.
[0012] Fig. 6 is a block diagram that illustrates the information stored in the edit register
in one embodiment of the present invention.
[0013] Fig. 7 is a block diagram that illustrates action tables, lookup tables, and state
tables, and how these table types are used by the packet processing controller.
[0014] Fig. 8 is a block diagram that illustrates an example action entry of an action
table according to one embodiment of the present invention.
[0015] Fig. 9 is a block diagram that illustrates the information in the control word field
of a parsing action entry according to one embodiment of the present invention.
[0016] Fig. 10 is a block diagram that illustrates the state access unit in more detail
according to one embodiment of the present invention.
[0017] Fig. 11 is a block diagram that provides more detail of one of the four paths for

modifying the state record of the state access unit.

WO 03/067798 PCT/US03/03291

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

System Overview

[0018] Referring now to Figure 1, an exemplary use of a full duplex, multiple port
services processor 110 according to the present invention is shown. Figure 1 illustrates the
services processor 110 as part of a highly integrated Ethernet MAN access switch 100 with a
10 gigabit aggregate throughput. While present invention will be described in this context,
those skilled in the art will recognize that the services processor 110 of the present invention
can be designed for other data rates and has a variety of other uses including but not limited
to being part of multi-service switches, metro switches, content switches, stateful firewalls,
network probes enterprise routers, multi-protocol routers, Label Edge Routers (LER) and
Label Switched Routers (LSR) (IP routers), wireless base stations, bandwidth managers,
DSLARs and fast firewalls. As shown in Figure 1, the Ethernet MAN access switch 100
preferably comprises a control processor 102, a control memory 104, an Ethernet switch or
switch fabric 106, a packet memory 108, the services processor 110, a route expand module
112, a route memory 114, and associated data memory 116.

[0019] The control processor 102 is coupled to the services processor 110 by a packet
interface and to the control memory 104 by a memory bus. The control processor 102
provides routing and switching protocol support for the services processor 110. The control
processor 102 uses the packet interface for control plane functions such as configuration and
event messages. Packets can also be sent to and received from the services processor 110 by
the control processor 102 using the control plane. Thus, the operations and processing
performed by the services processor 110 can be fully controlled using the control processor
102 and routines stored in the control memory 104.

[0020] The services processor 110 provides advanced switching functions (VPLS
bridging, IP routing, fire walling, content switching including TCP termination) and feature
processing (ACL and Subscriber Management) in this example. The services processor 110
is responsible for processing the packets to provide the appropriate routing and filtering as
prescribed by the control processor 102. The services processor 110 is coupled to the
Ethernet switch 106 for receiving and sending such packets. The services processor 110 is
also coupled to the packet memory 108. The packet memory 108 is used to store packets
prior to, during and after processing by the services processor 110. Finally, the services
processor 110 is also coupled to the route expand module 112 that in turn is coupled to the

route memory 114 and the associated data memory 116. The route expand module 112 is

4

WO 03/067798 PCT/US03/03291

used to access large tables used by the services processor 110. For example, tables such as
large label tables, route tables, and flow ID tables are stored in the route memory 114 and
the associated data memory 116, and can be retrieved into a cache of the services processor
110 by the route expand module 112. One embodiment of this is described in patent
application 60/402,359, filed August 8, 2002, titled, “Tree Data Structure With Range-
Specifying Keys and Associated Methods and Apparatuses,” which is incorporated by
reference.

[0021] Referring now to Figure 2, one embodiment for the services processor 110 is
shown in more detail. Specifically, Figure 2 shows the components of the services
processor 110 and their coupling to the route expand module 112, and the main memory
104/108. In one embodiment, the services processor 110 is manufactured as a single
integrated circuit with the route expand module 112, and a main memory 104/108 being
separate integrated circuit chips. In the embodiment shown, the services processor 110
preferably comprises a packet processing controller 200, a packet input unit 210, a field
extraction unit 212, a state access unit 214, an editing unit 216, a queue operations unit 218,
an output scheduler 220, a packet output unit 222, a cache and memory controller 230, and a
search processor 240. The packet processing controller 200 is coupled by a control bus 250
to the packet input unit 210, the field extraction unit 212, the state access unit 214, and the
editing unit 216. The cache and memory controller 230 is coupled to the packet input unit
210, the field extraction unit 212, the state access unit 214, the editing unit 216, the queue
operations unit 218, the output scheduler 220, the packet output unit 222 by a cache bus
260.

[0022] The packet processing controller 200 controls the operation of the services
processor 110 in its processing and filtering of packets. The packet processing controller
200 is a control engine that controls the packet input unit 210, the field extraction unit 212,
the state access unit 214, and the editing unit 216 as will be described in more detail below.
The packét processing controller 200 preferably uses a table driven approach to control how
packets are processed. The packet processing controller 200 preferably includes a table
entry processor 202, one or more packet contexts 204 for each packet being processed, a low
level hierarchy 206 and a control storage area 208. The low level hierarchy 206 and the
control storage area 208 are part of the working memory of the packet processing controller

200 and provide additional areas for storing data need to process a packet.

WO 03/067798 PCT/US03/03291

[0023] The table entry processor 202 is part of the packet processing controller 200.

The table entry processor 202 receives table entries retrieved by the packet processing
controller 200, decodes the table entries, and sends commands based on the table entries to
the packet processing controller 200. In response to commands by the table entry processor
202, the packet processing controller 200 issues control signals on the control bus 250 to the
packet input unit 210, the field extraction unit 212, the state access unit 214, the editing unit
216, and/or issues instructions to the search processor 240. Also in response to commands
by the table entry processor 202, the packet processing controller 200 stores information in
the packet context 204 and retrieves information from the packet context 204. Execution of
the table driven program by the table entry processor 202 makes the packet processing
controller 200 effectively a table driven machine capable of processing multiple types of
tables including look up tables having comparison data for searching, action tables
specifying parsing and action instructions, and state tables for storing any state data that has
a lifetime greater than the time required to process a single packet.

[0024] A separate packet context 204 is used by the packet processing controller 200 for
each packet as that packet traverses through the packet input unit 210, the field extraction
unit 212, the state access unit 214, and the editing unit 216. The packet context 204 is a
register set that keeps track of information associated with a packet while that packet is
being processed. The packet context 204 includes several different kinds of registers. The
packet context 204 preferably includes registers that determine which tables are currently
controlling packet processing (analogous to a program counter in a CPU), and where in a
packet the various protocols start (Encapsulation Pointers). For example, the packet context
204 includes registers with the following functions: a next instruction register that points to
the next instruction to be processed for this packet context, multiple instruction registesr are
used to create an instruction stack to support action and lookup tables analogous to
subroutines in a CPU; a table handle register that points to the next lookup table to be
processed in this packet context; a search result register that contains the result of the last
search issued; a packet handle register that points to the packet associated with this packet
context; one or more encapsulation pointer registers that acts as index registers for access to
data in the packet pointed to by the packet handle register; one or more edit registers used by
a packet editor to assemble complex edits that are applied to the packet; one or more key
registers used to assemble multi-field search keys; one or more State Record Handle

Registers used to access state data and a packet/context template handle used to access a

WO 03/067798 PCT/US03/03291

block of packet buffer memory to load multiple registers in the packet context, as the source
for a create packet operation, and as the source for a add encapsulation operation.

[0025] The packet processing controller 200 is also coupled to search processor 240 to
send search requests and receive search responses. The search processor 240 is coupled to
and interfaces with the route expand module 112 to retrieve data stored in the memories
114, 116 associated with the route expand module 112. In one embodiment, the search
processor 240 includes resources for performing searches such as a Boundary Addressable
Memory (BAM). The search processor 240 can search for the next table program entry to
be processed by the table entry processor 202, a result from a lookup table stored in memory
as directed by the table entry processor 202, or other information. One embodiment of this
BAM is described in patent application 10/005,986, filed November 7, 2001, titled,
“Boundary Addressable Memory,” which is incorporated by reference.

[0026] One particular advantage of the present invention is the inclusion of fhe cache
and memory controller 230 in the services processor 110. The cache and memory controller
230 is coupled to main memory 104/108 and the cache bus 260. The cache and memory
controller 230 is preferably large enough so that many applications can execute exclusively
out of cache 230. The cache and memory controller 230 effectively hides the latency of
memory access to the services processor 110. The cache and memory controller 230 are
designed to optimize data across the memory bus and will return data out of order from
memory if necessary. The cache and memory controller 230 may also be locked to enhance
performance such as to ensure that cache includes all data structure components or locking
the top of the hierarchy in cache to accelerate insertions. It should be understood that both
the packet data as well as other state and control information may be stored in the cache
230. If lookup tables or action table program entries are stored in cache 230 or main
memory 108, a memory access unit (not shown) adapted for the type of information being
retrieved will be included in the services processor 110. The packet processing controller
200 will then use the memory access unit, such as a lookup table access unit or action table
access unit to retrieve results from the lookup table or retrieve action entries.

[0027] The packet input unit 210 processes the packets as the services processor 110
first receives them. The packet input unit 210 is coupled to signal line 120 to receive
packets from the Ethernet switch 106. The packet input unit 210 is also coupled to the
cache and memory controller 230 by the cache bus 260 for storing the packets in the cache

and memory controller 230. The packet input unit 210 stores the packet data into one or

WO 03/067798 PCT/US03/03291

more free blocks in the cache 230. The packet input unit 210 is also coupled to the packet
processing controller 200 by the control bus 250. The packet input unit 210 notifies the
packet processing controller 200 that a new packet is being received. As soon as the first
block has been filled or an end of packet is detected, the packet processing controller 200
assigns the packet a packet context 204 and initial table handle, and the other registers in the
packet context 204 are cleared. The packet context is released for further processing by the
packet processing controller 200.

[0028] Once a packet is released for further processing, packet processing controller 200
performs actions in a table specified by the initial table handle. These will typically be
packet parsing operations such as extracting a field from the packet and putting the field into
one or more key registers to construct a key.

[0029] The field extraction unit 212 is coupled to the cache and memory controller 230
by the cache bus 260 for reading data out of cache 230 and memory 104/108. The field
extraction unit 212 is also coupled to the packet processing controller 200. The field
extraction unit 212 is responsive to extract requests from the packet processing controller
200 and sends extract responses for further processing by the packet processing controller
200. The function of the field extraction unit 212 is to retrieve packet data from the cache,
extract the portions of packets referenced or addressed by extract requests, and return the
extracted data to the packet processing controller 200. If the packet processing controller
200 requests packet data from a portion of the packet that has not yet been stored in cache
the processing of the requesting packet context will be suspended until the data is received.
[0030] The state access unit 214 processes state load and store requests from the packet
processing controller 200. The state access unit 214 is coupled to the cache and memory
controller 230 by the cache bus 260 for reading and writing data into and out of cache 230.
The state access unit 214 is also coupled to the packet processing controller 200 to receive
state change commands. More particularly, each packet context 204 preferably has a
plurality of state registers and the packet processing controller 200 may maintain state
tables. The data in the state tables is modifiable as is the data in the state registers. The
state access unit 214 increases the processing throughput by retrieving the state information,
updating and maintaining state data table information in response to instructions from the
packet processing controller 200.

[0031] One particular advantage of the services processor 110 of the present invention is

the ability to edit packets before they are output. The editing unit 216 is responsible for

WO 03/067798 PCT/US03/03291

packet editing performed by the services processor 110. The editing unit 216 is coupled to
the packet processing controller 200 and responsive to edit instructions received from the
packet processing controller 200. The editing unit 216 is also coupled to the cache 230 to
read and write data including packet data. For example, the editing unit 216 performs a
variety of packet modification functions such as: inserting data in a packet, deleting data
from a packet, overwriting data in a packet, adding or subtracting a constant, another piece
of packet data or register value from data in a packet, recalculating checksums in a packet,
performing hashing operations on fields in a packet, packet creation, packet replication,
packet segmentation, and packet re-assembly. More specifically, exemplary packet
modification operations that occur as part of the output process include: 1) Drop Packet —
The drop packet instruction recycles the buffers used for the packet; 2) Output Packet — The
output packet instruction causes the edit process to apply all accumulated edits and send it to
the queue specified by the queue handle in the output instructions user data component; 3)
Sync Edits — The sync edits instruction causes the edit process to apply all accumulated edits
and sends it to the head of the input overflow queue; 4) Copy and edit — The copy and edit
instruction creates a copy of the packet and sends it to the head of the input overflow queue,
and cause the edit process to apply all accumulated edits and send it to the queue specified
by the queue handle in the output instructions user data component; 5) Edit and copy — The
edit and copy instruction causes the edit process to apply all accumulated edits and sends it
to the queue specified by the queue handle in the output instructions user data component
and creates a copy of the packet and send it to the head of the input overflow queue; and 6)
Copy and Output — The copy and output instruction creates a copy of the packet, causes the
edit process to apply all accumulated edits and sends it to the queue specified by the queue
handle in the output instructions user data component. Once all packet editing has been
performed on a particular packet, a queue instruction output by the editing unit 216 to the
queue operations unit 218.

[0032] The queue operations unit 218 handles the ordering of packets before they are
output. The services processor 210 groups or orders the packets into queues for output. The
queues are preferably maintained in cache 230 and include a queue control block and link
lists of packets. The queue operations unit 218 is coupled to receive queue instructions once
the editing unit 216 has processed the packets. The queue operations unit 218 also has the
capability to re-order packet for outputting. This helps ensure that the packets are output in

the order received. The queue operations unit 218 is coupled to the cache 230 to prepare the

WO 03/067798 PCT/US03/03291

data for output and maintain the queues in the cache 230. The operations unit 218 also
manages the length of each queue to shape traffic responsive to queue instructions.

[0033] Sometime after the packets have been added to a queue by the queue operations
unit 218, the output scheduler 220 removes them and sends them to packet output unit 222.
The output scheduler 220 is coupled to read and write data from the cache 230. The output
scheduler 220 preferably uses a hybrid list/calendar queue to determine the priority for
outputting the packets. Transmit shaping is accomplished by associating a group of queues
with a scheduler. When a queue is associated to a scheduler its scheduling parameters are
initialized. The output scheduler 220 supports multiple scheduling algorithms including: a
prioritized scheduler where the scheduler serves the queues in strict priority order; a
weighted fair scheduler where scheduler serves the queues in proportion to their weight; a
dual token bucket scheduler; a rate limited scheduler; or a Earliest Deadline First (EDF)
scheduler. Once scheduled, the packet output unit 222 retrieves the packets from cache and
outputs then from the services processor 110. The packet output unit 222 is coupled to the
cache 230 by the cache bus 260 and has its output coupled by signal line 122 to the Ethernet
switch 106.

Packet Context

[0034] Figure 3 is a block diagram that illustrates a packet 301 and the packet context
204 associated with that particular packet 301. When the packet 301 is first received the
services processor 110, it is received by the packet input unit 210, which stores packet data
into one or more free blocks in the cache 230. Control is then passed to the packet
processing controller 200. To aid in processing, the packet processing controller 200 then
initiates assignment of a packet context 204 to each received packet 301. In one
embodiment, the packet context 204 is assigned to each packet 301 as soon has the packet
fills the first block in cache 230 or the end of the packet 301 is detected. Each packet
context 204 contains several different sets of registers for storing data related to the packet
301.

[0035] In these different sets of registers, the packet context 204 stores information
related to a packet 301 and information used in processing of that packet 301 while that
particular packet 301 is being processed. The packet context 204 is similar to a thread
control in a processor in that the packet context 204 keeps track of the packet 301, what is
being done to the packet 301, and what will be done to the packet 301. There is a separate
packet context 204 for each packet 301 being processed by the services processor 110. In

10

WO 03/067798 PCT/US03/03291

one embodiment, there are 256 packet contexts 204 in the services processor 110. This
provides the services processor 110 with enough sets of packet context 204 registers to keep
track of every packet 301 being processed. Other embodiments may have more or less
packet contexts 204. When processing for a particular packet 301 is finished, the packet
context 204 can be cleared and used for a new incoming packet 301. When a packet is
received and there is no available packet context to assign to the packet, the packet will be
placed in an input overflow queue. Packets in the input overflow queue can have higher,
equal or lower priority than new input packets for packet context assignment.

[0036] What follows is a description of the information stored in a packet context 204
for each packet 301 in one embodiment of the present invention. In other embodiments,
more, less, or different information can be stored in a packet context 204.

[0037] The packet context 204 includes information about the packet 301 itself. A
packet handle register 402 stores a pointer to the location in memory of the packet 301 to
which this packet context 204 relates. A packet size register 404 stores the size of the
packet 301 to which this packet context 204 relates. In the case where packet processing
starts as soon as the first cache block is full, the size of the packet may not be known when
processing starts. In this case logic in the packet processing controller 200 and associated
with the packet size register will detect references to the packet size before it becomes valid.
If such an access occurs the processing of the packet will be suspended until the size is
known.

[0038] A table handle register 406 stores a pointer to a lookup table that will be used
next during packet processing. A search results register 408 stores the information returned
from the last use of a lookup table.

[0039] A packet/template handle register 410 stores a pointer to another packet or to a
template in memory. The packet/template handle register 410 will store a pointer to another
packet in memory when, for example, an action that involves two packets is to be
performed. One such example is when a concatenation of the packet 301 to which the
packet context relates with another packet is performed. In one such an example, the packet
handle register 402 stores a pointer that points to a first packet with a first header and a first
payload. The packet/template handle register stores a pointer that points to a second packet
with a second header and a second payload. The next instruction address register 422 stores
a pointer to an action that, when processed by the table entry processor 202, causes the

payload of the second packet to be added on to the payload of the first packet, resulting in

11

WO 03/067798 PCT/US03/03291

the packet having the header and a payload that includes both the first and second payloads.
This capability can be used in conjunction with other editing operations to perform complex
packet editing operations such as IP re-assembly. The packet/template register 410 can also
store a pointer to a template stored in memory. This is useful, for example, when the packet
301 is of a known type. All the information common to that type of packet can then be
retrieved from the template rather than from the packet 301 itself. This can improve
efficiency in gathering information about a packet 301.

[0040] Encapsulation pointer registers 412 store encapsulation pointers that point to
locations within the packet 301. Encapsulation pointer registers 412 are used to create
encapsulation relative addresses within the packet 301. The first encapsulation pointer
register 412, encapsulation pointer register 0, has a value of 0 and points to the beginning of
the packet 301. The other encapsulation pointer registers 412 point to other arbitrarily
defined locations within the packet. In the illustrated embodiment, there are five
encapsulation pointer registers 412, although in other embodiments there may be more or
fewer of these registers.

[0041] The encapsulation pointers are used for simplified packet data accesses. In one
embodiment, encapsulation pointer registers 412 are 16 bits, which allowable access to 64
kB packets. Typically, the different encapsulation pointer registers 412 point to the start of
various protocols found within a packet. For example, if the packet 301 is in Ethernet
packet, encapsulation pointer register O points to the start of the Ethernet header.
Encapsulation pointer register 1 could point to the start of an MPLS label stack,
encapsulation pointer register 2 to the start of an IP header, and encapsulation pointer
register 3 to the start of a TCP header. These encapsulation pointer registers 412 make it
easy to create relative addresses, for example eight bits into the TCP header, and simplifies
programming.

[0042] Figure 4 is a block diagram that illustrates an examplary packet 301 and the
location within the packet 301 to which the encapsulation pointers point. Encapsulation
pointer 0 502 points to the beginning of the packet 301. Encapsulation pointer 1 504 points
to the beginning of the IP header, encapsulation pointer 2 506 points to the beginning of the
TCP header, and encapsulation pointer 3 508 points to the beginning of the packet payload.
The programming environment or Application Programming Interface (API) for the packet
processing controller 200 allows a symbolic name to be associated with each encapsulation

pointer. For example, in Figure 4, a programmer may use the symbolic name "packet" to

12

WO 03/067798 PCT/US03/03291

indicate encapsulation pointer 0 502, which points to the beginning of the packet 301.
Similarly, a programmer may use the symbolic name "IP" to indicate encapsulation pointer
1 504, which points to the beginning of the IP header. Thus, a programmer need not know
the location within the packet 301 of different fields, instead simply using the symbolic
names. The symbolic names allow relative addressing as well. The programmer may
specify a location relative to a symbolic name, such as the second byte of the IP header.
[0043] Figure 5 is a block diagram that illustrates the packet after editing 512, and the
locations within the edited packet 512 to which the encapsulation pointers 502-508 point.
In Figure 5 the editing operation added an MPLS field to the packet 301. After editing,
encapsulation pointer 0 502 still points to the beginning of the packet 512, but the other
encapsulation pointers 504-508 no longer point to the same locations in the packet.
Encapsulation pointer 1 504 points to the beginning of the MPLS field, encapsulation
pointer 2 506 points to the beginning of the IP header, encapsulation pointer 3 508 points to
the beginning of the TCP header, and a new encapsulation pointer 4 510 points to the
beginning of the payload. However, the API for the packet processing controller 200
modifies the symbolic names so that after the edit operation, the symbolic names still relate
to the same fields in the packet 512. Thus, the symbolic name "packet" still indicates
encapsulation pointer 0 502. However, the symbolic name "IP" indicates encapsulation
pointer 2 506, rather than encapsulation pointer 1 504. When a new field is added, and the
encapsulation pointers change, the symbolic names are changed as well so that each
symbolic name still points to the same header or field within the edited packet 512 as it did
before the edit. This simplifies the programming since programs can manipulate protocol
data such as the Checksum field in the IP header.

[0044] Returning back to figure 3, the packet context 204 also includes a set of edit
registers 414. When an action table indicates that an edit operation should be performed on
the packet 301, that edit operation to be performed is stored in one of the edit registers 414.
When control is passed to the editing unit 216, all of the edits stored in the edit registers 414
are performed on the packet 301. The edits are stored in the edit registers 414 based on
where in the packet the edits will be applied. For example, edit register O contains the edit
to be applied to the information in the packet 301 that is stored closest to the beginning of
the packet 301. Edit register 1 contains the edit to be applied next closest to the beginning
of the packet 301, and an edit stored in edit register 7 is applied nearest to the end of the
packet 301.

13

WO 03/067798 PCT/US03/03291

[0045] Figure 6 is a block diagram that illustrates the information stored in the edit
register 414 in one embodiment of the present invention. The first field 602 is a packet
absolute address of the first byte that will be modified by the edit. This determines in which
edit register 414 this edit will be stored. The second field 604 is a bit offset that specifies
the offset of the first bit within the specified byte to be modified. The third field 606 is the
number of bits that will be modified by the edit. The fourth field 608 is a code that specifies
which editing operation will be performed. Examples of possible editing operations
include: an insert operation, an override operation, a delete operation, and a checksum
operation. The fifth field 610 stores data used in the edit operation. For example, if the edit
operation is to insert data, the fifth field 610 stores the data to be inserted into the packet.
Information from the second through fifth fields 604-610 is stored in the appropriate edit
register 414.

[0046] Returning again to figure 3, the packet context 204 also includes a set of key
registers 416. The key registers 416 store data used as keys. For example, one use of these
keys is when a lookup operation is performed with a lookup table. The keys can be used in
other ways as well. In one embodiment, each key register 416 includes a length field that
specifies the number of bits the key register 416 contains, and a key field that contains the
key itself. In the illustrated embodiment, there are four key registers 416, although other
numbers of key registers 416 can also be used in different embodiments. Parsing actions
can store multiple fields in a single key register 416 to allow multiple field lookups.
Examples of these multiple ﬁeid lookups include the Cisco n-tuple, Destination
Address/Diff Serve Code Point (DA/DSCP), and the IP fragment (IP SA/Packet ID) table
lookups.

[0047] The packet context 204 also includes a set of registers used as an instruction
stack, known as next instruction registers 418. The first register of the next instruction
registers 418 is known as the next instruction address register 422. This next instruction
address register 422 stores the location of the next instruction to be executed by the packet
processing controller 200 and effectively serves as a program counter. The rest of the
registers of the next instruction registers 418 make up a next instruction stack. Providing a
stack of next instruction registers allows implementation of subtables, similar to
subroutines. When a first table (a primary table) calls another table (a subtable), the next
instruction address register 422 identifies the next instruction in the subtable, and the next

instruction stack identifies the next instruction in the primary table. This allows a process to

14

WO 03/067798 PCT/US03/03291

return to the correct point in the primary table once execution of the instructions in a sub
table have been completed.

[0048] Finally, the packet context 204 includes a set of state record handle registers 420.
State records contain data that the services processor 110 stores for longer than the duration
of the processing of one packet within the services processor 110. For example, state
records can store information about a TCP session. A TCP session will span many packets,
and be related to all the packets that make up that session. If a packet to which the packet
context 204 relates is part of a TCP session, it 1s typically desirable to update a TCP state
record with information about that packet. The state record handle registers 420 provide a
link to the state records related to that packet so that information may be retrieved from the
state record, or the state record may be modified as required. In one embodiment, the state
record handle registers 420 can be loaded from the data extracted from the packet 301 in a
parsing operation, from the return value of a lookup operation, or from other operations.

Table Driven Packet Processing and Tables

[0049] In one embodiment of the present invention, there are two primary types of
tables used by the services processor 110 to process a packet: lookup tables and action
tables. A third table type, a state table, may also be used or modified during packet
processing. Figure 7 is a block diagram that illustrates an exemplary table based program,
the action tables, lookup tables, and state tables used by the program, and how these table
types are used by the packet processing controller 200 in the services processor 110 to
process a packet 301 according to the table based program. The example of Figure 7 is a
simple descriptive overview of one example of how a packet 301 can be processed. The
present invention allows a programmer to specify how a particular packet 301 is processed
by specifying the tables used in a table based program and/or creating tables. Thus, actual
processing performed on the given packet 301 may be different in substance and/or
complexity from the example described.

[0050] The packets 301 are processed using a table based processing scheme. After
assignment of the packet context 204, the packet 301 is assigned an initial action table 702
by the services processor packet processing controller 200. This is done by storing the
location of the first instruction in the initial action table 702 in the next instruction address
register 422 in the packet context 204. In one embodiment, the other registers in the packet
context 204 are cleared at this time. The location of the first instruction in the initial action

table 702 may be determined by the port through which the packet 301 arrived, for example,

15

WO 03/067798 PCT/US03/03291

so that a packet arriving from a set port will have a set initial action. Other schemes for
determining the location of the first instruction in the initial action table 702 may also be
used. The initial action table 702, as well as other action tables, are tables that contains
linked lists of one or more actions to be taken to process the packet 301. Actions identified
by the action tables can include packet parsing operations, edits that specify editing
operations to be done to the packet 301, search operations, and other operations.

[0051] Figure 8 is a block diagram that illustrates an example action entry 800 of an
action table according to one embodiment of the present invention. One or more of these
action entries 800 linked together make up each action table. The action 800 includes a
program control field 802, a next instruction address field 804, a table handle field 806, a
type field 808, a control word field 810, and a user data field 812. The program control
field 802 may indicate that the process should continue, that a call should be made to
another process or action table, or that this current action table is complete and the process
should return to a higher level table. The next instruction address field 804 contains the
address in memory for the next instruction in this action table to be executed. The table
entry processor 202 decodes the next instruction address field 804 and sends a command to
the packet processing controller 200 to store the next instruction address field 804 in the
next instruction address register 422 of the packet context 204. The next instruction address
field 804 and allows action tables to be stored as logical tables, with each action pointing to
the location in memory of the next action.

[0052] The table handle field 806 allows the use of subtables. If an address of an action
table or a lookup table is in the table handle field 806, and the program control field 802 is a
call to another table, the table referenced in the table handle field 806 will be used as a
subtable. If the sub table is a lookup table, information from the table handle field 806 will
be stored in the table handle register 406 of the packet context 204. If the subtable is an
action table, information from the table handle field 806 will be stored in the next
instruction address register 422 of the packet context 204. When the information from the
table handle field 806 is stored in the next instruction address register 422, the next
instruction address from the next instruction address field 804 is "pushed" to the next
instruction register in the next instruction stack 418 of the packet context 204. This allows
the packet context 204 to keep track of the next instruction to be performed in the table
while any actions or operations specified in the subtables are performed. When a sequence

of instructions in the called subtable ends with a return action, the return will "pop" the

16

WO 03/067798 PCT/US03/03291

instruction address stack 418 so that the information in next instruction stack 0 gets moved
to the next instruction address register 422. This allows the packet processing controller
200 to return to the correct spot within the first table from which the subtable was called.
Since there are multiple next instruction stack registers, subtables may also call further
subtables.

[0053] The type field 808 indicates what type of action is to be taken. Examples of
types include a parsing operation, a modification operation, and a search operation that uses
one or more of the keys stored in the key registers 416 of the packet context 204. The
control word field 810 contains the control Word that tells the packet processing controller
200 which operation to execute. The format of the control word in the control word field
810 will depend on what type of action is to be taken. Finally, a user data field 812 contains
programmer-specified information related to the action that can be used by the packet
processing controller 200, the editing unit 216, or other components during processing of
the packet. For example, if the action is to add a tag to a packet, the user data may contain
the information that makes up the tag and is added to the packet when the tag is added. The
user data field 812 may also specify information to be loaded into a state record handle
register 420.

[0054] Returning to Figure 7, the packet processing controller 200 retrieves the first
action to be performed from the location specified in the next instruction address register
422 and sends it to the table entry processor 202. Next, the table entry processor 202
decodes the initial action and sends instructions to the packet processing controller 200 to
perform the initial action specified by the initial action table 702. In the example shown in
figure 7, the initial action is a packet parsing operation that extracts a field from the packet
301 and constructs a key from the extracted field, although other initial actions could also be
specified by the initial action table 702. To extract the field from the packet, the table entry
processor 202 send a command to the packet processing controller 200, which in response
requests that the field extraction unit 212 extract a field from the packet 301 and send that
field to the packet processing controller 200. Next, the table entry processor 202 constructs
a key from the extracted packet field. This key is passed to the packet processing controller
200, which stores the key in the packet context 204. Note that, while the description and
illustration only uses one entry in the initial action table 702 to extract the field and
construct a key, in some embodiments, it may take multiple actions in the initial action table

702 to perform the field extraction and key construction operations.

17

WO 03/067798 PCT/US03/03291

[0055] Figure 9 is a block diagram that illustrates the information in the control word
field 810 of a parsing action entry according to one embodiment of the present invention.
The parsing action extracts information from the packet 301 and constructs a key using this
information. The field specification 902 of the parsing instruction includes a specification
of a source for input data, which is typically a location in the packet, and the bit length of
the information to be extracted. The key register operations 904-910 specify what
operations are to be performed on the various key registers 416 of the packet context 204.
In one embodiment, the operations that can be performed on the key registers are a “non op”
that does nothing to the key registers 416, a load key register operation that places input
dates in the key registers 416, a shift and load key register operation that shifts the contents
of the key registers 416 and places additional bits to the location within the key register 416
from which the previous information was shifted, and a hash key register operation that uses
a hash function on the information already in the key register 416 as well as the new input
information to come up with a new key.

[0056] Returning to Figure 7, the next operation in the initial action table 702 is a
lookup operation. In a lookup operation, the table entry processor 202 uses a key from the
key registers 416 in conjunction with the search processor 240 or memory access unit to
search the lookup table 704 specified by the lookup operation action and return information.
Lookup tables have entries that store comparand and search result data. A lookup table 704
includes a match type/default rule that defines the match operation performed by the table
and a search result for a no match condition, and can also include one or more classification
or match rules rules. The lookup table 704 may be searched by the search processor 240
under command from the table entry processor 202, or may be searched by a memory access
unit (not shown) under command from the table entry processor 202 if the lookup table is
stored in cache 230 or main memory 108. Typically, the information returned from the
lookup table is a value and a pointer. The value could be an argument to be used in an
action, information used to edit the packet, or other information. The pointer typically
points to the next action to be performed.

[0057] In the embodiment illustrated in Figure 7, the information returned from the
lookup table 704 includes an identification of an action subtable that is to be called next by
the initial action table 702. In this example, the lookup operation is used to determine
which of two different action subtables 706 and 708 are to be called by the initial action

table 702. Thus, the information extracted from the packet was used to construct a key used

18

WO 03/067798 PCT/US03/03291

with a lookup table 704 to determine which action subtable 706, 708 is called. Different sub
action tables 706, 708 will be called depending on the information within the packet.

[0058] When an action subtable 706, 708 is called, the table entry processor 202 causes
a pointer to the first action in the sub action table 706, 708 to be stored in the next
instruction address register 422 of the packet context 204, and “pushes” the pointer to the
next action in the initial action table 702 up into the next instruction stack 418 of the packet
context 204. Then, the actions in the called sub action table 706, 708 are executed by the
table entry processor 202. The last action in each sub action table 706, 708 is a return to the
initial action table 702. The act of returning from the sub action table 706, 708 causes the
pointer from the next instruction stack 418 in the packet context to be "popped" into the
next instruction address register 422 by the table entry processor 202. This allows the next
action in the initial action table 702 to be executed in its correct order.

[0059] As described above, the different values returned from the lookup table 704
allow a branching function, so that any one of multiple sub action tables 706, 708 may be
called. Further, since a sub action table is called, the actions in the sub action table are
executed, and then the process returns to the initial action table, the sub action tables act as
subroutines. While each illustrated sub action table 706, 708 simply specifies multiple
actions to be executed linearly and then return to the initial action table 702, more complex
arrangements can also be used. For example, a sub action table 706, 708 can specify lookup
operations, make a call to another sub action table, or perform other operations.

[0060] The next action in the initial action table 702 is another lookup operation using a
second lookup table 710. The key used in this lookup operation may have been generated
by one of the actions in one of the sub action tables, may have been generated by another
parsing action and extracting more information from the packet 301, or through another
operation. This key is used with the second lookup table 710 to return information
identifying a next action table to be used after the initial action table 702. Thus, this lookup
operation action acts as another branch operation.

[0061] In the example illustrated in Figure 7, there are two possible next action tables
712, 714 that can be called. The actions identified in whatever next action table 712, 714
was called are executed in order. For example, the actions in the action tables 712, 714 may
specify multiple edits to be performed on the packet 301. In this case, the table entry
processor 202 decodes the edits to be performed, and sends a command to the packet

processing controller 200 to store the edits to be performed in the edit registers 414 of the

19

WO 03/067798 PCT/US03/03291

packet context 204 for that packet 301. In the illustrated embodiment, neither next action
table 712, 714 has a branch, and the final action in both of the next action tables 712, 714
include a pointer the same third next action table 716.

[0062] Since both of the next action tables 712, 714 end with a pointer to the third next
action table 716, the possible branches that occurred with tables 712 and 714 have rejoined,
so that no matter which of the first set of next action tables 712, 714 was executed, the same
third next action table 716 is executed next. Such divergence and convergence of process
flow is possible throughout the process, depending on how the tables have been
programmed by the programmer. In some cases, divergence may occur without
convergence, for example, or other process flows may be programmed.

[0063] The third next action table 716 includes a lookup operation. In this described
example, a packet parsing operation is first performed and the destination address of the
packet 301 is used as a key. The value returned from the lookup table 718 is the port in the
switch from which the packet 301 will be sent after processing. After the lookup operation,
the third next action table 716 specifies an “update state” action. This action updates the
information stored in a state table 720. State tables store information that is useful for more
than the lifetime of one packet. In this case, the state table 720 stores information about the
ports of the switch 106. One or more of the information fields in the state table 720 stores
the number of packets that have been sent from each output port. When a packet 301 is to
be sent out through particular output port, the state table 720 is updated to reflect that
another packet has been sent from that port. Other types of state tables that may be useful
and updated during packet processing include TCP session state tables that store
information about a TCP session of which the packet being processed is a part. The records
in a state table may be arbitrarily defined by a programmer.

[0064] The packet processing is then terminated by a “send to edit” action that passes
processing control to the editing unit 216 to apply the editing operations specified by
previous actions and stored in the edit registers 414 of the packet context 204. The editing
unit 216 then sends the edited packet 301 to the queue operations unit 218 to be queued for
output. A programmer can also specify other actions to terminate packet processing. For
example, the process can be terminated by an action that drops the packet, an action that
passes control to the editing unit 216 to apply the specified editing operations and then
returns control to the packet processing controller 200 for further actions to be done on the

packet 301, or another action that terminates the process.

20

WO 03/067798 PCT/US03/03291

State Record Processing

[0065] In one embodiment, state records are 32 bytes long, and a state table can have
one or more state records. Objects within a state record may be 64, 32, 16, or 8 bits long.
32- and 64- bit objects are aligned with 32 bit boundaries within the state record, 16 bit
objects are aligned on 16 bit boundaries, and 8 bit objects are placed anywhere in a state
record. The programmer is responsible for controlling the alignment and packing of the
state objects within the state records. The state records support signed and unsigned
integers, and statistics. In other embodiments, state records can have other lengths with
different sized objects. The objects may be placed differently within the state records, and
support for different types of information may be included.

[0066] In another embodiment, the size of the state record is chosen to fit in a single
cache line in the main memory 104/108 system of the services processor 200. Frequently
accessed state records containing data such as port statistics will have a high probability of
being in cache 230. Additionally, the striping of the buffer data structure across RLDRAM
banks, out of order access capability, and caching will interact such that when many cache
misses occur the bank accesses to the RLDRAM will occur in an order that eliminates the
same bank access penalty at the cost of an increase in access latency. The cache miss will
result in a stall of the packet context. The large number of packet contexts will avoid
significant performance impact due to the cache miss stalls.

[0067] The state access unit 214 is also known as a state processing unit 214 and
functions to add, remove, or modify information in state records in the state tables. The
operations that the state access unit 214 performs include increment, decrement, add,
subtract, and hash. Other operations may be supported in other embodiments. When an
operation results in an overflow, two types of overflow may occur. If the state record is a
statistic, a "sticky" overflow occurs, where any operation that results in an overflow
produces and all ones results. For a normal arithmetic overflow that occurs with integers, a
wraparound overflow occurs. Other types of overflow may also be supported in other
embodiments.

[0068] Typically, an action entry 800 is what prompts a modification to a state record.
State record handles that point to the state objects of a state record to be modified are loaded
into and stored in the state record handle registers 420 of the packet context 204. The state
record handles may be loaded from the user data field 812 in an action entry 800, from

information extracted from the packet 301, from the value returned as a result of a lookup

21

WO 03/067798 PCT/US03/03291

operation using a lookup table, or from other sources. The same or a different action entry
800 then causes the table entry processor to cause the packet processing controller 200 to
send a command to the state access unit 214 to modify a state record. The fields 802-812 of
the action entry 800 also provide the information that specifies how the state record will be
modified.

[0069] Figure 10 is a block diagram that illustrates the state access unit 214 in more
detail according to one embodiment of the present invention. One embodiment of the
services processor 110 includes a state processing unit 214 that can make four changes to a
state record 1002 at once, the changes being made to the objects within the state record
identified by the information stored in the four state record handle registers 420. Other
embodiments may include more or less than four state record handle registers 420, along
with a state access unit 214 capable of making more or less than four state record changes at
once.

[0070] The state access unit 214 includes four sets of input rﬁultiplexers 1004. Each set
of input multiplexers 1004 contains one or more input multiplexors 1004. The state record
1002 is one input to the input mulitplexors 1004, and information 1010 from an action entry
800 provides other input to the input multiplexors 1004. A state record format decoder
1018 puts the information 1010 in a form usable by the input multiplexors 1004, and sends
the correct data to the correct input multiplexor 1004. The input multiplexors 1004 perform
premodification functions (also known as preprocessing functions) on the state record 1002
to prepare the state record 1002 for modification. The premodified state records 1002 from
the input multiplexors 1004 are a first operand input to the arithmetic logic units 1006.
[0071] There are four arithmetic logic units 1006 that make the changes to the data
within the state record 1002. The output of the input multiplexors 1004 is one input to each
arithmetic logic unit 1006. There are four operand multiplexors 1008 in the state access unit
214. The output of each the operand multiplexors 1008 is the other operand input to the
arithmetic logic unit 1006.

[0072] There are several data sources 1020 that may be selected to be used as the second
operand input to the arithmetic logic unit 1006. Each of these data sources 1020 is input to
four operand multiplexors 1008 (one for each arithmetic logic unit 1006). The operand
multiplexors 1008 also receive a filter input 1012 that determines which one of the multiple
possible data sources 1020 will be used as the second operand input to the arithmetic logic

unit 1006. In the illustrated embodiment, the three operand data sources 1020 are the

22

WO 03/067798 PCT/US03/03291

information from one or more of the key registers 416 of the packet context 204, the
information from the packet size registers 404 of the packet context 204, and user data 812
from the action entry 800. In other embodiments, other information can also be used as an
operand data source 1020. Information from the control word 810 of the action entry 800 is
used as a filter input 1012. Thus, the action entry 800 that causes the modification of the
state record 1002 also includes information that determines what data source 1020 is used as
the second operand input to the arithmetic logic unit 1006.

[0073] The control word 810 of the action entry 800 also determines the state record
1002 modification operation performed by the arithmetic logic unit 1006. This operation
input 1022 is sent to the arithmetic logic unit 1006 in addition to the two operands. The
arithmetic logic unit 1006 then performs the operation that modifies the state record.

[0074] The output of the arithmetic logic unit 1006 as well as the input state record
1002 are input to four sets of output multiplexors 1014. Each set of output multiplexors
1014 can include one or more output multiplexors 1014, Information 1010 from the action
entry 800 that prompted the modification of the state record 1002 also provides other input
to the output multiplexors 1014. The state record format decoder 1018 also puts the
information 1010 in a form usable by the output multiplexors 1014. The output
multiplexors 1014 perform postmodification functions (also known as postprocessing
functions) to place the modified state record in proper form for output. The output from the
output multiplexors 1014 is combined and output as the modified state record 1016.

[0075] Figure 11 is a block diagram that provides more detail of one of the four paths
for modifying the state record 1002 of the state access unit 214, as well as more detail of the
input and output multiplexors 1004, 1014. The input and output multiplexors are also
known as input and output modules or units. The input multiplexors 1004 include a word
select multiplexer 1102, a rotate right multiplexer 1104, and a mask multiplexer 1106. The
state record 1002, which has eight words in one embodiment, is input to the word select
multiplexer 1102. Information 1010 from the action entry 800 includes information
indicating which word or words of the state record 1002 will be modified. The state record
format decoder 1018 decodes this information and sends the identity of the word or words to
be modified to the word select multiplexer 1102. The word select multiplexer 1102 then
outputs the indicated word or words from the state record 1002.

[0076] The word or words to be modified are received by the rotate right multiplexer

1104. Information 1010 from the action entry 800 also includes the byte offset that

23

WO 03/067798 PCT/US03/03291

indicates the location within the word or words that will be modified. The state record
format decoder 1018 decodes this information and sends the byte offset to the rotate right
multiplexer 1104. The rotate right multiplexer 1104 rotates the information within the word
or words to be modified so that the information is in the proper position to be modified by
the arithmetic logic unit 1006. The rotate right multiplexer 1104 then outputs the rotated
word or words.

[0077] The rotate word or words are received by the mask multiplexer 1106.
Information 1010 from the action entry 800 also includes the number of bytes that will be
modified. The state record format decoder 1018 decodes this information and sends the
number of bytes to be modified to the mask multiplexer 1106. The mask multiplexer 1106
creates a mask so that the correct bytes within the word or words will be modified by the
arithmetic logic unit 1006. The mask multiplexer 1106 also creates the inverse of this mask.
The mask multiplexer 1106 outputs the rotated word or words masked by the mask, and also
outputs the rotated words or words masked by the inverse of the mask.

[0078] The arithmetic logic unit 1006 receives the masked rotated word or words, a
second operand from the operand multiplexer 1008, and the identity of the operation to be
performed from the operation input 1022. The arithmetic logic unit 1006 then uses the
masked rotated word or words and the second operand to perform the identified operation to
modify the word or words. The modified word or words is output from the arithmetic logic
unit 1006.

[0079] The output multiplexors 1014 include a bitwise or operator 1108 and a rotate left
multiplexer 1110. The bitwise or operator 1108 receives the modified word or words from
the arithmetic logic unit 1006 and also receives the rotated word or words that have been
masked by the inverse of the mask. The bitwise or operator 1108 combines these two inputs
to result in a word or words that includes the changes made by the arithmetic logic unit 1006
as well as the other data in the word or words that remains unmodified. These word or
words are thus the modified but rotated word or words and are output from the bitwise or
operator 1108.

[0080] The rotate left multiplexer 1110 receives the modified rotated word or words.
The byte offset received by the rotate right multiplexer 1104 is also received by the rotate
left multiplexer 1110. The rotate left multiplexer 1110 uses the byte offset to rotate the
information within the word or words back to its original position. The result of this

operation is the modified word or words from the state record 1002. This is combined with

24

WO 03/067798 PCT/US03/03291

the results from the other rotate left multiplexors 1110 to form the modified state record

1016.

[0081] The foregoing description of the embodiments of the invention has been
presented for the purposes of illustration and description. It is not intended to be exhaustive
or to limit the invention to the precise forms disclosed. Persons skilled in the relevant art
can appreciate that many modifications and variations are possible in light of the above
teaching. Persons skilled in the art will recognize various equivalent combinations and
substitutions for various components shown in the figures. It is therefore intended that the
scope of the invention be limited not by this detailed description, but rather by the claims

appended hereto.

25

10

11

12

13

10

11

WO 03/067798 PCT/US03/03291

CLAIMS
I claim:

1. A system for modifying a state record related to processing of a packet,
comprising:

a plurality of modification paths, each modification path capable of making a
modification to a state object within the state record in parallel with the
other modification paths, and each of the plurality of modification paths
including:

one or more preprocessing modules for receiving the state record and preparing
the state object to be modified by that modification path for
modification;

a logic module for receiving the prepared state object from the one or more
preprocessing modules and modifying the state object; and

one or more postprocessing modules for receiving the modified state object and
preparing the state record for output.

2. The system of claim 1, wherein the one or more preprocessing modules include a
word select multiplexor for selecting a part of the piece of state information to be modified
by the logic module in that modification path.

3. A method for modifying a state record related to processing of a packet,
comprising:

selecting an object within the state record to be modified;

performing a first offsetting process the information within the object;

masking the object with a mask;

applying an inverse of the mask to a copy of the object;

modifying the masked object;

combining the modified object with the copy of the object to which an inverse mask
has been applied; and

performing a second offsetting process on the combined modified object to reverse
the first offsetting process.

4. A computer program product comprising a computer-readable medium

containing computer program code for modifying a multiple state objects within a state
record related to processing of a packet, the computer program code comprising instructions

for performing, on each of the multiple state objects in parallel, the steps of:

26

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 03/067798 PCT/US03/03291

receiving information indicating a state object within the state record to be modified,;

selecting, according to the received information indicating the state object within the
state record to be modified, the indicated state object to be modified;

receiving information indicating a byte offset for the state object to be modified;

performing, according to the received information indicating the byte offset for the
state object to be modified, a first offsetting process the information
within the state object;

receiving information indicating a size of a piece of information within the state
object to be modified;

masking the state object with a mask, according to the received information
indicating the size of the piece of information within the state object to be
modified;

applying an inverse of the mask to a copy of the state object;

receiving information indicating a modification to be performed on the state object;

modifying the masked state object, according to the received information indicating
the modification to be performed on the state object;

combining the modified state object with the copy of the state object to which the
inverse mask has been applied; and

performing a second offsetting process on the combined modified state object to
reverse the first offsetting process, according to the received information

indicating the byte offset for the state object to be modified.

27

PCT/US03/03291

WO 03/067798

1/9

AIOWAAN

ereq Arowsp
Pa1B1d0SS Y noy

L] b

oLl
VY 1939ed
S[OpPOIN
puedxq anoy
AN} 801
10859001
S9OIAIOG

[2In31q

[0TU0)) 10J 20BJIAU] JoNoBd o__HLF

<+“—>

ouqeg youms |« indysnorp

10 <«—> [e10], N1qE3ID
| qonmg 1ousoyyg [¢— 01 03 dn suog jo
p UOnEUIQUIOD Auy

<+—>

AToudN
jonuoy ¢ 1089001 [01U0D)
vol c0l

90!l

001

PCT/US03/03291

WO 03/067798

2/9

ayoed = §gz ‘snq |oAuUo) = 052

801
ATOWIN

ure

(s19yoed [onu0d Suipniour) InQ 193084

r

eeq A

=~

7 9In31g

{5
wea Py ¢CC MU _ Z11 (s201n0s31 YoIeas
mdinQ 1ey0ed diyd 330) AINPO puedxg N0y
5 | :
Sai;
vle
A raA \mv 1[Mpayds ndinQ Z
\V ({INV E) saoanosay 0ve
81z goreag diy) U0 10S$9001
A eje B\mv suonerad() ananQ) oresg
asuodsay Yoleas ._\ /_.
«suonpnusul,, fsanbay yoreog AV
0€C anan)
I3[jonuo) A
AIOWaN A el] A \Mv 917 nup) Sunipyg A suorofulsut,, 1pg 807 21018 . ONW.MQE
O 100100 ?Moq >.>oq
N 1414 Qs e S)XAIUO
vle {led eie(pue SIxajuo)
A g B\M—\ HU) SS3X0Y 3je1§ ® peql oIS 19308 ‘I3[npayog ‘suoneiadp
wpEd) ()07 IO[[0NU0)D)
— Z1z asuodsay 10 xm”_v wzﬁwmooo.ﬂm 19yoed
aiy uonoenxy pietd
: : A Jsenbpy foenx3 b0z 202
SIX2)U0D) I0SS2001J
A ereglum 012 > 19yoRg Anuy d[qeL
nupn) nduy 1oxoed 1X93u0))

/\

09¢

I

(s19yoed [01IU0D

Surpnpour) uj 193084

qL

oLl

PCT/US03/03291

WO 03/067798

3/9

0Jeisiboy Py || B ¢ aInbi

| Joysibay Jp3 0 Jo)sibay Aoy

¢ 19)s169y 1p3 9Ly | Ja)sibay Aoy

¢ Ja)sibay yp3 1y C 19)sibay Aay

i Jo)sibay yp3 ¢ Jo)sibay Aoy

G J8)siboy 1p3 o

g Jo)sibay 1p3 _

Ligjsiboyypg | | 0 ‘Bay ajpueH pioday Slelg
0 J9)sibay Jajuiod uoneinsdeouy B 02V — | “6oY alpueH piodsy djels
| J8)s1bay 18julod uone|nsdeouy ¢ ‘Boy 8jpueH piooay els
Z 1918163y Jajulod uoneinsdeouy —ClP | ¢ "Boy sipueH pi0day slels
¢ 1918169y J8julo4 uoneinsdeou] oLv_] 1e1siBoy eredwa | nexoey
 1a)sibay Jajuiod uoneinsdesuy

— vOb 92|13 J18)0ed
19)s160y]
¢l ssaippy uononisu| IXsN 20| o|pueH jaxoed
0 X0E}S uolonJisu IxaN S0P _A 9|pueH 9|qel
L %0B}S uonoNnsu| XeN —8ly
0% A S}insey yaieasg
Z Yoejs uononujsuj xaN —
— 70¢ IX8ju0) 19xoed
L0 18Xoed

PCT/US03/03291

WO 03/067798

4/9

G ainbi4
peojhed dOol dl STdIN EIETE
owm w%m oow v%m Now
215 —4 e
peojAed dol dl Jpussyg
mwm mo»m vwm Now

PCT/US03/03291

WO 03/067798

5/9

9 aJnbi4

ejeq ip3

apon-do

Hp3 jo °ZIS

19SHO 3d

yp3 jo HelS

ormv

Nwow

m@oo

N 09

N c09

PCT/US03/03291

WO 03/067798

6/9

¢ Anug
}p3 01 pusg = Aug
€ uonew.ou| \ S|qe Sjels ajepdn L Anug) ainbi4
Z UOIJew.oju| uonjesadQ dnyoo] |e—] ¢ 9|qe] dnyooT
| uoljewojui € Slqe] Uody IXaN L 8L.
. 7 ¢ Agu3
a|ge| ae
Iqe L 8ejs 9L / Z kU3
momN SlqeL XaN o1 puss | Ayug
¢ uony Z 9|qe] dnyooT
| uonoy L oLl
)
|qeL IXaN 0} puss |l 9|qe} uonoy XN .
i ﬁ f\ ¢k ¢ uonoy
| uondy
— S|qe L IXSN OL puss | uonoy
¢ Slge L uoidy IXaN
P uopesadQ dnyoo | S|qel uoldy qns
il C o0z
S|qe | uoldy gns ||ed
uinyey ¢ Aug
uoljesad dnyoon
¢ oy /r z Anug
L uooY uoloYy asied L Anug
Z 9|ge uonoy qng 9lqe | uohoYy [eljiu] | 8|qel dnyoo
\ 5% { 7
¢0L 144

PCT/US03/03291

WO 03/067798

7/9

6 ainbi

uonesado
¢ 1o)sIbay
Ay

uoneladp
Z lo)sibay
Aoy

uonesadQ
| J9)sibay
Aoy

uonesadQ
0 J9)s1bey
Aoy

uoneoyoadg
JETE]

o

Nwom

Nwom

Aom

NNom

org —4
g ainbi4
a|pueH SSSIPPY |[0uU0D
ejeq Josn PIOM [05UOD 8dhL | Siqe) co_quwc_ webold

Nrwu

No_.w

Nwow Awom

N 08

mNow

PCT/US03/03291

WO 03/067798

8/9

14%0)" <
e ﬂ P01 0l ainbi4
moormw_ « —
8 Ku lu H K
AN, e p00Lk] g
£ 710l @oo&W# T f g
m NA 3A H g
« Loy gekm
+ —
i ~)
viol |F7608 "y
9101 <
l : m
A
e
Sof 5001
® 8l0l FE
>> ucc lapode(HH—!oFov
_ _ Lt oL 800}
_ 8001 ’ AL
prz—> zzol il

PCT/US03/03291

WO 03/067798

9/9

aJinbl
L 14 aLoL
woJl4
| _ |
sa14d JO 19530 REIEN
pquinn Ahg PIOM
| H H —20L)
g0LL)
A »
SN~
% Ted Wary | —
OLOL 4| mon o] 900! e oy [¥ [
e <
% uied
< v S
L)
oLLL SITRNECTRN,
| _ |
I I
vLoL 001
ZzoL 8001
wo.4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

