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FIG. 18
(57) Abstract: A system and method for detecting changes in a series of images medical includes an automated sample point
generator that reviews the series of medical images and automatically detect portions of the series of medical images indicative of a
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identified changes.
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SYSTEM AND METHOD FOR AUTOMATICALLY DETECTING CHANGE IN
A SERIES OF MEDICAL IMAGES OF A SUBJECT OVER TIME

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is based on U.S. Provisional Patent Application Serial No.
60/946,814 filed on June 28, 2007, and entitled “AUTOMATED DETECTION OF
CHANGE IN SERIAL IMAGING STUDIES OF THE BRAIN.”

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] This invention was made with government support under Grant No. T32
NSO7494 and T15 LMO7041-23 awarded by the National Institute of Health. The
United States Government has certain rights in this invention.

BACKGROUND OF THE INVENTION

[0003] The field of the invention is nuclear magnetic resonance imaging methods
and systems. More particularly, the invention relates to a system and method for
tracking physical changes in a series of medical images of a given patient over time.
[0004] When a substance such as human tissue is subjected to a uniform
magnetic field (polarizing field Bo), the individual magnetic moments of the spins in
the tissue attempt to align with this polarizing field, but precess about it in random
order at their characteristic Larmor frequency. If the substance, or tissue, is
subjected to a magnetic field (excitation field B4) that is in the x-y plane and that is
near the Larmor frequency, the net aligned moment, Mz, may be rotated, or "tipped",
into the x-y plane to produce a net transverse magnetic moment Mt. A signal is
emitted by the excited spins after the excitation signal B4 is terminated, this signal
may be received and processed to form an image.

[0005] When utilizing these signals to produce images, magnetic field gradients
(Gx, Gy and G;) are employed. Typically, the region to be imaged is scanned by a
sequence of measurement cycles in which these gradients vary according to the
particular localization method being used. The resulting set of received NMR signals
are digitized and processed to reconstruct the image using one of many well known
reconstruction techniques.

[0006] An MRI system may be used to acquire many types of images from a
particular anatomical structure, for example, the brain. Such images employ contrast
mechanisms that enable different brain tissues and lesions to be identified. The
usual practice is to acquire a set of MRI images and then manually segment different
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tissues and lesions and provide sample points of the different tissues for use in
subsequent processing. Only limited attempts have been made to implement
automated sample point generation algorithms. Some classification algorithms
provide very rudimentary automated sample points generation, with little use of
domain specific knowledge (e.g., fuzzy k-means), where the user supplies the
number of pure tissues and the algorithm attempts to locate the cluster centroids by
examining only the image intensities.

[0007] Atlas based segmentation methods can be used as one method for the
automatic generation of samples, and there have been examples of such
implementations in the literature (e.g., Linguraru et al, 2006). However, by definition
these atlas based algorithms make assumptions regarding anatomy, which may not
be true considering pathology and surgical interventions. One important motivation
for the performance of anatomical magnetic resonance imaging and image analysis
is the examination of pathology (e.g. tumors, multiple sclerosis, etc.). In such cases,
pathology may be quite wide-spread, and may present in a large variety of ways,
causing deviations from “normal” anatomy. Furthermore, resections may be
performed in such cases, as well, causing the particular patient's brain to deviate
even further from the atlas-based norms.

[0008] Classification of lesions, per se, is not new, and many solutions to classify
multi-spectral data exist, both within and outside of the domain of medical imaging.
Some classification methods are supervised and require that the user supply sample
data. Some examples of supervised classification algorithms are thresholding,
Euclidean distance, Mahalanobis distance, K nearest neighbor, Bayesian, and neural
network. Other classification algorithms are unsupervised and require no sample
data. Some examples of unsupervised classification algorithms include chain
method, and k-means. It should be noted, however, that unsupervised classification
algorithms typically require some rudimentary data be supplied by the user. For
example, the chain method requires that a threshold be supplied, and k-means
requires that the actual number of clusters be supplied. Some classification
algorithms categorize each data point, that is, each voxel in the case of image data,
into one of a number of discrete categories. Other classification algorithms allow
partial membership in multiple categories. Still, other classification algorithms allow
partial membership in multiple classes initially, but then defuzzify the membership
data into discrete categories in a later step.



WO 2009/003198 PCT/US2008/068826

[0009] A large fraction of existing classification algorithms are devoted to correctly
assigning voxels into discrete categories. In fact, many authors write explicitly that
the purpose of classification is to assign multispectral data points into discrete
categories and some then add as an after-thought that the assignment may also be
made fuzzy. Furthermore, even the algorithms that purport to possess fuzzy
classification capability, still have a stated purpose of achieving the highest accuracy
with voxels that do in fact belong purely to one category or another, such as.
Mahalanobis distance based classifiers. These algorithms acknowledge that in their
intended domain, the overwhelming majority of voxels will, in fact, belong purely to
one category or another and; therefore, in order to achieve the highest average
accuracy, these methods use membership functions that achieve the highest
accuracy for voxels that are in fact purely one category. However, this is achieved at
the expense of accuracy for voxels that do in fact possess mixed membership.

[0010] In the case of lesions of the white matter of the brain, the voxels that, in
fact, possess partial membership are the voxels that are of greatest interest. There
are a variety of reasons for an algorithm to be developed that is focused on
accurately quantifying partial membership and partial character, rather than
categorizing voxels into discrete categories. For example, in the case of pathology
(lesion and enhancing lesion), voxels are rarely fully abnormal. Rather, in such
cases, abnormality exists in degree. It is subtly abnormal voxels for which
computational assistance might find a high degree of usefulness, because these
subtly abnormal voxels are relatively difficult to see with the unaided eye.
Furthermore, accurate quantification of these partial volume and partial membership
characteristics is important, because it has been shown that, at least in tumors, the
rate of growth is suggestive of prognosis. Thus, particularly for small lesions, the
ability to accurately quantify these effects places a distinct theoretical lower bound
on the size of the lesions from which prognosis may be quantified.

[0011] One group of authors created a classification procedure specifically
geared for recognizing lesions that recognized the importance of preserving partial
volume effects via a feature extraction step involving a linear combination of the
original images(Hamid Soltanian-Zadeh, 1998). These authors did not, however,
design their algorithm with the real behavior of lesion intensities in feature space in
mind. Rather, the algorithm, which used an Eigenimage feature extraction step, was
more tuned to the behavior of noise and contrast, than the lesions themselves. The
algorithm required that the images demonstrate frank lesion and that manual sample
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points be supplied, which required an investment of time by the user and that
introduced variability into the process. Furthermore, the authors used thresholding
as their noise reduction scheme.

[0012] It has been recognized for a considerable period of time that it is
challenging for a human observer to compare images side by side that are nearly the
same, in order to identify the differences. This problem exists in a large number of
fields of imaging, both within and outside of, medicine. Some examples of non-
medical change detection topics include remote sensing, astronomy, surveillance,
geology, reconnaissance photography, and the like. The development of computer
algorithms to compare serial images has been a fruitful field of study in a variety of
areas. Probably the most work has been done in the field of remote sensing, where
satellite imagery of the earth, using various kinds of sensors, has been used in an
attempt to detect various kinds of changes. In this sub-discipline of change detection
as in others, imagery is to be compared between image sets acquired at two time-
points. The various sub-fields of change detection have important points in common.
First, the motivation for change detection is generally the same in all cases. Side-by-
side presentation of images for the purposes of identifying small differences is a sub-
optimal method of display, because it requires the viewer to sequentially examine
each area and each feature to be compared. Second, imaging systems, which
include sensors, data storage facilities, and the like, are becoming more and more
prevalent and more and more capable of storing vast amounts of data. This
phenomena has been called “information overload” and there is little doubt that this
trend will continue. With vast amounts of data being collected, it will be
unreasonable or impossible for a human to make every imaginable comparison, but
it is not at all unreasonable for this task to be performed by computer.

[0013] There are a variety of reasons that the comparison of serial images is
challenging. One reason that the problem of change detection is difficult is that side-
by-side presentation of images is poorly matched to our visual systems. That is, the
particular workings of our visual systems means that observers much sequentially
examine each feature of interest, and explicitty compare them. This is time
consuming, particularly as the data sets and features of interest become large, and it
additionally biases us against detecting changes that we do not expect, but which
nonetheless may still be relevant and important. Another reason that change
detection is challenging is that the disease related changes of interest are likely to be
confounded with acquisition related changes, which are not of interest. Still another
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reason is that comparisons that might be desired are more complicated than simple
comparison of the intensities in the images. With greater and greater complexity of
the questions to be asked and the comparisons to be made, the task becomes more
and more difficult for an unaided observer. Yet another reason the task of
comparison of images is difficult is, as mentioned above, information overload.
Information overload is a problem that will almost definitely increase as the
sophistication of imaging hardware improves.

[0014] In its simplest form, change detection may be performed as subtraction of
two serial images as shown in Fig. 1. This approach has been used with great
effectiveness. More sophisticated approaches may be imagined and have been
used, where some processing is performed on the images, to produce derivative
data that is then compared as shown in Fig. 2. Spatial registration is a simple
example of such processing, which is commonly applied in remote sensing, and
medical image analysis. A large variety of image processing steps exist, and can be
conceived of. These may require multiple steps in a sequence, for example,
inhomogeneity correction followed by registration, followed some form of image
understanding, for example, classification in remote sensing or medical imaging,
followed by comparison of the classified images. In the case of surveillance, where
it could, for example, be desired to observe when a new person has entered the
visual field of the camera, face recognition may be one of the steps. Typically, the
more sophisticated processing steps apply domain specific knowledge. The domain
specific knowledge, which is used to improve the performance of change detection
algorithms and to attune the algorithm to the detection of specific kinds of changes of
interest, may be very sophisticated and varies greatly from application to application.
[0015] However, the behavior of the sensors, the meaning of intensities, the
subject being imaged, and the like vary greatly from domain to domain and; thus,
while papers in the field of remote sensing may compare log-ratio images, these may
not make any sense at all in the context of comparison of serial MR brain studies.
Likewise, even within brain MRI, the subject of change detection is made broad by
the different kinds of domain-specific knowledge that may be applied, and the kind of
derivative information that may be generated and compared from one acquisition to
another. One set of analyses might be used to detect and characterize changes in
white matter lesions, while a completely different set of analyses may be used to
detect and characterize changes due to atrophy, for example, identification of
discrete boundaries using finite element models with sub-voxel resolution, and the
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comparison of the position of these boundaries from one acquisition to another. In
fact, there exist a large range of possible formulations of these post-acquisition
processing steps and inter time-point comparisons.

[0016]  Within the context of change detection in brain MRI of white matter
pathology, there are a variety of causes of inter-observer variability. One is that
there is presently no objective definition of stability or progression. Additionally,
changes that are relatively subtle, either in extent or degree, may be difficult to see.
This is especially true when the images are displayed side-by-side, not registered,
with intensity inhomogeneities and the like. Manually identifying changes in such a
context requires the observer to mentally deconfound the data, which is challenging
for a human observer. It can be imagined that a computer might be very well suited
to helping with this task, since, theoretically, computers have unlimited memory,
which is in stark contrast with human visual memory and short-term memory, both of
which are limited. Thus, computers can apply a theoretically unlimited number of
intermediate processing steps. Changes might be spread across multiple pulse
sequences, and they might be indefinite in one slice, but more definite in
consideration of multiple slices. This, however, requires assimilation and integration
of a number of slices, before reaching a decision. Such a process is not natively
simple for the human visual system, at least when the images are displayed as
slices. However, such a process is much simpler for a computer.

[0017] There are other “expectation-oriented” reasons that change detection is
challenging. Changes that occur in unexpected locations or that are unexpected in
terms of their character, may be missed. There are a variety of other issues that
might cause a neuroradiologist to miss changes, such as “satisfaction of search,”
where a radiologist stops looking when they find imaging features that explain the
symptoms motivating the scan in the first place; however, there may still be other
important findings in the images. Sometimes, “information overload” makes change
detection difficult, due simply to the shear volume of data presented. This problem
will almost definitely increase as scanners produce greater and greater quantities of
data. In a general sense, computers excel at methodically wading through large
amounts of data, looking for needles in hay-stacks, integrating large amounts of data
at once, applying serial processing steps, analyzing data mathematically, and
bringing noteworthy observations to the attention of the neuroradiologist.

[0018] The detection of regions of signal embedded in zero-mean background
noise is a recurring problem in various fields of medical imaging, including
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classification, fMRI, and change detection. The detection of such signals is also an
important problem outside of medical imaging in such fields as remote sensing,
surveillance, astronomy, and geology, to name a few. A variety of approaches have
been taken to identify regions of signal indicating a desired objects embedded in
regions of noise in imagery data. By far the most common method that has been
used is simple thresholding, where pixels or voxels possessing image intensities
lower than some threshold value are set to 0, while image intensities larger than the
threshold value are retained. That is, image intensities below the threshold are
identified as pixels or voxels are considered to not belong to the object and those
above the threshold are considered to belong to the object. Thresholding is limited
in that it does not allow simultaneous rejection of noise concurrent with retention of
low intensity object voxels. One attempt to approach this limitation is commonly
used in fMRI circles. It involves the use of a “smearing” filter on the image data prior
to thresholding. Essentially, this approach has two effects. First, it smears the voxel
intensities of regions containing actual objects into their neighbors. If the regions of
actual objects contain some high intensity voxels, these high intensities can reinforce
their low intensity neighbors, which then become included in the region retained by
thresholding. The second effect of these smearing filters is for regions not
containing actual objects, which presumably contain zero-mean noise, to diminish in
intensity. In many cases, this increases the degree to which noisy regions are
rejected by the process of thresholding. Although popular in some circles, this
approach is in many ways intuitively unsatisfactory. This is primarily because it
works most effectively when the actual object possesses high intensity, which is
certainly not always the case, rather, it is very frequently desired to detect subtle
objects. This is also because the method virtually guarantees the erroneous
detection of a penumbra of noise voxels around an intense object. Furthermore,
such a method can result in false negatives. That is, if dark voxels around a
moderately bright object are smeared into the moderately bright object, the
intensities of the voxels making up the moderately bright object to drop below the
threshold.

[0019] Another filtering approach that has been used involves the application of
anisotropic diffusion filters to effect the blurring. Anisotropic diffusion filters are
somewhat like low pass filters, except that the blurring is reduced in regions where
the gradient of the voxel intensities is high, for example, edges. In cases where
objects possess edges, for example, discrete anatomical structures, such an
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approach might be helpful. However, there are cases where the objects of interest
do not possess definite edges at their periphery or where the objects themselves are
heterogeneous internally. In the case of objects with very low mean intensities, with
mean intensities close to zero and intensity distributions close to or within the level of
noise, any gradients surrounding the objects will aimost surely exist at a very low
level. In each of these cases, an anisotropic diffusion filter would demonstrate
limited effectiveness. On the positive side, an anisotropic diffusion filter might be
expected to help to reduce the zero mean noise of the background, and in that
respect it might aid in the use of simple thresholding to accomplish noise rejection.
However, this approach significantly reduces the background noise using an
anisotropic diffusion filter that may require the application of multiple iterations of the
filter, which causes a significant penumbra of falsely detected voxels around the
actual objects. Furthermore, anisotropic diffusion filters are highly parameter
dependent, which is inconsistent with applications that desire automation and
robustness. Some groups have used edge-finding algorithms themselves with no
blurring to identify objects; however, as with anisotropic diffusion filters, these
methods do not work when the objects do not possess external edges.

[0020] Fuzzy connectedness is a method that has been used to identify objects in
images. In practical terms, fuzzy connectedness requires sample points, which is
also inconsistent with systems that desire automation. Fuzzy connectedness still
hinges on the memberships of single voxels, which is weakest link in the chain, in
the terms of the creators of the method. The goal is to identify regions of voxels
potentially possessing intensities within the level of the noise floor. By emphasizing
the use of chains of connectedness, fuzzy connectedness does not simultaneously
emphasize the relative positions of the neighbors with respect to trial voxels and
relative to one another. This means that fuzzy connectedness does not make use of
the a priori knowledge that one trait of real-world objects is spatial continuity. For
example, real world regions or objects in brain MR images tend to be fat, at least
compared to a long, thin, winding chain, and not full of holes. Fuzzy
connectedness also does not provide the ability to weigh the size of a region against
the memberships of its constituent voxels.

[0021] Another prior method in which voxels are accepted as belonging to objects
and not belonging to background noise, determines not only whether they exceed a
threshold, but some number of their neighbors also exceed the threshold. This
method is interesting in as much as it is an initial attempt to balance spatial extent



WO 2009/003198 PCT/US2008/068826

against magnitude of voxel value, in order to establish whether or not a voxel
belongs to a real underlying object or whether its intensity is due only to noise.
Another method uses fixed dimension kernels, for example, 3x3x3 voxels, and
applies a test of significance to help reduce false positives. This method is
interesting for the same reasons as the prior method, but this method additionally
enforces a higher degree of spatial continuousness. The restricted shape and extent
of the regions used by this method, however, make it un-ideal. Another method,
demonstrated in the context of surveillance, divides the overall image area into fixed
test areas, for example, 4x3 voxels in extent, and applies formal statistical tests to
compare the intensity distributions contained by the regions at two time-points, in
order to establish whether the contents of each region are the same or different from
one time point to the next. This is an interesting approach, for its use of formal
statistical tests to decide whether a change had occurred or not. As above,
however, the use of fixed position and size test areas is unnecessarily limiting.

[0022] Therefore, it would be desirable to have a system and method for
accurately and consistently analyzing medical images that does not fall prey to the
above-discussed drawbacks.

SUMMARY OF THE INVENTION

[0023] The present invention overcomes the aforementioned drawbacks by
providing a system for detecting changes in medical images, for example, changes
in brain lesions as measured by a series of MRl images. More particularly, it
includes a sample point generator that identifies sample pixels in MRI images that
represent different types of brain tissues. The system also includes a lesion detector
that identifies and quantifies abnormal tissues using the sample pixels. A lesion
change detector compares lesions identified currently with previously identified
lesions. In addition, an object boundary identification process may be used with the
system to reduce the effects of noise and more definitively identify lesion boundaries
and changes.

[0024] In accordance with one aspect of the present invention, a method is
disclosed that automatically, repeatably, and reliably generates sample points from
brain MRI! images, which are suitable for use as input to a variety of image
processing methods. The method is designed to use simple and reliable knowledge
regarding the brain and magnetic resonance images, so that it functions normally
regardless of pathology, interventions, or particulars of the acquisition, such as
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changes in the specific scanner or acquisition parameters. The method is capable of
generating samples for the normal tissues, including normal appearing white matter
(NAWM), gray matter, and cerebrospinal fluid, as well as the pathological “tissue”
enhancing lesion. The “samples” that it generates for the pathological “tissue”
referred to as “lesion” are implicit from the above samples. The method is designed
to deliver input to lesion finding and change detection methods. The output,
however, is equally and fully applicable to a variety of other image processing
methods, including registration, inhomogeneity correction, tessellation of surfaces for
rendering or other purposes, segmentation for volume computation or other
purposes, and the like. The method can be fully automated in that it does not require
any user input and it is designed to be flexible enough that it does not require that
image volumes supplied to it be acquired using particular hardware or acquisition
parameters.

[0025] The sample point generation method, in contrast with more sophisticated
atlas based segmentation methods, makes only very limited assumptions regarding
anatomy, and is thus very flexible with respect to changes due to acquisition,
disease, and interventions, such as resections. Use of simple but reliable knowledge
makes the method very likely to provide highly accurate results. The present
method, if used in a pipeline or spiral step prior to an atlas segmentation method,
can also provide a means for an atlas based segmentation algorithm to understand
some presented images more clearly, in spite of acquisition related variations. It
allows the atlas-based algorithms to understand the images in terms of tissues such
as gray matter, white matter, CSF, lesions, and enhancing lesions, instead of in
terms of image intensities.

[0026] Another aspect of the invention is a method that identifies lesions, both T1-
T2 abnormalities, and enhancing lesions, in the white matter of the brain, and to
describe these lesions quantitatively. The lesions identified by this method may
originate from primary or metastatic tumors, muitiple sclerosis, or some other white
matter disease process. The method can be fully automated and reproducible, and
is highly robust against variations in acquisition parameters, the particulars of the
scanner, and the like. From the original input volumes, for example, T1, T1-Post
Gadolinium, T2, and the like, the method generates membership images for the
classes, such as, lesion and enhancing lesion. On a voxel-by-voxel basis, these
memberships vary in value from 0.0 to 1.0. As such, they may be straightforwardly
used to compute measures of lesion load.

10
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[0027] The lesion identification method is specifically designed to be most
accurate in quantifying the memberships of voxels. To the greatest degree possible,
the partial membership model is not intended to cater to a priori probabilities, but
instead, the algorithm’s model of partial-membership effects are derived from a
physical model of the behavior of the imaging system. The intended purpose of the
method is to quantify these partial memberships and partial characters in only two
classes, for example, white matter lesion and enhancing lesion of the brain in
magnetic resonance imaging studies. By focusing on this narrow but important topic,
the algorithm is able to take advantage of a developed knowledge base.

[0028] The lesion identification method has been designed for the specific
purpose of producing reproducible measures of lesion and enhancing lesion, with
minimal or no user intervention. In contrast with previous algorithms, this method
has been designed to be able to accurately quantify lesion and enhancing lesion
membership even when no examples of frank lesion or enhancing lesion exist in the
volume, for example, the algorithm performs supervised classification even when
there are no examples. The method is relatively unaffected by changes in scanner
and acquisition parameters.

[0029] Using the sample point generator, which identifies the white matter
samples, the CSF samples, and the maximum enhancement automatically, the
lesion detector has been shown to be highly reproducible, as well as automatic. The
system provides an automatic and deterministic inhomogeneity correction,
registration, and parenchyma mask generation. Although included in the detailed
description below, these are in fact separate processes. When the processing
pipeline uses deterministic sub-algorithms, the present change detection method
yields consistent results every time it is run with the same volume data, regardless of
who runs the application, where it is run, or how many times it is run.

[0030] Yet another aspect of the present invention is a method for comparing two
MRI images of the head and identifying and characterizing changes that have
occurred in white matter lesions that may be present. The method produces a color-
coded change map, which is displayed superimposed upon the anatomical images.
This color-coded change map identifies what has changed in the interval between
the two MRI acquisitions, in what way, by how much, and where. The method aids
in the accurate and simple identification of changes in serial brain MR images. The
system provides a mechanism to ensure that all changes within serial MR images
are observed and understood. The system provides a mechanism for defining

11
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progression, for example, with regard to brain tumors, objectively. The system
provides a mechanism for quantitatively comparing response to trial therapies across
treatment groups. The system additionally provides a mechanism to promote
reproducible diagnoses. The system may help to train new practitioners. It may
serve as a model for how computers can liberate radiologists from doing mundane
things sub-optimally, for example, measuring tumors with rulers on plastic film, which
has been shown to be relatively ineffective. Instead a computer wades through
mountains of analyses and presents the clinician only with refined, concise, and
note-worthy data that has been tailored to their purpose. The method is a model of
how computers can perform a large number of analyses and bring to a clinician’s
attention things they weren't looking for, but that are nonetheless important. The
method additionally serves as a model of “layered analyses” that are impractical or
impossible without computer assistance.

[0031] Another aspect of the present invention is a method for the detection of
regions of signal, which uses a strong spatial connectedness criteria, and a variable
threshold that weighs a region’s spatial extent against the values of a given region’s
constituent voxels, to identify objects in a manner that possesses much higher
sensitivity and specificity compared with simpler methods of separating signal from
noise, such as thresholding. The method is able to identify objects made of up
elements with intensities within the range of the background noise. It is able to
identify such low-intensity objects of arbitrary shape, unlike methods that have used
kernels of fixed size and shape. Exploration and identification of arbitrarily sized and
shaped regions within a noisy background is potentially computationally intractable.
The particular implementation described below makes the method tractable on
mainstream computing hardware. As a component of a change detector system, this
method has been applied to digital phantoms, and to serial MR scans of brain tumor
patients, and it has shown very high accuracy, sensitivity, and specificity.

[0032] This invention is based in part on the realization that there are situations
where domain-specific knowledge exists that can be leveraged to identify regions of
signal lower than the noise floor. This knowledge could take a variety of forms. For
example, in the case outlined in this application, it is known a priori that the three
dimensional (3D) object that the image represents, is a real-world object, for
example, a patient’s brain. Within this brain, various types of objects or regions
exist. An example of such an object or region could be a region of T2 abnormal
white matter, or a region which is exhibiting increasing, that is, changing, T2
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abnormality. In such cases, high intensity, either in a lesion membership image, or
in a change in lesion membership image, is only one trait signifying a particular
voxel's membership or lack of membership in the object or region of interest. This is
because the object might possess only subtle intensity relative to the background.
However, in many such cases, it is known a priori that objects, including subtle
objects, frequently extend to encompass the space of multiple or many voxels, and
are more or less continuous over the region which they cover. The extent of the
region might serve as a second piece of knowledge, suggesting its membership in
the region, while the continuousness of the region, that is, the fact that it is not thin
and winding, and it is not full of holes, may serve as a third piece of knowledge.
These three pieces of knowledge constitute the foundation for separating objects
from background noise.

[0033] Various other features of the present invention will be made apparent from
the following detailed description and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] Fig. 1 is a block diagram of a typical prior art image comparison;

[0035] Fig. 2 is a block diagram of a more sophisticated prior art image
comparison method;

[0036] Fig. 3 is a block diagram of an MRI system which employs the present
invention;

[0037] Fig. 4 is a flow chart of the major elements in the preferred embodiment of
a brain lesion change detector system;

[0038] Fig. 5 is a high level flow chart of an automated sample point finding
procedure used in the procedure of Fig. 2;

[0039] Fig. 6 is a flow chart of the CSF finding procedure used in the procedure of
Fig. 5;

[0040] Fig. 7 is a flow chart of the white matter and gray matter finding procedure
of Fig. 5;

[0041] Fig. 8 is a flow chart setting forth the steps for of the maximum
enhancement level determination procedure used in the procedure of Fig. 5;

[0042] Fig. 9 is a flow chart of the lesion identification process that forms part of
the system of Fig. 4

[0043] Figs. 10-15 illustrates computation of membership in the class “enhancing
lesion,” where Fig. 12 shows the region of T1-T1-Post space considered to contain
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enhancing white matter lesions (darkened), Fig. 13 shows a sample voxel that is
mildly T1 hypointense, and which possesses moderate enhancement, Fig. 14
illustrates that in order to compute the membership of a trial voxel in the class
“enhancing lesion,” the voxel is first projected vertically onto the CSF-NAWM line,
and Fig. 15 shows the vertical distance of the point from the “Max-Enh” line, and the
vertical distance of the point from the CSF-NAWM line, are together used to compute
the membership of the point in the class ‘enhancing lesion’;

[0044] Fig. 16 is a block diagram showing the change detector method in a
system such as that of Fig. 4;

[0045] Fig. 17 is a block diagram of the change detector in the system of Fig. 16;
[0046] Fig. 18 is a screen capture of an exemplary output of the change detector;
[0047] Figs. 19-21 illustrate images and a histogram of the images to indicate the
problem to be solved;

[0048] Fig. 22 is a flow chart of the object boundary identification method that
forms part of Fig. 4;

[0049] Fig. 23 is a graph illustrative of the process in Fig. 22;

[0050] Fig. 24 is a pictorial representation of the process in Fig. 22;

[0051] Fig. 25 is a flow chart of a step in the process of Fig. 22 construction of the
list of valid “snakes;”

[0052] Fig. 26 is a graphical representation of the steps taken during the process
described with respect to Fig. 25;

[0053] Fig. 27 is a flow chart setting forth the steps in the procedure of Fig. 22 in
which it is possible to use the list of snakes to produce a look-up table facilitating
very rapid assessment of any neighborhood configuration and with this look-up table;

and
[0054] Fig 28 shows a sample application of the lookup table to a neighborhood.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0055] Referring particularly to Fig. 3, the preferred embodiment of the invention
is employed in an MRI system. The MRI system includes a workstation 10 having a
display 12 and a keyboard 14. The workstation 10 includes a processor 16 that is a
commercially available programmable machine running a commercially available
operating system. The workstation 10 provides the operator interface that enables
scan prescriptions to be entered into the MRI system.
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[0056] The workstation 10 is coupled to four servers. Specifically, the work
station 10 includes a pulse sequence server 18; a data acquisition server 20; a data
processing server 22, and a data store server 23. In the preferred embodiment the
data store server 23 is performed by the workstation processor 16 and associated
disc drive interface circuitry. The remaining three servers 18, 20 and 22 are
performed by separate processors mounted in a single enclosure and interconnected
using a 64-bit backplane bus. The pulse sequence server 18 employs a
commercially available microprocessor and a commercially available quad
communication controller. The data acquisition server 20 and data processing
server 22 both employ the same commercially available microprocessor and the data
processing server 22 further includes one or more array processors based on
commercially available parallel vector processors.

[0057] The workstation 10 and each processor for the servers 18, 20 and 22 are
connected to a serial communications network. This serial network conveys data
that is downloaded to the servers 18, 20 and 22 from the workstation 10 and it
conveys tag data that is communicated between the servers and between the
workstation and the servers. In addition, a high speed data link is provided between
the data processing server 22 and the workstation 10 in order to convey image data
to the data store server 23.

[0058] The pulse sequence server 18 functions in response to program elements
downloaded from the workstation 10 to operate a gradient system 24 and an RF
system 26. Gradient waveforms necessary to perform the prescribed scan are
produced and applied to the gradient system 24 that excites gradient coils in an
assembly 28 to produce the magnetic field gradients Gy, Gy and G, used for position
encoding NMR signals. The gradient coil assembly 28 forms part of a magnet
assembly 30 that includes a polarizing magnet 32 and a whole-body RF coil 34.
[0059] RF excitation waveforms are applied to the RF coil 34 by the RF system
26 to perform the prescribed magnetic resonance pulse sequence. Responsive
NMR signals detected by the RF coil 34 are received by the RF system 26,
amplified, demodulated, filtered and digitized under direction of commands produced
by the pulse sequence server 18. The RF system 26 includes an RF fransmitter for
producing a wide variety of RF pulses used in MR pulse sequences. The RF
transmitter is responsive to the scan prescription and direction from the pulse
sequence server 18 to produce RF pulses of the desired frequency, phase and pulse
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amplitude waveform. The generated RF pulses may be applied to the whole body
RF coil 34 or to one or more local coils or coil arrays.

[0060] The RF system 26 also includes one or more RF receiver channels. Each
RF receiver channel includes an RF amplifier that amplifies the NMR signal received
by the coil to which it is connected and a quadrature detector that detects and
digitizes the | and Q quadrature components of the received NMR signal. The
magnitude of the received NMR signal may thus be determined at any sampled point
by the square root of the sum of the squares of the | and Q components:

M=4I*+Q?,
and the phase of the received NMR signal may also be determined:

¢ =tan” Q/L
[0061] The puise sequence server 18 also optionally receives patient data from a
physiological acquisition controller 36. The controller 36 receives signals from a
number of different sensors connected to the patient, such as ECG signals from
electrodes or respiratory signals from a bellows. Such signals are typically used by
the pulse sequence server 18 to synchronize, or “gate”, the performance of the scan
with the subject’s respiration or heart beat.
[0062] The pulse sequence server 18 also connects to a scan room interface
circuit 38 that receives signals from various sensors associated with the condition of
the patient and the magnet system. It is also through the scan room interface circuit
38 that a patient positioning system 40 receives commands to move the patient to
desired positions during the scan.
[0063] It should be apparent that the pulse sequence server 18 performs real-
time control of MR! system elements during a scan. As a result, it is necessary that
its hardware elements be operated with program instructions that are executed in a
timely manner by run-time programs. The description components for a scan
prescription are downloaded from the workstation 10 in the form of objects. The
pulse sequence server 18 contains programs that receive these objects and converts
them to objects that are employed by the run-time programs.
[0064] The digitized NMR signal samples produced by the RF system 26 are
received by the data acquisition server 20. The data acquisition server 20 operates
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in response to description components downloaded from the workstation 10 to
receive the real-time NMR data and provide buffer storage such that no data is lost
by data overrun. In some scans the data acquisition server 20 does little more than
pass the acquired NMR data to the data processor server 22. However, in scans
that require information derived from acquired NMR data to control the further
performance of the scan, the data acquisition server 20 is programmed to produce
such information and convey it to the pulse sequence server 18. For example,
during prescans NMR data is acquired and used to calibrate the pulse sequence
performed by the pulse sequence server 18. Also, navigator signals may be
acquired during a scan and used to adjust RF or gradient system operating
parameters or to control the view order in which k-space is sampled. And, the data
acquisition server 20 may be employed to process NMR signals used to detect the
arrival of contrast agent in an MRA scan. In all these examples the data acquisition
server 20 acquires NMR data and processes it in real-time to produce information
that is used to control the scan.

[0065] The data processing server 22 receives NMR data from the data
acquisition server 20 and processes it in accordance with description components
downloaded from the workstation 10. Such processing may include, for example:
Fourier transformation of raw k-space NMR data to produce two or three-
dimensional images; the application of filters to a reconstructed image; the
performance of a backprojection image reconstruction of acquired NMR data; the
calculation of functional MR images; the calculation of motion or flow images, etc.
[0066] Images reconstructed by the data processing server 22 are conveyed back
to the workstation 10 where they are stored. Real-time images are stored in a data
base memory cache (not shown) from which they may be output to operator display
12 or a display 42 that is located near the magnet assembly 30 for use by attending
physicians. Batch mode images or selected real time images are stored in a host
database on disc storage 44. When such images have been reconstructed and
transferred to storage, the data processing server 22 notifies the data store server 23
on the workstation 10. The workstation 10 may be used by an operator to archive
the images, produce films, or send the images via a network to other facilities.

[0067] Referring particularly to Fig. 4, the present invention employs the above-
described MRI system to acquire a number of images from a subject's brain as
indicated at process block 200. These are 3D images are referred to herein as
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"volumes." The particular pulse sequences used will be listed below and suffice it to
say that they are conventional acquisitions commonly employed in brain imaging.
[0068] Each of these volumes is first processed using a third-party inhomogeneity
correction algorithm as indicated at process block 202. For example, N3 may be
used, but other solutions may be used, as well. Next, the volumes are spatially
registered to one another as indicated at process 204. In accordance with one
aspect of the invention a proprietary solution may be used that is a hybrid of other
third-party registration algorithms. From these registered volumes, a parenchyma
mask is automatically generated by, for example, another third party software
application as indicated at process 206. In accordance with one aspect of the
invention, “Brain Extraction Tool” (BET) or any other appropriate tool may be used.
[0069] As indicated at process block 259, the tissue sample generator is then
employed to produce from the acquired image volumes sample pixel values for white
matter, gray matter, and CSF. In addition, it finds the maximum enhancement level
produced in the images by an administered contrast agent. The structure and
operation of the tissue sample generator is described in detail below.

[0070] As indicated in Fig. 4, at process block 257, a lesion identification process
is then performed. This employs the acquired image volumes and the calculated
tissue samples to locate and quantify any abnormal tissues. The structure and
operation of the lesion identification process is described in detail below.

[0071]  As indicated at process block 260, the next step is to detect changes that
have occurred in identified lesions since the last examination. The process 260
accomplishes this by comparing the current identified lesions with lesions identified
in previous examinations that have been stored for this purpose. The operation and
structure of the lesion change detector is described in detail below.

[0072]  And finally, an object boundary identification process indicated at process
block 258 may be employed to refine the boundaries of identified lesions or refine
indicated changes in lesions. This is a noise reduction filter that is described in more
detail below.

[0073] The goal is to provide an automated image analysis and the process
performed by this system may be viewed as a spiral of knowledge. That is, it starts
with very simple but very reliable knowledge at the center of the spiral then,
continuing around the spiral, each loop of the spiral builds upon knowledge
generated by the prior loops of the spiral. Each loop of the spiral embodies more
and more sophisticated processing, both using and producing progressively more
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sophisticated knowledge. In the inner-most loop, there might be automated sample
point systems of the type described. In a middle loop, automated segmentation
results are provided that divide the brain into white matter, gray matter, CSF, lesion,
enhancing lesion, and the like. Then in a yet further loop, volumetric and other
measures of particular structures based upon the segmentation results are provided.
In loops even further towards the outside, suspected conditions, profiles, risk factors
for the particular patient, based upon what has been measured in the images are
provided.

[0074]  Tissue Sample Generator

[0075] Fig. 5 shows a high level flow of execution for the automated sample point
finding method. As shown in resource block 300, the method uses T1, T1-Post Gd,
T2, and PD images. [If the T1-Post Gd sequence has been acquired with
magnetization transfer suppression (MTS), then a T1 sequence without contrast that
has been acquired with magnetization transfer suppression is also supplied, as also
reflected in resource block 300. Additionally, resource block 300 also includes a
parenchyma mask. As shown in process blocks 302 and 304, the method first finds
cerebrospinal fluid (CSF) samples and uses these samples in the process for finding
white matter and gray matter samples. Finally, as shown in process block 306, the
system separately finds the maximum enhancement level. As shown in results block
308, the product of the method is the multi-spectral, that is, for all of the supplied
pulse sequences, mean and standard deviation of white matter, gray matter, and
CSF. Furthermore, the method additionally finds the maximum enhancement level
for white matter, which, by definition is uni-spectral, since enhancing tissue may
present with a range of intensities in pulse sequences other than T1-Post.

[0076] Fig. 6 shows the organizational flow of the CSF finding sub-routine of the
automated sample points generator. The method uses as input a T1 weighted MR
image, a T2 weighted MR image, and a parenchyma mask, as reflected in resource
block 400. The method uses three pieces of simple but reliable knowledge to find
CSF samples. First, it recognizes that CSF is one of the darkest things in a T1
weighted image and one of the brightest things in a T2 weighted image. Second it
recognizes that there is a lot of CSF in an MR image of a patient’s head. Finally, it
recognizes that CSF is found in large continuous spatially connected regions in a
head MRI. As long as these three criteria are met, the method will be able to identify
samples of CSF, regardless of the patient, the pathology, whether or not a resection
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has been performed, what scanner the images have been acquired with, or what
particular acquisition parameters have been used.

[0077] The CSF finding method begins with two branches. One branch 402
operates on the T2 volume. The other branch 404 operates on the T1 volume. The
actual operation of these two branches 402, 404 is quite similar. In both branches
402, 404, the algorithm constructs a non-air mask; however, the first mask uses the
T2 weighted image, as indicated at process block 406, and the second mask uses
the T1 weighted image, as indicated at process block 408. Using a known process,
which essentially finds an intensity threshold that separates air from biological
tissues, that is, the patient's head. The process is based on the assumption that
there will be a lot of air and the imaging intensity of this air will be quite low. Both
branches of the CSF finding procedure then constructs a histogram of the intensities
of the non-air tissues with, for example, 200 bins, as indicated at process block 410,
412.

[0078] Thereafter, both branches then walk the histogram. In the first branch
402, which relates to the T2 weighted volume, the process begins with the highest
intensity and walks the histogram towards progressively decreasing intensities, until
it finds a bin whose height exceeds the number of voxels in the T2 non-air mask,
computed above, divided by 700, as indicated at process block 414. This step
embodies the knowledge that in a head MR image, CSF voxels are the largest group
of very bright voxels in this volume. In the first branch of the CSF finding sub-routine
402, the process then uses this intensity level as a threshold at process block 416 to
construct a mask by finding all of the voxels in the T2 weighted volume with
intensities exceeding this level.

[0079] In the histogram walking step of the second branch 404, the method is by
contrast attempting to find a large number of voxels with low intensity. The process
continues by walking with the tallest bin in the image, and walks to the left / towards
lower intensity, until it reaches a bin whose height is less than 0.015 times the
number of voxels in the T1 non-air mask, as indicated at process block 418. The
process continues by searching for the bin between this bin, and the lowest intensity
bin, such that using the intensity of the bin as a threshold, as indicated at process
block 420. For example, the process can construct a mask of all voxels in the T1
volume with an intensity below this intensity. This results in the largest object in the
image to be as close as possible to 600 voxels in extent. Having computed this
intensity, the second of the CSF finding process 404 then creates a mask containing
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only the voxels whose intensities in the T1 weighted image are less than this
threshold, as indicated at process block 422. The process shown in the second
branch also computes the intersection of this mask, the non-air mask, and the
parenchyma mask to construct a new mask of CSF candidates. The logical
intersection of the mask from the first branch 402 and the mask from the second
branch 404 is then computed at process block 424. From this unified mask, the
process eliminates all objects possessing fewer than 300 voxels at process block
426. From the remaining objects, at process block 428, the method then identifies
the object that minimizes the following equation, which essentially attempts to
identify the group of voxels in the mask that are brightest in T2 and darkest in T1,
while sensibly balancing these two objectives with regard to one another.

T1ObjectMean (1)
NbealLeTParerﬂryna+(Nbx\/aluelnTZ°arend1y|m—T2(bjedNban)y
MaxValuelnT2parenchym

Cost=

[0080] Fig. 7 shows the organizational flow by which the method identifies
samples of normal appearing white matter and gray matter. As in the CSF finding
method described above, the NAWM/gray matter finding method uses simple but
reliable knowledge in order to identify tissue samples. In this case, the knowledge
includes the fact that both normal appearing white matter and gray matter are
present in a head MR image in large spatially contiguous regions and both normal
appearing white matter and gray matter represent a significant fraction of the
patient's total head. In addition the knowledge includes the fact that, in a T1
weighted image, both normal appearing white matter and gray matter are
substantially brighter than CSF, for example, the intensities distributions of normal
appearing white matter and gray matter do not overlap with the intensity distribution
of CSF. Similarly, in a T2 weighted image, both normal appearing white matter and
gray matter are substantially darker than CSF and, again, their distributions do not
overlap with the intensity distribution of CSF. The normal appearing white
matter/gray matter finding sub-routine uses as input T1, T1-Post, T2, and PD
sequences, as reflected by resource block 500. Additionally, if the supplied T1-Post
Gd image has been acquired with magnetization transfer suppression (MTS) turned
on, then an additional T1 volume (without contrast) which also has magnetization
transfer suppression turned on should be supplied. The method also uses a
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parenchyma mask, and the mask identifying the CSF samples created according to
the process shown in Fig. 6.

[0081] The NAWM/gray matter sample finding method first computes the mean
and standard deviation of CSF in all pulse sequences at process block 502, as well
as the min and max intensities of CSF at process block 504. It additionally computes
a non-air mask from the PD volume, at process block 506, using the same process
referred to above. At process block 508, the process zeros all voxels in this mask for
which either the parenchyma mask is not set, or for which the intensity in the T1
volume is within three standard deviations of the CSF mean in T1, or for which the
intensity in the T2 volume is within three standard deviations of the CSF mean in T2.
The latter two stipulations roughly eliminate all the CSF voxels from consideration.
The process then explores a variety of trial intensities at process block 510, in an
attempt to find large spatially contiguous regions with very similar intensities.
Specifically, for each center intensity “Trialpp,” it identifies all voxels within one
standard deviation of the trial intensity, where the CSF standard deviation in the PD
volume is used to define the appropriate level of noise. It then enforces a strong
spatial connectivity constraint, as in the noise reduction method described below, to
split all resulting regions into spatially distinct regions. From the collection of
identified regions, the process discards all regions smaller than 600 voxels. After
these steps have been completed, for each Trialpp intensity, the process records the
total number of voxels. The Trialpp, number voxels pairs are then interpreted as a
histogram, for example, the intensity TrialPD represents the X-axis of the histogram,
and the number of voxels identified at that intensity is used as the bin height. The
process identifies the tallest bin and uses its intensity as the gray matter intensity, as
indicated at process block 520. The process then walks the histogram at process
block 522, starting from the lowest intensity and progressing towards the highest
intensity, until it finds a bin whose height is greater than 0.08 times the height of the
tallest bin in the histogram. The intensity of this bin is used as the normal appearing
white matter intensity.

[0082] The method generates white and gray matter maps at process block 524
using the two intensity levels determined above. For example, the intensity
possessing the tallest bin in the histogram, and the lowest intensity for which the bin
height exceeds 0.08 times the tallest bin, including voxels which fall within one
standard deviation of those intensities, where the noise level used is the same noise
level as that of CSF in PD, which meet the spatial connectivity constraint, and which
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possess at least 600 voxels per strongly spatially connected clump. The process
generates a histogram for each tissue, for example, white matter and gray matter,
and from each pulse sequence, and identifies the peak in each histogram, as
indicated at process block 526. These peak intensities are used as the final center
intensities for normal appearing white matter and gray matter in each pulse
sequence and the standard deviation of the noise of the original CSF samples is
used as the noise level in all cases, as shown at process block 528, to yield the
desired results reflected at resource block 530.

[0083] Referring now to Fig. 8, the organization flow of the method that
determines maximum enhancement level is shown. Its operation is similar to that of
the other automated sample point finding methods, although, in some ways
moderately simpler in that, as with the other methods, this method leverages simple
but reliable a priori knowledge. In this case, the knowledge that serves as a
foundation for the determination of maximum enhancement level is includes the fact
that there are a relatively large number of voxels which enhance in a T1-Post image
and that enhancing regions are, by definition, the brightest voxels in a T1-Post
image. It should be noted that these enhancing regions, include extra-cranial soft
tissues, dura, if it enhances, blood vessels, and the like. These regions, even
though not neurological white matter themselves, possess intensities that are
representative of the maximum degree to which white matter will enhance, as the
blood brain barrier breaks down. As indicated at resource block 600, the method
uses the intensity of these normal tissues in T1-Post images as the basis for
computing the maximum enhancement level, which means that this sub-routine can
reliably compute maximum enhancement level, even when no frankly enhancing
white matter tissue exists in the image.

[0084] The method for determining maximum enhancement intensity requires
only a T1-Post volume and it is not important from the perspective of this method
whether or not the volume was acquired with magnetization transfer suppression
enabled. As indicated at process block 602, the method involves computing a non-
air mask from the T1-Post volume. This is done using the same process as
described above. Next, the number of voxels in the non-air mask is computed at
process block 604. Following this, at process block 606, a histogram is constructed
from the intensities of the non-air voxels. Finally, the histogram is scanned from
highest intensity to lowest intensity until it locates a bin whose height equals or
exceeds the number of non-air voxels in the image divided by 1044, as indicated at
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process block 608. The intensity of this bin is used as the maximum enhancement
intensity, as indicated at resource block 610.

[0085] Accordingly, the present invention takes an entirely different approach to
prior art analyzing systems. Specifically, the approach described here uses the
knowledge that white matter lesions, in the extreme, always come to resemble CSF,
and thus CSF, which is always present in MR images of the brain, serves as a useful
and consistent end-point for lesion. Likewise, the present method is able to
determine a useful measure of maximum enhancement from the images, in a way
that is very consistent and reliable, even when there are no frank enhancing lesions,
because it is able to base the measure of maximum enhancement on the
enhancement of normal tissues, which are always present. The present method also
abandons the idea of enhancing tissue as a unique tissue with its own multispectral
imaging signature. This enhancing tissue may be present in a variety of ways across
pulse sequences other than the T1-Post Gadolinium (Gd) image. For example, fully
enhancing tissue may be very abnormal in T2, or it may be only slightly abnormal in
T2, and the like. Likewise, enhancing tissue may be nearly normal appearing in T1,
or it may be very T1 hypointense. Thus, in contrast with previous approaches,
enhancement is considered to be special with respect to other pure tissues, in that
its description is uni-spectral. Another difference between this method and prior
methods is that the present method does not attempt to characterize the imaging
characteristics of necrosis. Although necrosis is real, its actual cytological
manifestations are too variable to be characterized by anything like a single unique
centroid in imaging intensity feature space, and therefore it has been omitted.

[0086] The automated sample points generator provides input to the lesion finder
and change detector algorithms described below. Certainly there are many other
procedures that either use or could benefit from automatic sample point generation.
One example is classification algorithms. Other less obvious examples include
registration, inhomogeneity correction, anatomical atlas based segmentation, finite
element model development, and the like. Particularly since the present method
uses a priori knowledge that is as limited as possible, it should find application very
early in any processing pipeline, and thus can serve as an important source of
knowledge for other subsequent, higher-level stages of processing.

[0087] Lesion Identification

[0088] Referring now to Fig. 9, the high-level architecture of the lesion
identification and quantification process is shown. The process resembles a
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classification algorithm in many respects; however, it has several important
differences. The first and most important distinguishing feature is that it is not
general-purpose.  Rather, it is designed specifically to accurately quantify
membership in white matter lesions of the brain in magnetic resonance imaging
(MRI) data. Focusing on this domain in particular, allows a level of performance that
would be unachievable using general-purpose algorithms. Another feature that
distinguishes this method from standard classification algorithms, is that it is
intentionally focused on accurately quantifying partial membership and partial
character mixtures, instead of identifying voxels which contain pure tissues.

[0089] As shown in resource block 700, the procedure uses as input T1, T1 Post
Gd, and T2 volumes. Additionally, if the T1-Post Gd volume which is supplied has
been acquired with magnetization transfer suppression turned on, then a T1 volume
acquired with magnetization transfer suppression but without Gd should also be
supplied, labeled ‘MTS’ in Fig. 9. Finally, a proton density (PD) volume may be
supplied, which facilitates the fully automated tissue sample generator as described
above in which the system automatically determines the normal-appearing white
matter samples, CSF samples and maximum enhancement level instead of having
the user supply these samples. Using the samples, the method performs
inhomogeneity correction at process block 702 and registration at process block 704,
in a manner described above. Also, in a manner described above, a parenchyma
mask may be automatically generated at block 706 or a user may supply NAWM
samples from anterior corpus callosum at process block 708. In any case, at
process block 710, samples of CSF, if applicable, NAWM, and maximum
enhancement are determined. Then, at process block 712 lesion and enhancing
lesion memberships are computed on a voxel-by-voxel basis by a process that is
described further, below. The process finally applies a noise reduction sub-algorithm
at process block 714, which also described below, to identify which regions actually
exhibit abnormal character, as opposed to exhibiting abnormal character only due to
noise, and yields the desired output 716.

[0090] Referring now to Figs. 10 and 11, the method used to compute T1-T2
abnormality can be explained. This step is first premised upon the observation that
T1, for example, T1-hypointensity and T2, for example, T2 hyperintensity are
exhibited in unison. Second, it is premised on the fact that T1-T2 abnormal white
matter transitions in such a way that the more abnormal it becomes, the more its T1-
T2 profile comes to resemble the T1-T2 profile of CSF. In some cases, the tissue
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first acquires T2 hyperintensity and only after it has acquired some degree of T2
hyperintensity does it begin to acquire T1 hypointensity and T2 hyperintensity
concurrently. In other cases, the tissue acquires T1 hypointensity and T2
hyperintensity at the same time, from the first stages of abnormality acquisition. In
all cases, white matter in all stages of normality and abnormality may be seen to
exhibit T1-T2 profiles within the gray polygon shown in Fig. 10. In this figure, the
location of the NAWM and CSF centroids are indicated by small circles. Ideally, the
T1-T2 profile of abnormal white matter would lie within the portion of this polygon to
the left of the NAWM centroid; however, blood can elevate the T1 value of white
matter voxels in some cases and cause them to lie within the region of the polygon
to the right of the NAWM centroid. The method first identifies the voxels which lie
within the polygon. The method then computes the Euclidean distance of each such
voxel in T1-T2 feature space from the NAWM and CSF centroids, as shown in Fig.
11. Finally, the method uses these distances to compute the membership of the
voxels in the class “lesion” using the following equation.

Distorronawm _ (2)
Distorocsr + Distaronawm

membership .., =

[0091] This method uses the automatically determined sample points to
normalize the intensities, which provides a high degree of robustness against
changes in acquisition parameters, scanner, and the like. The memberships
computed are therefore quantitative, and reproducible. The method makes use of
specific knowledge regarding white matter lesions, such as that T1 and T2 intensity
signatures of white matter lesions act in unison. More specifically, as a region of
white matter initially becomes abnormal, it exhibits T2 hyperintensity. T1
hypointensity may or may not accompany this initial T2 hyperintensity. As the T2
hyperintensity accumulates, T1 hypointensity begins to accumulate more rapidly. As
mentioned, above, at the extreme limit of abnormality, white matter comes to
resemble CSF in terms of its T1-T2 intensity profile. Furthermore, in the case of
partial voluming, that is, the boundary between two regions of pure tissue transects a
given voxel, the fractional membership in each of the tissues is equal to the fractional
position along the line connecting the centroids of the two tissues: CSF and NAWM,
in T1-T2 feature space. In the case of partial character, there is some deviation to
the right of the line connecting the two centroids, although the feature space
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fractional distance approach still provides a useful methodology for computing
membership.

[0092] Referring now to Fig. 12, the method used to quantify membership in the
class, “enhancing lesion,” is demonstrated. First, the method uses the knowledge
that T1, and T1-Post are the same pulse sequence, aithough they may possess
different acquisition parameters, with the principal difference between the two
images being that prior to acquisition of the T1-Post sequence, an intravenous
contrast medium is administered, which causes regions of blood brain barrier (BBB)
breakdown to exhibit heightened image intensity in the T1-Post image. The intensity
of non-enhancing regions, that is, regions where the BBB is not in the process of
breaking down, will therefore always lie along the line crossing the CSF and NAWM
centroids in T1-T1-Post feature space. On the other hand, the intensity of voxels
representing regions where the BBB is in a state of breakdown should lie above this
line in T1-T1-Post feature space. In Fig. 12, the CSF and NAWM centroids are
shown as small circles, and the line crossing these centroids is additionally shown.
Furthermore, there is a maximal intensity which may be observed in the T1-Post
sequence due to the presence of contrast medium within the space represented by a
voxel. Within the range of contrast concentrations likely to be seen in enhancing
tissue, the intensity in the T1-Post sequence of some voxel representing white
matter is expected to lie either on the line crossing the CSF and NAWM centroids,
for no enhancement. Above the line but below the horizontal “Max-Enh” line shown
in the Fig. 12, for some degree of enhancement, or along the “Max-Enh” line, for
maximal enhancement.

[0093] The degree of enhancement is quantified as if it were a linear effect. That
is, the fractional distance along the line connecting the point’s vertical projection on
the CSF-NAWM line, and the point's vertical projection on the “Max-Enh” line,
provide that voxel's membership in the class, “enhancing lesion.” This process is
shown graphically in Figs. 12-15. In Fig. 13 a trial point is shown by a small circle in
the interior of the gray region. In order to quantify the degree of enhancement
exhibited by the voxel, the vaxel is first projected vertically on the CSF-NAWM line,
as shown in Fig. 14. This provides the intensity in the T1-Post sequence that would
be observed if the voxel exhibited no enhancement. The fractional distance of the
point in question along the vertical line connecting this projection and the “Max-Enh”
line is shown graphically in Fig. 15. The vertical distance to the “Max-Enh” line, and
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the CSF-NAWM line are used to compute the voxel's membership in the enhancing
lesion class using the following equation.

Distory, p o
Distorromaxenn + DiStpro pr o

(3)

mem berSh Ip EnhancinglLesion =

[0094] It should be observed that the trial voxel shown in Fig. 12-15 exhibits some
degree of T1 hypointensity. This is clear from the fact that the trial point lies to the
left of the NAWM centroid in the figures. However, because the method uses the T1
sequence as a basis against which the T1-Post intensity is judged, this hypointensity
has no effect on the computation of enhancing lesion membership of that voxel. It
should be noted, furthermore, that this normalization method works for elevated T1
intensities, as well. Blood in the region represented by a voxel does not have any
effect upon the computed membership of the voxel in the class “enhancing lesion,”
for the same reason. It should further be noted that if the T1-Post Gd image were
acquired with magnetization transfer suppression enabled, then the T1 sequence on
the X-axis of Figs. 12-15 would be substituted with a T1 sequence also acquired with
magnetization transfer suppression enabled. In this way, mildly bright regions, due
to T2 lesions and not due to enhancement, would still lie along the line connecting
the CSF NAWM line, but above and to the right of the NAWM centroid, and would be
correctly quantified as not possessing any enhancement.

[0095] Lesion Change Detection

[0096] The lesion change detection process includes a pipeline of steps shown in
Fig. 16. Most of the elements in this figure include pre-processing steps described
above. As indicated at process block 800, the process begins with the acquisition of
images in a manner consistent with the objective, in this case change detection.
This means, for example, that intravenous (IV) contrast should be administered in
both acquisitions at the same time relative to image acquisition, or at a time during
the image acquisition such that any differences between the acquisitions do not
impact the appearance of the contrast in the images. Other acquisition-related
issues include: reducing the slice thickness, in particular, to limit the number of
tissues which might be included in individual voxels; eliminating inter-slice gaps
because the gaps correspond to regions of the brain where there is no information
from which to compute changes, and more importantly, the presence of inter-slice
gaps make it impossible to correct for registration errors in the through-slice
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direction, performing three dimensional (3D) acquisition; acquiring the images using
an equivalent scanner, scanner software, pulse sequences, and acquisition
parameters; correcting for decay of gradient coils; correcting for inhomogeneities at
the time of acquisition to the greatest degree possible; and acquiring the images as
close to spatially registered as possible, since frequently registration algorithms
introduce artifacts in proportion with the degree of difference between the images
being registered.

[0097] After the images have been acquired, intensity inhomogeneities are
generally still present in the images. As described above, the present system
attempts to resolve these using, for example, the N3 software package at process
block 802. The images are then spatially registered to establish a common spatial
frame-work at process block 804. The system uses a hybrid algorithm consisting of
off-the-shelf registration algorithms developed by other groups, but assembled by a
programmer in our group. At process block 806, a parenchyma mask is then
generated using a tool called “Brain Extraction Tool” (BET). Following this, the
actual comparison between the acquisitions is performed at process block 808.
Finally, images are presented as a color-coded change map superimposed upon the
patient's anatomical images at process block 810. This change map shows what is
changing, where, in what way by the color, and by how much by the intensity of the
color. Additional quantitative summaries of the changes that are present are
generated. These may used to provide a global summary of the changes that are
taking place. Additionally, in the past, relatively simple heuristics and mathematical
rules have been used to process the output of the change detection algorithm, in
order to differentiate between stable and progressing cases. Such approaches have
shown themselves to be extremely effective and useful.

[0098] Referring now to Fig. 17, the lesion change detection method described
above includes three primary steps. First, an automated sample points algorithm,
which automatically defines samples of normal-appearing white matter (NAWM),
cerebrospinal fluid (CSF), and gray matter is performed at process block 812 and will
be described in detail below. Additionally, the automated sample points method
automatically generates a mathematical description of the lesion and enhancing
lesion imaging properties in the particular images. The method makes this possible
even when there are no frank examples of lesion or enhancing lesion in the images.
Next, at process block 814, the system measures of change are computed on a
voxel-by-voxel basis. These are expressed in normalized A membership form.
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Finally, at process block 816, a noise reduction step is performed as will be
described in detail below. Due to noise and other factors, virtually all voxels will
demonstrate changes of some sort. Only changes due to the underlying disease
process are of interest, however, and therefore the purpose of this step is to
separate disease related changes from non disease related changes. In order to do
this, the method automatically identifies strongly spatially connected regions that are
changing in the same way, and then applies a kind of test of “significance,” such that
changes small in magnitude but of large spatial extent may be identified as
significant, and likewise changes small in spatial extent but large in magnitude may
also be correctly identified as real.

[0099] In order to facilitate real-world application of the steps shown in Fig. 16, an
application was created that unifies all of the processing steps, into a single very
user-friendly system, and that additionally facilitates interaction with the output of the
change detection algorithm using the output of the change detector algorithms and
some additional features. A screen capture from the output screen of this application
is shown in Fig. 18. In addition to providing a user-friendly mechanism for the user
to select images upon which to perform change detection, and actually running each
of the steps shown in Fig. 16, the change detection application facilitates validation
of the output of each of the pre-processing steps shown in Fig. 16. For example, the
registration algorithm we use is quite reliable, although in some instances it fails and
must be re-run. The change detection application, therefore, provides a mechanism
for the user to inspect the output of the registration algorithm, and allows the user to
re-run the registration algorithm in the rare event that the results are unsatisfactory.
Correspondingly, the change detection application allows the user to inspect the
output of the automatic parenchyma mask generation program, and to edit the mask
as appropriate. The output screen of the change detector application, an example of
which is shown in Fig. 18, provides two modes of color change map overlay, which
may be turned on and off. It provides linked cursors, so that the user may identify
spatial correspondence between pulse sequences and the color change map and it
provides a “flicker mode,” so that the user may view a rapid alternation between
baseline and follow-up examinations.

[00100] There are a number of important differences between this method and
prior methods. First, prior automated sample point algorithms are only “maximally”
automated, requiring the manual provision of samples of normal appearing white
matter, while the current algorithm is automated, not requiring that any samples be
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supplied by the user. This is a very important point, considering the time involved in
defining samples, the variability that manual definition of these samples introduces,
and the training issues involved. Second, prior algorithms often require the use of a
specific imaging protocol. Generally, requiring that images be acquired with a very
specific protocol is both unnecessarily restrictive, and unrealistic. The present
method is extremely flexible with regard to acquisition parameters. Third, prior
algorithms are only applicable to brain tumors, while the present method is
applicable to multiple sclerosis, metastatic brain tumors from non-brain primaries,
and other forms of white matter pathology. Fourth, prior algorithms use a fluid
attenuation by inversion recovery (FLAIR) sequence whereas the current method
uses T2, instead. Use of T2 instead of FLAIR makes the algorithm more sensitive,
because T2 is monotonic with regard to lesion development. Generally speaking,
the more pathological a region is, the higher its intensity in T2, which contrasts with
FLAIR, where as a region of white matter becomes more abnormal, it first increases
in intensity, but then subsequently decreases, as it acquires a more fluidic character.
FLAIR additionally suffers frequently from fluid suppression artifact, a problem that
T2 is not susceptible to since it does not suppress fluid. Generally speaking, the use
of T2 in lieu of FLAIR makes the definition of lesion imaging characteristics much
more consistent, and thus makes the algorithm much more robust, that is, sensitive,
reliable, consistent, and flexible with regard to the particulars of specific image
acquisitions. Fifth, the present method uses a very different model of lesion and
enhancing lesion imaging characteristics, which is more “correct.” The approach
taken by the present method is thus more sensitive and accurate.

[00101] Object Boundary ldentification

[00102] This section describes a noise reduction method used to identify spatially
cohesive regions of signal embedded in a zero-mean field of noise. This essentially
operates in two parts. First, the method identifies strongly spatially connected
regions with values, in this case, image intensities, that are non-zero and which are
on the same side of zero, that is, all positive or all negative. Second, it compares the
mean value of each identified region with a variable threshold, to determine if the
region is “significantly” different from zero. In this way, very small spatially
connected regions may be detected if they contain sufficiently large voxel intensities,
and likewise regions with very small intensities, even below the noise floor, may be
identified if they cover a sufficiently large spatial extent. This presents a huge
advantage over simple thresholding methods, which are not applicable to detecting
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regions of signal below the noise floor, regardless of the region they cover. This is
illustrated in Figs. 19-21. Specifically, Fig. 19 shows a square object surrounded by
a background field of zero-mean noise. In this example, the CNR between the
object and its background is very low. This kind of problem is prevalent in many
contexts. As shown in Fig. 20, what is desired is to identify which voxels correspond
to the object, and to eliminate the voxels corresponding to the noisy background, as
shown. It should be noted that the image in this part is the gold standard, and is
shown for explanatory purposes. Fig. 21 is a histogram of the intensities. When the
CNR is so low that the histogram of the object and the histogram of the background
overlap extensively, it is not possible to use thresholding to separate the two. This is
a major problem in cases where very high specificity is required, such as lesion
change detection, because in order to use thresholding to completely eliminate
regions of zero-mean noise, visually obvious regions of signal would have to be
eliminated as well.

[00103] In magnetic resonance imaging, the problem of partial-voluming makes
this problem even more acute because “objects” are completely surrounded by a
layer of partial-volumed voxels, which resemble the background even more than do
the interior object voxels. These edge voxels are important to detect, just as are the
interior voxels, particularly when the objects are very small and thus the edge voxels
make up a great proportion of the total object. The purpose of the method described
in this section, is to recognize objects such as the one shown, not just by their
intensity but also by their spatial connectivity and extent.

[00104] The method is designed to detect and separate “object” voxels, from
voxels containing zero-mean noise. That is, it attempts to identify regions that
contain voxels that as a spatially-connected clump are “significantly” different from
zero, in light of the level of noise present. An “on” region would therefore contain
non-zero voxels all possessing the same sign in the volume being investigated. The
method is not limited to unsigned data; however, the method may be applied to
signed data, by searching for spatially connected regions twice: once for spatially-
connected regions possessing positive intensities, and once for spatially-connected
regions possessing negative intensities. The method operates in three dimensions,
that is, it is able to locate three dimensional spatially contiguous regions, which
improves its sensitivity compared with two dimensional algorithms, as regions of
interest in tomographic medical imaging are typically three dimensional. Unlike a
standard region-growing algorithm, the new method uses a strong spatial
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connectivity constraint. In particular, to be considered connected to a region, voxels
must have a number of nearest neighbors that also appear to be a part of the object,
and the spatial relationship of these nearest neighbors with regard to one another is
very particular. This strong spatial connectivity constraint prevents the method from
identifying long winding regions in high background noise fields. The spatial
connectivity constraint is implemented in the form of a spatial configuration lookup
table, which is generated once, in advance. Without this look-up table, the process
of enforcing strong spatial constraints would possess a great risk of being
intractable.  Although the method was designed with medical imaging, and
particularly lesion change detection, in mind, it would be equally applicable to a large
variety of fields. For example, the method would be useful within medical imaging
including fMRI, classification, and others, and outside of medical imaging including
remote sensing, astronomy, geology, and many others. The method is equally
applicable to a large variety of source data types, including MRI, CT, radar, visible
light, and the like.

[00105] Referring now to Fig. 22, the basic high level architecture of the method is
shown. First, at process block 900, the operational data structures are either built, in
the case of the simple structures, or loaded, in cases where the complexity of the
structure is too great to be constructed at each instantiation, such as the case of the
look-up table whose construction is described with respect to Figs 28 and 29. Next,
the image volume that is to be explored for regions of signal is examined at process
block 902. If regions with positive intensities are to be identified, then all voxels with
positive intensities are loaded into a doubly linked list, which is subsequently sorted
according to intensity.

[00106] A control loop is then commenced beginning at process block 904. At
each instance of this loop, the next largest voxel is selected from the doubly linked
list. At process block 906, the selected voxel coordinate is assigned a unique
number, which will be referred to as an “intermediate index.” The details and
purpose of this intermediate index are discussed below. The intermediate index is
recorded at the coordinates of the original voxel, but in a separate volume. A new
clump info descriptor is created for the voxel, and appropriate data structures are
updated. The term ‘clump’ is being used, here, to describe a strongly spatially
connected region of signal. Now, at process block 908, the neighborhood of the new
voxel is then examined, in order to determine whether the new voxel is sufficiently
strongly connected, for example, sufficiently surrounded, by its neighbors to warrant
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merging into a larger clump with them. This is the strong spatial connectivity
requirement alluded to, above. The specific details of this constraint are relatively
complicated and are extremely central to the functioning of this method. They are
described in detail below.

[00107] At process blocks 910 and 912, the voxel and its clump, as it comes to
belong to a clump, are merged with neighboring voxels and their clumps, if the
neighboring voxels belong to clumps, as allowed by the strong spatial connectivity
constraint. Furthermore, with the addition of each new voxel, the neighbors of the
new voxel are re-tested for indicated merges from their perspective, since the
addition of the new voxel may have been all that was needed to satisfy their spatial
connectivity constraint. Note that each time a merge is performed, if the contributing
clumps have already been judged to be significant, then the collective clump is also
judged to be significant. At process block 912, if the new clump has not inherited
significance from one of the clumps that contributed to its creation, the new collective
clump is tested for significance, according to the function shown in Fig. 23. It should
be underscored that once a clump has met the criteria of significance, it confers
significance on any clump to which it is subsequently merged. This means that a
small but significant region surrounded by a penumbra of very low intensity will be
collectively significant, even if the region as a whole does not meet the significance
criteria shown in Fig. 23. After this, process block 916 is reached and the main loop
returns to its beginning, and selects the next largest voxel from the list, and the
process is repeated.

[00108] The purpose of the data structure shown in Fig. 24 is to facilitate very
efficient merging of clumps, which is a task performed a very large number of times
during the execution of the main loop in Fig. 22. In addition to keeping track of
statistics for each clump, for example, number of voxels, mean of the voxel values,
and whether or not the clump has been judged to be significant, the structure is
fundamentally circular. That is, using this structure, it can be determined very rapidly
which clump a given voxel belongs to, and it can be likewise determined very rapidly
which voxels belong to a clump. Furthermore, using this structure, the process of
reassigning a list, potentially a very large list, of voxels from one clump to another is
extremely rapid. The purpose of the volume of intermediate indices and intermediate
index array, as opposed to simply using a volume of pointers, is reduced memory
utilization. A 512x512x48 volume has over 12.5 million voxels. A 512x512x144
volume has almost 38 million voxels. In any given volume to be inspected, it is likely
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that only a fraction of these will have “on” values. Based on this fact, and the likely
difference in memory space required to store an index versus a pointer, the given
approach was adopted. If memory utilization were not an issue, however, the
concept of intermediate index could be abandoned, and the volume of intermediate
indices and intermediate index array could be replaced with a volume of pointers to
clump info descriptors.

[00109] The following section describes the construction of the operational data
structures which are used to assess neighborhoods for the need for merging. Fig.
25 is a flow chart setting forth the steps of the process of constructing “snakes” that
are named simply for the fact that they wind back and forth within a 3x3x3
neighborhood. The process starts at process block 1000 by creating a binary
number, for example, having a length of 26. At decision block 1010, a check is
performed to see if the snake length includes, for example 8 “on” elements. That is,
the process confirms that the putative snake is of the correct length of 8. If not, at
decision block 1011, the process increments the binary number by adding 1 to the
least significant bit and a check is made to determine if binary number has reached
overflow. If not, the process returns to process block 1010. A check is then
performed to determine if the “on” neighbors are spatially continuous at decision
block 1012. That is, the process confirms \that it is possible to traverse all 8
elements via full-face connections. If not, the process returns to decision block
1011. Once it is determined that the “on” neighbors are spatially continuous such
that it is possible to traverse the entire snake vial full-face connections, a check is
made to determine whether the snake is sufficiently compact at decision block 1014.
Specifically, the process confirms that the number of full-face adjacencies within the
snake is greater than one less than the length of the snake, which forces putative
snakes to wind back on themselves at least once, and prevents purely linear snakes.
If not, the process reverts to decision block 1011. On the other hand, if the number
of intra-snake, full-face adjacentcies is greater than the snake length less one, the
new snake is added to the list of valid snakes at process block 1016 and the process
loops back to decision block 1011. That is, if the snake passes all of the above
tests, it is seen as valid and is added to the list of all valid snakes and a center voxel
having a set of “on” neighbors with the given configuration will be seen as
possessing sufficient spatial connectivity with that group of neighbors to warrant
merging with them. The above-described process continues until the binary number
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reaches overflow at decision block 1011, and then the process ends at process block
1020.

[00110] By convention, the neighbors in a 3x3x3 neighborhood have been
numbered from O to 25, as shown in Fig. 26. Thus, the state of an entire 3x3x3
neighborhood can be captured by a 26-bit number. If the numbers from the array of
Fig. 26 represent the bit position in this 26-bit number, then a 1 may be written into
each corresponding bit where the voxel is “on,” and a 0 may be written into each
corresponding bit where the voxel is “off.” For example, voxel numbers 0, 1, 2, 3, 4,
6, 7, and 8 are on, and the rest are all off. The 26-bit number describing this
neighborhood is shown in the list of Fig. 26 arranged below the array of voxels.
Snakes are defined to be the basic unit of spatial connectedness. That is, if all the
neighbor voxels of some hypothetical center voxel, defined by a given snake are
“on,” then the given center voxel is seen as possessing sufficient spatial connectivity
to the voxels of the snake to warrant merging with it. That is, there is seen to be
sufficient connectivity between the center voxel, and the neighbor voxels within the
given snake, that they should be viewed as belonging to the same clump. Snakes
are defined by their length (this is configurable, but the present embodiment defines
the length of a snake to be 8), by their connectivity (that is, all elements of a snake
must be connected to the snake by at least one full-face connection), and by their
compactness (snakes are not allowed to be linear, but must wind back on
themselves at least once — the degree of the required compactness is configurable).
[00111] It is also possible to use the list of valid snakes to build what is called a
“rapid neighborhood assessor.” That is, given a hypothetical center voxel, and some
neighborhood configuration, it is possible to construct a data structure to allow the
determination of which voxels the hypothetical center voxel should be merged with,
in essentially one step, that is, instead of sequentially examining each snake. The
process of using the list of snakes to construct a rapid neighborhood assessor is
shown in Fig. 27. This process includes exhaustively going through every possible
neighborhood configuration, determining which snakes are completely contained by
each given neighborhood configuration, and recording for every possible
neighborhood configuration which neighbors should be merged. The rapid
neighborhood assessor, then, includes a list of neighborhood configurations, each
expressed as the decimal equivalent of their 26-bit number representation,
accompanied by a list of all neighbors with which a hypothetical center voxel should
be merged, given the specified neighborhood configuration.
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[00112] Fig. 28 shows graphically the process of applying the rapid neighborhood
assessor to a hypothetical neighborhood configuration. Referring to Figs. 27 and 28,
the process begins by creating binary numbers representing possible neighborhood
configurations at process block 1100. The user may construct a binary number from
any given neighborhood configuration and use the binary number as an index into a
very large array. Each element of this array indicates which neighbors the center
voxel should be merged with, given all the possible snakes which might fit into the
“on” neighbors (if any). At process block 1110, an iterative process of analyzing the
snakes begins by examining the first snake in the list of valid snakes. At decision
block 1112, a check is made to determine if the current snake is completely
contained by the current neighborhood configuration. If not, the next snake is
selected at decision bock 114 and the process loops back to decision block 1112.
Once a snake that is completely contained by the current neighborhood configuration
is selected, at process block 1116, all of the elements of the current snake are added
to the list of neighbors to merge for this neighborhood configuration and the next
snake is selected at decision block 1114. This process continues until, at decision
block 1114, the no more snakes remain. At this point, at decision block 1118, a
binary neighborhood description counter is incremented and a check is made to
determine if the binary neighborhood description has reached overflow. If not, the
process loops back and reiterates until overflow is reached and the process ends at
process block 1120.

[00113] The neighborhood configuration, includes “on” and “off" voxels, for
example, the one shown in the voxel array in Fig. 28, is converted to its 26-bit binary
representation, such as represented in below the voxel array in Fig. 28. The 26-bit
binary number defining the neighborhood configuration is then interpreted as a
decimal number, and used as the index into the rapid neighborhood assessor. The
given index into the rapid neighborhood assessor supplies the numbered list of
neighbors which the given center voxel should be merged with, given the specified
neighborhood configuration. The process of constructing the rapid neighborhood
assessor is extremely computationally intensive; however this needs only to be done
once, for a given definition of what a snake is, and subsequently the rapid
neighborhood assessor may be loaded from the disk for all subsequent instantiations
of the algorithm. Although the rapid neighborhood assessor structure is quite large
in terms of its memory utilization requirements, it produces a profound improvement
in the speed of execution of the overall algorithm.
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[00114] The method is described in the context of reduction of noise/identification
of “significant” regions within change detection brain MRI images. The method's
ability to identify such regions within noise fields, particularly regions whose
amplitude lies below the level of the noise floor, presents possible applications far
beyond this domain. The method should, in fact, find application in a large number
of image processing fields. Specifically it should find application in any case where
subtle regions of signal, which may be below the noise floor but which exhibit spatial
connectedness, exist. These include a potential unlimited number of applications, of
course, including a range of areas of change detection, such as medical analysis,
remote sensing, astronomy, geology, surveillance, classification, and the like. There
are many potential applications for the method within medical imaging, but beyond
change detection, for example, the algorithm has been used extensively to aid in
automated sample point definition, and in lesion finding as described above.
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CLAIMS

1. A system for detecting changes in a series of images medical

comprising:

an image acquisition system configured to acquire a series of medical
images of a region of interest (ROI) in a subject;

an automated sample point generator configured to review the series of
medical images and automatically detect portions of the series of medical images
indicative of a material expected to be in the ROl and designate sample points
therefrom;

a normalizer configured to utilize the sample points to normalize
intensities within the series of medical images;

an image registration system configured to utilize the sample points to
automatically register the series of images such that common areas within the ROI of

the subject are aligned; and
a change tracker configured to automatically identify changes between

the series of medical images and display an indication of the identified changes.

2. The system of claim 1 wherein the automated sample point generator
is further configured to create a mathematical description of properties of
abnormalities appearing in a particular image in the series of medical images.

3. The system of claim 2 wherein the change tracker is further configured
to utilize the mathematical description of the properties of abnormalities appearing in
a particular image to further identify changes between the images.

4. The system of claim 2 wherein the abnormalities include lesions and

enhancing lesions.

5. The system of claim 1 further comprising a mask generator configured
to generate a parenchyma mask from the registered images and wherein the change
tracker is further configured to utilize the parenchyma mask to identify changes
between the series of medical images.
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6. The system of claim 1 wherein the normalizer utilizes a mathematical
mode! of partial character/partial volume effects to normalize intensities within the

series of medical images.

7. The system of claim 1 further comprising a significant region detector
configured to automatically separates the regions of actual signal from background
noise in the series of medical images.

8. The system of claim 1 wherein the series of medical images include at

least one of MRI images and CT images.

9. The system of claim 1 wherein the material indicative of a material
expected to be in the ROI includes cerebral spinal fluid (CSF), white matter, gray

matter, bone, and lesions.

10. A method for detecting changes in a series of images medical

comprising the steps of:
a) acquiring a series of medical images of a region of interest (ROI) in

a subject;
b) automatically reviewing the series of medical images to detect

portions of the series of medical images indicative of a material expected to be in the

ROI and designate sample points therefrom;
c) normalizing intensities within the series of medical images using the

sample points;
d) automatically registering the series of images such that common
areas within the ROl of the subject are aligned using the sample points as

references; and
e) indicating changes between the series of medical images.

11. The method of claim 10 wherein step b) includes creating a
mathematical description of properties of abnormalities appearing in a particular

image in the series of medical images.
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12. The method of claim 10 wherein step b) further includes utilizing the
mathematical description of the properties of lesions and enhancing lesions

appearing in a particular image to further identify changes between the images.

13. The method of claim 10 wherein step d) further includes generating a
parenchyma mask from the registered images and wherein step €) includes utilizing

the parenchyma mask to identify changes between the series of medical images.

14. The method of claim 10 wherein step c) includes utilizing a

mathematical model of partial character/partial volume effects.

15. A system for detecting changes in a series of images medical
comprising:

an automated sample point generator configured to review a series of

medical images and automatically detect portions of the series of medical images

indicative of a material expected to be in a ROI included in each of the series of

medical images and designate sample points within the series of medical images

therefrom;
a normalizer configured to utilize the sample points to normalize

intensities within the series of medical images;
a lesion finder configured to identify potential lesions and enhancing

lesions within the series of medical images;
an image registration system configured to utilize the sample points to

automatically register the series of images such that common areas within the ROI of

the subject are aligned; and
a change tracker configured to automatically identify changes between

the series of medical images and display an indication of the identified changes.

16. The system of claim 15 further comprising a noise reducer configured
to identify spatially cohesive regions in the series of medical images embedded in a

zero-mean field of noise.
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