按照专利合作条约所公布的国际申请

世界知识产权组织

国际局

国际公布号

WO 2018/099416 A1

国际申请号：PCT/CN2017/13785

申请日期：2017年11月30日

申请国家：中国

申请人：东莞东阳光科技有限公司

发明人：康小林，李德珊，刘敏，曹立，李建霖

发明名称：偶氮化合物、聚合物及其制备方法及用途

摘要：本发明提供了一种偶氮化合物、聚合物及其制备方法及用途。该偶氮化合物的结构式如式(I)所示，其中，R1、R2、R3和m具有说明书所描述的含义。该偶氮化合物具有较好的拦截蓝光性能，且上述化合物为可聚合的偶氮化合物，不易在聚合物中发生迁移扩散。
偶氮化合物、聚合物和它们的制备方法及用途

技术领域

本发明涉及眼部医疗器件领域，具体地，涉及一种偶氮化合物、由所述偶氮化合物聚合而成的聚合物以及它们的制备方法和用途。

背景技术

近年来，随着电子显示装置的普及以及发展，可见光中的蓝光部分对人眼，特别是视网膜的损伤引起了越来越多的重视。研究显示，可见光中的蓝光能够对人眼，特别是视网膜造成损害，导致视力下降甚至失明。因此出现了在眼镜镜片等眼部医疗器件中，添加能够拦截蓝光的贴膜或能够拦截蓝光的成分，防止蓝光对人眼造成伤害。

然而，目前具有蓝光拦截功能的眼部医疗器件及制备眼部医疗器件的聚合物仍有待改进。

发明内容

本申请是基于发明人对以下事实和问题的发现和认识作出的：

虽然目前具有蓝光拦截功能的眼镜镜片较为普遍，但在诸如人工晶体等直接与人眼接触的眼部医疗器件中，具有蓝光拦截功能的产品仍较为少见。发明人经过深入研究发现，这主要是由于蓝光的拦截功能，普遍是通过在眼部医疗器件中添加具有吸收蓝光功能的黄色染料而实现的。而上述直接与人眼接触的眼部医疗器件中，要求添加的黄色染料不能够在眼部医疗器件中发生扩散以及迁移，也即是说，需要保证添加的黄色染料稳定存在于上述眼部医疗器件中，不会进入人眼，以便保证上述眼部医疗器件的安全性能。而能够满足上述要求的黄色染料十分有限，因此限制了具有蓝光拦截功能的眼部医疗器件的发展。

本发明旨在至少在一定程度上解决上述相关技术中的技术问题之一。为此，本发明提出一种偶氮化合物，该偶氮化合物具有较好的拦截蓝光性能，且上述化合物为可聚合的偶氮化合物，不易在聚合物中发生迁移扩散，因此可以作为人工晶体等眼部医疗器件中的蓝光吸收剂使用。

本发明还提出一种聚合物，该聚合物含有上述偶氮化合物，因此具有拦截蓝光的功能。
生扩散迁移。

本发明还提出本发明所述聚合物在制备眼部医疗器件中的用途。利用上述聚合物制备眼部医疗器件，可以在不影响该眼部医疗器件的使用功能的前提下，实现蓝光的拦截功能，并具有较好的安全性。

此外，本发明还提出制备本发明所述聚合物的方法。

附图说明

图 1 显示了本发明聚合物 A3、A5、A10 与 A0 的光谱透过率对比图；
图 2 显示了本发明聚合物 A4、A8、All 与 A0 的光谱透过率对比图；
图 3 显示了本发明聚合物 A1、A6、A9 与 A0 的光谱透过率对比图；
图 4 显示了本发明聚合物 A4 与 All 萃取前后光谱透过率对比图；以及
图 5 显示了本发明聚合物 A1、A2、A4、A6、A9、All 萃取前后在 450nm 处光谱吸收损失率对比图。

本发明的详细说明

定义和一般术语

下面详细描述本发明的实施例，所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的，旨在用于解释本发明，而不能理解为对本发明的限制。

除非另外说明，本发明所使用的所有科技术语具有与本发明所属领域技术人员通常理解相同的含义。本发明涉及的所有专利和公开出版物通过引用方式整体并入本发明。术语“包含”或“包括”为开放式表达，即包括本发明所指明的内容，但并不排除其他方面的内容。在本发明中，无论是否使用“大约”或“约”等字眼，所有在此公开了的数字均为近似值。每一个数字的数值有可能会出现 10% 以上的差异或者本领域人员认为的合理的差异，如 1%、2%、3%、4% 或 5% 的差异。

在本发明中，本发明所提出的偶氮化合物具有式 (I) 或式 (I) 所示的通式，也包括符合式 (la) 或式 (I) 所示通式化合物的立体异构体或互变异构体。“立体异构体”是指具有相同化学构造，但原子或基团在空间上排列方式不同的化合物。立体异构体包括对映异构体、非对映异构体、构象异构体（旋转变异构体）、几何异构体（顺/反）异构体以及阻变异构体等。

所描述的立体化学定义和规则。

许多有机化合物以光学活性形式存在，即它们具有使平面偏振光的平面发生旋转的能力。在描述光学活性化合物时，使用前缀 D 和 L，或 R 和 S 来表示分子关于其一个或多个手性中心的绝对构型。前缀 d 和 1 或 (+) 和 (-) 是用于指定化合物所致平面偏振光旋转的符号，其中 (+) 或 1 表示化合物是左旋的。前缀为 (+) 或 d 的化合物是右旋的。一种具体的立体异构体是对映异构体，这种异构体的混合物称作对映异构体混合物。对映异构体的 50:50 混合物称为外消旋混合物或外消旋体，当在化学反应或过程中没有立体选择性或立体特异性时，可出现这种情况。

本发明公开化合物的任何不对称原子（例如，碳等）都可以以外消旋或对映体富集的形式存在，例如 (R)-、(S)-或 (R, S)-构型形式存在。在某些实施方案中，各不对称原子在 (R)- 或 (S)-构型方面具有至少 50% 对映体过量，至少 60% 对映体过量，至少 70% 对映体过量，至少 80% 对映体过量，至少 90% 对映体过量，至少 95% 对映体过量，或至少 99% 对映体过量。

依据起始物料和方法的选择，本发明化合物可以以可能的的异构体中的一个或它们的混合物，例如外消旋体和非对应异构体混合物（这取决于不对称碳原子的数量）的形式存在。光学活性的 (R)-或 (S)- 异构体可使用手性合成子或手性试剂制备，或使用常规技术拆分。如果化合物含有一个双键，取代基可能为 E 或 Z 构型；如果化合物中含有二取代的环烷基，环烷基的取代基可能有顺式或反式构型。

所得的任何立体异构体的混合物可以依据组分物理化学性质上的差异被分离成纯的或基本纯的几何异构体，对映异构体，非对映异构体，例如，通过色谱法和/或分步结晶法。

术语“互变异构体”或“互变异构形式”是指具有不同能量的可通过低能量（low energy
在本发明中，术语“蓝光”是指波长范围在400-550nm的可见光，“拦截蓝光”、“吸收蓝光”等术语指当含有蓝光的可见光，由本发明提出的偶氮化合物或聚合物等物质构成的材料表面一侧入射并穿过该材料时，在材料另一侧表面的出射光中蓝光的光强较入射光中蓝光的光强相比具有明显的降低，甚至出射光中不包含蓝光。本发明中“室温”指的是在进行合成、制备等过程中，无需额外进行冷却或是加热处理，通过将诸如反应液、混合液等置于室内环境中一段时间之后，可以达到的温度。例如，在一些实施例中，“室温”温度由大约10摄氏度到大约40摄氏度。在一些实施例中，“室温”指的是温度由大约20摄氏度到大约30摄氏度；在另外一些实施例中，“室温”指的是20摄氏度，22.5摄氏度，25摄氏度，27.5摄氏度等等。

在本发明中，术语“任选”或“任选地”是指随后描述的事件或形状可以但不一定出现，并且该描述包括其中所述事件或形状出现的情况以及其中它不出现的情况。例如，“任选取代的亚烷基”是指亚烷基可不被任何取代基所取代，或被烷基、卤素、硝基、氰基、醛基、氨基、烷氧基、1-2个烷基、1-4个烷氧基等取代基所取代。

在本说明书中，本发明公开化合物的取代基按照基团种类或范围公开。特别指出，本发明包括这些基团种类和范围的各个成员的每一个独立的次级组合。例如，术语“C₁-C₆烷基”特别指独立公开的甲基、乙基、C₃烷基、C₄烷基、C₅烷基和C₆烷基。

术语“烷基”或“烷基团”，表示饱和的直链或支链烃基团。在实施方案中，烷基团含有1-20个碳原子；在另一实施方案中，烷基团含有1-12个碳原子；在另一实施方案中，烷基团含有1-8个碳原子；在另一实施方案中，烷基团含有1-6个碳原子；在另一实施方案中，烷基团含有1-3个碳原子。烷基团的实例包含，但不限于，甲基（Me、-CH₃），乙基（Et、-CH₂CH₃），正丙基（“-Pr、-CH₂CH₂CH₃），异丙基（“-iPr、-CH(CH₃)₂），正丁基（“-Bu、-CH₂CH₂CH₂CH₃），异丁基（“-iBu、-CH₂CH(CH₃)₂），仲丁基（“s-Bu、-CH(CH₃)₂CH₃），叔丁基（“t-Bu、-C(CH₃)₃），正戊基（“-CH₂CH₂CH₂CH₂CH₃），2-戊基
(-CH(CH₃)CH₂CH₂CH₃), 3-戊基 (-CH(CH₂CH₃)₂), 2-甲基-2-丁基 (-C(CH₃)₂CH₂CH₃), 3-甲基-2-丁基 (-CH₂CH(CH₃)CH₂CH₃), 正己基 (-CH₂CH₂CH₂CH₂CH₂CH₃), 2-己基 (-CH(CH₃)CH₂CH₂CH₂CH₃), 3-己基 (-CH(CH₂CH₃)CH₂CH₂CH₃), 2-甲基-2-戊基 (-CH₂(CH₃)CH₂CH₂CH₂CH₃), 3-甲基-2-戊基 (-CH₂(CH₃)CH₂CH₂CH₂CH₃), 4-甲基-2-戊基 (-CH₂(CH₃)CH₂CH₂CH₂CH₃), 3-甲基-2-戊基 (-CH₂(CH₃)CH₂CH₂CH₂CH₃), 2-甲基-3-戊基 (-CH₃CH(CH₃)CH₂CH₂CH₃), 2,3-二甲基-2-丁基 (-C(CH₃)₂CH(CH₃)₂), 3,3-二甲基-2-丁基 (-CH₂(CH₃)C(CH₃)₂), 正庚基, 正辛基, 等等。

术语"亚烷基"表示从饱和的直链或支链经中去掉两个氢原子所得的饱和的二价烃基基团。在另一实施方案中，亚烷基基团含有 1-12 个碳原子。在另一实施方案中，亚烷基基团含有 1-6 个碳原子；在另一实施方案中，亚烷基基团含有 1-4 个碳原子；在另一实施方案中，亚烷基基团含有 1-3 个碳原子；在另一实施方案中，亚烷基基团含有 1-2 个碳原子。非限制性的实例包括亚甲基 (-CH₂), 亚乙基 (-CH₂CH₂), 亚丙基 (-CH(CH₃)CH₂) 等等。

术语"亚胺基"和"亚杂烷基"是指亚烷基和亚烷基链中可以插入一个或多个 0、N、S 等杂原子，和/或，其中任选地一个或多个-CH₂被-NH-、-C(=O)-、-S(=O)-、-S(=O)₂ 等基团替代，其中亚烷基和亚胺基链具有如本发明所述的含义。除非另外详细说明，亚烷基基团或亚杂烷基基团含有 1-12 个碳原子，一些实施方案是，亚烷基基团含有 1-10 个碳原子，另外一些实施方案是，亚烷基基团含有 1-5 个碳原子，另外一些实施方案是，亚烷基基团含有 1-4 个碳原子。这样的实例包括，但并不限于，-CH₂-、-CH₂-CH₂-、C(CH₃)₂-0^-、-C(CH₃)₃(OH)-0^-、-CH(CH₃)₂-0^-、-C(CH₃)₃-0-、-C(CH₃)₂-O-CH₂-、-C(CH₃)₂-CH₂-、-C(CH₃)₀-NH-2^-、-CH₂-NH-CH₂-, -C(CH₃)₀-NH-CH₂-, -C(CH₃)₂-OH-2^-、-C(CH₃)₀-NH-CH₂-、-C(CH₃)₀-OH-2^-、-C(CH₃)₀-NH-CH₂-、-C(CH₃)₀-OH-2^-、-C(CH₃)₀-NH-CH₂-、-C(CH₃)₀-OH-2^-、-C(CH₃)₀-NH-CH₂-、-C(CH₃)₀-OH-2^-。

术语"烯基"表示至少有一个碳-碳 sp²双键的直链或支链烃基，其包括"cis" 和 "tans" 的定位，或者 "E" 和 "Z" 的定位。在另一实施方案中，烯基基团包含 2-20 个碳原子；在另一实施方案中，烯基基团包含 2-12 个碳原子；在另一实施方案中，烯基基团包含 2-8 个碳原子；在另一实施方案中，烯基基团包含 2-6 个碳原子。烯基基团的实例包括，但并不限于，乙烯基 (-CH=CH₂)、乙烯基 (-CH₂=CH₂) 等等。

术语"炔基"表示至少有一个碳-碳 sp³三键的直链或支链烃基。在另一实施方案中，炔基基团包含 2-20 个碳原子；在另一实施方案中，炔基基团包含 2-12 个碳原子；在另一实施方案中，炔基基团包含 2-8 个碳原子；在另一实施方案中，炔基基团包含 2-6 个碳原子。炔基基团的实例包括，但并不限于，乙炔基 (-C≡CH)、乙烯基 (-CH₂≡CH)、1-丙炔基 (-C≡C-CH₃)
术语“垸氨基”表示垸基基团通过氧原子与分子其余部分相连，其中垸基基团具有如本发明所述的含义。除非另外详细说明，所述垸氨基基团含有1-12个碳原子。在一实施方案中，垸氨基基团含有1-6个碳原子；在另一实施方案中，垸氨基基团含有1-4个碳原子；在又一实施方案中，垸氨基基团含有1-3个碳原子。所述垸氨基基团任选地被一个或多个本发明描述的取代基所取代。垸氨基基团的实例包括，但并不限于，甲氧基（MeO、-OCH₃）。

乙氧基（EtO、-OCH₂CH₃），1-丙氧基（w-PrO、n-丙氧基、-OCH₂CH₂CH₃），2-丙氧基（i-PrO、t-丙氧基、-OCH(CH₃)₂）等等。

术语“垸硫基”是指 C₁₆直链或支链的垸基通过硫原子与分子其余部分相连。在一实施方案中，垸硫基是较低级的 C₇₋₁₄垸硫基，这样的实例包括，但并不限于甲硫基（CH₃S-）。

术语“垸氨基”或“垸基氨基”包括“N-垸基氨基”和“N,N-二垸基氨基”，其中氨基基团分别独立地被一个或两个垸氨基基团所取代，其中氨基基团具有如本发明所述的含义。在一实施方案中，垸基氨基是一个或两个 C₁₋₆垸基连接到氨原子上的较低级的垸氨基基团。在另一实施方案中，垸基氨基是 C₁₋₄的较低级的垸氨基基团。合适的垸氨基基团可以是单垸基氨基或二垸基氨基，这样的实例包括，但并不限于，N-甲氨基，N-乙氨基，N,N-二甲氨基，N,N-二乙氨基等等。所述垸氨基基团任选地被一个或多个本发明所描述的取代基所取代。

术语“卤素”和“卤代”是指氟（F）、氯（Cl）、溴（Br）或碘（I）。

术语“卤代烷基”，“卤代烯基”或“卤代烷氧基”表示烷基、烯基或烷氧基基团分别被一个或多个卤素原子所取代，其中烷基、烯基和垸氧基基团具有本发明所述的含义，这样的实例包括，但并不限于，二氟甲基、三氟甲基、三氟甲氧基、2,2,2-三氟乙氧基、2,2,3,3-四氟丙氧基等。所述卤代烷基、卤代烯基或卤代烷氧基基团任选地被一个或多个本发明所描述的取代基所取代。

术语“垸氧基烷基”表示垸氧基基团被一个或多个垸氧基基团所取代，其中垸氧基基团具有如本发明所述的含义，这样的实例包括，但并不限于，甲氧基甲基，甲氧基乙基，乙氧基甲基，乙氧基乙基等。

术语“芳基”表示含有6-14个环原子，或6-12个环原子，或6-10个环原子的单环、双环和三环的碳环体系，其中至少一个环体系是芳香族的，其中每一个环体系包含3-7个原子组成的环，且有一个或多个附着环与分子的其余部分相连。芳基基团的实例可以包括苯基、苯基甲基和苯基。当芳基可以任选取代时，取代的基团可以为氟、氯、溴、碘、氰基、叠氮基、硝基、氨基、羟基、硫基、垸基、垸氧基、垸硫基、垸基、取代苯基、烯基、炔
基、碳环基、杂环基、芳基或杂芳基。

术语"芳基烷基"表示烷基基团被一个或多个芳基基团所取代；其中烷基基团和芳基基团具有如本发明所述的含义，芳基烷基的实例包括，但不限于，苯甲基，苯乙基等等。

术语"芳氧基"或"芳基氧基"是指任选取代的芳基，如本发明所定义的，连接到氧原子上，并且由氧原子与分子其余部分相连，其中芳基基团具有如本发明所述的含义。芳氧基的实例包括，但不限于，苯氧基，卤代苯氧基，氰基取代的苯氧基，羟基取代的苯氧基，等等。

术语"芳氧基烷基"是指烷基基团被一个或多个芳氧基基团取代；其中芳氧基和烷基基团具有如本发明所述的含义。芳氧基烷基的实例包括，但不限于，苯氧基甲基，氟代苯氧基甲基（如(2-氟苯氧基)甲基，(3-氟苯氧基)甲基或(4-氟苯氧基)甲基），氯代苯氧基甲基，等等。

术语"芳基烷氧基"表示烷氧基基团被一个或多个芳基基团所取代；其中烷氧基基团和芳基基团具有如本发明所述的含义。芳基烷氧基的实例包括，但不限于，苯氧基，氟代苯氧基，氯代苯氧基，氟代苯氧基，氰基取代的苯氧基，甲磺酰基取代的苯氧基，苯基乙氧基，等等。

本发明的详细内容

在本发明的一个方面，本发明提出了一种偶氮化合物。该偶氮化合物具有符合式 (a) 所示的通式化合物，或为符合式 (a) 所示通式化合物的立体异构体或互变异构体：

![Chemical Structure](image)

其中，
R¹ 为氢或烷基；R² 为烷基；
X 为 O、NH 或 NR³；Y 为 O、S、NH 或 NR³；其中各 R³ 独立地是 C₁⁻₁₀ 烷基；
W 为单键，亚烷基或亚杂烷基；W 任选地被 1、2、3、4 或 5 个氟、氯、溴、碘、烃
基、氰基、硝基、氨基、羧基、氧代（=0）、C₈烷基、C₆烷氧基、C₈烷氧基、C₈烷硫基或C₈烷氨基所取代；

R³、R⁴分别独立地为氢、氟、氯、溴、碘、羟基、醛基、硝基、氰基、NR³R⁴、-C(=0)R⁴、
-S(=0)₂R⁴、-CR₃₊₋₋

在一些实施方案中，R⁴为氢或卤素或C₈烷基。在一些实施方案中，R³为氢或甲基。在一些实施方案中，R²为烷基。另一些实施方案中，R²为卤素。还有一些实施方案中，R²为甲基、乙基、正丙基、异丙基、正丁基或异丁基。在一些实施方案中，W为烷基、亚烷基或亚杂烷基；W为任选地被1, 2, 3, 4或5个氟、氯、溴、碘、羟基、氰基、硝基、氨基、羧基、氧代（=0）、C₈烷基、C₈烷氧基、C₈烷硫基或C₈烷氨基所取代。另一些实施方案中，W为烷基、亚烷基或亚杂烷基；W为任选地被1, 2, 3, 4或5个氟、氯、溴、碘、羟基、氰基、硝基、氨基、羧基、氧代（=0）、C₈烷基、C₈烷氧基、C₈烷硫基或C₈烷氨基所取代。在一些实施方案中，W为任选地被1, 2, 3, 4或5个氟、氯、溴、碘、羟基、氰基、硝基、氨基、羧基、氧代（=0）、C₈烷基、C₈烷氧基、C₈烷硫基或C₈烷氨基所取代。在一些实施方案中，W为任选地被1, 2, 3, 4或5个氟、氯、溴、碘、羟基、氰基、硝基、氨基、羧基、氧代（=0）、C₈烷基、C₈烷氧基、C₈烷硫基或C₈烷氨基所取代。
在一些实施方案中，R3、R4分别独立地为氢、氟、氯、溴、碘、羟基、醛基、硝基、氰基、-NRaRb、-C(=0)Rc、-S(=0)2Rc、-C(=0)aRb、-S(=0)2aRb、氰基、-CON(CH3)2

在式(I)中，R1为H或者烷基；R2为烷基；R3分别独立地为氢、氟、氯、溴、羟基、醛基、硝基、氰基、-NRaRb、-C(=0)Rc、-S(=0)2Rc、-C(=0)aRb、-S(=0)2aRb、
垸基、垸氧基、卤代 C_{1-6}垸基、卤代 C_{1-6}垸氧基、C_{1-6}垸氧基、C_{1-6}垸基、C_{2-6}烯基、C_{2-6}炔基、C_{6-12}芳基、C_{6-12}芳基 Cl-6烷基

各 R^{a}、R^{b} 和 R^{c}独立地为氢、羟基、C_{1-6}垸基、C_{2-6}烯基、C_{2-6}炔基、C_{1-6}垸氧基、C_{6-10}芳基或 C_{6-10}芳基 Cl-6烷基；和

m 为 0、1、2、3、4 或者 5。

具有上述结构的偶氮化合物为可聚合黄色染料，能够起到较好的蓝光吸收/拦截作用，

且可以与其他材料（例如，用于形成人工晶体等眼部医疗器件的单体或添加剂）形成共聚

物，因此降低了上述偶氮化合物在眼部医疗器件中迁移的风险，从而可以用于制备具有拦

截蓝光功能的眼部医疗器件。

在本发明的一实施方案中，R^{1} 为 H 或垸基；在另一实施方案中，R^{1} 为 H 或 C_{1-6}垸基；

又在另一实施方案中，R^{1} 为 H 或甲基。

在本发明的一实施方案中，R^{2} 为垸基；在另一实施方案中，R^{2} 为 C_{1-6}垸基；在另一实

施方案中，R^{2} 为甲基、乙基、正丙基、异丙基、正丁基或异丁基。

在本发明的一实施方案中，m 为 0、1、2、3、4 或者 5。

R^{3}独立地为氢、氘、氯、溴、碘、羟基、醛基、硝基、酰基、酰氧基、-NR^{a}R^{b}、-C(=0)R^{c}、

-NR^{a}R^{b}、-C(=0)R^{c}、-S(=0)R^{a}、-NHR^{b}、-C(=0)R^{c}、-S(=0)R^{a}、-NHR^{b}、-C(=0)R^{c}、-S(=0)R^{a}、

C_{1-6}烷基、C_{1-6}烷氧基、卤代 C_{1-6}烷基、卤代 C_{1-6}烷氧基、卤代 C_{1-6}烷基、卤代 C_{1-6}烷氧基、

C_{6-12}芳基基、C_{6-12}芳氧基、Cl-6烷基或 C_{6-12}芳基 Cl-6烷基；和

各 R^{a}、R^{b} 和 R^{c}独立地为氢、羟基、C_{1-6}垸基、C_{2-6}烯基、C_{2-6}炔基、C_{1-6}垸氧基、C_{6-10}芳基或 C_{6-10}芳基 Cl-6烷基。

在另一实施方案中，m 为 0、1、2、3、4 或者 5，R^{3}独立地为氢、氘、氯、溴、碘、羟基、醛基、

硝基、酰基、酰氧基、-NR^{a}R^{b}、-C(=0)R^{c}、-S(=0)R^{a}、-NHR^{b}、-C(=0)R^{c}、-S(=0)R^{a}、-NHR^{b}、

-C(=0)R^{c}、-S(=0)R^{a}、-NHR^{b}、-C(=0)R^{c}、-S(=0)R^{a}、-NHR^{b}、-C(=0)R^{c}、-S(=0)R^{a}、

C_{1-6}烷基、C_{1-6}烷氧基、卤代 C_{1-6}烷基、卤代 C_{1-6}烷氧基、卤代 C_{1-6}烷基、卤代 C_{1-6}烷氧基、

C_{6-12}芳基基、C_{6-12}芳氧基、Cl-6烷基或 C_{6-12}芳基 Cl-6烷基；和

各 R^{a}、R^{b} 和 R^{c}独立地为氢、羟基、C_{1-6}垸基、C_{2-6}烯基、C_{2-6}炔基、C_{1-6}垸氧基、C_{6-10}芳基或 C_{6-10}芳基 Cl-6烷基。

又在一些实施方案中，m 为 0、1、2、3、4 或者 5，R^{3}独立地为氢、氘、氯、溴、碘、羟基、

醛基、-NH_{2}、-N(CH_{3})_{2}、-C(=0)CH_{3}、-C(=0)OH、-C(=0)OCH_{3}、-CONH_{2}、-CON(CH_{3})_{2}、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、甲氧基、
乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、三氟甲基、三氟乙基、三氟乙氧基、甲氧基甲基、甲氧基乙基、甲氧基丙基、乙氧基甲基、乙氧基乙基、乙氧基丙基、苯基、苄基、苯乙基、苯丙基、苯氧基、苯氧基甲基、苯氧基乙基、苯氧基或苯基乙氧基。

在本发明的一实施方案中，R\(^1\)为 H 或甲基，R\(^2\)为甲基或乙基，m 为 1 或者 2，R\(^3\)分别独立地为羟基、甲基、乙基、正丙基、异丙基、正丁基、异丁基、甲氧基、乙氧基、甲氧基乙基、三氟甲基、三氟甲氧基、氟、氯或溴。

在本发明的上述实施方案中，R\(^3\)的数量以及类型互不影响，并且当 m 大于 1 时，该偶氮化合物中的多个 R\(^3\)可以相同也可以不相同。

在本发明的另一实施方案中，本发明所述的偶氮化合物可以为满足以下式 (1) 〜 (20) 所示的通式的化合物，或为满足下列通式的化合物的立体异构体或互变异构体：

![化学结构式](image)
满足以上式（1）~（20）所示的通式的化合物，或满足上述通式的化合物的立体异构
体或互变异构体的偶氮化合物，具有较为理想的拦截蓝光效果，可以作为蓝光吸收剂添加至合成眼部医疗器件的原料中。上述偶氮化合物均为可聚合的偶氮化合物，发明人经过大量实验发现，上述偶氮化合物可以在制备眼部医疗器件时，与形成眼部医疗器件的其他原料发生聚合，进而能够较为稳定的存在于获得的眼部医疗器件中，进而可以大幅降低使用过程中由于偶氮化合物发生迁移，而进入人眼的风险。且上述化合物不会对眼部医疗器件的光学性能（折光率以及光谱透过率等）、力学性能（拉伸强度、断裂伸长率和弹性模量等）造成负面影响，因此能够被用于制备可折叠人工晶体等柔性眼部医疗器件。

另一方面，本发明提出了一种聚合物。构成所述聚合物的单体包括本体单体以及蓝光吸收剂，所述蓝光吸收剂为本发明前述所述的偶氮化合物。换句话说，构成所述聚合物的单体包括形成聚合物本体的单体（本体单体）以及本发明前述提出的偶氮化合物。由此，所述聚合物具有拦截蓝光的效果。并且，在合成所述聚合物的过程中，蓝光吸收剂可以与本体单体或合成所述聚合物的原料中的其他添加剂发生共聚反应，从而可以大幅降低蓝光吸收剂在聚合物内部迁移的风险，进而可以提高利用所述聚合物制备的直接与人体接触的器件的安全性能。例如，可以采用上述聚合物制备如人工晶体等眼部医疗器件，从而可以使该眼部医疗器件也具有拦截蓝光的功能，进而可以降低可见光中蓝光对于人眼等器官的伤害。

在本发明中，上述聚合物中蓝光吸收剂以及本体单体的比例可以根据实际情况进行调整。术语“本体单体”特指用于形成所述聚合物本体的主要单体材料。本体单体是能够通过聚合而构成本发明提出的上述聚合物的主要成分，其能够在聚合过程中，与蓝光吸收剂发生共聚反应。由于蓝光吸收剂中含有可聚合基团，因此形成聚合物所常用的单体均可以与本发明所提出的蓝光吸收剂发生共聚，所以在本发明中，本体单体的具体类型没有特别限制。在本发明的一些实施方案中，本体单体为丙烯酸酯类单体，可以包括但不限于以下单体的至少之一：甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸丁酯、甲基丙烯酸叔丁酯、甲基丙烯酸异丁酯、甲基丙烯酸戊酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸己酯、甲基丙烯酸庚酯、甲基丙烯酸辛酯、甲基丙烯酸乙基己酯、甲基丙烯酸壬酯、甲基丙烯酸癸酯、甲基丙烯酸十二烷基酯、甲基丙烯酸硬脂基酯、甲基丙烯酸环己酯、甲基丙烯酸环己酯；甲基丙烯酸甲氧基乙酯、甲基丙烯酸乙氧基乙酯、丙烯酸乙氧基乙酯、甲基丙烯酸甲氧基二甘醇酯、甲基丙烯酸-2-乙基苯氧基酯、丙烯酸-2-乙基苯氧基酯、甲基丙烯酸-2-乙基氢基苯酯、丙烯酸-2-乙基氢基苯酯、甲基丙烯酸甲氧基乙酯、甲基丙烯酸-2-苯基乙酯、丙烯酸-2-苯基乙酯、甲基丙烯酸-3-苯基丙酯、甲基丙烯酸-4-苯基
丁烯、甲基丙烯酸-4-甲基苯酯、甲基丙烯酸-4-甲基苯酯、甲基丙烯酸-2,2-甲基 苯基乙酯、甲基丙烯酸-2,3-甲基苯基乙酯、甲基丙烯酸-2,4-甲基苯基乙酯、甲基丙烯酸-2-(4-甲基苯基)乙酯、甲基丙烯酸-2-(4-(1-甲基苯基)苯基)乙酯、甲基丙烯酸-2-(4-甲氧基苯基)乙酯、甲基丙烯酸-2-(4-环己基苯基)乙酯、甲基丙烯酸-2-(2-氯苯基)乙酯、甲基丙烯酸-2-(3-氯苯基)乙酯、甲基丙烯酸-2-(4-氯苯基)乙酯、甲基丙烯酸-2-(4-溴苯基)乙酯、甲基丙烯酸-2-(4-苯基苯基)乙酯。引发剂可以包括但不限于过氧化苯甲酰、叔丁基过氧化氢、异丙苯基过氧化氢、双(4-叔丁基环己基; 过氧化二碳酸酯、偶氮二异丁腈 以及偶氮双(2,4-二甲基戊腈;。由此，可以进一步提高该聚合物的性能。
另一方面，本发明提出了一种眼部医疗器件。所述眼部医疗器件包括本发明前面所提出的聚合物。由此，所述眼部医疗器件具有前面所述聚合物的全部特征以及优点，在此不再赘述。具体的，所述眼部医疗器件具有较为理想的力学性能、光学性能，同时能够拦截可见光中的蓝光成分，从而可以降低蓝光对于人眼等器官的损害。所述眼部医疗器件具有较好的安全性能，因本发明所提出的聚合物中的蓝光吸收剂不易在聚合物中发生迁移扩散，从而可以防止形成蓝光吸收剂的偶氮化合物与人体直接接触。

在本发明的一实施例中，上述眼部医疗器件可以为人工晶体、眼内透镜、接触透镜、角膜修正物、角膜内透镜、角膜嵌入物、角膜环或青光眼滤光装置。

另一方面，本发明提出了一种制备本发明所述的聚合物的方法。对原料混合物进行加热处理或光固化处理。在一些实施例中，所述方法包括：对原料混合物进行梯度式加热处理，以便获得聚合物。其中，原料混合物含有前面所述的本体单体以及蓝光吸收剂。关于本体单体以及蓝光吸收剂的具体类型，前面已经进行了详细的描述，于此不再赘述。在本发明所提出的方法中，本体单体以及蓝光吸收剂的比例也不受特别限制。本领域技术人员可以根据制备的具体聚合物的物化性质的要求，以及选用的本体单体、蓝光吸收剂的具体种类，对于上述比例做出调节。为了进一步提高利用所述方法制备的聚合物的性能，本原料混合物中，还可以进一步包括交联剂、引发剂以及紫外吸收剂的至少之一。所述方法操作步骤简便、生产周期较短，且获得的聚合物具有较为理想的物化性能（如光学、力学性能以及拦截蓝光功能）。

在一些实施例中，上述梯度式加热处理可以包括：

第一反应阶段：

在第一反应阶段，将原料混合物加热至40~120摄氏度进行反应，优选在40~70摄氏度下进行，反应时间可以为1~48小时。在较低的温度下反应可以防止反应速率过快，有利于形成外观均匀的样品，从而提高聚合物的性能。

第二反应阶段：

在第二反应阶段，将经过第一反应阶段的原料混合物加热至40~140摄氏度进行反应，优选在80~120摄氏度下进行，反应时间可以为1~48小时。由此，有利于促进剩余原料进一步反应，提高原料转化率，可以进一步提高利用该方法制备的聚合物的性能。

下面将结合实施例对本发明的方案进行解释。本领域技术人员将会理解，下面的实施例仅用于说明本发明，而不应被视为限定本发明的范围。实施例中未注明具体技术或条件的，按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注
明生产厂 商 者，均 为 可 以 通 过 市 购 获 得 的 常 规 产 品。

下 面 所 描 述 的 实 施 例，除 非 另 有 说 明，所 有 的 温 度 定 为 摄 氏 度。所 使 用 的 试 剂 均 可 以 从 市 场 上 购 得 或 者 可 以 通 过 本 发 明 所 描 述 的 方 法 制 备 而 得。

在 本 发 明 中，如 果 在 化 学 名 称 和 化 学 结 构 间 存 在 任 何 差 异，结 构 是 占 优 的。

下 面 简 写 词 的 使用 贯 穿 本 发 明

- g：克
- mL：毫 升
- mmol：毫 摩 尔
- h：小 时
- min：分 钟
- s：秒
- Boc：叔 丁 氧 羰 基
- EtOAc：乙 酸 乙 酯
- n-Hex：正 己 烃
- wt%：重 量 %

实 施 例 1

1-(4- (4- 羟 芳 苯 基) 二 氨 基 苯 氧 基)-3- 甲 至 基 丙-2- 基 甲 基 丙 烯 酸 酯

步骤 1：化合 物 1-(4- 硝 芳 苯 氧 基)-3- 甲 至 基 丙-2- 基 的 合 成

向 三 口 烧 瓶 中 依 次 加 入 4-硝 芳 苯 苯 酚（41.7 g，0.3 mol）、碳 酸 钾（56.5 g，0.1 mol）和 无 水 乙 醇（200 mL），混 合 液 回 流 搅 拌 1 h 后，向 其 中 缓 慢 滴 加 1-氯-3- 甲 至 基-2- 丙 酚（25.0 g，0.2 mol），并 继 续 搅 拌 24 h。将 反 应 液 冷 备 至 室 温，过 滤，滤 液 经 过 旋 蒸 除 去 乙 醇，粗 品 用 二 氯 甲 烷（250 mL）稀 释，氢 化 钠 水 溶 液 洗 涤（5wt% ，150 mLX 2）。有 机 相 用 无 水 硫 酸 镁 干 燥 过 夜，过 滤 后 旋 蒸 除 去 溶 剂，得 到 淡 黄 色 黏 稠 液 体（27 g，59.1%）。所得 产 物 的 质 谱
以及核磁共振 H 谱数据如下:

LC-MS (ESI, pos. ion) m/z: 250 [M+Na]+;

1H NMR (400 MHz, CDC$_3$) δ (ppm): 8.21-8.19 (m, 2H), 7.01-6.98 (m, 2H), 4.24-4.18 (m, 1H), 4.16-4.09 (m, 2H), 3.62-3.55 (m, 2H), 3.43 (s, 3H), 2.74-2.73 (d, 1H)。

步骤 2: 化合物 1-(4-氨基苯氧基)-3-甲氧基丙-2 醇的合成

向单口烧瓶中依次加入 1-(4-硝基苯氧基)-3-甲氧基丙-2 醇 (27g, 118.9 mmol)、5%钯碳 (25.2 g, 11.9 mmol)、甲酸铵 (44.9 g, 713.4 mmol) 和四氢呋喃 (100 mL)。混合液在室温搅拌 5分钟后，将反应转至 60℃浴油浴反应 2h。将反应过滤，滤饼用四氢呋喃 (100 mL) 冲洗，收集到的滤液用饱和碳酸氢钠水溶液洗涤 (100 mLX 3)。分液后水相用二氯甲烷萃取 (100 mLX 3)，有机相混合后用饱和食盐水洗涤 (100 mLX 2)，分液后水相用二氯甲烷萃取 (100 mLX 1)，有机相稍浓缩后用无水硫酸镁干燥过夜，过滤后旋蒸除去溶剂，得粉红色液体 (22.7 g, 99%)。所得产物的质谱以及核磁共振 H 谱数据如下:

LC-MS (ESI, pos. ion) m/z: 198 [M+H]+;

1H NMR (400 MHz, CDC$_3$) δ (ppm): 6.79-6.76 (m, 2H), 6.66-6.64 (m, 2H), 4.17-4.12 (m, 1H), 3.99-3.92 (m, 2H), 3.60-3.52 (m, 2H), 3.42 (s, 3H)。

步骤 3: 化合物 1-(4-叔丁氧羰基氨基苯氧基)-3-甲氧基丙-2 醇的合成

向单口烧瓶中依次加入 1-(4-氨基苯氧基)-3-甲氧基丙-2 醇 (22.0 g, 111.7 mmol) 和甲醇 (200 mL)。BOC 酸酐 (37.4 g, 171.3 mmol) 用甲醇 (30 mL) 稀释后逐滴加入，混合液在常温下搅拌 3h。将混合液稍浓缩后滴加到正己烷 (400 mL) 中，搅拌 10 min 后过滤，滤饼用正己烷冲洗 (100 mL)，收集到的固体在 40℃下真空干燥 2h 得到灰白色固体 (30 g, 87.6%)。所得产物的质谱以及核磁共振 H 谱数据如下:

LC-MS (ESI, pos. ion) m/z: 320 [M+Na]+;

1H NMR (400 MHz, CDC$_3$) δ (ppm): 7.28-7.27 (m, 2H), 6.88-6.85 (m, 2H), 6.41 (s, 1H), 4.20-4.14 (m, 1H), 4.04-3.97 (m, 2H), 3.61-3.53 (m, 2H), 3.43 (s, 3H), 2.60-2.59 (d, 1H), 1.53 (s, 9H)。

步骤 4: 化合物 1-(4-叔丁氧羰基氨基苯氧基)-3-甲氧基丙-2-基甲基丙烯酰酯的合成

向单口烧瓶中依次加入 1-(4-叔丁氧羰基氨基苯氧基)-3-甲氧基丙-2 醇 (15.0 g, 50.5 mmol)、三乙胺 (10.1 g, 100.0 mmol)、4-二甲氨基吡啶 (1.2 g, 10.0 mmol) 和四氢呋喃 (150 mL)。充分溶解后，向其中缓慢滴加甲基丙烯酰氯 (10.5 g, 100.9 mmol) 0℃下搅拌 1h，后转至室温并继续搅拌 24h。向混合液中加入 50%碳酸氢钠水溶液 (10 mL) 终止反应，搅拌 10 分钟后将反应液过滤，旋蒸除去四氢呋喃，粗产物通过柱层析 (正己烷/EtOAc
(v/v) = 5/1)，得到无色透明黏稠液体（17 g, 92.4%）。所得产物的质谱以及核磁共振H谱数据如下：

LC-MS (ESI, pos. ion) m/z: 388 [M+Na]+

HNMR (400 MHz, CDCl₃) δ (ppm): 7.28-7.26 (m, 2H), 6.87-6.85 (m, 2H), 6.46 (s, 1H), 6.16 (s, 1H), 5.60 (s, 1H), 5.37-5.32 (m, 1H), 4.17-4.11 (m, 2H), 3.71-3.70 (d, 2H), 3.41 (s, 3H), 1.96 (s, 3H), 1.52 (s, 9H)。

步骤5：化合物制备**1-(4-氨基苯氧基)-3-甲氧基丙-2-基甲基丙烯酸酯的合成**

向单口烧瓶中依次加入 1-(4-叔丁氧羰基氨基苯氧基)-3-甲氧基丙-2-基甲基丙烯酸酯（17.0 g，46.6 mmol）和二氯甲烷（100 mL），充分溶解后加入三氟乙酸（70 mL），常温搅拌15 min。反应结束后，加入氯化钠水溶液中和，分液，水相用二氯甲烷萃取（50 mL×1），有机相用无水硫酸镁干燥2 h，过滤，蒸除溶剂，得到淡红色黏稠液体（12.5 g，98%）。所得产物的质谱数据如下：

LC-MS (ESI, pos. ion) m/z: 266 [M+H]+。

步骤6：化合物**1-(4-((4-羟基苯氧基)二氮烯基)苯氧基)-3-甲氧基丙-2-基甲基丙烯酸酯**的合成

向三口烧瓶中依次加入 1-(4-氨基苯氧基)-3-甲氧基丙-2-基甲基丙烯酸酯（1.30 g, 11.30 mmol）和氨化钾（1.35 g, 11.30 mmol）的混合溶液（20 mL），混合液在-5℃低温浴中搅拌，当内温达到0℃以下时，将亚硝酸钠（0.93 g, 13.60 mmol）溶于水（20 mL）的溶液缓慢滴加到上述反应液中，并继续搅拌0.5 h。将苯酚（1.09 g, 11.30 mmol）、氯氧化钠（1.11 g, 28.30 mmol）、碳酸钠（1.50 g, 14.10 mmol）溶于水（20 mL）的溶液滴加到上述氨溶液，滴加过程保持溶液温度不高于5℃。继续搅拌过夜，将混合液倒入二氯甲烷（100 mL），分液后有机相如上述通过柱层析（正己烷/乙酸乙酯 5/1），得到黄色固体粉末（2.01 g, 53.1%）。所得产物的质谱以及核磁共振H谱数据如下：

LC-MS (ESI, pos. ion) m/z: 371 [M+H]+

HNMR (400 MHz, CDCl₃) δ (ppm): 7.88-7.83 (m, 4H), 7.04-7.02 (m, 2H), 6.96-6.94 (m, 2H), 6.19 (s, 1H), 5.63 (s, 1H), 5.44-5.39 (m, 1H), 4.29-4.28 (d, 2H), 3.75-3.74 (d, 2H), 3.44 (s, 3H), 1.98 (s, 3H)。

实施例2

化合物1-(4-((4-羟基苯氧基)二氮烯基)苯氧基)-3-甲氧基丙-2-基丙烯酸酯
步骤 1：化合物 1-(4-叔丁氧羰基氨基苯氧基)-3-甲氧基丙-2-基丙烯酸酯的合成

向单口烧瓶中依次加入 1-(4-叔丁氧羰基氨基苯氧基)-3-甲氧基丙-2-基丙烯酸酯（8.00 g，26.94 mmol）、三乙胺（5.45 g，53.96 mmol）、4-二甲氨基吡啶（0.65 g，2.50 mmol）和四氢呋喃（150 mL），充分溶解后，向其中缓慢滴加丙烯酰氯（4.80 g，46.12 mmol），0℃下搅拌1 h，后至室温并继续搅拌24 h。向混合液中加入50%碳酸氢钠水溶液（10 mL）终止反应，搅拌10分钟后将反应液过滤，旋蒸除去四氢呋喃，产物通过柱层析（正己烷/正己烷/水 = 5/1）得到淡红色透明黏稠液体（8.05 g，81.9%）。所得产物的质谱以及核磁共振H谱数据如下：

LC-MS（ESI，pos. ion）m/z: 374 [M+Na]+；

NMR (400 MHz, CDCl3) δ (ppm): 7.28-7.26 (m, 2H), 6.88-6.86 (m, 2H), 6.49-6.45 (d, 1H), 6.22-6.15 (m,1H), 5.89-5.86 (d, 1H), 5.41-5.36 (m,1H), 4.19-4.13 (m,2H), 3.71-3.70 (d, 2H), 3.41 (s, 3H), 1.52(s, 9H)。

步骤 2：化合物 1-(4-氨基苯氧基)-3-甲氧基丙-2-基丙烯酸酯的合成

向单口烧瓶中依次加入 1-(4-叔丁氧羰基氨基苯氧基)-3-甲氧基丙-2-基丙烯酸酯（8.00 g，31.87 mmol）、二氯甲烷（100 mL）。充分溶解后加入三氟乙酸（70 mL），常温搅拌15 min。反应结束后，加入氢氧化钠水溶液中和，分液，水相用二氯甲烷萃取（50 mL×3），有机相用无水硫酸镁干燥2 h，过滤，旋蒸除去溶剂，得到淡红色黏稠液体（4.60 g，80%）。所得产物的质谱和核磁数据如下：

LC-MS（ESI，pos. ion）m/z: 252 [M+H]+；

NMR (400 MHz, CDCl3) δ (ppm): 6.79-6.77 (m, 2H), 6.65-6.63 (m, 2H), 6.49-6.45 (d, 1H), 6.23-6.16 (m, 1H), 5.88-5.86 (d, 1H), 5.39-5.34 (m, 1H), 4.13-4.11 (m, 2H), 3.71-3.70 (d, 2H), 3.41 (s, 3H)。

步骤 3：化合物 1-(4-((4-羟基苯基)二氨基)苯氧基)-3-甲氧基丙-2-基丙烯酸酯的合成

向三口烧瓶中依次加入 1-(4-氨基苯氧基)-3-甲氧基丙-2-基丙烯酸酯（1.50 g，5.90 mmol）、溴化钾（0.70 g，5.90 mmol）、浓盐酸（2.99 g，29.50 mmol）和丙酮/水（v/v, 1/1）
的混合溶液(20 mL)，混合液在-5°C低温浴中搅拌，当内温达到0°C以下时，将亚硝酸钠(0.48 g，7.80 mmol)溶于水(20mL)，缓慢滴加到上述反应液中，并继续搅拌0.5 h。将苯酚(0.55 g，5.90 mmol)、氢氧化钠(0.59 g，14.75 mmol)、无水碳酸钠(0.77 g，7.34 mmol)溶于水(20 mL)，并滴加到上述重氮盐溶液，滴加过程保持溶液温度不高于5°C。继续搅拌过夜，将混合液倒入二氯甲烷(100 mL)，分液后有机相拌料通过柱层析(正己烷/乙酸(v/v) =5/1)，得到黄色固体粉末(1.26 g，73.5%)。所得产物的质谱以及核磁共振H谱数据如下:

LC-MS (ESI, pos. ion) m/z: 357 [M+H]+;

\[
\text{HR } \text{NMR (400 MHz,CDCl}_3\text{)} \delta (\text{ppm}): \begin{cases}
7.89-7.83 (m, 4H), & 7.05-7.02 (m, 2H), & 6.96-6.94 (m, 2H), \\
6.52-6.47 (d, 1H), & 6.24-6.17 (m, 1H), & 5.91-5.89 (d, 1H), & 5.46-5.43 (m, 1H), & 4.29-4.28 (m, 2H), \\
3.76-3.74 (d, 2H), & 3.44 (s, 3H).
\end{cases}
\]

实施例3

1-(4-((2,4-二羟基苯基)二氯基)苯氧基)-3-甲基基丙-2-基烯酸酯

![化合物结构式]

其余步骤同实施例1，不同的是，在步骤(6)中，向三口烧瓶中依次加入1-(4-氨基苯氧基)-3-甲基基丙-2-基烯酸酯(3.00 g，11.30 mmol)、溴化钾(1.35 g，11.30 mmol)、浓盐酸(5.70 g，56.50 mmol)和丙酮/水(v/v，1/1)的混合溶液(20 mL)，混合液在-5°C低温浴中搅拌，当内温达到0°C以下时，将亚硝酸钠(0.93 g，13.60 mmol)溶于水(20 mL)，缓慢滴加到上述反应液中，并继续搅拌0.5 h。将间苯二酚(1.23 g，11.30 mmol)、氢氧化钠(1.11 g，28.30 mmol)、碳酸钠(1.50 g，14.10 mmol)溶于水(20 mL)，并滴加到上述重氮盐溶液，滴加过程保持溶液温度不高于5°C。继续搅拌过夜，将混合液倒入二氯甲烷(100 mL)，分液后有机相拌料通过柱层析(正己烷/乙酸(v/v) =3/1)，得到红色固体(2.1 g，53.8%)。所得产物的质谱以及核磁共振H谱数据如下:

LC-MS (ESI, pos. ion) m/z: 387 [M+H]+;

\[
\text{HR } \text{NMR (400 MHz,CDCl}_3\text{)} \delta (\text{ppm}): \begin{cases}
7.80-7.73 (m, 3H), & 7.04-7.02 (m, 2H), & 6.56-6.53 (d, 1H), \\
6.44-6.43 (s, 1H), & 6.18 (s, 1H), & 5.63 (s, 1H), & 5.43-5.38 (m, 1H), & 4.29-4.27 (d, 2H), & 3.75-3.73
\end{cases}
\]

(3)
实施例4

1-(4-(2,4-二羟基苯基)二氮烯基)苯氧基)-3-甲氧基丙-2-基丙烯酸酯

在步骤(3)中，向三口烧瓶中依次加入1-(4-氨基苯氧基)-3-甲氧基丙-2-基丙烯酸酯(1.00 g, 3.90 mmol)、溴化钾(0.47 g, 3.90 mmol)、浓盐酸(2.00 g, 19.50 mmol)和丙酮/水(v/v, 1/1)的混合溶液(20 mL)，混合液在-5°C低温浴中搅拌，当内温达到0°C以下时，将亚硝酸钠(0.32 g, 4.68 mmol)溶于水(20mL)，缓慢滴加到上述反应液中，并继续搅拌0.5 h。将间苯二酚(0.73 g, 3.90 mmol)、氯化钠(0.39 g, 9.75 mmol)、无水碳酸钠(0.51 g, 4.87 mmol)溶于水(20mL)，并滴加到上述重氮盐溶液，滴加过程保持溶液温度不高于5°C。继续搅拌过夜，将混合液倒入二氯甲烷(100 mL)，分液后有机相拌料通过柱层析(正己烷/EtOAc(v/v)=3/1)，得到标题化合物为红色固体粉末(1.15 g, 77.7%)。所得产物的质谱以及核磁共振H谱数据如下：

LC-MS (ESI, pos. ion) m/z: 373 [M+H]+;

H NMR (400 MHz, CDCl3) δ (ppm): 7.79-7.71 (m, 3H), 7.03-7.01 (m, 2H), 6.55-6.53 (t, 1H), 6.52-6.48 (d, 1H), 6.43-6.42 (d, 1H), 6.24-6.17 (m, 1H), 5.93-5.90 (d, 1H), 5.47-5.42 (m, 1H), 4.30-4.25 (m, 2H), 3.76-3.75 (d, 2H), 3.45 (s, 3H)。

实施例5

1-(4-(4-羟基-2-甲氧基苯基)二氮烯基)苯氧基)-3-甲氧基丙-2-基丙烯酸酯和1-(4-(2-羟基-4-甲氧基苯基)二氮烯基)苯氧基)-3-甲氧基丙-2-基丙烯酸酯
其 余 步 骤 同 实 施 例 1，所 不 同 的 是 ，在 步 骤 (6) 中 ，向 三 口 烧 瓶 中 依 次 加 入 1-(4-氨 基 苯 氧 基)-3- 甲 氧 基 丙 -2- 基 甲基 丙 烯 酸 酯 (2.00 g, 7.50 mmol)、溴 化 钾 (0.89 g，7.50 mmol) 浓 盐 酸 (3.80 g，37.7 mmol) 和 丙 酮 / 水 (v/v, 1/1) 的 混 合 液 (20 mL)，混合 液 在 -5℃ 低 温 漂 于 搅 拌，当 内 温 达 到 0℃ 以 下 时，将 亚 硝 酸 钠 (0.62 g，9.00 mmol) 溶 于 水 (20 mL)、缓 慢 滴 加 到 上 述 反 应 液 中，并 继 续 搅 拌 0.5 h。将 间 甲 基 苯 酚 (0.93 g，7.5 mmol)、氨 氧 化 钠 (0.75 g，18.70 mmol)、碳 酸 钾 (0.99 g，9.40 mmol) 溶 于 水 (20 mL)，并 溶 加 到 上 述 重 氮 盐 溶 液，溶 加 过 程 保 持 溶 液 温 度 不 高 于 5℃。继 续 搅 拌 过 夜，将 混 合 液 倒 入 二 氧 甲 烷 (100 mL)。分 液 后 有 机 相 括 括 料 通 过 柱 层 析 (正 丙 烷 /EtOAc (v/v)=3/1) 分 别 得 到 黄 色 固 体 (0.47 g，17%) 和 红 色 粘 润 液 体 (0.21 g，7.7%)。所 述 黄 色 固 体 经 质 谱 和 核 磁 鉴 定 后 确 认 为 化 合 物 (11)，所 述 红 色 粘 润 液 体 经 质 谱 和 核 磁 鉴 定 后 确 认 为 化 合 物 (5)。化 合 物 (11) 的 质 谱 以 及 核 磁 共 振 H 谱 数据 如 下：

LC-MS (ESI, pos. ion) m/z: 401 [M+H]+;

NMR (400 MHz, CDCl$_3$) δ (ppm):
- 7.81-7.76 (m, 3H), 7.05-7.03 (m, 2H), 6.64-6.61 (m, 1H), 6.52-6.49 (m, 1H), 6.18 (s, 1H), 5.63 (s, 1H), 5.43-5.38 (m, 1H), 4.29-4.28 (d, 2H), 3.88 (s, 3H), 3.74-3.73 (d, 2H), 3.44 (s, 3H), 1.98 (s, 3H).

化 合 物 (5) 的 质 谱 以 及 核 磁 共 振 H 谱 数据 如 下：

LC-MS (ESI, pos. ion) m/z: 401 [M+H]+;

NMR (400 MHz, CDCl$_3$) δ (ppm):
- 7.87-7.86 (m, 2H), 7.69-7.68 (m, 1H), 7.02-7.01 (m, 2H), 6.58 (s, 1H), 6.48-6.47 (m, 1H), 6.18 (s, 1H), 5.63 (s, 1H), 5.42-5.39 (m, 1H), 4.24-4.27 (d, 2H), 4.01 (s, 3H), 3.74-3.73 (d, 2H), 3.43 (s, 3H), 1.98 (s, 3H).

实施例 6

l-(4-((4-羟基-2-甲基苯基)二氯烯基)苯氧基)-3-甲氧基-2-基甲基丙烯酸酯
其余步骤同实施例1，所不同的是，在步骤(6)中，向三口烧瓶中依次加入 1-(4-氨基苯氧基)-3-甲氧基丙-2-基甲基丙烯酸酯（2.00 g，7.50 mmol）、溴化钾（0.89 g，7.50 mmol）浓盐酸（3.80 g，37.70 mmol）和丙酮/水（v/v，1/1）的混合溶液（20 mL），混合液在-5℃低温浴中搅拌，当内温达到0℃以下时，将亚硝酸钠（0.62 g，9.00 mmol）溶于水（20 mL），缓慢滴加到上述反应液中，并继续搅拌0.5 h。将间甲基苯酚（0.82 g，7.50 mmol）、氢氧化钠（0.75 g，18.70 mmol）、碳酸钠（0.99 g，9.40 mmol）溶于水（20 mL），并滴加到上述重氮盐溶液，滴加过程保持溶液温度不高于5℃。继续搅拌过夜，将混合液倒入二氯甲烷（100 mL），分液后有机相拌料通过柱层析（正已烧/EtOAc（v/v）=5/1），得到红色粘稠液体（2.06 g，79.2%）。所得产物的质谱以及核磁共振H谱数据如下：

LC-MS（ESI，pos. ion）m/z: 385 [M+H]+;

\[\text{NMR (400 MHz, CDCl}_3 \text{)} \text{5(ppm): } 7.87-7.85 (m, 2H), 7.65-7.62 (d, 1H), 7.03-7.01 (m, 2H)，
6.78 (s, 1H), 6.73-6.70 (d, 1H), 6.19 (s, 1H), 5.63 (s, 1H), 5.44-5.39 (m, 1H), 4.29-4.27 (d, 2H)，
3.76-3.75 (d, 2H), 3.44 (s, 3H), 2.68 (s, 3H)，1.99 (s, 3H)。\]

实施例7

1-乙氧基-3-(4-((4-羟基苯氧基)二氧烯基)苯氧基)丙-2-基甲基丙烯酸酯

步骤1：化合物1-乙氧基-3-(4-硝基苯氧基)丙-2-醇的合成

向三口烧瓶中依次加入4-硝基苯酚（28.0 g，0.2 mol）、碳酸钾（14.0 g，0.1 mol）和无水乙醇（200 mL），混合液回流搅拌1 h后，向其中缓慢滴加1-氯-3-乙氧基-2-丙醇（13.9 g，
O.l mol)，并继续搅拌24h。将反应液冷却至室温，过滤，滤液经过旋蒸除去乙醇，粗品用
二氯甲烷（200 mL）稀释，氢氧化钠水溶液洗涤（10 wt%，80 mL×3）。有机相用无水硫
酸钠干燥2h，过滤后旋蒸除去溶剂，得到浅黄色黏稠液体（13.3 g，55%）。
LC-MS （ESI，pos. ion） m/z: 264 [M+Na]⁺;

步骤2：化合物1-（4-氨基苯氧基）-3-乙氧基丙-2-醇的合成

向单口烧瓶中依次加入1-乙氧基-3-（4-硝基苯氧基）丙-2-醇（13.3 g，55.2 mmol）、5%钯
碳（11.7 g，5.5 mmol）、甲酸铵（20.9 g，33.1 mmol）和四氢呋喃（50 mL），混合液在45℃
搅拌1h。将反应液过滤，滤饼用二氯甲烷（100 mL）冲洗，收集到的滤液用二氯甲烷稀释到
250 mL，并用饱和食盐水洗涤（80 mL×4），分液后有机相用无水硫酸钠干燥2h，过滤后
旋蒸除去溶剂，得到粉红色固体（10 g，86%）。
LC-MS （ESI，pos. ion） m/z: 212 [M+H]⁺;

步骤3：化合物1-（4-叔丁氧羰基氨基苯氧基）-3-乙氧基丙-2-醇的合成

向单口烧瓶中依次加入1-（4-氨基苯氧基）-3-乙氧基丙-2-醇（10.0 g，47.4 mmol）、BOC
酸酐（12.5 g，56.9 mmol）和甲醇（50 mL），混合液在常温下搅拌1 h。将反应液在正己烷
（300 mL）中，搅拌10 min后过滤，滤饼用正己烷冲洗（200 mL），收集到的固体在40℃
下真空干燥2 h 得到白色固体（11.0 g，74%）。
LC-MS （ESI，pos. ion） m/z: 334 [M+Na]⁺;

步骤4：化合物1-（4-叔丁氧羰基氨基苯氧基）-3-乙氧基丙-2-基甲基丙烯酸酯的合成

向单口烧瓶中依次加入1-（4-叔丁氧羰基氨基苯氧基）-3-乙氧基丙-2-醇（11.0 g，33.2
mmol）、二异丙基乙胺（14.2 g，108.5 mmol）、4-二甲基氨基吡啶（0.86 g，7.0 mmol）和四
氢呋喃（70 mL），充分溶解后，向其中缓慢滴加甲基丙烯酸酯（18.4 g，176.9 mmol），并
继续搅拌24 h。将反应液过滤，旋蒸除去四氢呋喃，产物通过柱层析（正己烷/EtOAc
(v/v)=5/1），得到浅黄色黏稠液体（9.0 g，64%）。
实施例8

1-(4-(4-羟基苯基-2-氮烯基)苯氧基)-3-乙氧基-2-基甲基丙烯酸酯的合成

向单口烧瓶中依次加入1-(4-羟基苯基-2-氮烯基)苯氧基)-3-乙氧基-2-基甲基丙烯酸酯(9.0 g, 23.7 mmol)、三氟乙酸/二氯甲烷混合溶液(v/v, 3/4, 35 mL)。充分溶解后常温搅拌15 min。用二氯甲烷将反应液稀释到200 mL，并用饱和碳酸钠中和，分液，有机相用无水硫酸钠干燥2 h，过滤，旋蒸除去溶剂，产物通过柱层析(正己烷/EtOAc(v/v)=1:1)。得到棕黄色粘稠液体(5.4 g，75%)。

LC-MS

ESI, pos. ion m/z: 280 [M+H]+;

NMR

(400 MHz, CDC13) δ (ppm): 6.97-6.79 (m, 2H), 6.66-6.63 (m, 2H), 6.16 (s, 1H), 5.60 (s, 1H), 5.35-5.30 (m, 1H), 4.17-4.09 (m, 2H), 3.74-3.72 (d, 2H), 3.62-3.51 (m, 2H), 1.97 (s, 3H), 1.22-1.19 (t, 3H)。

步骤6：化合物1-乙氧基-3-(4-(4-羟基苯基-2-氮烯基)苯氧基)丙-2-基甲基丙烯酸酯的合成

向三口烧瓶中依次加入步骤(5)获得的1-(4-羟基苯基-2-氮烯基)苯氧基)-3-乙氧基-2-基甲基丙烯酸酯(0.84 g, 3.00 mmol)、溴化钾(0.41g, 3.40 mmol)浓盐酸(1.12 g, 11.00 mmol)和丙酮/水(v/v, 1/1)的混合溶液(20 mL)。混合液在-5℃低温浴中搅拌，当内温达到0℃以下时，将亚硝酸钠(0.23 g, 3.30 mmol)溶于水(10mL)，缓慢滴加到上述反应液中，并继续搅拌0.5 h。将苯酚(0.32 g, 3.30 mmol)、氢氧化钠(0.13 g, 3.30 mmol)溶于水(15mL)，并滴加到上述重氮盐溶液。滴加过程保持溶液温度不高于5℃。继续搅拌0.5 h后将反应过滤，并用水(100 mL)冲洗滤饼，收集到的固体通过柱层析(正己烷/EtOAc(v/v)=5/1)。得到橙色粘稠液体(0.40g, 34%)。

LC-MS

ESI, pos. ion m/z: 407 [M+Na]+;

NMR

(400 MHz, CDC13) δ (ppm): 7.83-7.83 (m, 4H), 7.05-7.02 (d, 2H), 6.96-6.94 (d, 2H), 6.18 (s, 1H), 5.62 (s, 1H), 5.43-5.38 (m, 1H), 4.31-4.18 (m, 2H), 3.78-3.77 (m, 2H), 3.63-3.56 (m, 2H), 1.98 (s, 3H), 1.25-1.21 (t, 3H)。

实施例8

1-(4-(2-二羟基苯基-2-氮烯基)苯氧基)-3-乙氧基-2-基甲基丙烯酸酯
其余步骤同实施例7，所不同的是，在步骤(6)中，向三口烧瓶中依次加入1-(4-氨基苯氧基)-3-乙氧基丙-2-基甲基丙烯酸酯（0.84 g, 3.00 mmol）、溴化钾（0.41 g, 3.40 mmol）浓盐酸（1.12 g, 11.00 mmol）和丙酮/水（v/v, 1/1）的混合溶液（20 mL），混合液在-5 ℃低温浴中搅拌，当内温达到0 ℃以下时，将亚硝酸钠（0.23 g, 3.30 mmol）溶于水（10 mL），缓慢滴加到上述反应液中，并继续搅拌0.5 h。将间二苯酚（0.36 g, 3.30 mmol）氢氧化钠（0.26 g, 6.60 mmol）溶于水（15 mL），并滴加到上述重氮盐溶液，滴加过程保持溶液温度不高于5 ℃。继续搅拌0.5 h后将反应过滤，并用水（100 mL）冲洗滤饼，收集到的固体通过柱层析（正己烷/EtOAc =1/1），得到橙色固体（0.30 g, 22%）。

LC-MS（ESI, pos. ion）m/z: 423 [M+Na]+;

1H NMR (400 MHz, CDCH_3): 7.77-7.75 (d, 2H), 7.71-7.70 (d, 1H), 7.02-7.00 (d, 2H), 6.54-6.52 (t, 1H), 6.42-6.42 (d, 1H), 6.19 (s, 1H), 5.64 (s, 1H), 5.42-5.39 (m, 1H), 4.30-4.26 (m, 2H), 3.79-3.78 (m, 2H), 3.64-3.57 (m, 2H), 1.99 (s, 3H), 1.25-1.23 (t, 3H)。

实施例9

1-乙氧基-3-(4-羟基-2-甲氧基苯基)二氮烯基苯氧基)丙-2-基甲基丙烯酸酯

其余步骤同实施例7，所不同的是，在步骤(6)中向三口烧瓶中依次加入1-(4-氨基苯氧基)-3-乙氧基丙-2-基甲基丙烯酸酯（0.84 g, 3.00 mmol）、溴化钾（0.41 g, 3.40 mmol）浓盐酸（1.20 g, 11.80 mmol）和丙酮/水（v/v, 1/1）的混合溶液（20 mL），混合液在-5 ℃低温
浴中搅拌，当内温达到0°C以下时，将亚硝酸钠（0.23 g，3.30 mmol）溶于水（10 mL），缓慢滴加到上述反应液中，并继续搅拌0.5 h。将间甲氧基苯酚（0.41 g，3.30 mmol）、氯化钠（0.13 g，3.3 mmol）溶于水（15 mL），并滴加到上述重氨盐溶液，滴加过程保持温度不超过5°C。继续搅拌0.5 h后将反应过滤，并用水（100 mL）冲洗滤饼，收集到的固体通过柱层析（正己烷/EtOAc（v/v=3/1）），得到橙色固体（0.30 g，24%）。

LC-MS（ESI，pos. ion）m/z: 415 [M+H]+;

\[\text{NMIR} \ (400 \text{ MHz, CDCl}_3) \ \Delta \ (ppm): \ 7.86-7.84 \ (d, 2H), \ 7.67-7.65 \ (d, 1H), \ 7.10-6.99 \ (d, 2H), \ 6.57 \ (s, 1H), \ 6.48-6.46 \ (t, 1H), \ 6.17 \ (s, 1H), \ 5.62 \ (s, 1H), \ 5.41-5.37 \ (m, 1H), \ 4.30-4.27 \ (m, 2H), \ 3.98 \ (s, 3H), \ 3.77-3.76 \ (d, 2H), \ 3.62-3.53 \ (m, 2H), \ 1.98 \ (s, 3H), \ 1.24-1.20 \ (t, 3H). \]

对比例1 制备聚合物AO

将丙烯酸-2-苯基乙酯（0.3500 g）、甲基丙烯酸-2-苯基乙酯（0.2500 g）、甲基丙烯酸乙氧基乙酯（0.3500 g）、1,4-丁二醇二甲基丙烯酸酯（0.0350 g）、2-(2H-苯并三唑-2基)-4-甲基-6-(2-丙烯基)苯酚（0.0100 g）以及双(4-叔丁基环己基)过氧化二碳酸酯（0.0100 g）（不添加偶氮化合物）混合均匀，然后转移到一个由两层玻璃以及一个0.4 mm厚度的聚四氟乙烯片组成的模具中，再将模具放入60°C的烘箱内反应3 h，后烘箱升高温度至100°C并继续保持3 h，得到透明具有弹性的聚合物，所得材料在无水乙醇中超声清洗，60°C真空干燥24 h。

实施例10 制备聚合物A1

将丙烯酸-2-苯基乙酯（0.3500 g）、甲基丙烯酸-2-苯基乙酯（0.2500 g）、甲基丙烯酸乙氧基乙酯（0.3500 g）、1,4-丁二醇二甲基丙烯酸酯（0.0350 g）、2-(2H-苯并三唑-2基)-4-甲基-6-(2-丙烯基)苯酚（0.0100 g）、双(4-叔丁基环己基)过氧化二碳酸酯（0.0200 g）以及实施例1制备的偶氮化合物（0.0010 g）混合均匀，然后转移到一个由两层玻璃以及一个0.4 mm厚度的聚四氟乙烯片组成的模具中，再将模具放入60°C的烘箱内反应3 h，后烘箱升高温度至100°C并继续保持3 h，得到透明具有弹性的聚合物，所得材料在无水乙醇中超声清洗后60°C真空干燥24 h，即获得聚合物A1。

实施例11-18 制备聚合物A2-A9

其余步骤同实施例10，所不同的是，分别采用实施例2-9制备的偶氮化合物替代实施例1制备的偶氮化合物，获得聚合物A2-A9。

实施例19 制备聚合物A10

将丙烯酸-2-苯基乙酯（0.3500 g）、甲基丙烯酸-2-苯基乙酯（0.2500 g）、甲基丙烯酸乙氧基乙酯（0.3500 g）、1,4-丁二醇二甲基丙烯酸酯（0.0350 g）、2-(2H-苯并三唑-2基)-4-甲基-6-(2-
丙烯基)苯酚 (0.0100 g)、双(4-叔丁基环己基)过氧化二碳酸酯 (0.0100 g) 以及实施例 3 制备的偶氮化合物 (0.0150 g) 混合均匀，然后转移到一个由两层玻璃以及一个 0.4 mm 厚度的聚四氟乙烯片组成的模具中，再将模具放入 60°C 的烘箱内反应 3 小时，后烘箱升高温度至 100°C 并继续保持 3 小时，得到透明具有弹性的聚合物，所得材料在无水乙醇中超声清洗后 60°C 真空干燥 24 小时。

对比例 2 制备聚合物 All

将丙烯酸-2-苯基乙酯 (0.3500 g)、甲基丙烯酸-2-苯基乙酯 (0.2500 g)、甲基丙烯酸乙氧基乙酯 (0.3500 g)、1,4-丁二醇二丙烯酸酯 (0.0350 g)、2-(2-乙基苯并三唑-2-基)-4-甲基-6-(2-丙烯基)苯酚 (0.0100 g)、双(4-叔丁基环己基)过氧化二碳酸酯 (0.0100 g) 以及传统染料 4-羟基偶氮苯 (0.0010 g) 混合均匀，然后转移到一个由两层玻璃以及一个 0.4 mm 厚度的聚四氟乙烯片组成的模具中，再将模具放入 60°C 的烘箱内反应 3 小时，后烘箱升高温度至 100°C 并继续保持 3 小时，得到透明具有弹性的聚合物，所得材料在无水乙醇中超声清洗后 60°C 真空干燥 24 小时。

实施例 20 光谱透过率测定

(1) 测试方法：室温下，通过安捷伦 Cary60 紫外可见分光光度计测试材料在 200 nm-800 nm 光波范围内的光谱透过率。

(2) 测试结果：

实施例 10-19 以及对比例 1、2 制备的各聚合物光谱透过率如表 1 所示。附图 1-3 显示出了部分实施例制备的聚合物以及对比例制备的聚合物的光谱透过率对比图。由表和附图可知，未加入本发明黄色染料（偶氮化合物）的对比试验材料 A0，其光谱在 400 nm 时就开始有较强的透过率，在 450 nm 处（蓝光区）的透过率高于 90%，对蓝光几乎没有吸收。而加入本发明黄色染料的聚合物 A1-A10，其可以明显降低波长在 400-500 nm 的光谱透过率，对该范围内区的蓝光均有一良好的吸收率，在可见光范围内，光谱透过率的最大值均高于 91%。表明加入本发明黄色染料的聚合物均能保持较好的透明性。并且，与采用传统染料的对比例 2 相比，本发明合成的聚合物也具有良好的蓝光吸收性能以及光谱透过率。

<table>
<thead>
<tr>
<th>实施例</th>
<th>聚合物</th>
<th>450 nm 透过率(%)</th>
<th>最大透过率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对比例 1</td>
<td>A0</td>
<td>90.16386</td>
<td>92.15835</td>
</tr>
<tr>
<td>实施例 10</td>
<td>A1</td>
<td>59.01423</td>
<td>91.14392</td>
</tr>
<tr>
<td>实施例</td>
<td>聚合物</td>
<td>450 nm透过率(%)</td>
<td>最大透过率(%)</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>实施例 1</td>
<td>A2</td>
<td>58.97997</td>
<td>91.63613</td>
</tr>
<tr>
<td>实施例 2</td>
<td>A3</td>
<td>24.23858</td>
<td>92.48477</td>
</tr>
<tr>
<td>实施例 3</td>
<td>A4</td>
<td>5.437931</td>
<td>91.89379</td>
</tr>
<tr>
<td>实施例 4</td>
<td>A5</td>
<td>15.10579</td>
<td>91.09235</td>
</tr>
<tr>
<td>实施例 5</td>
<td>A6</td>
<td>50.16385</td>
<td>91.43137</td>
</tr>
<tr>
<td>实施例 6</td>
<td>A7</td>
<td>63.43479</td>
<td>91.82819</td>
</tr>
<tr>
<td>实施例 7</td>
<td>A8</td>
<td>21.50296</td>
<td>91.91238</td>
</tr>
<tr>
<td>实施例 8</td>
<td>A9</td>
<td>33.92863</td>
<td>91.37845</td>
</tr>
<tr>
<td>实施例 9</td>
<td>A10</td>
<td>5.781409</td>
<td>91.36183</td>
</tr>
</tbody>
</table>

实施例 21 聚合物材料萃取实验及测试结果

（1）萃取实验方法：

取前面实施例制备的聚合物 A1, A2, A4, A6, A9, All，分别剪成长宽约为 15×10mm的薄片，并放入索氏提取器中用无水乙醇回流清洗。萃取液冲刷提取套管的频率为 2 次/小时。萃取 24 小时后将样品取出，60℃真空干燥 24 小时后分别测样品的光谱透过率，并计算萃取前后样品在 450 nm 处吸收效率损失率。

（2）测试结果：

聚合物 A1, A2, A4, A6, A9, All 萃取前后各样品在 450 nm 处光谱吸收数据及 450 nm 吸收损失率如表 2 所示。附图 4 为 A4 与 All 萃取前后光谱透过率对比。对比可知，萃取后，添加传统染料 4-羟基偶氮苯的聚合物 All 对蓝光的吸收效率明显下降（吸收效率降低 43.8%），说明该聚合物中添加的传统染料稳定性较差，因此采用其制备人工晶片，则该聚合物中的偶氮化合物进入人体的风险较大。而添加本发明所述染料的聚合物对蓝光的吸收效率在萃取前后则无明显变化（吸收损失率小于 3%），表明本发明所述的黄色染料由于带有可聚合的双键，在形成聚合物的过程中参与了反应，染料与材料基质间以共价键键合，有效地提高了黄色晶体材料的生物相容性，以及对蓝光吸收的稳定性。参考图 5，图中本发明所合成的各聚合物在萃取前后的吸收损失率均不高于 3%，而传统染料在萃取之后，吸收损失率高达近 45%。对本发明所合成的其他聚合物进行测试，测试结果与表 2 中所示出的结果相似。
表 2

<table>
<thead>
<tr>
<th>聚合物</th>
<th>萃取前 450 nm 吸收 (%)</th>
<th>萃取后 450 nm 吸收 (%)</th>
<th>450 nm 吸收损失率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>40.98577</td>
<td>40.37604</td>
<td>1.487663</td>
</tr>
<tr>
<td>A2</td>
<td>41.02003</td>
<td>40.52035</td>
<td>1.218137</td>
</tr>
<tr>
<td>A4</td>
<td>94.56207</td>
<td>94.27902</td>
<td>0.299323</td>
</tr>
<tr>
<td>A6</td>
<td>49.83615</td>
<td>48.38901</td>
<td>2.903796</td>
</tr>
<tr>
<td>A9</td>
<td>66.07137</td>
<td>64.83919</td>
<td>1.864923</td>
</tr>
<tr>
<td>A11</td>
<td>49.79247</td>
<td>27.96035</td>
<td>43.84623</td>
</tr>
</tbody>
</table>

在本说明书的描述中，参考术语“一实施方案”、“另一实施方案”、“示例”等的描述指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方案或示例中。在本说明书中，对上述术语的示例性描述不必须针对的是相同的实施例或示例。而且，描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外，在不相互矛盾的情况下，本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

尽管上面已经示出和描述了本发明的实施方案以及实施例，可以理解的是，上述实施方案、实施例是示例性的，不能理解为对本发明的限制，本领域的普通技术人员在本发明的范围内可以对上述实施方案、实施例进行变化、修改、替换和变型。
1. 一种偶氮化合物，其特征在于，所述偶氮化合物为式（Ia）所示的化合物或为式（Ia）所示化合物的立体异构体或互变异构体：

其中，
R¹为氢或烷基；R²为烷基；
X 为 0、NH 或 NR₅；Y 为 0、S、NH 或 NR₅；其中各 R₅ 独立地是 C₁₋₁₀ 烷基；
W 为单键、亚烷基或亚烷基；W 任选地被 1、2、3、4 或 5 个氟、氯、溴、碘、羟基、氨基、羧基、氧代（=0）、C₆₋₁₀ 烷基、C₆₋₁₀ 烷氧基、C₆₋₁₀ 烷硫基或 C₁₋₆ 烷基所取代；
R³、R⁴ 分别独立地为氢、氟、氯、溴、碘、羟基、氨基、羧基、氧代（=0）、C₁₋₁₀ 烷基、C₁₋₁₀ 烷氧基、C₁₋₁₀ 烷硫基、C₆₋₁₀ 芳基、C₆₋₁₀ 芳氧基、C₆₋₁₀ 芳硫基、C₆₋₁₀ 芳基或 C₆₋₁₀ 芳基 C₁₋₁₀ 烷基；
n 为 0、1、2、3 或 4；
m 为 0、1、2、3、4 或 5。

2. 根据权利要求 1 所述的偶氮化合物，其特征在于，所述式（Ia）所示偶氮化合物中：
R¹为氢或者 C₁₋₄ 烷基；R²为 C₁₋₆ 烷基；
X 为 0 或 NH；Y 为 0 或 S；W 为单键、C₁₋₁₂ 亚烷基或 C₁₋₁₂ 亚烷基；W 任选地被 1、2、3、4 或 5 个氟、氯、溴、碘、羟基、氨基、羧基、氧代（=0）、C₁₋₁₀ 烷基、C₁₋₁₀ 烷氧基、C₁₋₁₀ 烷硫基或 C₁₋₁₀ 烷基所取代；
R³、R⁴ 分别独立地为氢、氟、氯、溴、碘、羟基、氨基、羧基、氧代（=0）、C₁₋₁₀ 烷基、C₁₋₁₀ 烷氧基、C₁₋₁₀ 烷硫基、C₆₋₁₀ 芳基或 C₆₋₁₀ 芳基 C₁₋₁₀ 烷基；
32

-S(=0)\textsubscript{2}Ra、-C(=0)NRaRb、-S(=0)\textsubscript{2}NRaRb、C\textsubscript{1-6}烷基、C\textsubscript{1-6}烷氧基、卤代C\textsubscript{1-6}烷基、卤代C\textsubscript{1-6}烷氧基、C\textsubscript{1-6}烷基、C\textsubscript{2-6}烯基、C\textsubscript{2-6}炔基、C\textsubscript{6-12}芳基、C\textsubscript{6-12}芳氧基、C\textsubscript{6-12}芳基；和

各Ra、Rb和Rc分别独立地为氢、羟基、C\textsubscript{1-6}烷基、C\textsubscript{2-6}烯基、C\textsubscript{2-6}炔基、C\textsubscript{1-6}烷氧基、C\textsubscript{1-6}芳基或C\textsubscript{6-10}芳基C\textsubscript{1-6}烷基；
n 为 0、1、2、3 或 4；
m 为 0、1、2、3、4 或 5。

3. 根据权利要求1所述的偶氮化合物，其特征在于，所述偶氮化合物为式(I)所示的化合物或为式(I)所示化合物的立体异构体或互变异构体：

![Diagram](image)

其中，
R1为 H 或者烷基；
R2为烷基；
R3分别独立地为氢、氟、氯、溴、碘、羟基、醛基、硝基、氰基、-NRaRb、-C(=0)Rc、-S(=0)\textsubscript{2}Rc、-C(=0)NRaRb、C\textsubscript{1-6}烷基、C\textsubscript{2-6}烯基、C\textsubscript{2-6}炔基、C\textsubscript{6-12}芳基、C\textsubscript{6-12}芳氧基、C\textsubscript{6-12}芳基；和

各Ra、Rb和Rc分别独立地为氢、羟基、C\textsubscript{1-6}烷基、C\textsubscript{2-6}烯基、C\textsubscript{2-6}炔基、C\textsubscript{1-6}烷氧基、C\textsubscript{6-10}芳基或C\textsubscript{6-10}芳基C\textsubscript{1-6}烷基；
m 为 0、1、2、3、4 或者 5。

4. 根据权利要求1-3任一项所述的偶氮化合物，其特征在于，所述R1为 H 或者甲基。
5. 根据权利要求1-4任一项所述的偶氮化合物，其特征在于，所述R2为 C\textsubscript{1-6}烷基。
6. 根据权利要求1-5任一项所述的偶氮化合物，其特征在于，所述R2为甲基、乙基、正丙基、异丙基、正丁基或异丁基。
7. 根据权利要求1-6任一项所述的偶氮化合物，其特征在于，所述R3分别独立地为氢、氟、氯、溴、碘、羟基、醛基、硝基、氰基、-NRaRb、-C(=0)Rc、-S(=0)\textsubscript{2}Rc、-C(=0)NRaRb、C\textsubscript{1-6}烷基、C\textsubscript{2-6}烯基、C\textsubscript{2-6}炔基、C\textsubscript{6-12}芳基、C\textsubscript{6-12}芳氧基、C\textsubscript{6-12}芳基；和

其中，
R1为 H 或者烷基；
R2为烷基；
R3分别独立地为氢、氟、氯、溴、碘、羟基、醛基、硝基、氰基、-NRaRb、-C(=0)Rc、-S(=0)\textsubscript{2}Rc、-C(=0)NRaRb、C\textsubscript{1-6}烷基、C\textsubscript{2-6}烯基、C\textsubscript{2-6}炔基、C\textsubscript{6-12}芳基、C\textsubscript{6-12}芳氧基、C\textsubscript{6-12}芳基；和

各Ra、Rb和Rc分别独立地为氢、羟基、C\textsubscript{1-6}烷基、C\textsubscript{2-6}烯基、C\textsubscript{2-6}炔基、C\textsubscript{1-6}烷氧基、C\textsubscript{6-10}芳基或C\textsubscript{6-10}芳基C\textsubscript{1-6}烷基；
m 为 0、1、2、3、4 或者 5。
-S(=O)_2NR^aR^b, C_{1-4}烷基、C_{1-4}烷氧基、卤代 C_{1-4}烷基、卤代 C_{1-4}烷氧基、C_{1-4}烷基、C_{2-4}烯基、C_{2-4}炔基、C_{6-10}芳基、C_{6-10}芳氧基、C_{6-10}芳基 C_{1-4}烷基或 C_{6-10}芳基 C_{1-4}烷氧基；和

各 R^a、R^b 和 R^c 独立地为氢、羟基、C_{1-4}烷基、C_{2-4}烯基、C_{2-4}炔基、C_{1-4}烷氧基、C_{6-10}芳基或 C_{6-10}芳基 C_{1-4}烷基。

8. 根据权利要求 1-7 任一项所述的偶氮化合物，其特征在于，所述 R^3 分别独立地为氢、氟、氯、溴、碘、叔丁基、甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、三氟甲基、三氟甲氧基、三氯乙基、三氯乙氧基、甲氧基甲基、甲氧基乙基、甲氧基丙基、乙氧基甲基、乙氧基乙基、乙氧基丙基、苯基、苯基甲基、苯基乙基、苯基丙基、苯氧基、苯氧基甲基、苯氧基乙基、苯基甲氧基或苯基乙氧基。

9. 根据权利要求 1-8 任一项所述的偶氮化合物，其特征在于，所述 R^1 为 H 或者甲基，所述 R^2 为甲基或乙基，所述 m 为 1 或者 2，所述 R^3 分别独立地为羟基、甲基、乙基、正丙基、异丙基、正丁基、异丁基、甲氧基、乙氧基、甲氧基乙基、三氟甲基、三氟甲氧基、氟、氯或溴。

10. 根据权利要求 1-9 任一项所述的偶氮化合物，其特征在于，所述偶氮化合物为式 (1)～(20) 所示的化合物，或为所述化合物的立体异构体或互变异构体：

![化合物图像](image.png)
11. 一种聚合物，其特征在于，构成所述聚合物的单体包括本体单体以及蓝光吸收剂，所述蓝光吸收剂为权利要求1~10任一项所述的偶氮化合物。

12. 根据权利要求11所述的聚合物，其特征在于，所述本体单体包括(甲基)丙烯酸酯类单体、乙烯基类单体以及烯丙基类单体的至少之一。

13. 根据权利要求11或12所述的聚合物，其特征在于，构成所述聚合物的原料进一步包括交联剂、紫外吸收剂以及引发剂的至少之一。

14. 一种眼部医疗器件，其特征在于，包括权利要求11~13中任一项所述的聚合物。

15. 根据权利要求14所述的眼部医疗器件，其特征在于，所述眼部医疗器件为人工晶体、眼内透镜、接触透镜、角膜修正物、角膜内透镜、角膜嵌入物、角膜环或者青光眼滤光装置。

16. 一种制备权利要求11~13任一项所述的聚合物的方法，其特征在于，包括：
 对原料混合物进行梯度式加热处理或光固化处理，以便获得所述聚合物。
 其中，所述原料混合物含有本体单体、蓝光吸收剂以及任选地选自交联剂、引发剂以及紫外吸收剂的至少之一。

17. 根据权利要求16所述的方法，其特征在于，所述梯度式加热处理包括：
 第一反应阶段，所述第一反应阶段的温度为40~120摄氏度，反应时间为1~48小时；以及
 第二反应阶段，所述第二反应阶段的温度为40~140摄氏度，反应时间为1~48小时。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C07D 249/18 (2006.01) i; A61F 2/16 (2006.01) i; C09B 69/10 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D, A61F 2/14

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS, DWPI, REGISTRY, CAPLUS, MARPAT, CNKI: 色料、光、蓝光、蓝、兰、东，东、东，光，人工晶体，眼内镜，眼内晶体，INTRAOCULAR LENSES, Ophthalmic

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2011137142 A1 (NOVARTIS AG), 03 November 2011 (03.11.2011), description, page 22, compounds A, B and C</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>US 6878792 B2 (CANON STAAR CO INC.), 12 April 2005 (12.04.2005), description, column 6, compounds 3 and 4</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>WO 2016131796 A1 (ZEISS CARL MEDITEC AG), 25 August 2016 (25.08.2016), entire document</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>CN 105801477 A (SAMSUNG SDI CO., LTD.), 27 July 2016 (27.07.2016), entire document</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "S" document member of the same patent family

Date of the actual completion of the international search: 06 February 2018
Date of mailing of the international search report: 23 February 2018

Name and mailing address of the ISA
State Intellectual Property Office of the P. R. China
No. 6, Xizhimen Road, Jimenqiao Haidian District, Beijing 100088, China
Facsimile No. (86-10) 62019451

Authorized officer: ZHAO, Zhenzhen
Telephone No. (86-10) 62086358

Form PCT/ISA/A/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2011137142 A1</td>
<td>03 November 2011</td>
<td>CN 103026267 B</td>
<td>29 April 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2566305 C2</td>
<td>20 October 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103026267 A</td>
<td>03 April 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 112012027518 A2</td>
<td>26 July 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2012011766 A</td>
<td>17 December 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2103526925 A</td>
<td>27 June 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012151158 A</td>
<td>10 June 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2564245 A1</td>
<td>06 March 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2011245400 B2</td>
<td>29 January 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 222451 D O</td>
<td>31 December 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6262948 B2</td>
<td>11 September 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011266505 A1</td>
<td>03 December 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130094692 A</td>
<td>26 August 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2794726 A1</td>
<td>03 November 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5882302 B2</td>
<td>09 March 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2011245400 A1</td>
<td>25 October 2012</td>
</tr>
<tr>
<td>WO 2008048880 A2</td>
<td>24 April 2008</td>
<td>IL 197870 A</td>
<td>30 August 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2434648 C2</td>
<td>27 November 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2397865 T3</td>
<td>11 March 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2665549 A1</td>
<td>28 April 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7691918 B2</td>
<td>06 April 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2665549 C</td>
<td>17 February 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2081612 A2</td>
<td>29 July 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008090937 A1</td>
<td>17 April 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090071628 A</td>
<td>01 July 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010507108 A</td>
<td>04 March 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2009117837 A</td>
<td>20 November 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007311172 A1</td>
<td>24 April 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 197870 D O</td>
<td>24 December 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008048880 A3</td>
<td>21 August 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2009003813 A</td>
<td>12 May 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5448166 B2</td>
<td>19 March 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2081612 B1</td>
<td>21 November 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI07 19199 A2</td>
<td>09 September 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007311172 B2</td>
<td>31 January 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005101690 A1</td>
<td>12 May 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 200378359 A1</td>
<td>24 April 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003084242 A</td>
<td>19 March 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1408709 A</td>
<td>09 April 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1293541 A2</td>
<td>19 March 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1293541 A3</td>
<td>28 May 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1223586 C</td>
<td>19 October 2005</td>
</tr>
<tr>
<td>US 6310215 B1</td>
<td>30 October 2001</td>
<td>AU 2524600 A</td>
<td>12 October 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2273630 T3</td>
<td>16 May 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1043365 A1</td>
<td>11 October 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 496889 B</td>
<td>01 August 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60031322 D1</td>
<td>30 November 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1031891 A1</td>
<td>19 January 2007</td>
</tr>
<tr>
<td>Patent Documents referred in the Report</td>
<td>Publication Date</td>
<td>Patent Family</td>
<td>Publication Date</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>CN 1188399 C</td>
<td>09 February 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 2304425 A I</td>
<td>07 October 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1043365 B I</td>
<td>18 October 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 0001567 A</td>
<td>31 October 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20010020721 A</td>
<td>15 March 2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 2304425 C</td>
<td>02 June 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1290699 A</td>
<td>11 April 2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 60031322 T2</td>
<td>31 May 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZ 503751 A</td>
<td>23 February 2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU 763648 B2</td>
<td>31 July 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2000290256 A</td>
<td>17 October 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 1005668915 B I</td>
<td>07 April 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 342940 T</td>
<td>15 November 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2016131796 A I</td>
<td>25 August 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 102015102298 A I</td>
<td>18 August 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 3258977 A I</td>
<td>27 December 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 105801477 A</td>
<td>27 July 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 201627413 A</td>
<td>01 August 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 101788089 B I</td>
<td>19 October 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 1580737 B</td>
<td>01 May 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20160090168 A</td>
<td>29 July 2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. 主题的分类
C07D 249/18 (2006. 01) i ; A61F 2/16 (2006. 01) i ; C09B 69/10 (2006. 01) i

按照国际专利分类 (IPC) 或者同时按照国家分类和 IPC 两种分类

B. 检索领域

检索的最低限度文献 (标明分类系统和分类号)
C07D, A61F 2/14

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库 (数据库的名称，和使用的检索词 (如使用))
CNABS, DWPI, REGISTRY, CAPLUS, MARPAT, CNI[i]: 黄色染料，黄，湿光，窗，兰，东德东阳光，人工晶体，眼内植
镜，眼内晶体，INTRAOCULAR LENSES, Ophthalmic

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件</th>
<th>引用文件</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2011137142 A1 (NOVARTIS AG) 2011年11月3日 (2011 - 11 - 03) 说明书中第22页化合物A、B、C</td>
<td>1-17</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 6878792 B2 (CANON STAAR CO INC) 2005年4月12日 (2005 - 04 - 12) 说明书第6特征化合物3、4</td>
<td>1-17</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 6310215 B1 (HOYA HEALTHCARE CORP) 2001年10月30日 (2001 - 10 - 30) 全文</td>
<td>1-17</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 2016131796 A1 (ZEISS CARL MEDITEC AG) 2016年8月25日 (2016 - 08 - 25) 全文</td>
<td>1-17</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>CN 105801477 A (SAMSUNG SDI CO LTD) 2016年7月27日 (2016 - 07 - 27) 全文</td>
<td>1-17</td>
<td></td>
</tr>
</tbody>
</table>

口 其余文件在C段的附表中列出。

见同族专利文件。

国际检索报告

国际申请号

PCT/CN2017/113785

国际检索报告完成的日期

2018年2月6日

国际检索报告的邮寄日期

2018年2月23日

ISA/CN的名称和地址

中华人民共和国国家知识产权局 (ISA/CN) 中国北京市海淀区石门巷西土城路6号 100088

授权官员

赵贞贞

传真号 (86-10) 62019451

电话号码 (86-10) 62086358

表 PCT/ISA/210 (第2页) (2009年7月)
<table>
<thead>
<tr>
<th>国际检索报告</th>
<th>关于同族专利的信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>国际申请号</td>
<td>PCT/CN2017/113785</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日</th>
<th>同族专利</th>
<th>公布日</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2011137142 A1</td>
<td>2011年11月3日</td>
<td>CN 103026267 B</td>
<td>2015年4月29日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2566305 C2</td>
<td>2015年10月25日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103026267 A</td>
<td>2013年4月3日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 112012027518 A2</td>
<td>2016年7月26日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2012011766 A</td>
<td>2012年12月17日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013526925 A</td>
<td>2013年6月27日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2012151158 A</td>
<td>2014年6月10日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2564245 A1</td>
<td>2013年3月6日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2011245400 B2</td>
<td>2015年1月29日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 222451 DO</td>
<td>2012年12月31日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8269848 B2</td>
<td>2012年9月11日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011265505 A1</td>
<td>2011年11月3日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130994692 A</td>
<td>2013年8月26日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2794726 A1</td>
<td>2011年11月3日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5882302 B2</td>
<td>2016年3月9日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2011245400 A1</td>
<td>2012年10月25日</td>
</tr>
<tr>
<td>WO 2008048880 A2</td>
<td>2008年4月24日</td>
<td>IL 197870 A</td>
<td>2012年8月30日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2434648 C2</td>
<td>2011年11月27日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 239765 T3</td>
<td>2013年3月11日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2665549 A1</td>
<td>2008年4月28日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7691968 B2</td>
<td>2010年4月6日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2665549 C</td>
<td>2015年2月17日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2081612 A2</td>
<td>2009年7月29日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008090937 A1</td>
<td>2008年4月17日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090071628 A</td>
<td>2009年7月1日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 20105070108 A</td>
<td>2010年3月4日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2009117837 A</td>
<td>2010年11月20日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007311172 A1</td>
<td>2008年4月24日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 197870 DO</td>
<td>2009年12月24日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008048880 A3</td>
<td>2008年8月21日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2009003813 A</td>
<td>2009年5月12日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5448166 B2</td>
<td>2014年3月19日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2081612 B1</td>
<td>2012年11月21日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR P6719199 A2</td>
<td>2014年9月9日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007311172 B2</td>
<td>2013年1月31日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005101690 A1</td>
<td>2005年5月12日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003078359 A1</td>
<td>2003年4月24日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003084242 A</td>
<td>2003年3月19日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1408709 A</td>
<td>2003年4月9日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1293541 A2</td>
<td>2003年3月19日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1293541 A3</td>
<td>2003年5月28日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1223586 C</td>
<td>2005年10月19日</td>
</tr>
<tr>
<td>US 6310215 BI</td>
<td>2001年10月30日</td>
<td>AU 2524600 A</td>
<td>2000年10月12日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2273630 T3</td>
<td>2007年5月16日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1043365 A1</td>
<td>2000年10月11日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3449046 B2</td>
<td>2003年9月22日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 496889 B</td>
<td>2002年8月1日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 80031322 DI</td>
<td>2006年11月30日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1031891 A1</td>
<td>2007年1月19日</td>
</tr>
</tbody>
</table>

表 PCT/ISA210（同族专利附件）（2009年7月）
关于同族专利的信息

<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日 (年/月/日)</th>
<th>同族专利</th>
<th>公布日 (年/月/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 1188399 C</td>
<td>2005年2月9日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 2304425 A</td>
<td>2000年10月7日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1043365 B1</td>
<td>2006年10月18日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 0001567 A</td>
<td>2000年10月31日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20010020721 A</td>
<td>2001年3月15日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 2304425 C</td>
<td>2009年6月2日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 1290899 A</td>
<td>2001年4月11日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 60031322 T2</td>
<td>2007年5月31日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZ 503751 A</td>
<td>2001年2月23日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU 763648 B2</td>
<td>2003年7月31日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2000290256 A</td>
<td>2000年10月17日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 100568915 BI</td>
<td>2006年4月7日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 342940 T</td>
<td>2006年11月15日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 3256977 A1</td>
<td>2017年12月27日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 105801477 A</td>
<td>2016年7月27日</td>
<td>TW 201627413 A</td>
<td>2016年8月1日</td>
</tr>
<tr>
<td>KR 101788089 B1</td>
<td>2017年10月19日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW 1580737 B</td>
<td>2017年5月10日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 20160090168 A</td>
<td>2016年7月29日</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 PCT/ISA/210 （同族专利附件）（2009年7月）