/012578 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

13 February 2003 (13.02.2003) PCT WO 03/012578 A2
(51) International Patent Classification’: GO6F Yagor (IL). CIDON, Israel [IL/IL]; 10 Morad Hayasmin
Street, 34762 Haifa (IL).
(21) International Application Number: PCT/IL02/00627
(74) Agents: SANFORD T. COLB & CO. et al.; P.O. Box

(22) International Filing Date: 31 July 2002 (31.07.2002)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/309,050 1 August 2001 (01.08.2001) US
60/331,582 20 November 2001 (20.11.2001) US
60/338,593 11 December 2001 (11.12.2001) US

(71) Applicant (for all designated States except US): ACTONA
TECHNOLOGIES LTD. [IL/IL]; P.O. Box 2020, 31920
Tirat Hacarmel (IL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEV RAN, Etai
[TL/IL]; 56 Gilboa Street, 36001 Nofit (IL). GLIXMAN,
Shahar [IL/IL]; 94/1 Ma’ale Avshalom Street, 36094
Qiryat Tivon (IL). BEN SHAUL, Israel [IL/IL]; 91 Gil
Street, 46291 Herzlia (IL). BORTNIKOYV, Vita [IL/IL];
18 Soroka Street, 34759 Haifa (IL). KAMINSKY, Daniel
[TL/IL]; 4 Yitshak Sade Street, 30900 Zichron Ya’acov
(IL). BEN KIKI, Danit [IL/IL]; 140 Derech Hayam,
34748 Haifa (IL). ZACH, Idan [IL/IL]; 30065 Kibbutz

2273, 76122 Rehovot (IL).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, 7ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: VIRTUAL FILE-SHARING NETWORK

16

FILE LAN A VN TRANSMITTER |=-
SERVER | o.,0
52
25

20
__________ o
AN VPN RECEIVER I‘ANSB CLIENT
29 21b

48 28”

(57) Abstract: A method for enabling access to a data resource, which is held on a file server (25) on a first local area network
g (LAN) (21a), by a client (28) on a second LAN (21b). A proxy receiver (48) on the second LAN (21Db) intercepts a request for the
data resource submitted by the client (28) and transmits a message via a wide area network (WAN) (29) to a proxy transmitter (52)
on the first LAN (21a), requesting the data resource. The proxy transmitter (52) retrieves a replica of the data resource from the file
server (25) and conveys the replica of the data resource over the WAN (29) to the proxy receiver (48), which serves the replica of the
data resource from the proxy receiver (48) to the client (28) over the second LAN (21b).

10

15

WO 03/012578 PCT/IL02/00627

VIRTUAL FILE-SHARING NETWORK

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of US Provisional Patent Applications Nos.
60/309,050, filed August 1, 2001; 60/331,582, filed November 20, 2001; and 60/338,593,

filed December 11, 2001, all of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to computer file systems, and specifically to

computer file sharing in a distributed network environment.

BACKGROUND OF THE INVENTION

Geographically dispersed enterprises often deploy distributed computer systems in
order to enable information sharing throughout the enterprise. Such distributed systems
generally comprise a number of local area networks (LANSs) that are connected into one or
more wide area networks (WANS). Enterprises have commonly used dedicated leased lines or
permanent virtual circuits, such as frame relay links, to connect their LANs and WAN end-
points. While providing generally predictable bandwidth and quality of service, such
interconnections are often expensive and represent fixed costs for an enterprise. More
recently, with the development of the Internet, many enterprises have begun to use virtual
private networks (VPNs) operating over the public Internet, at least for a portion of their data
traffic. Although VPNs are typically less expensive than dedicated lines, bandwidth and

latency are often unpredictable, particularly when transmiiting large files over long distances.

Many LANs include one or more dedicated file servers that receive data from other '
processors on the LAN via the network for storage on the file servers' hard disks, and supply
data from the file servers' hard disks to the other processors via the network. Data stored on
file servers is often accessed using a distributed file system, the most prevalent of which are
Network File System (NFS), primarily used for UNIX clients, and Common Internet File
System (CIFS, formerly SMB), used for Windows® clients.

Because these network file systems were primarily designed for use with high-
bandwidth LANS, file access over WANS is often slow, particularly when interconnection is

over a VPN. Numerous and frequent accesses to remote file servers are often necessary for
1

10

15

25

WO 03/012578 PCT/IL02/00627
most file operations, which sometimes result in noticeably poor pefformance of the client

application.

In an attempt to improve response time, techniques of replication and caching are often
used. Replication entails maintaining multiple identical copies of data, such as files and
directory structures, in distributed locations throughout the network. Clients access, either
manually or automatically, the local or topologically closest replica. The principal drawback
of replication is that it often requires high bandwidth to maintain replicas up-to-date and
ensure a certain amount of consistency between the replicas. Additionally, strong consistency
is often very difficult to guarantee as the number of replicas increases with network size and

complexity.

In standard cache implementations, clients maintain files accessed from the network
file system in local memory or on local disk. Subsequent accesses to the cached data are
performed locally until it is determined that the cached data is no longer current, in which case
a fresh copy is fetched. While caching does not necessarily require high bandwidth, access to
large non-cached files (such as for each first access) is sometimes unacceptably slow,
particularly if using a VPN characterized by variable bandwidth and latency. Maintaining
consistency is complex and often requires numerous remote validation calls while a file is

being accessed.

US Patent 5,611,049 to Pitts, which is incorporated herein by reference, describes a
distributed caching system for accessing a named dataset stored at a server connected to a
network. Some of the computers on the network function as cache sites, and the named
dataset is distributed over one or more such cache sites. When a client workstation presents a
request for the named dataset to a cache site, the cache site first determines whether it has the
dataset cached in its buffers. If the cache does not have the dataset, it relays the request to |
another cache site topologically closer to the server wherein the dataset is stored. This relaying
may occur more than once. Once a copy of the dataset is found, either at an intermediary
cache site or on the server, the dataset is sent to the requesting client workstation, where it may
be either read or written by the workstation. The cache sites maintain absolute consistency
between the source dataset and its copies at all cache sites. The cache sites accumulate
profiling data from the dataset requests. The cache sites use this profiling data to anticipate
future requests to access datasets, and, whenever possible, prevent any delay to client

workstations in accessing data by asynchronously pre-fetching the data in advance of receiving
2

10

15

20

30

WO 03/012578 PCT/1L02/00627

a request from a client workstation.

US Patent 6,085,234 to Pitts et al., which is incorporated herein by reference, describes
a network-infrastructure cache that transparently provides proxy file services to a plurality of
client workstations concurrently requesting access to file data stored on a server. A file-
request service-module of the network-infrastructure cache receives and responds to network-
file-services-protocol requests from workstations. A cache included in the network-
infrastructure cache stores data that is transmitted back to the workstations. A file-request
generation-module, also included in the network-infrastructure cache, transmits requests for
data to the server, and receives responses from the server that include data missing from the

cache.

While providing an improvement in network file system performance, caching
introduces potential file inconsistencies between different cached file copies. A data file is |
considered to have strong consistency if the changes to the data are reconciled simultaneously
to all clients of the same data file. Weak consistency allows the copies of the data file to be
moderately, yet tolerably, inconsistent at various times. File systems can ensure strong
consistency by employing single-copy semantics between clients of the same data file. This
approach typically utilizes some form of concurrency control, such as locking, to regﬁlate
shared access to files. Because achieving single copy semantics incurs a high overhead in a
distributed file systems, many file systems opt for weaker consistency guarantees in order to

achieve higher performance.

Cache consistency can be achieved through either client-driven protocols, in which
clients send messages to origin servers to determine the validity of cached resources, or server-
driven protocols, in which servers notify clients when data changes. Protocols using client-
driven consistency, such as NFS (Versions 1, 2 and 3) and HTTP 1.x, either poll the server on -
each access to cache data in order to ensure consistent data, thereby increasing both latency
and load, or poll the server periodically, which incurs a lower overhead on both the server and
client but risks supplying inconsistent data. Server-driven consistency protocols, such as Coda
and AFS, described below, improve client response time by allowing clients to access data
without contacting the origin server, but introduce challenges of their own, mostly with respect

to server load and maintaining consistency despite network or process failures.

When client-driven protocols are used in an environment requiring strong consistency,

15

NS
~

WO 03/012578 PCT/1L02/00627
they incur high validation traffic from clients to servers. This is undesirable in high-latency
networks, as each read operation must suffer a round trip delay to validate the cached data.
HTTP proxy caches have traded reduced consistency for improved access performance, a
rational design choice for most Web content. Each resource is associated with an expiry
timestamp, often derived by some heuristic from its modification and access times. The
timestamp is used to compute the resource’s freshness. A cache proxy may serve any non-
expired resource without first consulting the origin HTTP server. For requests targeting
expired resources, the proxy must first revalidate its cached copy with the origin site before
replying to the client. It is important to note that HTTP uses heuristics that reduce the chance
of inconsistencies, but no hard guarantees can be made regarding actual resource validity
between validations because the server may freely modify the resource while it is cached by

clients.

Server-driven protocols rely on the server to notify clients of changes in the attributes
or content of the resource. Each server maintains a list of clients possessing a cached copy of a
resource. When a cached resource is modified by a client, the server notifies all clients
possessing a cached copy, forcing them to revalidate their copies before allowing further
access to cached data. The server accomplishes this notification by making a callback to each
client. (A callback is a remote procedure call from a server to a client.) The guaranteed
notification relieves clients of having to continuously poll the server to determine validity,
resulting in lower client, server and network loads, when changes are relatively infrequent
compared with the overall access. However, the use of callbacks increases the burden of
managing the server state (to maintain all client callbacks) and decreases system failure
resilience (as the server is required to contact possibly-failed clients). CIFS and NFS Version
4 are stateful protocols. Some hybrid server-/client-driven ;Srotocols use leases for lock
management. Leases grant control of a resource to a client for a server-specified fixed amount -
of time, and are renewable by the client. While the lease is in effect, the server may not grant
conflicting control to another client. Therefore, during a lease, a client can locally use the
resource for reading or writing without repeatedly checking the status of the resource with the
file server. The NFS Version 4 protocol implements leases for both locks and delegation.
This feature is described by Pawlowski et al., in "The NFS Version 4 protocol,” published at
the System Administration and Networking (SANE) Conference (May 22 - 25, 2000 MECC,

Maastricht, The Netherlands), which is incorporated herein by reference. This paper is

4

10

15

20

25

30

WO 03/012578 PCT/IL02/00627
available at www.nluug.nl/events/sane2000/papers/ pawlowski.pdf. Leases or token-based

state management also exists in several other distributed file systems.

NFS has implemented several techniques designed to improve file access performance
over a WAN. NFS clients often pre-fetch data from a file server into the client cache, by
asynchronously reading ahead when NFS detects that the client is accessing a file sequentially,
NFS clients also asynchronously delay writing to the file server modified data in the client's
cache, in order to maintain the client's access to the cached data while the client is waiting for
confirmation from the file server that the modified data has been received. Additionally, NFS
uses a cache for directories of files present on the file server, and a cache for attributes of files

present on the file server.

A number of other distributed file systems, less widely-used than NFS and CIFS, have
been developed in an attempt to overcome the performance issues encountered when using
distributed file systems over WANs. These file systems use client caching, replication of
information, and optimistic assumptions (local read, local write). These file systems also
typically require the installation of a custom client and a customer server implementation.

They do not generally support the standard file systems, such as NFS and CIFS.

For example, the Andrew File System (AFS), which is now an IBM product, is a
location-independent file system that uses a local cache to reduce the workload and increase
the performance of a distributed computing environment. The system was specifically
designed to provide very good scalability. AFS caches complete files from the file server into
the clients, which are required to have local hard disk drives. AFS has a global name space

and security architecture that allows clients to connect to many separate file servers using a
WAN.

Coda is an advanced networked file system developed at Carnegie Mellon University.
Coda's design is based on AFS, with added support for mobile computing and additional
robustness when the system experiences network problems and server failures. Coda attempts
to achieve high performance through client-side persistent caching. The system was also

designed to achieve good scalability.

InterMezzo is an Open Source (GPL) project included in the Linux kernel.
InterMezzo's development began at Carnegie Mellon University, and was inspired by Coda.

When several clients are connected to a file server, InterMezzo decides which client is

5

10

15

25

30

WO 03/012578 PCT/IL02/00627
permitted to write using a mechanism called'a' "write lease" or "write token." Only one client ‘
can hold a write lease or token to a file at any given time, eliminating update conflicts. In
InterMezzo, all clients are immediately notified of any updates to any directories to which they
are connected. As a result, exported directories on all clients are always kept synchronized so
long as all clients are connected to the network. Coda and InterMezzo are described by Braam
et al., in "Removing bottlenecks in distributed filesystems: Coda & InterMezzo as examples,"
published in the Proceedings of Linux Expo 1999 (May 1999), which is incorporated herein by
reference. This paper is available at www-2.cs.cmu.edu/afs/cs/project/coda-

www/ResearchWebPages/ docdir/linuxexpo99.pdf.

Ficus, developed at the University of California Los Angeles, is a replicated general
filing environment for UNIX, which is intended to scale to very large networks. The system
employs an optimistic "one copy availability" model in which conflicting updates to the file
system's directory information are automatically reconciled, while conflicting file updates are -
reliably detected and reported. The system architecture is based on a stackable layers
methodology. Unlike AFS, Coda, and InterMezzo, which employ client-server models, Ficus
employs a peer-to-peer model. Ficus is discussed by Guy et al., in "Implementation of the
Ficus replicated file system," Proceeding of the Summer USENIX Conference (Anaheim, CA,
June 1990), 63-71, and by Page et al., in "Perspectives on optimistically replicated, peer-to-
peer filing," Software: Practice and Experience 28(2) (1998), 155-180, which are incorporated

herein by reference.

SUMMARY OF THE INVENTION

It is an object of some aspects of the present invention to provide improved methods,

systems and software products for file sharing over wide area networks.

In preferred embodiments of the present invention, a distributed computer system
comprises two or more geographically-remote local area networks (LANS) interconnected into
a wide area network (WAN). The system includes one or more file servers, which are located
on respective LANs. The present invention provides a Virtual File-Sharing Network (VEN)™
to enable client computers on one LAN to efficiently access files held by file servers on other
LANSs.

The VFN comprises two or more VFN gateways, each of which is connected to a

different LAN. The VFN gateways communicate with one another over the interconnection

6

10

15

20

30

WO 03/012578 PCT/1L02/00627
provided by the WAN. In order to serve a resource from a file server on a first LAN to a client -
on a second LAN, the VFN gateway on the first LAN fetches the resource from the file server
and transmits the resource over the WAN to the VEN gateway on the second LAN, which then
serves the resource to the client. (The same VEN gateways may be used to provide resources
from another file server on the second LAN to clients on the first LAN.) The VFN system thus
may be viewed as a "double-proxy" system, in which file system requests are intercepted by
the local VFN gateways, which fulfill the requests by communicating with remote VFN
gateways. Tlﬁs architecture enables clients and file servers to interact transparently via their
standard native network file system interfaces, without the need for special VFN client or
server software. A single VFN system may simultaneously support multiple native files

systems and network protocols.

Remote resources are efficiently and.transparently made available to clients by a
combination of file replicating and caching, and on-demand retrieval. These functions are
performed by a receiver component of the VEN gateway, which serves the clients that are
located on the same LAN as the gateway. (A transmitter component of the VEN gateway is
responsible for communicating with local file servers.) .Selected resources are replicated ("pre-
positioned") prior to a client request. Policies and algorithms are used to determine which
resources to pre-position and when to pre-position resources, based on characteristics of the
resources and the availability of bandwidth and local storage. Preferably, the policies are set
so that resources with higher ratios of expécted usage to expected modifications are more
likely to be pre-positioned. Look-ahead fetching is employed by analyzing real-time file usage

patterns to detect sequential access patterns.

The VFN receiver component retrieves and caches a requested resource on-demand if
the resource has not previously been pre-positioned or cached, or if the cached version of the
resource has become outdated. Advantageously, because the VFN gateway caches resources
centrally for the LAN, when more than one client on the LAN requests the same resource, the |
resource is served locally without the need for redundant remote transfers. As a result, the
VFN system exploits similarities in access patterns of multiple clients in order to reduce
bandwidth consumption and quickly serve resources. Additionally, the VEN system preferably
implements negative caching, whereby when a VFN gateway on another LAN responds that
requested content is not found, this negative response is cached by the requesting VFN

receiver for a certain amount of time, so that the same request will not be repeated

7

10

15

20

25

30

WO 03/012578 PCT/IL02/00627
unnecessarily. Negative caching generally reduces bandwidth consumption and reduces

resource request response time.

Each VFN receiver maintains a virtual directory of files held by remote file servers on
other LANs. All registered directory trees from the rémote servers are pre-positioned in the
virtual directory. The VFN receiver keeps the directory information up-to-date, irrespective of
file requests by its local clients. When the VFN receiver intercepts a request for file directory
information or file metadata from one of the local clients, the VFN receiver looks up the
information on its local virtual directory, The VEN receiver then returns the requested
information directly to the client, avoiding the delay that would otherwise be involved in

requesting and receiving the information from the remote file server across the WAN.,

The virtual directory preferably includes metadata, including all file attributes that
might be requested by a client application, such as size, modification time, creation time, and
file ownership. If necessary (as in the case of NFS, for example), the VFN system extracts. this
metadata from within the files stored on the origin file server, wherein the metadata is
ordinarily kept. Local storage of this metadata in the virtual directory has several advantages.
Many file system operations require attributes of numerous files without requiring the content
of those files. The virtual directory precludes the need to transfer and store these unnecessary
complete files. By use of the local virtual directory, the VEN receiver provides the client with
fast response time to metadata-only operations, such as browsing the file system and property

checking, as well as for performing permission and validation checks against these attributes.

Preferably, VFN gateways on different LANs are connected to one another by a
transport sub-system, which is based on a novel WAN-oriented protocol. This protocol
ensures reliable and efficient use of available WAN bandwidth. At the same time,
communications between the VFN gateways and their local clients and file servers operate in
accordance with LAN-oriented protocols, typically emulating the standard client/server
protocols used by the native file system. This arrangement enables seamless integration with |
existing LAN protocols, while providing effective performance over the WAN. To achieve
efficiency, the transport sub-system preferably uses compression and delta transfer techniques,
and, when appropriate, parallel connections to multiple remote VFN transmitters, multi-source
routing, and throttling. Effective use of WAN bandwidth also reduces the impact of VFN
traffic on other applications using the WAN.

10

15

WO 03/012578 PCT/1L02/00627

In some preferred embodiments of the present invention, the VFN system is configured
to provide strong consistency for files and directories by using a server-driven lease-based .
consistency protocol between VFN gateways. An access lease provides a VEN receiver with
permission to perform specified operations (including writing) during a specified length of
time, independent of the VFN receiver's peer VFN transmitter. Preferably, the VFN uses a
lease model that provides an effective balance between VEN receiver polling and VFN
transmitter state. Consistency between the VFN receiver and clients is provided by the
consistency protocols of the client's native file system. Consistency between the VFN
transmitter and the origin file server is preferably provided by using a watchdog VFN file
agent deployed in the origin file server. Alternatively, the VEN system may be configured for

weak or intermediate consistency.

In some preferred embodiments of the present invention, the VEN system includes a
VEN manager, which centrally manages all VPN gateways and administers the VEN system's
policy control mechanism. Policies may be edited via a multi-user GUI console, and are -
translated into a tag-based markup language. Policies include various distribution-related
attributes that may be assigned to any given set of files or directories, such as priorities,
conditional pre-fetching properties, cache consistency attributes, and active refresh riles.
Policies are periodically downloaded from the VEN manager by control agents in the VFN
gateways. Additionally, the VFN manager periodically collects activity logs from the control

agents, and analyzes this data to generate various activity analyses and reports.

There is therefore provided, in accordance with a preferred embodiment of the present
invention, a method for enabling access to a data resource, which is held on a file server on a
first local area network (LAN), by a client on a second LAN, the method including:

intercepting a request for the data resource submitted by the client, using a proxy
receiver on the second LAN;

transmitting a message via a wide area network (WAN) from the proxy receiver to a .
proxy transmitter on the first LAN, requesting the data resource;

retrieving a replica of the data resource from the file server to the proxy transmitter;

responsive to the message, conveying the replica of the data resource over the WAN
from the proxy transmitter to the proxy receiver; and

serving the replica of the data resource from the proxy receiver to the client over the
second LAN.

10

15

20

25

30

WO 03/012578 PCT/1L02/00627

As appropriate, the data resource may include a file, a block of a file, a page of content
encoded in a markup language, and/or a file system directory. Conveying the replica of the -
data resource may include conveying metadata relating to the data source, conveying an access
list applicable to the data resource, and/or conveying the replica of the data resource includes

conveying a permission applicable to the data resource.

In a preferred embodiment, retrieving the replica includes monitoring the file server
using a watchdog agent to detect a change made to the data resource by a native client on the
first LAN, and retrieving the replica of the data resource from the file server to the proxy

transmitter again responsive to the change.

In a preferred embodiment, intercepting the request includes intercepting a lock requeét
submitted by the client for a lock on the data resource, and transmitting the message includes
transmitting a lock message via the WAN from the proxy receiver to the proxy transmitter,
requesting the lock, and including;

responsive to the lock message, issuing the lock at the proxy transmitter;

conveying the lock over the WAN from the proxy transmitter to the proxy receiver; and

serving the lock from the proxy receiver to the client.

Preferably, retrieving the replica of the data resource from the file server includes
checking the file server to determine whether the data resource is held by the file server, and
conveying the replica of the data resource from the proxy transmitter to the proxy receiver
includes conveying a negative response relating to the data resource over the WAN from the
proxy transmitter to the proxy receiver when it is determined that the data resource is not held
by the file server, and the method includes caching the negative response at the proxy receiver
for a certain period. Preferably, transmitting the message from the proxy receiver to the proxy
transmitter includes checking whether the negative response relating to the requested data
resource is present and not expired, and, responsive to determining that the negative response
is present and not expired, withholding transmitting the message to the proxy transmitter, and .

serving the negative response from the proxy receiver to the client over the second LAN.

In a preferred embodiment, intercepting the request includes intercepting a file system
request submitted by the client for an operation on the data resource, and wherein transmitting
the message includes transmitting the file system request and a request for a lock via the WAN

from the proxy receiver to the proxy transmitter, and including:

10

10

15

20

25

30

WO 03/012578 PCT/IL02/00627
responsive to the request for the lock, obtaining the lock from the file server at the

proxy transmitter; and

conveying the lock over the WAN from the proxy transmitter to the proxy receiver.

Preferably, the method includes, if the proxy receiver intercepts no more file system
requests from the client with respect to the data resource for a certain period, issuing an unlock

request from the proxy receiver to the proxy transmitter with respect to the data resource.

In a preferred embodiment, intercepting the request includes intercepting the request
for the data resource submitted in accordance with a first native network file system of the
client, and retrieving the replica includes translating the request for the data resource from the
first native network file system to a second native network file system used by the file server,

and retrieving the replica of the data resource using the translated request.

Preferably, conveying the replica of the data resource over the WAN includes
ascertaining an available bandwidth of the WAN, and conveying the replica using a portion of
the bandwidth that is less than a total available bandwidth, responsive to a management

directive downloaded to the proxy receiver over the WAN.

As appropriate, transmitting the message includes aggregating the message into a batch

of messages, and transmitting the aggregated batch.

In a preferred embodiment, the proxy transmitter is one of a plurality of proxy
transmitters, and conveying the replica includes assessing an efficiency of conveying the
replica over the WAN to the proxy receiver from each of at least two of the proxy transmitters,

and selecting at least one of the proxy transmitters to convey the replica responsive to the

assessed efficiency.

In this case, conveying the replica may include conveying respective portions of the
replica from the at least two of the proxy transmitters, and concatenating the portions to create

the replica at the proxy receiver.

Preferably, conveying the replica includes:

checking a transmitter memory of the proxy transmitter to determine whether the
replica of the data resource is present in the transmitter memory and valid; and

responsive to the message and to determining that the replica in the transmitter memory

is present and valid, conveying the replica from the transmitter memory over the WAN to the

proxy receiver.
11

10

15

20

30

WO 03/012578 PCT/IL02/00627

In this case, retrieving the replica of the data resource from the file server preferably
includes retrieving the replica of the data resource from the file server to the transmitter
memory when it is determined 4that the replica of the data resource is not present in the

transmitter memory or is not valid.

Preferably, the method includes conveying to the proxy receiver metadata regarding the
data resource on the file server and, responsive to the metadata, presenting to the client a
virtual directory of the file server. Preferably, conveying the metadata includes reading the
metadata from files held by the file server using the proxy transmitter, and conveying the

metadata from the proxy transmitter to the proxy receiver.

Preferably, transmitting the message via the WAN includes encapsulating the message
in accordance with a WAN transport protocol and transmitting the encapsulated message.

Preferably, the WAN transport protocol includes a Hypertext Transfer Protocol (HTTP).

Preferably, conveying the replica of the data resource over the WAN includes
encapsulating the replica in accordance with a WAN transport protocol and conveying the
encapsulated replica. Preferably, the WAN transport protocol includes a Hypertext Transfer
Protocol (HTTP) and/or a Transmission Control Protocol (TCP).

Preferably, the request for the data resource is submitted by the client using a call to a
native network file system used by the file server, and retrieving the replica of the data
resource includes retrieving the replica of the data resource using the native network file
system. Optionally, the native network file system is selected from a group of file systems
consisting of Network File System (NFS), Common Internet File System (CIFS), and NetWare
file system. Preferably, transmitting the message includes encapsulating the call to the native

file system for transmission in accordance with a WAN transport protocol.

Preferably, conveying the replica of the data resource includes compressing the replica
at the proxy transmitter, conveying the compressed replica over the WAN, and decompressing
the compressed replica at the proxy receiver. Preferably, compressing the replica includes
applying delta compression at the proxy transmitter to the replica responsive to information
provided to the proxy transmitter by the proxy receiver. Most preferably, applying delta
compression includes correlating the replica at the proxy transmitter with another version of

the replica that is available at the proxy transmitter and at the proxy receiver, and/or correlating

12

10

15

25

WO 03/012578 PCT/IL02/00627
the replica at the proxy transmitter with one or more resource blocks of one or more other

resources that are available at the proxy transmitter and at the Proxy receiver.

In a preferred embodiment, the method includes storing the replica of the data resource
in a memory of the proxy receiver, and serving the replica of the data resource from the proxy

receiver includes serving the replica of the data resource from the memory of the proxy

receiver.

Preferably, the method further includes: intercepting a further request for the data
resource from another client on the second LAN: checking the memory to determine whether
the replica of the data resource is present in the memory and valid; and responsive to the
further request and to determining that the replica is present and valid, serving the replica of
the data resource from the memory of the proxy receiver to the other client over the second
LAN.

Preferably, when the data resource is a file including a plurality of file blocks,
conveying the replica includes analyzing a pattern of access by the client to the file blocks, and
conveying replicas of a portion of the file blocks not yet requested by the client, responsive to

the pattern.

In a preferred embodiment, the client is a first client among a plurality of clients on the
second LAN, and serving the replica of the data resource from the memory includes serving

the replica both to the first client and to a second client among the plurality of clients.

Preferably, serving the replica includes periodically checking at the proxy receiver
whether the replica of the data resource in the memory of the proxy receiver is consistent with
the data resource held by the file server, and deleting the replica from the memory upon
determining that the replica is not consistent. Preferably, the method additionally includes

deleting the replica from the memory responsive to a pfedetermined cache removal policy.

Preferably, conveying the replica of the data resource includes conveying a read lease
relatmg to the data resource to the proxy receiver, and serving the replica of the data resource .
includes serving the replica so long as the read lease has not expired or been revoked by the
proxy transmitter. When the proxy receiver is a first proxy receiver among a plurality of proxy
receivers, the method preferably includes revoking, at the proxy transmitter, the read lease
conveyed to the first proxy receiver if a second proxy receiver among the plurality of proxy
receivers modifies the data resource. Preferably, conveying the read lease includes setting an

13

10

15

20

25

30

WO 03/012578 PCT/IL02/00627
expiration period of the read lease responsive to a file type of the data resource. Optionally,
conveying the read lease includes locking the data resource at the file server, and the method
includes unlocking the data resource at the file server upon termination of the expiration -

period of the read lease.

Preferably, the method includes performing an operation on the replica of the data
resource in the memory responsive to a management directive downloaded to the proxy
receiver over the WAN. Preferably, the directive is encoded in a tag-based markup language,

and performing the operation responsive to the directive includes parsing the markup language.

Preferably, intercepting the request includes intercepting a group of one or more
requests for first data resources on the file server, and the method includes analyzing a pattern
of the group of requests, and retrieving replicas of one or more second data resources from the

file server to the memory of the proxy receiver, responsive to the pattern.

Preferably, retrieving the replicas of the one or more second data resources includes

retrieving the second data resources before the client requests the second data resources.

Preferably, analyzing the pattern includes calculating for each of the second data
resources on the file server a relation of an expected usage of the replicas of the second -data

resources at the proxy receiver to an expected modification rate of the second data resources at

the file server.

Preferably, retrieving the replicas of the one or more second data resources includes
analyzing a relation of an available bandwidth of the WAN to an expected usage of the
replicas of the second data resources at the proxy receiver, and determining, responsive to the
relation, when to retrieve a replica of the second data resource. Alternatively or additionally,
retrieving the replicas of the one or more second data resources includes analyzing a first
relation of an expected usage of the replicas of the second data resources at the proxy receiver
to an expected modification rate of the second data resources at the file server, determining a
second relation between an available bandwidth of the WAN and the first relation, and
determining, responsive to the second relation, when to retrieve a replica of the second data

resource.

Preferably, retrieving replicas of the one or more second data resources includes
determining an order of retrieval of the second data resources responsive to a predetermined
retrieval policy, and conveying the replicas over the WAN in the determined order.

14

10

15

20

25

30

WO 03/012578 PCT/IL02/00627
Preferably, in accordance with the retrieval policy, the first data resources requested by the

client are retrieved with a higher priority than the second data resources.

In a preferred embodiment the method includes: intercepting at the proxy receiver a .
write request submitted by the client for application to the data resource; transmitting the write
request via the WAN from the proxy receiver to the proxy transmitter; and passing the write

request via the first LAN from the proxy transmitter to the file server.

Sometimes, intercepting the write request includes intercepting multiple write requests
submitted by the client for application to the data resource, and aggregating the write requests
in a write memory of the proxy receiver, and transmitting the write requests includes
transmitting the aggregated write requests together via the WAN from the write memory of the

proxy receiver to the proxy transmitter.

‘ When the data resource includes multiple separate data resource items, preferably
aggregating the write requests includes aggregating the write requests with respect to the

multiple data resources items so as to transmit the aggregated write requests together.

In a preferred embodiment, conveying the replica of the data resource includes
conveying to the proxy receiver a write lease relating to the data resource, and transmitting the
write request via the WAN from the proxy receiver to the proxy transmitter includes
transmitting the write request via the WAN from the proxy receiver to the proxy transmitter
upon expiration or revocation of the write lease. Preferably, conveying the write lease includes
setting an expiration period of the write lease responsive to a file type of the data resource.
Optionally, conveying the write lease includes locking the data resource at the file server, and
the method includes unlocking the data resource at the file server upon termination of the
expiration period of the write lease. When the proxy receiver is a first proxy receiver among a
plurality of proxy receivers, and the method preferably includes revoking, at the proxy
transmitter, the write lease conveyed to the first proxy receiver if a second proxy receiver

among the plurality of proxy receivers conducts a file system operation on the data resource.

Preferably, conveying the write lease includes checking a connection status of the .
WAN, and determining whether to maintain the write lease responsive to the connection
status. Preferably, intercepting the write request preferably includes receiving and holding the
write request from the client at the proxy receiver while the WAN is disconnected, and

transmitting the write request includes transmitting the write request when the WAN is

15

10

15

20

30

WO 03/012578 PCT/IL02/00627
reconnected, and including integrating the write request with the data resource at the file

Server.

There is-also provided, in accordance with a preferred embodiment of the present
invention, a method for enabling access to a data resource held on a file server on a first local
area network (LAN) by a client on a second LAN, the method including:

intercepting a request to perform a file operation on the data resource submitted by the
client, using a proxy receiver on the second LAN;

checking a receiver cache held by the proxy receiver to determine whether valid
information necessary to fulfill the request is already present in the receiver cache;

responsive to the request and to determining that the valid information is not present in
the receiver cache, transmitting via a wide area network (WAN) a message requesting the
information from the proxy receiver to a proxy transmitter on the first LAN;

responsive to the message, conveying the information over the WAN from the proxy
transmitter to the proxy receiver; and

fulfilling the request at the proxy receiver to the client using the information.

The valid information may include the data resource and/or metadata relating to the

data resource.

In a preferred embodiment, the file operation is.a metadata-only file operation, and the

information includes metadata.

In a preferred embodiment, the request for the data resource is submitted by the client
using a call to a native network file system used by the file server, and transmitting the
message via the WAN includes transmitting the message via the WAN using the native

network file system.

Preferably, the method further includes:

intercepting a further request to perform an operation on the data resource from another
client on the second LAN;

checking the receiver cache to determine whether the valid information if already
present in the receiver cache; and

responsive to the further request and to determining that the valid information is
present, fulfilling the further request at the proxy receiver to the other client using the valid
information.

16

10

15

20

WO 03/012578 PCT/IL02/00627
Preferably, conveying the informatiorn' includes checking a transmitter cache held by
the proxy transmitter to determine whether the valid information necessary to fulfill the request
is already present in the transmitter cache and, if so, conveying the information from the
transmitter cache over the WAN to the proxy receiver. Further preferably, conveying the .
information includes, upon determining that the valid information is not present in the
transmitter cache, fetching the information from the file server to the proxy transmitter, and

conveying the fetched information over the WAN to the proxy receiver.

Preferably, conveying the metadata includes reading the metadata from files held by the
file server using the proxy transmitter, and conveying the metadata from the proxy transmitter

to the proxy receiver.

There is further provided, in accordance with a preferred embodiment of the present
invention, a method for enabling access to a data resource, which is held on a file server on a
first local area network (LAN), by a client on a second LAN, the method including:

conveying a replica of the data resource over a wide area network (WAN) from the file
server to a cache held by a proxy receiver on the second LAN;

intercepting at the proxy receiver a file system request for the data resource submitted

by the client over the second LAN;

checking the cache to determine whether the replica of the data resource is present in
the cache and valid; and

responsive to the file system request and to determining that the replica is present and
valid, serving the replica of the data resource from the cache of the proxy receiver to the client

over the second LAN.

In a preferred embodiment, the request for the data resource is submitted by the client

using a call to a native network file system used by the file server.

In a preferred embodiment, the method also includes:

intercepting a further request for the data resource from another client on the second
LAN;

checking the cache to determine whether the replica of the data resource is present in

the cache and valid; and

17

10

15

30

WO 03/012578 PCT/IL02/00627
responsive to the further request and to determining that the replica is present and
valid, serving the replica of the data resource from the cache of the proxy receiver to the other

client over the second LAN.

In a preferred embodiment, the client is a first client among a plurality of clients on the |
second LAN, and serving the replica of the data resource from the cache includes serving the

replica both to the first client and to a second client among the plurality of clients.

In a preferred embodiment, intercepting the request includes intercepting a lock request
submitted by the client for a lock on the data resource, and conveying the replica over the
WAN includes transmitting a lock message via the WAN from the proxy receiver to the file
server, requesting the lock, and including:

responsive to the lock message, issuing the lock at the file server;

conveying the lock over the WAN from the file server to the proxy receiver; and

serving the lock from the proxy receiver to the client.

Preferably, the method includes, upon determining that the replica is not present or not
valid, requesting that the replica be conveyed again from the file server to the proxy receiver.
Preferably, requesting that the replica be conveyed includes requesting that the replica be

conveyed using a native file network system of the file server.

In a preferred embodiment, the method includes intercepting at the proxy receiver a
write request submitted by the client for application to the data resource, and passing the write

request over the WAN from the proxy receiver to the file server.

There is still further provided, in accordance with a preferred embodiment of the
present invention, a method for enabling access to data resources held on a file server on a first
local area network (LAN) by a client on a second LAN, the method including:

reading metadata from the file server using a proxy transmitter on the first LAN;

transmitting the metadata via a wide area network (WAN) from the proxy transmitter
to a proxy receiver on the second LAN; and

based on the metadata, constructing at the proxy receiver a directory of the data

resources on the file server, for use by the client in accessing the data resources.

Preferably, reading the metadata includes reading updated metadata from the file server
subsequent to constructing the directory, and wherein constructing the directory includes

synchronizing the directory with the file server responsive to the updated metadata.
18

10

15

30

WO 03/012578 PCT/IL02/00627
Preferably, the metadata includes file attributes of the data resources, which file
attributes are stored in a directory object on the file server, and reading the metadata includes

reading the file attributes from the directory object.

In a preferred emhbodiment, the data resources include files, and the metadata includes
file attributes that are stored in the files, and reading the metadata includes reading the file .

attributes from the files.

In a preferred embodiment, the method includes intercepting at the proxy receiver a file
system request with respect to one of the data resources in the directory submitted by the client
over the second LAN, and, responsive to the file system request, serving data from the one of

the data resources from the proxy receiver to the client over the second LAN.

In a preferred embodiment, intercepting the file system request includes intercepting a
file operation request based on the metadata, and including fulfilling the file operation request
at the proxy receiver, and conveying'a result of the fulfilled file operation request to the client

over the second LAN.

There is also provided, in accordance with a preferred embodiment of the present -
invention, a method for enabling access to a data resource held by a file server, the method -
including:

submitting a first request via a wide area network (WAN) for access to the data
resource from one or more sources able to receive the data resource from the file server;

receiving a response from a first source among the one or more sources indicating that
the first source cannot provide a valid replica of the data resource;

caching a record indicating that the first source is unable to provide the valid replica of
the data resource; and

submitting a second request for access to the data resource to at least a second source
among the one or more sources, while avoiding, responsive to the cached record, sending the

second request to the first source.

There is yet additionally provided, in accordance with a preferred embodiment of the
present invention, a method for enabling access to a data resource, which is held on a file -
server on a first local area network (LAN), by a client on a second LAN, the method including:

intercepting a request for the data resource submitted by the client, using a file system

driver on the second LAN;
19

10

15

25

WO 03/012578 PCT/1L02/00627
transmitting 2 message via a wide area network (WAN) from the file system driver to a
proxy transmitter on the first LAN, requesting the data resource;
retrieving a replica of the data resource from the file server to the proxy transmitter;
responsive to the message, conveying the replica of the data resource over the WAN
from the proxy transmitter to the file system driver; and
serving the replica of the data resource from the file system driver to the client over the
second LAN.

There is still additionally provided, in accordance with a preferred embodiment of the
present invention, apparatus for enabling access to a data resource, which is held on a file
server on a first local area network (LAN), by a client on a second LAN, the apparatﬁs
including:

a proxy transmitter, which is adapted to retrieve a replica of the data resource from the
file server over the first LAN; and

a proxy receiver, which is adapted to intercept a request for the data resource submitted
by the client on the second LAN, and responsive to the request, to send a message via a wide
area network (WAN) to the proxy transmitter on the first LAN, requesting the data resource,
thus causing the proxy transmitter to convey the replica of the data resource over the WAN to .

the proxy receiver, which serves the replica of the data resource to the client over the second
LAN.

There is further provided, in accordance with a preferred embodiment of the present
invention, apparatus for enabling access to a data resource held on a file server on a first local
area network (LAN) by a client on a second LAN, the apparatus including:

a proxy transmitter, which is adapted to hold the data resource; and

a proxy receiver, which includes a receiver cache, and which is adapted to intercept a
request to perform a file operation on the data resource submitted by the client on the second
LAN, to check the receiver cache to determine whether valid information necessary to fulfill
the request is already present in the receiver cache, and responsive to the request and to
determining that the valid information is not present in the receiver cache, to transmit a
message requesting the information via a wide area network (WAN) to the proxy transmitter, .
thus causing the proxy transmitter to convey the information over the WAN to the proxy

receiver, which fulfills the request using the information.

20

10

15

20

25

WO 03/012578 PCT/IL02/00627

There is yet further provided, in accordance with a preferred embodiment of the present
invention, apparatus for enabling access to a data resource, which is held on a file server on a
first local area network (LAN), by a client on a second LAN, the apparatus including a proxy
receiver, which includes a cache, the proxy receiver located on the second LAN and adapted to
retrieve a replica of the data resource from the file server over a wide area network (WAN) to ‘
the cache, to intercept a file system request for the data resource submitted by the client over
the second LAN, to check the cache to determine whether the replica of the data resource is
present in the cache and valid, and, responsive to the file system request and to determining
that the replica is present and valid, to serve the replica of the data resource from the cache to

the client over the second LAN.

There is still further provided, in accordance with a preferred embodiment of the

present invention, apparatus for enabling access to data resources held on a file server on a first

local area network (LAN) by a client on a second LAN, the apparatus including a proxy
receiver and a proxy transmitter, the proxy transmitter located on the first LAN and adapted to
read metadata from the file server, to transmit the metadata via a wide area network (WAN) to
the proxy receiver on the second LAN, and wherein the a proxy receiver is adapted to construct
a directory, based on the metadata, of the data resources on the file server, for use by the ciient

in accessing the data resources.

There is additionally provided, in accordance with a preferred embodiment of the
present invention, apparatus for enabling access by a client to a data resource held by a file
server, the apparatus including a proxy receiver for serving the resource to the client, wherein
the proxy receiver is adapted to submit a first request via a wide area network (WAN) for
access to the data resource from one or more sources able to receive the data resource from the
file server, and upon receiving a response from a first source among the one or more sources
indicating that the first source cannot provide a valid replica of the data resource, to cache a
record indicating that the first source is unable to provide the valid replica of the data resource,
so that responsive to the cached record, the proxy receiver avoids sending to the first source a
second request for access to the data resource, while submitting the second request to at least a

second source among the one or more sources.

21

10

15

20

30

WO 03/012578 PCT/1L02/00627

There is also provided, in accordance with a preferred embodiment of the present
invention, apparatus for enabling access to a data resource, which is held on a file server on a
first local area network (LAN), by a client on a second LAN, the apparatus including:

a proxy transmitter, which is adapted to retrieve a replica of the data resource from the
file server over the first LAN;

a file system driver, which is adapted to intercept a request for the data resource
submitted by the client on the second LAN, and responsive to the request, to send a message
via a wide are network (WAN) to the proxy transmitter on the first LAN, requesting the data
resource, thus causing the proxy transmitter to convey the replica of the data resource over the
WAN to the file system driver, which serves the replica of the data resource to the client over

the second LAN.

There is further provided, in accordance with a preferred embodiment of the present
invention, a computer software product for enabling access to a data resource, which is held on
a file server on a first local area network (LAN), by a client on a second LAN, the product
including a computer-readable medium, in which program instructions are stored, which
instructions, when read by a first computer on the first LAN, cause the computer to operate as
a proxy transmitter, so as to retrieve a replica of the data resource from the file server over the
first LAN, and which instructions, when read by a second computer on the second LAN, céuse '
the second computer to operate as a proxy receiver, so as to intercept a request for the data
resource submitted by the client on the second LAN, and responsive to the responsive, to send
a message via a wide area network (WAN) to the proxy transmitter on the first LAN,
requesting the data resource, thus causing the proxy transmitter to convey the replica of the
data resource over the WAN to the proxy receiver, which serves the replica of the data

resource to the client over the second LAN.

There is still further provided, in accordance with a preferred embodiment of the
present invention, a computer software product for enabling access to a data resource held on a
file server on a first local area network (LAN) by a client on a second LAN, the product
including a computer-readable medium, in which program instructions are stored, which
instructions, when read by a computer on the second LAN, cause the computer to operate as a
proxy receiver having a receiver cache, so as to intercept a request to perform a file operation

on the data resource submitted by the client on the second LAN, and to check the receiver

22

10

15

20

N
[,

30

WO 03/012578 PCT/1L02/00627

cache to determine whether valid information necessary to fulfill the réquest is already present
in the receiver cache, and responsive to the request and to determining that the valid
information is not present in the receiver cache, to transmit a message requesting the
information via a wide area network (WAN) to a proxy transmitter on the first LAN, thus
causing the proxy transmitter to convey the information over the WAN transmitter to the

computer, which fulfills the request using the information.

There is additionally provided, in accordance with a preferred embodiment of the
present invention, a computer software product for enabling access to a data resource, which is
held on a file server on a first local area network (LAN), by a client on a second LAN, the
product including a computer-readable medium, in which program instructions are stored,
which instructions, when read by a first computer on the second LAN, cause the computer to
operate as a proxy receiver having a cache, so as to retrieve a replica of the data resource from
the file server over a wide area network (WAN) to the cache, to intercept a file system request
for the data resource submitted by the client over the second LAN, to check the cache to
determine whether the replica of the data resource is present in the cache and valid, and,
responsive to the file system request and to determining that the replica is present and valid, to

serve the replica of the data resource from the cache to the client over the second LAN.

There is yet additionally provided, in accordance with a preferred embodiment of the |
present invention, a computer software product for enabling access to data resources held on a
file server on a first local area network (LAN) by a client on a second LAN, the product
including a computer-readable medium, in which program instructions are stored, which
instructions, when read by a first computer on the first LAN, cause the first computer to
operate as a proxy transmitter, so as to read metadata from the file server, and to transmit the
metadata via a wide area network (WAN) to the second LAN, and which instructions, when
read by a second computer on the second LAN, cause the second computer to operate as a
proxy receiver, and to construct a directory, based on the metadata, of the data resources on the

file server, for use by the client in accessing the data resources.

There is further provided, in accordance with a preferred embodiment of the present
invention, a computer software product for enabling access by a client to a data resource held
by a file server, the product including a computer-readable medium in which program |
instructions are stored, which instructions, when read by a computer, cause the computer to

23

10

15

20

30

WO 03/012578 PCT/IL02/00627

submit a first request via a wide area network (WAN) for access to the data resource from one
or more sources able to receive the data resource from the file server, so as to provide the data
resource to the client, and wherein the instructions further cause the computer, upon receiving
a response from a first source among the one or more sources indicating that the first source
cannot provide a valid replica of the data resource, to cache a record indicating that the first
source is unable to provide the valid replica of the data resource, so that responsive to the v
cached record, the computer avoids sending to the first source a second request for access to
the data resource, while submitting the second request to at least a second source among the

one or more sources.

There is still additionally provided, in accordance with a preferred embodiment of the
present invention, a computer software product for enabling access to a data resource, which is
held on a file server on a first local area network (LAN), by a client on a second LAN, the
product including a éomputer-readable medium, in which program instructions are stored,
which instructions, when read by a first computer on the first LAN, cause the computer to
operate as a proxy transmitter, so as to retrieve a replica of the data resource from the file
server over the first LAN, and which instructions, when read by a second computer on the
second LAN, cause the second computer to operate as a file system driver, so as to intercépt a
request for the data resource submitted by the client on the second LAN, and responsive to the
request, to send a message via a wide are network (WAN) to the proxy transmitter on the first
LAN, requesting the data resource, thus causing the proxy transmitter to convey the replica of
the data resource over the WAN to the file system driver, which serves the replica of the data

resource to the client over the second LAN.

The present invention will be more fully understood from the following detailed

description of a preferred embodiment thereof, taken together with the drawings, in which:
BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram that schematically illustrates a distributed computer system
including a Virtual File-Sharing Network (VFN) system, in accordance with a preferred

embodiment of the present invention;

Fig. 2 is a block diagram that schematically illustrates a VFN system deployed on a
WAN connecting several LANS, in accordance with a preferred embodiment of the present

invention;

24

10

15

20

WO 03/012578 PCT/IL02/00627
Fig. 3 is a block diagram that schematically illustrates details of a VEN gateway, in

accordance with a preferred embodiment of the present invention;

Fig. 4 is a block diagram that schematically illustrates the protocol architecture of a

VFN system, in accordance with a preferred embodiment of the present invention;

Fig. 5 is a block diagram that schematically illustrates a2 VFN management subsystem,

in accordance with a preferred embodiment of the present invention;

Fig. 6 is a flow chart that schematically illustrates a method for requesting an operation

on a resource, in accordance with a preferred embodiment of the present invention;

Fig. 7 is a schematic illustration of a virtual directory, in accordance with a preferred

embodiment of the present invention;

Fig. 8 is a flow chart that schematically illustrates a method for requesting a read

operation, in accordance with a preferred embodiment of the present invention;

Fig. 9 is a flow chart that schematically illustrates a method for requesting a write

operation, in accordance with a preferred embodiment of the present invention;

Fig. 10 is a block diagram that schematically illustrates the deployment of a VFN. file

agent, in accordance with a preferred embodiment of the present invention;

Fig. 11 is a b]ock‘diagram that schematically illustrates details of a VFN gateway that -
relate to lock management, in accordance with a preferred embodiment of the present

invention;

Fig. 12 is a block diagram that schematically illustrates details of a VFN application

transport layer, in accordance with a preferred embodiment of the present invention;

Fig. 13 is a block diagram that schematically illustrates details of a client application

transport layer, in accordance with a preferred embodiment of the present invention;

Fig. 14 is a flow chart that schematically illustrates a method for processing an RPC

request by an RPC client, in accordance with a preferred embodiment of the present invention;

Fig. 15 is a block diagram that schematically illustrates details of a server application

transport layer, in accordance with a preferred embodiment of the present invention; and

Fig. 16 is a flow chart that schematically illustrates a method for processing an RPC
request by an RPC server, in accordance with a preferred embodiment of the present invention.

25

10

15

30

WO 03/012578 PCT/1L02/00627

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

SYSTEM OVERVIEW

Fig. 1 is a block diagram that schematically illustrates a distributed computer system 18
including a virtual file-sharing network (VFN) system 20, in accordance with a preferred
embodiment of the present invention. The distributed computer system includes two or more
geographically-remote local area networks (LANs) 21a and 21b, interconnected through a
wide area network (WAN) over an interconnection 29. System 18 also includes at leaét one
file server 25, located on LAN 21a, and at least one client 28, located on second LAN 21b.
The file server and client may use substantially any distributed file system known in the art,

such as NFS, CIFS, or other file systems mentioned in the Background of the Invention.

VFN system 20 comprises at least one VFN transmitter 52 connected to file server 25
over LAN 21a, and at least one VFN receiver 48 connected to client 28 over LAN 21b. The
VEN transmitter and VFN receiver communicate with one another over interconnection 29
provided by the WAN. The VFN transmitter and receiver are described in detail hereinbelow.
Typically, the transmitter and receiver comprise standard computer servers with appropriate
memory, communication interfaces and software for carrying out the functions prescribed by
the present invention. This software may be downloaded to the transmitter and receiver in -

electronic form over a network, for example, or it may alternatively be supplied on tangible

media, such as CD-ROM.

In order to serve a resource held by file server 25 to client 28, VFN transmitter 52
fetches the resource from file server 25 and transmits the resource over the WAN to VFN
receiver 48, which then serves the resource to client 28. Client 28 and file server 25 interact
transparently via their standard native network file system interfaces, without the need for
special client or server VFN software. VFN receiver 48 efficiently and transparently makes
remote resources available to client 28 by a combination of file replicating ("pre-positioning™)
and caching. Receiver 48 invokes on-demand retrieval when the requested resource has not
previously been pre-positioned or cached, or if the cached version of the resource has become
outdated. Preferably, VFN system 20 provides end-to-end support for file sizes of at least up
to 2 gigabytes.

"WAN," as used in the specification and the claims, is to be understood as a
26

10

15

20

25

WO 03/012578 PCT/1L02/00627

geographically dispersed network connecting two or more LANS. "Many different WAN
configurations are possible, including WANSs using dedicated leased lines, permanent virtual
circuits (such as frame relay links), virtual private networks (VPNs) (which typically operate
over the public Internet), and/or satellite links. A WAN sometimes comprises an intranet (a
private network contained within an enterprise, which uses Internet protocols) and/or an
extranet (part of an intranet that has been extended to users outside the enterprise). "WAN" is
also to be understood as comprising the public Internet. "Resource,” as used in- the .
specification and the claims, is to be understood as including, but not being limited to, files,

content, directories, and file metadata.

Fig. 2 is a block diagram that schematically illustrates computer system 18 deployed
over WAN interconnections 29, in a accordance with a preferred embodiment of the present
invention. The WAN interconnections connect several LANs 21a, 21b and 21c, which are
referred to generically as LAN 21. Typically, the VFN system is deployed on numerous LANs
connected by a topologically-complex WAN. For the sake of simplicity of illustration,
however, and without loss of generality, only three LANs connected by a simple WAN are
shown in Fig. 2. Bach LAN 21 includes a VFN gateway 22, which typically comprises its own
VFN transmitter 52 and VFN receiver 48. The VFN transmitter and VEN receiver can run on
the same physical host, or on different hosts. Alternatively, a VFN gateway can include only a
VEN transmitter or a VFN receiver, in the manner shown in Fig. 1. VFN gateways 22
communicate with one another over interconnection 29 provided by their respective WAN |
gateways 24. The WAN gateways can comprise any combination of VPN gateways, routers,

repeaters, bridges, switches, gateways or other means of connecting LANSs into a WAN, as are

known in the art.

The VFN transmitter of each VFN gateway fetches resources from at least one file
server 25 on its respective LAN, and transmits these resources to one or more VFN receivers
located in other VFN gateways. For example, as shown in Fig. 2, VFN transmitter 52a
transmits resources to VFN receivers 48b and 48c. Likewise, a VFN receiver can receive
resources from more than one VFN transmitter. While LANs 21 are shown as having only one
file server each, the LANSs can have more than one file server from which their respective VFN
transmitters fetch resources. The file servers may run the same distributed file system or,
alternatively, different file servers may run different file systems, all of which are accessed by

the VFN gateways. Additionally, each LAN can include one or more Web/FTP servers 26
27

10

15

20

25

30

WO 03/012578 PCT/1L02/00627

from which the VFN transmitters fetch and transmit resources, as well.

Fig. 3 is a block diagram that schematically illustrates details of VFN gateway 22, in
accordance with a preferred embodiment of the present invention. The illustrated VFN
gateway includes both a VFN transmitter 52 and a VFN receiver 48; however, as noted above,
the transmitter and receiver functions of the VFN gateways are essentially separate, and a VFN
gateway may therefore be configured to include only a VFN transmitter or a VEN receiver,
and not both. The functional blocks that make up gateway 22 are typically implemented as
software components, which run together on the same computer processor. Alternatively,

different functional blocks of gateway 22 may be separated and run on different processors.

VFN transmitter 52 comprises a transmitter application layer 42, which provides
services for, and control over, access to local information repositories, such as file servers 27
and 31 (collectively represented by file servers 25 in Fig. 2) and optionally Web/FTP servers
26. Services provided by the transmitter application layer include access to and transfer of
shared resources, scheduled crawling, synchronization with remote copies, authentication and
authorization, and resource usage tracking for various purposes, including billing. Optionally,
VFN transmitter 52 comprises a cache 77. In this case, when a VFN receiver requests a
resource for which the VEN transmitter holds a valid cached copy, the VFN transmitter serves
the resource from its cache rather than first requesting a copy of the resource from its origin
file server 25. Alternatively or additionally, when a VFN gateway comprises both a VFN
receiver and a VFN transmitter, the VFN receiver and VFN transmitter may comprise a shared
cache (which optionally is in addition to independent caches), which may provide more
efficient resource sharing and/or improved management, and support loop-back access, as

described below.

VFN transmitter 52 further comprises a repository connector layer 50, a software
component which comprises one or more clients. These clients access resources on file
servers 27 and 31 using the native network file system protocol of each file server. For
illustrative purposes, repository connector layer 50 is shown to include an NFS client 62, for
accessing resources stored on NFS file server 27, and a CIFS client 64, for accessing resources
stored on CIFS file server 31. Alternatively or additionally, repository connector 50 includes
clients for accessing other network file systems or sources of resources, such as e-mail servers.
Repository connector 50 may additionally comprise an HTTP/FTP client 66 that accesses

resources stored on Web/FTP server 26, using standard HTTP and/or FTP protocols. -
28

10

15

25

WO 03/012578 PCT/1L02/00627

Preferably, client 50 supports the Secure Sockets Layer (SSL) for connecting to Web sites
using HTTPS. VFN receiver 48 preferably records the type of server from which each

resource originales, in order to-apply the appropriate level of consistency, as described below.

VEN receiver 48 comprises a receiver application layer 40, which provides services to
one or more local clients 28 by effectively fetching and maintaining local copies of remote
resources in a cache 76. VEN receiver 48 further comprises an interception layer 54, which
comprises servers tﬁat intercept local clients' requests for resources held on remote servers,
such as servers 26, 27 and 31 on remote LANSs. Interception layer 54 communicates these |
requests to receiver application layer 40, which fulfills them with cached data, if possible, or
by obtaining the resources from a remote VFN transmitter 52. For illustrative purposes,
interception layer 54 is shown as including an NFS server 56, for intercepting requests to
remote NFS servers; a CIFS server 58, for intercepting requests to remote CIFS servers; and an
HTTP server 60, for intercepting requests to remote HTTP servers. Alternatively or
additionally, interception layer 54 may include servers for intercepting requests to other remote

servers or sources of resources, such as other network file systems, FTP servers, or e-mail

Servers.

Optionally, VFN gateways 22 perform cross-file-system protocol translation, so that a
client 28 running one file system protocol may access resources on a remote file server 25
running a different file system protocol. In implementations that do not support such cross-
protocol translation, interception layer 54 typically includes only server types corresponding to -
the client types included in repository connector 50. In implementations that support such
cross-protocol translation, server and client types do not necessarily correspond. Although
interception layer 54 is shown conceptually as a separate component in Fig, 3, this separation
is solely for purposes of clarity of illustration only. Preferably, the servers included in
interception layer 54 are integrated into receiver application layer 40 and run in the same

process as the application layer.

VEN transmitter 52 and VFN receiver 48 each comprise an adaptation layer 45, which
ensures reliable and efficient use of available WAN bandwidth for transfer of files between
VFN gateways. The adaptation layer communicates with an application transport layer 46,
which provides services for activation of remote services and inter-VFN gateway
communication. The remote services are used by adaptation layer 45 and the higher

transmitter and receiver application layers, as described in detail hereinbelow. Preferably, .
29

10

15

[\
-

WO 03/012578 PCT/IL02/00627
application transport layer 46 provides inter-VFN gateway communication services over the

WAN through VFN HTTP servers 78, which are connected to WAN gateways 24.

When VEN transmitter 52 and VFN receiver 48 reside in the same host, they preferably
share a single VFEN HTTP server 78. Preferably HTTP server 60 and VFN HTTP server 78 are
Apache servers. Alternatively, the communication function of VFN HTTP server 78 is

performed by a non-HTTP server, using another network protocol, such as FTP.

VFN HTTP servers 78 additionally communicate with a VFN manager to download
configuration settings and directives, as shown and described below with reference to Fig. 5. |
VEN transmitter 52 and VFN receiver 48 each comprise a control agent 36, which implements
directives periodically downloaded from the VFN manager. The control agents also co]Ie’ct

activity data, which is used by the VFN manager for various activity analyses and reports.

VEN transmitter 52 and VEN receiver 48 further comprise a lease manager 44 and
lease client 38, respectively, for managing leases used to implement the VFN system's

consistency protocols. These protocols are described below with reference to Figs. 8 and 9.

Reference is now made to Fig. 4, which is a block diagram that schematically
illustrates the protocol architecture of VFN system 20, in accordance with a preferred
embodiment of the present invention. This figure provides a different perspective on the
elements of system 20, and particularly of gateway 22, that are shown in Fig. 3. The three
lowest layers of the architecture are a network transport layer 70, a network layer 72, and a
data link (or MAC) layer 74, which is an abstraction of the WAN and/or LAN. These layers |
are preferably implemented using standard LAN and Internet protocols, such as Transmission
Control Protocol/Internet Protocol (TCP/IP) and/or User Datagram Protocol/Internet Protocol
(UDP/IP). Client 28, which is represented as an application layer entity, typically comprises a
standard network file system client, such as an NFS or CIFS client, and/or a standard Web/FTP
client. Likewise, the application layer of file server 25 comprises a standard network file
server or Web/FTP server. (File server 28 optionally includes a VFN file agent, as described

below with reference to Fig. 10.)

The application layers of VFN transmitter 52 and VFN receiver 48 are divided into
lower and upper layers. The upper layer comprises transmitter application layer 42 and
receiver application layer 40. The lower layer provides communication services to the upper

layer, and comprises adaptation layer 45 and application transport layer 46, which

30

10

15

30

WO 03/012578 PCT/IL02/00627
communicate over the WAN. The lower application layer also includes the LAN-facing
components of the VEN transmitter and VFN receiver: repository connector layer 50 and

interception layer 54, respectively.

Although the protocol architecture shown in Fig. 4 is based on standard LAN and
Internet protocols, the VEN application layers may similarly be adapted to work over network
protocols of other types. For example, VEN system 20 may be configured, as well, to operate
over cellular packet data networks and/or wireless LANs. In such embodiments, the VFN
receiver protocol is preferably adapted to enable mobile users to automatically discover and -

connect to the closest VEN receiver.

The VEN receiver and VEN transmitter preferably run over the Sun® SolarisTI’VI
Version 2.7 or 2.8 operating system. Preferably, receiver application layer 40 and transmitter
application layer 42 are written in JavaIM and run on a Java2 Virtual Machine, such as JRE
1.3. Where appropriate, J avalM Native Interface (JNI) calls are preferably used to provide
file system functionality not included in Java's reduced cross-platform file access capabilities.
Preferably, NFS server 56 supports multiple versions of NFS, including NFS version 2, and

various different mount protocols, as are known in the art.

Security for the cache, file metadata, and configuration is provided by password
encryption of all files. Additionally, when the VEN system is deployed on UNIX servers,
protection is also provided through file server user access rights. Preferably, file system users

of a VEN receiver are given access only to cached file system resources, and not to cached -

HTTP resources.

VFN MANAGEMENT SUBSYSTEM

Fig. 5 is a block diagram that schematically illustrates a VFN management subsystem
33, in accordance with a preferred embodiment of the present invention. The VFN
management subsytem comprises a VFN manager 30 and one or more manager consoles 32,
which enable administrators to remotely configure and define policies for VEN gateways.
VEN manager 30 communicates with VFN gateways through control agents 36 in each VPN
gateway 22. Control agents 36 access receiver and transmitter application layers 40 and 42 for-

data or control.

Preferably, VEN management subsystem 33 centrally controls, configures, and

manages all VPN gateways and administers the VFN system's policy control mechanism.
31 ‘

10

15

20

30

WO 03/012578 PCT/1L02/00627

Alternatively, the VFN gateways may be controlled and configured using a distributed
approach, such as a peer-to-peer approach. Alternatively or additionally, the VFN system
supports local administration of some or all components and/or policies. For example, certain
locally-defined and mostly static configuration parameters, such as proxy host names, may be

defined in the local configuration of the VEN gateways.

Preferably, the behavior of specific VEN gateways can be further customized by the use
of an Application Program Interface (API) provided by the VFN management subsystem,
which is exposed to external applications 34. The API is preferably Java-based. For example,
a VFN gateway can be customized to treat a set of resources atomically, so that upon the

invalidation of any member of the set, fresh copies of all other members of the set are also

fetched.

VFN manager 30 maintains a database or configuration file containing configuration
information and policies ("directives") for each VFN gateway. Directives are translated by a
component in the VFN manager into a tag-based markup language for storage in the VFN
manager's database. The VFN management subsystem includes a utility for connecting and
disconnecting VFN transmitter mount points to origin file servers. This utility is run remotely,
through the VEN manager, or directly on control agent 36 of VFN transmitter 52. The location
of the utility is preferably configured responsive to management policies of the enterprise, such
as whether distributed or centralized control is desired. Preferably, VFN transmitters allow
remote querying of available mount points for administrative purposes, for example, for

creating a new link between a VFN receiver and a mount.

Manager console 32 is an administrative tool that enables administrators to create VEN
gateways and define directives. Preferably, resources are explicitly registered with the VEN
system by an administrator. Registered resources are preferably identified by a path
comprising the origin file server name and IP address, and the share or mount point name. An
administrator can register the resources on an entire origin file server or limit the registration
to resources on specified server shares. Each manager console controls multiple VFN
gateways. The manager consoler preferably provides an integrated view of the VFN system
topology, state (including system and component configuration), monitoring (including
operational characteristics), statistics, and directives. ~Manager console 32 preferably
comprises an interactive visual site explorer, similar to the site mapper described above, that

browses resources on HTTP servers 78 embedded in VFN transmitters 52 for resource listing.
32

10

15

20

30

WO 03/012578 PCT/1L02/00627

When it is necessary to traverse firewélls, the site mapper preferably accesses remote
file system contents by communicating with a site explorer agent in a VFN transmitter local to
the remote file system. The agent performs the traversal locally. Such communication is
performed using adaptation layer 45. Alternatively, manager console 32 communicates
directly with the site explorer agent using HTTP, when firewalls do not block such direct
communications. In order to access these HTTP servers 78, the console contains an HTTP

client, which has access to all VFN transmitter components.

Preferably, VFN management subsystem 33 enables remote monitoring of the activity
of VFN gateways. VFN manager 30 monitors the state of each VFN gateway, and the VFN
gateways periodically ping the VFN manager. Manager console 32 uses this information to
visually indicate which VFN gateways are active and inactive. Logs are generated by each
VEN gateway, including information about the gateway's state, load, file request distribution
and access records (such as request URL, VFN transmitter, and VFN receiver return codes,
and roundtrip times), cache statistics (such as cache quotas and allocations), error statistics,
and unused replications. These logs are periodically uploaded to the VFN manager, either at
defined intervals or when free-storage capacity in the VFN receiver reaches a defined limit.
The VFN manager uses these logs to generate statistical reports, using utility programs
invoked by a VFN administrator. A VFN administrator can view these logs and statistical
reports using the manager console. This information is also used as an input into the pre-

positioning algorithms, describe below.

The generation of each log type is independently enabled by the manager console, and -
the VEN receivers collect and upload logs independently from one another. Logging, except

error logging, may be disabled by a VFN administrator.

VEFN manager 30 and manager console 32 preferably provide remote control of
installed system components, including start, stop, and restart. Additionally, the manager
console preferably provides clear error notifications. The VFN system optionally supports

external notification of errors, for example by e-mail.

Preferably, there are two kinds of users of the manager console: administrators and
policy editors (referred to herein collectively as "VFN administrators"). Administrators can
create new VFN gateways and define management directives that apply to an entire VFN

gateway. Policy editors can only define service directives that apply to certain resources.

33

10

15

20

30

WO 03/012578 PCT/1L02/00627
Preferably, the manager console provides means for controlling the access of different VFN
administrators to different VFN gateways. Additionally, the manager consoler preferably
provides automatic conflict resolution when conflicting directives are generated by either the

same or different VEN administrators.

The control agent in each VFN receiver periodically automatically downloads its
specific remote configuration information and directives from the VFN manager. Downloads
are preferably done using HTTP. To enhance security, preferably HTTP authentication and
SSL are used. If a change in directives is detected, the VFN receiver downloads, parses, and
integrates the modified set into the rupning VFN receiver. The VEN receiver then activates
the services specified. Generally, most directives are activated on a time schedule by the VFN
receiver. Several directives may be activated in parallel, agnostic to one another. If an error
occurs during download or parsing, the VFN gateway disregards the new service set and
continues to use the previous set until the néxt download period. This policy is intended to

ensure a consistent view of the service sef.

Preferably, VFN management subsystem 33 can invoke a system reset operation, which
instructs VFN receiver 48 to reset all or part of its components, including their state,
information, and/or directives. When a reset operation is performed, the VEN receiver reloads
the current initial state from the VFN manager. Some VFN receiver components may
additionally reread and process their local configuration parameters. The reset operation is
parameterized by a discrete activation time, and accepts a service-specific parameter for the
type of reset requested, including: all, directives, and cache (reset the cache data and metadata,

losing all cached resource information).

Typically, VFN manager 30 runs over Sun® SolarisTM 2.7 or 2.8, and uses a standard
HTTP server, preferably Apache. The configuration database is preferably a SQL server
database, such as MySQL. Preferably, applications 34 for the VFN manager are coded in CGI
scripts or Perl. The VFN manager may either be deployed on a dedicated host or on the same
host as a VFN receiver and/or VFN transmitter. To enhance security, VFN manager 30 may
use a port other than the standard port 80 for HTTP access to gateways 22. Secure
communication lines are preferably used when the VFN manager or manager console are

operated from a remote location.

Manager console 32 is typically a single-user application that runs on a Windows NT

34

15

20

30

WO 03/012578 PCT/1L02/00627
or Windows 2000 system. Alternatively or édditionally, the managér console is a browser-
based client, which provides support for remote administration. Manager console 32
preferably typically includes an FTP client, which is used for retrieving policy directive
information from the database held by the VEN manager. Before conveying the stored
directives to the manager console, the VFN manager preferably converts the directives into
XML form, so that they can be easily read and edited by the user of the manager console.
Manager console 32 then publishes user-defined directives to the VEN manager, either
according to a preset schedule or pursuant to an explicit user command. VFN management
system 33 preferably provides for safe changes in the event a configuration session is
prematurely terminated. Configuration backup and restore from a remote location is |

preferably supported, as well.
Directives

In the context of the present patent application and in the claims, a directive is a
combination of conditions that, upon satisfaction, causes a predefined action to be executed in
a VFN gateway, overriding the default VFN gateway behavior. Directives are either defined
by a VFN administrator, as described above, or, under certain circumstances, automatically
and/or adaptively generated. For example, directives can be automatically generated by an
external application through an API provided by the VEN system. Preferably, new directives
are adaptively generated and/or existing directives are adaptively modified by a VFN
transmitter or VFN receiver that detects access patterns in real time. Directives include
system-wide configuration parameters, actions to be carried out by a specific VFN receiver -
(for example, pre-position all files under a directory), and information relating to resources
shared between the VFN gateway sites (for example, the expected change frequency of
resources). Directives may be defined for an entire VFN system, a single VFN gateway, or a
group of VFN gateways. VFN gateway groups provide a logical view of related VEN
gateways and make policy definitions easier to manage than on a per-VFN-gateway basis. The
grouping criteria are defined by a VFN administrator and can include, for example,

geographical location, business functions, and/or expected resource usage patterns.

Directives preferably have three types of parameters: content, time, and, for HTTP-
related directives, the presence and/or value of certain HTTP headers. Directives may include

context-sensitive values.

35

10

15

20

25

30

WO 03/012578 PCT/1L02/00627

The content parameter specifies one ‘or more files or directdries, specified as fully
qualified Uniform Resource Locators (URLs) or patterns on which the directive should
operate. Elements may be specified manually or via the interactive visual site explorer
mentioned above. A URL pattern specification preferably includes a scheme (HTTP or FTP),

a hostname, a path, and an optional file name.

There are two broad types of time directives: discrete and continuous. Discrete
directives perform an action at a specific time, while continuous directives operate over an
interval of time. For example, a directive for pre-positioning resources is typically discrete
because it specifies when to perform the pre-position activity. In contrast, cache policy
directives are typically continuous because they define a period during which certain caching

policies are applied to a specified resource. Preferably, the default value for a discrete time

directive is "now".

Recurrence is a time property that can be applied to all directives. For example,
discrete-time directive, such as for pre-positioning, can be activated every day at midnight.
Similarly, a continuous-time directive, such as for a cache policy, can be activated every day
between 9:00 a.m. and 5:00 p.m. Preferably, the recurrence granularity ranges from minutes

(smallest) to years (largest).

For HTTP-based content, directives can be further parameterized to evaluate the values
of multiple HTTP request headers. Any HTTP header may be specified and its value matched

against a pattern expression.
Directives that can be defined preferably include:

» Pre-position, which is used to control and manage resource pre-posiﬁoning
from VFN transmitters to remote VFN receivers. The directive specifies which
resources should be pre-positioned and when. Pre-positioning candidates
include infrequently changing, large resources that are likely to be in demand at
the remote site. Preferably, pre-positioning candidates are additionally selected
using Lisage profiling generated from information collected by resource usage

tracking, as described above with reference to Fig. 3.

e Cache consistency policy, which allows customization of the VFN receiver
cache resource addition, removal, and revalidation policies. This directive can

specify explicit rules for including or excluding resources and/or resource sets
36

WO 03/012578 PCT/1L02/00627

from the cache, for setting their rcvaiidation period and gcnéral consistency
level, and for setting their caching priority class and replacement policy. For
directives that operate on cached resources, a parameter is preferably included
that specifies to which type of cached resources the directive applies: "sticky"
or "normal," as described below, or "don't care,” which indicates that the

directive operates on both "sticky" and "normal" cached resources.

o Active refresh, which is used to update resources which are cached in 2 VFN
receiver, and to remove resources from a VFN receiver cache 76 that no longer

exist on the origin site.

e Active invalidate, which is used to mark resources in a VFN receiver cache 76
as invalid (soft invalidation) or explicitly remove resources from a VFN
receiver cache (hard invalidation). This directive explicitly ensures freshness

of remote copies, overriding the cache's internal policies and heuristics.

e URL translation (applies to HTTP resources only), which applies a translation
rule to requested URLs. When a URL is requested for which a URL translation
is defined, the URL resulting from applying the translation rule will be

returned.

e Request modification (applies to HTTP resources only), which applies a

modification rule to HTTP requests by setting HTTP request header values.
e Reset component, which selectively resets components of a VFN gateway.

» Logging policy, which enables a VFN administrator to control the granularity
and type of reporting produced by VFN gateways, sampling rates for
monitoring and statistics, the upload schedule, how much disk space is
allocated for each type of reporting, and the target upload URL (which can be a
preconfigured CGI script).

Preferably, the default content parameter value is "all" for cache priority, active update

and invalidation, and there is no default for other directives.

Some directives carry additional directive-specific parameters required for their
effective and successful application. For example, pre-positioning directive parameters

preferably include one or more URLs or URL patterns, directory depth (how many levels of

37

10

15

20

25

WO 03/012578 PCT/1L02/00627

sub-directories to explore and pre-position), aﬁd/or a set of discrete time values for scheduled
pre-positioning. Optionally, the VFN transmitter crawler (described below) automatically
generates a list of URLs for a-specified root URL by traversing the tree of the root URL. In
addition to directly specifying the list of resources, the parameters of the pre-positioning
directive can alternatively specify a URL containing a list of resources to be pre-positioned.
Parameters of pre-positioning directives may also include constraints, such as limitations on
the overall bandwidth allowed at a given time or the maximum number of concurrent

connections allowed to be opened when attempting to fulfill the directive.

Pre-positioning directives preferably include two additional parameters: archive and
authorize. Resources tagged with the archive parameter are archived by the VFN transmitter's -
archiver, as described below. The authorize parameter applies only to HTTP resources. When
such resources are tagged with this parameter, the VEN receiver requests authorization from

the VFN transmitter before allowing user clients to access such resources.

String patterns may be used for content, header and directive-specific parameters.
Supported string-pattern-matching operators preferably include is, is-not, contains, does-not-

contain, starts-with and ends-with.

TRANSMITTER AND RECEIVER APPLICATION LAYERS

VFN system metadata

VEN system 20 creates, stores, and maintains metadata ("VEN metadata") for all
resources registered with the system. (VEN metadata is distinct from file metadata, as

explained below with reference to Fig. 7.) VFN metadata preferably includes:
 the identify of the resource owner, which is a VFN transmitter;

* the identity of at least one VFN gateway - not necessarily the resource owner -

that holds the current version of the resource;

* The resource local state (fully or partially available, local version held,

freshness of local version, local usage statistics);

» computed signatures, which are used as file version identifiers. For example, a
computed signature may be calculated from a resource's i-node number,

creation and last modification time, or by applying a cryptographic hash to the

38

10

15

25

30

WO 03/012578 ‘ PCT/1L02/00627

content of the resource.;
e access lists, as described below;
e locking status, as descri.be below;
e usage statistics, as describe above;
e version and change records between versions; and
e associated volume, if any, as described below.

VFN metadata is stored hierarchically in an upper level resource directory at its owner
VEN transmitter, which is responsible for maintaining the most recent VEN metadata for the
resource. Any changes made to a resource by a holder other than the owner must be repdrted ‘
to the owner. The hierarchical structure of the VFN metadata resource directories allows each
VEN gateway to navigate the directory structure, fetch VFN metadata, and assemble each

resource from its owner or owners.

By default, the owner of a file or directory resource is the VFN transmitter where the
resource is first registered with or created in the VFN system. The owner learns of the
existence of a resource by scanning the resources of a local file server using a crawler, as
described below, or by discovering a new resource in a local file system following a client
request for a local directory. Additionally, the owner learns of a new file when the creation of

the file by a user client is intercepted by a file server in interception layer 54.

Optionally, the owner and/or holder may be changed manually by a VEN administrator
or changed automatically based on directives. For example, changing the owner may improve
efficiency when a resource is modified extensively at a gateway other than the owner gateway, '
or when policies preclude certain gateways from serving as owners and/or holders because of
reliability concerns. Optionally, the new owner is a VFN receiver, which is granted exclusive
access to the resource. Such a change of owner becomes effective only when the parent
directory, which contains the resource, approves this change by recording the new owner and
updating the VFN metadata. Similarly, policies can stipulate restrictions on which gateways
can be owners and/or holders, including, for example, a restriction that an owner must be the

holder of its resources.

Preferably, before a VEN gateway that is not authorized to be a holder can change a
resource, the change must be replicated and authorized by the resource owner. If an

39

10

15

WO 03/012578 PCT/1L02/00627

unauthorized local change is made by such a gateway, the modified resource is preferably
stored in a local overflow buffer, and a conflict is reported to the management subsystem.
Preferably, such conflicts are resolved manually (for example, merged by a user), or

automatically by resource-type-specific procedures designed to handle specific conflicts.

Each resource is identified within the VFN by a unique VFN resource handle. The
handle includes the identity of the resource owner, the directory path that leads to the resource,
and a unique identifier within its directory. Preferably, the VFN system-managed name space
is consistent with the native name space. Alternatively, the VFN system may provide a global

name space.

Access lists are used to determine the clients of VEN system 20 that are entitled to ‘
access a given resource. Such access lists can be defined using native network file system
hosts and user names, or by a VEFN administrator using VFN access groups. These VEN
access groups are global group identities that are mapped to local identities in each VEN
gateway. Such access lists may be useful when the VFN system is deployed as an extranet
across multiple organizations or across more than one WAN within an organization.
Preferably, when VFN access lists differ from their corresponding native file system access
lists, access permission is mapped from the native file system access lists to the VFN access
lists, most preferably using the user names or IDs of the native file system. Access
permissions are checked as appropriate for the protocol, on either the VFN transmitter or VEN
receiver, prior to or after translation. Cﬁanges in permission are reflected across the security

domains.

Each resource can be identified as part of a volume, which is a set of resources.
Volumes can be defined using logical expressions, including inclusion and exclusion filters
and operators, applied to directory, file name, and attribute information. Directives may be

applied to individual resources, recursive directories, and/or to volumes.

In addition to VFN metadata, each VFN gateway maintains a record of up-to-date files
and file blocks locally available in its cache, together with the original version and timestamp

attributes of each file. This record is referred to hereinafter as the "locally available

resources,”" or "LAR".

Preferably, LAR information is replicated between neighboring VFN gateways. This

replication occurs periodically, and, in certain cases, on demand. Information regarding small

40

15

20

25

30

WO 03/012578 PCT/1L02/00627

locally available resources (for example, resources with sizes less than 256 kilobytés) is
preferably not replicated, in order to maximize efficiency. The LAR information includes a

small number of attributes that uniquely identify the LAR resource with respect to its VFN

metadata.

By replicating LAR information, the VFN system maintains at each VEN gateway
information regarding the availability of resources at nmon-owner and non-holder VEN
gateways. This information can be used by VFN gateways to access resources over alternate
routes or in parallel from multiple VEFN gateways, as described below. Because LAR
information is typically replicated only for large resources, and the LAR information includes
only a small number of attributes, the size of LAR files generally remains small, even in large

VEN systems. This small size facilitates a thorough replication of LAR information using -
minimal WAN bandwidth.

Repository plug-in API

The repository plug-in APIis a layer in transmitter application layer 42 that provides an
abstraction of the access mechanism to multiple repositories, such as NFS, CIFS, HTTP, and
FTP. The plug-in hides the details of the implementations of these various repositories from
the transmitter application layer. It also provides transmitter application layer 42 with a

consistent repository interface that handles functions such as name traversal, locking, read,

write, and listing.
File server operations

Each of the file servers in interception layer 54 (Fig. 3) support the file server
operations provided by the corresponding native file server 25. Preferably, the interception
layer file servers support all of the corresponding file server operafions, including block-le{/el :
reading and writing. This support is desirable to enable VFN receiver 48 to transparently act
as a file server for registered remote resources. When a request for an operation is received by,
a file server in interception layer 54 from a user client 28, VEN receiver 48 parses the request
and determines whether the resource is present in its local cache 76. If so, the file server in the

interception layer serves the requested resource directly to the client.

If the resource is absent from the cache, VFN receiver 48 passes the request via WAN

gateway 24 to the appropriate VFN transmitter 52, preferably using an internal VFN AP that
41

15

30

WO 03/012578 PCT/1L02/00627

is common to all supported network file systems, including NFS and CIFS. The clients in
repository connector layer 50 in VEN transmitter 52 issue requests to the native file servers 25,

and transfer the results, over the WAN, to the VEN receiver, which passes the response back to

user client 28.

For network file systems that support mounting (such as NFS), the VFN system
supports natural integration of file servers in interception layer 54 with users' local file systems
through mount points (local file system locations on users' systems where mounted file system
directories are attached). Preferably, multiple mount points are supported, and there can be
multiple client mounts on any sub-directory of any mount. These mount points are associated
by the VFN receiver's local configuration file with paths in the directory structure of the VEN
transmitter. The VEN receiver preferably enforces configuration settings specifying which
mounts are accessible to each VEN receiver. Typically, mounting does not require credentials
because it piggybacks the first user request for a resource on a file serve. Alternatively, for
VFN transmitter-initiated activity, the VEN transmitter. possesses credentials that allow access

to file server shares and resources, thereby enabling "context-free" (with respect to user

credentials) access.

The VFN system preferably supports global file system operations such as querying
free size and quotas. Either the correct origin site values are reflected, or synthetic values are

generated where appropriate.

Fig. 6 is a flow chart that schematically illustrates a method for requesting an operation

on a resource, such as a file, in accordance with a preferred embodiment of the present

invention. The method illustrated in Fig. 6 is general and does not include application of
consistency protocols, which are described below with reference to Figs. 8 and 9. This method
is used whenever a client 28 requests an operation (such as open, read, write, or close) on a
resource R registered with the VEN system and held by a remote file server 25, at a resource
request step 100. The resource request is intercepted by interception layer 54 of VFN receiver
48 of the VFN gateway (GW1) that resides on the client's LAN, at an interception step 102.
The VFN receiver checks whether a valid replica of resource R is stored in cache 76 of the
VEN receiver of GW1, at a GW1 cache check step 104. If R is present in the cache, the VFN

receiver permits the resource request to proceed, at a reply step 118.

On the other hand, if a valid replica of resource R is not stored in the cache of the VFN

42

10

15

20

25

WO 03/012578 PCT/1L02/00627

receiver of GW1, the VFN receiver forwards the request for a replica of resource R, over
WAN 29, to VFN transmitter 52 of the remote VEN gateway (GW2) that is the owner of
resource R, at a remote request step 106. The remote VFN transmitter checks whether a valid
replica of resource R is stored in the cache of GW2, at a GW2 cache check step 108. If so, the
VEN transmitter permits the resource request to proceed, at a remote resource transfer step
114. On the other hand, if a replica is not available in GW2, the appropriate file system client
in repository connector layer 50 in the remote VFN transmitter fetches resource R from the
local file server 25 holding resource R, at a file server fetch step 110. (This is the native file
server that resides on the same LAN as GW2.) The VFN transmitter stores resource R in its

cache, at a GW2 cache storage step 112.

Whether resource R was available in the cache of GW2 (step 108) or had to be fetched
from the local file server (step 110), the remote VEN transmiiter in GW2 transfers resource R
to the VFN receiver in GW1, at step 114. VFN gateway GW1 stores resource R in its VFN
receiver cache 76, in a GW1 cache storage step 116, The local VEN receiver then replies to the

original client request with resource R, at step 118.

Alternatively, resource requests can be served by the holder of the resource, as recorded
in the owner-maintained VFN metadata, rather than from the owner. Preferably, before
making such an access, the VFN metadata is checked for recent modification or for a possible
lock. Alternatively, it is sometimes more efficient to download a file from a VEN gateway
other than the holder if the alternate gateway holds the correct file version and is enabled at the
time of the download. This may be the case, for example, if the connection with the alternate
gateway has higher bandwidth or lower latency. The presence of a file on an alternate gateway
is preferably determined by checking the LAR at the local gateway and the alternate gateway.
Files too small to be recorded in the LARs are always downloaded from their holders. -
Preferably, a request for resource VFN metadata is always served from the resource owner in

order to guarantee full consistency.
Caching

Caching is preferably implemented centrally for each LAN by VFN receiver 48 on the
LAN. Preferably, caching is performed on file blocks as well as entire files. Caching criteria
are preferably parameterized by resource-specific filters, which include:

* Size range, which specifies a resource minimum and/or maximum size for
43

10

15

20

25

30

WO 03/012578 PCT/1L02/00627

caching. (Typically the default is no size range limitation).

¢ Authorized (HTTP-only), which specifies that the filter is parameterized with
the HTTP authorization of resources. Allowed values are authorized only,

unauthorized only, and ignore (which is preferably the default).

e Priority, which affects the cache replacement policy that determines which
resources are replaced when the cache is full and a new resource is requested.
Priority caching can be specified for fully-qualified URLs or for content

patterns.

The cacheability and maximum resource cache age (max_age parameter) can preferably
be controlled by use of appropriate directives. Greater control over a resource's time-to-live in

the cache can be achieved by setting an appropriate max_age value for the resource.

In addition to and separate from support for various consistency guarantees, as
described below, the VFN system preferably supports two cache priority levels: "sticky" and
"normal". "Sticky" priority provides pseudo-mirroring of resources in the VEN receiver cache:
so long as the priority is not changed, and so long as there is sufficient disk space to hold all
resources having this priority, resources enjoying sticky priority are not removed from the
cache. 1If the VFN receiver is prevented from adding a new sticky resource to its cache, an
error log entry is generated. In contrast to standard mirroring, the resource copying may be
lazily driven by a client's request. For HTTP resources, sticky priority may be (but preferably
is not) 'used to cache resources that may not otherwise be cacheable per the HTTP

specification.

"Normal" priority is used to provide standard popularity-based caching behavior, using

cache removal policies that can be selected when the VFN system is configured.
The VEN receiver typically supports three alternative cache removal policies:

* LRU (Least Recently Used), which is based on removing the least recently used

resources from the cache to free up space in the cache for new requested

resources.

* LFU (Least Frequently Used), which is based on removing the least frequently
used (i.e., the least popular) resources from the cache to free up space for new

requested resources. When LFU is used, preferably an LFU-Dynamic-Aging

44

10

15

20

25

30

WO 03/012578 PCT/1L02/00627

variant is used, in which an age factor is taken into account in addition to

frequency of usage.

* GDS (Greedy Dual Size), in which size, effort to fetch, and popularity are taken

into account.

Preferably, the VFN receiver actively refreshes cache resources, based on the setting of
the active refresh directive described above. This directive specifies when a VFN receiver
should actively validate a cached resource, rather than only passively refreshing a cached
resource in response to a client request. The active refresh may be used in order to increase or
decrease the consistency of the cached data. It is applied only to resources that are already in
the cache. Active refresh directives are preferably parameterized by content (fully qualified or
pattern), time, and resource filters. Active refresh can operate on both cached resources and

exported resources, as described below.

Based on the setting of the active invalidate directive described above, the VFN
receiver can actively invalidate (expire) a resource in its cache when the resource is no longer
valid or available. Active invalidate directives are preferably parameterized by content (fully
qualified or pattern), time, and resource filters. The service may be used to delete resources
from the cache or to ensure that a subsequent access will revalidate the resource with the VEN
transmitter, without physically removing the resource replica from the cache. For exported

resources, the invalidation preferably always physically removes the replica from the exported

area.

The VFN system preferably supports negative caching. When a VEN gateway on
another LAN responds that a requested resource is not found, this negative response is cached
by the requesting VFN receiver for a certain amount of time, so that the same request will not
be repeated unnecessarily. Negative caching of this sort generally reduces bandwidth -

consumption and reduces resource request response time.

Performance of the VEN system additionally benefits from any local caching facilities

provided by the network file system between client 28 and VEN receiver 48.

HTTP caching

Caching of HTTP resources is preferably integrated into the VEN system's general

caching functionality, as described above. The approach the VEN system uses for serving

45

10

15

Y
S

30

WO 03/012578 PCT/1L02/00627

HTTP resources is similar to the approach used for serving file system resources. HTTP
server 60 serves resources transferred from a VFN transmitter 52 and cached in cache 76 of
VFN receiver 48. The VFN receiver accepts requests.for standard HTTP methods, forwards
these requests to the VFN transmitter when appropriate, and sends the response to the requests

to the user client.

In addition, certain aspects of caching are unique to HTTP resources. Aspects of Web
content caching that are pertinent to this feature of the present invention are described in U.S.
Patent Application 09/785,977, whose disclosure is incorporated herein by reference. In this
context, HTTP server 60 may serve cached HTTP and HTTPS resources that VFN receiver 48
fetches directly from servers external to the VEN system, without these resources passing
through a VFN transmitter. Such external resources may be located on the Internet, the
enterprise WAN, or an extranet. To support this direct VEN receiver caching of HTTP
content, the VFN receiver acts as a caching HTTP proxy for domains explicitly directed to it. |

Such resources are preferably identified by a crawler that traverses their origin Web sites.

Setting the appropriate cacheability value (force caching, force non-caching or default)
allows fine-tuning of the normal popularity-based HTTP caching behavior in order to support
partial caching of dynamic content and to allow superseding the caching of lower-pri;)rity
resources. Standard HTTP requests and responses may carry headers that specify that they

should not be cached. Additionally, standard HTTP resources with a query string (the format

of which is http://<path>?<query>) are not cacheable by default. Setting cacheability to
"force" overrides this default HTTP behavior by disregarding the query parameters. Setting
policy to "none" may prevent popular resources from competing with less popular resources

that are of higher importance to the VFN operator.

The VFN system preferably supports inline modification of URLs in HTML pages to
enable redirection of Web content, taking into account multiple origin Web sites. This |
approach generally minimizes the amount of required manual configuration. Preferably, cache
76 caches only successful responses to HTTP GET requests. All other responses are relayed
unmodified to the requesting client. The cache preferably employs common resource aging
and expiration heuristics to improve resource consistency. Preferably, the VFN receiver

supports partial HTTP requests and responses.

Preferably, the VFN system supports simple caching of dynamic content. The desired

46

10

15

WO 03/012578 PCT/1L02/00627

URLSs (up to the "?" character) are selected b.y the VEN administratof, and the VFN receiver

caches the content based on the entire string, including everything after the question mark.

Preferably, the VEN receiver can be configured to support caching of authorized (also
called authenticated or private) content. Authorized caching is supported for content accessed
through a VFN transmitter, and for content fetched retrieved directly by a VEN receiver from
an origin Web site. To implement authorized content caching, the VFN receiver caches the
resource's data, but, before it grants the client access to the data, the VFN receiver sends an
authorization request to the proper VEN transmitter, which is responsible for granting access to
the content. Content may be tagged as authorized following either an authorized request to a
resource not previously cached or because the VFN system has pre-positioned the content. In
either case, because content may be mistakenly marked as authorized (for example, when a
client browser issued a request with a suﬁerﬂuous Authorization header), the VFN receiver
may clear the resource's authorization tag following a successful, non-authorized, request for -
the resource. This configuration is preferably applied to a VEN receiver's cache as a whole
rather than on a per-resource basis, and is preferably enabled or disabled continuously during
the VFN receiver's opefation (unless configuration changes are made during operation).

Authorized content can be cached, if enabled, or negatively-cached, if desirable.

Preferably, the VEN receiver cache complies with HTTP version 1.1, as specified by
Request for Comments (RFC) 2616 of the Internet Engineering Task Force (IETF). HTTP 1.1
caching directives (according to RFC 2616, Sections 13 and 14) include the following:

e (Cache correctnessl;

e Adherence to pragma: no-cache header values;
o Partial support of the cache-control header;

e Server expiration via the expires header; and

e Support for resource validation headers: last-modified, date, if-modified-since,

and if-none-match.

When serving HTTP requests, the VEN receiver preferably maintains a finite state
machine (FSM) for handling each request. The VEN receiver applies all matching directive in

the proper phases in the FSM traversal.

Preferably, when a user client experiences delay in receiving a large Web resource, the

47

10

15

30

WO 03/012578 PCT/IL02/00627
VFN receiver generates a Web page with estimated availability time. Notification upon -

resource availability may also be provided by e-mail, pager, or other remote notification

devices.
Edge customization

Preferably, VFN receivers support URL translation, which enables a VFN
administrator to map a request directed to a source URL to a request to some translation target
URL. This service eliminates the roundtrip from the VFN receiver to the VFN transmitter and
back. Preferably, URL translation can be customized by VFN receiver and by time, such as

time of day or week.

URL translation is parameterized by the source (one or more source URLs or patterns),
time, HTTP headers, and translation target. The translation target may be a single URL,
allowing the mapping of multiple URLs to a single translation target, or a URL pattern, -
allowing the redirection of part of the URL namespace identified by a prefix pattern to another
prefix. Pattern-based translation replaces the source prefix with the destination prefix. If the
source prefix is not present in the URL, translation does not occur. Therefore, the source URL

pattern should use the "starts-with" or "is" operators.

If multiple URL translations are defined for a source URL, the following algorithm is

preferably applied in order to ensure both consistency and multiple partial translations:

o If any of the translations specifies a single (i.., not pattern) destination, that

translation is preferred over all others.

e Otherwise, matching translations are applied in order (from longest to shortest
source prefix, as measured by full path elements specified). Following each
translation, the next translation in line is matched against the target URL and
discarded if no longer valid. If one or more translations with the same path

length are defined, the later translation is preferred over the earlier ones.

In a preferred embodiment of the present invention, the VEN receiver supports request
header modification, which appends HTTP headers to requests en-route from the VFN receiver
to the VFN transmitter. The service can be parameterized by the source (one or more source
URLs or patterns), time, HTTP headers, and the list of headers and values to append.

Appended headers are formatted as name/value pairs. The name is defined in the directive,

48

10

15

30

WO 03/012578 PCT/1L02/00627

whereas the value may be a fixed string speciﬁed in the directive or a‘system variable (which .
will be replaced by the current value of the variable in the VEN receiver). System variables

are defined by the manager console. They can be assigned separately for each VEN gateway,

and their values may be null.
Pre-positioning

In addition to on-demand retrieval and caching, remote resources are efficiently and
transparently made available to clients by file replicating ("pre-positioning"). Pre-positioning,
like caching, is implemented centrally for each LAN by its VEN receiver 48, under the

direction of its control agent 36.

Management subsystem 33 configures distribution-related policies and issues
distribution-related directives, as described above with reference to Fig, 5. Additionally,
control agent 36 automatically and adaptively generates directives that, among other things,
optimize the determination of which remote resources to replicate at each VEN receiver and
provide various levels of active synchronization. Based on these policies and directives,

selected resources are pre-positioned prior to a client request.

Such automatically-generated directives are preferably executed using algorithms that
determine which resources to pre-position and when to pre-position. Preferably there are two

types of pre-positioning algorithms:

* Selective pre-positioning algorithms, which select the subset of remotely-
available resources to be pre-positioned based on a demand-to-modification
rate ratio. Resources with a higher ratio of expected usage at the destination
VFN gateway to expected modification rate at the source are more likely to be
pre-loaded. This ratio is preferably updated using online measurements and an
exponential window average mechanism. Pre-positioning priority and

frequency is configurable to meet the constraints of available bandwidth.

* Adaptive scheduling algorithms, which determine the preferable time and
transfer rates to perform pre-positioning based on an available bandwidth-to-
demand-to-modification rate ratio. Available bandwidth is based on historical
traffic measurements indicating low-traffic and low-latency periods. These

measurements preferably include average delivery rate, number of concurrent

49

10

15

25

30

WO 03/012578 PCT/1L02/00627

connections required to achieve maximal rate, and connection latency. The
values are preferably updated using online measurements and an exponential

window averaging mechanism.
Virtual directory

Fig. 7 is a schematic illustration of a virtual directory 80, in accordance with a
preferred embodiment of the present invention. Each VFN receiver 48 maintains a virtual
directory of files held by remote file servers on other LANs. All registered directory trees
from the remote servers are pre-positioned in the virtual directory. The directory information
is preferably kept up-to-date, irrespective of file réquests by its local clients, by tracking and
notification of changes by the VFN transmitter or by active scanning and updating of changes
by the VFN receiver. When the VFN receiver intercepts a request for file directory
information or file metadata from one Qf local clients 28, the VEN receiver looks up the
information on its local virtual directory. The VFN receiver then returns the requested -
information directly to the client, avoiding the delay that would otherwise be involved in

requesting and receiving the information from remote file server 25 across WAN 29.

Virtual directory 80 preferably includes file métadata, including all file attributes that
might be requested by a client application, such as size, modification time, creation time, and
file ownership. If necessary (as in the case of NFS, for example), VFN transmitter 52 extracts
this file metadata from within the files stored on the origin file server, wherein the file

metadata is ordinarily kept.

Local storage of this file metadata in the virtual directory has several advantages.
Many file system operations require attributes of numerous files without requiring the content
of those files. The virtual directory precludes the need to transfer and store these unnecessary
complete files. By use of the local virtual directory, the VFN receiver provides the client with
fast response time to metadata-only operations, such as browsing the file system and property
checking, as well as for performing permission and validation checks against these attributes.
For example, the use of the local virtual directory enables receiver application layer 40 of VEN
receiver 48 to efficiently provide quick responses to common file system operations such
getting file attributes (getattr in NFS, for example). The virtual directory is also used
internally by the VFN system, for example, for making consistency checks, which can be done
against metadata.

50

10

15

WO 03/012578 PCT/IL02/00627
Virtual directory 80 stores an availability attribute for each resource in the virtual
directory. These availability attributes facilitate responses to requests for file operation that

require a file's contents, and not only its metadata. There are preferably three levels of

availability:

* cached or pre-positioned in the VFN receiver's cache 76, shown as cached

resources 82;

* pre-posilioned in the VFN transmitter's cache 77, shown as transmitter cached

resources 84; and

¢ remotely available, but not cached, shown as remote resources 86.

When responding to an intercepted file operation request on a file in virtual directory 80, the
VFN receiver uses this availability information to determine whether to serve the file from

cache 76 or to request the file from its remote origin file server.
Consistency

As described above, the VFN system uses caching to improve performance. Caching
creates multiple replicas of a resource. When any of these replicas are modified, they may
become inconsistent with one another (although concurrent access generally occurs relatively
infrequently). The VFN consistency protocol provides guarantees with respect to the freshness
of replicas, and provides mechanisms for propagating modifications to replicas. There are

three consistency paths within the VFN system:

* between client 28 and VFN receiver 48, Consistency along this path is handled

by the cache-consistency protocol of the network file system native;

* between VFN receiver 48 and VFN transmitter 52. Consistency along this path
is handled by the VFN system; and

e Detween VFN transmitter 52 and file server 25. The VFN system preferably
provides consistency along this path, as well. This consistency is desirable
because users outside of the VEN system can use and modify resources held by
file server 25 concurrently with VEN system access to the same resources.
Elements of the native network file system consistency protocol are preferably

used between repository connector 50 and external file servers, depending upon

51

10

15

20

WO 03/012578 PCT/IL02/00627
the capabilities of. the origin file server, such as change notification.

Additionally, a VEN file agent is preferably used, as described below.

Preferably, the VEN ‘system supports three levels of consistency, which can be
configured, for example, for individual files, file types, origin servers, or a combination of

these parameters:

* Strict consistency, the highest level of consistency, is preferably implemented
using a client-driven approach, whereby the VFN receiver queries the VEN
transmitter on each access to a resource in order to determine if the cached

resource is still valid.

* High consistency, which is a middle level of consistency, is preferably

implemented using a server-driven approach using leases, as described below.

* Relaxed consistency, a lower level of consistency, is preferably implemented
using a client-driven approach, whereby the VFN receiver periodically queries
the VFN transmitter in order to determine whether cached resources are valid,

preferably using the algorithms described below.

In relaxed cache consistency, if a maximum age parameter (max_age) has been defined
for a resource by the VFN management subsystem, this value is used to determine when to
validate the resource. Otherwise, if the resource is an HTTP resource, and it includes the
HTTP headers "expire" or "cache-control: max-age header," the values in these headers are
used to determine when to validate the resource. For non-HTTP resources, if the last
modification time of the resource is known (because it was passed internally in the VFN

system through a "last modified header" parameter), the maximum age is calculated as follows:
max_age = (0.2 * (current_date — last_modified)

Otherwise, when the resource has no last modification timestamp, the maximum age of
the resource is set to a default (default_age), which is specified in the local configuration file. -
(Typically, this default is 15 minutes). If no max_age parameter has been defined and the
calculated age is greater than a maximum default boundary (max_resource age) (which is
specified in the local configuration file), the max age of the resource is decreased to

max_resource_age. The default for max_resource_age preferably is one day.
In order to implement high consistency between VFN receivers and VFN transmitters,

52

15

20

30

WO 03/012578 PCT/IL02/00627
consistency is preferably managed centrally for each resource by the VFN transmitter that

owns the resource. Alternatively, the VFN system may use a distributed approach to

consistency management, such as a token passing scheme.

Pursuant to the preferred central management approach, lease manager 44 in VEN
transmitter 52 and lease client 38 in VFN receiver 48 communicate with one another and
together implement leasing. Preferably, the VFN system uses a server-driven lease-based
consistency protocol. A lease provides the VFN receiver with permission to perform a
specified operation (for example, read or write) on a specified resource (for example, a file or
directory) for a specified duration (timeout period). While the lease is valid, the VFN receiver
may perform the specified operation without contacting its peer VEN transmitter (with the
exception of write-back of changes, which is described below). Leases are preferably granted
on a per-file or per-directory basis rather than on a per-file-block basis, even though file block

transfers between VFN gateways are supported.

Advantageously, a lease held by a VEN receiver's lease client serves all clients 28 of
the VEN receiver. As a result, the validity of the lease is not affected as long as all operations,
including operations by multiple clients, are performed against the local VFN receiver. A
lease must be revoked, as described below, only when a client of another VFN receiver is'sues
a conflicting request for the leased resource. The approach of the VFN system to leasing

generally provides data consistency with bounded synchronization guarantees so that

substantially no stale data is served.
Preferably the lease data structure is as follows:
{ object id, object version, lease type, grant time, duration, epoch }

wherein object id is a unique identifier for each resource, object version indicates the version
of the resource, lease type is the specified operation for which the lease has been granted, grant
time'is the time the lease was granted, duration is the duration of the lease, and epoch is an
identification of a specific VFN transmitter instance. Epoch may be used to allow leases to be -
revoked and/or reclaimed after a server restart or network disconnection, by allowing the

server and client to determine which "instance" of the VFN transmitter granted the lease.

Lease manager 44 tracks lease holders using the following data structure for each lease

issued:

{ object id, VFN ids of lease holders, usage type }
53

10

15

25

WO 03/012578 PCT/IL02/00627
wherein the VEN ids are unique identifiers of lease clients 38 that hold the leases, and usage
type is the type of usage the lease permits (read-only, write). Preferably the usage type is used

to optimize the lease duration for typical use scenarios by recording information about past A

usage.
Lease client 38 tracks the leases it holds using the following data structure:
{ lease id, client modification log for update propagation }

wherein lease id is an unique identifier for each lease, and the log keeps track of modifications

made by the client for use during propagation of updates to the origin VEN transmitter, as

described below.

A lease is typically granted by lease manager 44 in response to a first resource
operation request made by a VFN receiver to a VEN transmitter. For example, during the first
read or validation of a resource by the VFN receiver, or when the VFN receiver sends its first
modification made to a resource, lease client 38 of the VFN receiver requests a lease from the
lease manager of the VFN transmitter. If the lease manager approves the lease request, the -
lease manager returns a lease and, if the lease request was piggybacked on another operation
request, the VFN transmitter returns an operation status responding to the other operation
request. A lease manager can deny a lease request, by not returning a lease or returning a zero-
length lease, in which case VFN receiver operations must be performed directly on the
resource held by the VFN transmitter. To reduce message traffic, whenever possible,

consistency messages and requests for operation are piggybacked on data requests.

Fig. 8 is a flow chart that schematically illustrates a method for requesting a read
operation, in accordance with a preferred embodiment of the present invention. This method
is used when client 28 requests from a VEN receiver a read operation on a resource registered
with the VFN system and held by remote file server 25, and the VEN receiver does not already
hold a read lease for the resource. After the request has been intercepted by the VFN receiver
of the local VFN gateway GW1, as described above with reference to Fig. 6, the VFN .
receiver's lease client 38 requests a read lease from the lease manager 44 of the VFN
transmitter that is the resource owner, at a read lease request step 120. The lease manager
checks whether any other lease clients hold valid write leases for the resource, at a write lease
check step 122. 1In such a case, the lease manager denies the read lease request, at a lease

denial step 128. Access to the requested resource is still provided to the client, at a validated

54

10

15

WO 03/012578 PCT/1L02/00627

access step 130, in the manner described above with reference to steps 102 through 118 of Fig.
6. However, each client access to the resource requires validation of the resource with the
original version of the resource held by origin file server 25. Upon each subsequent read
request, the method is repeated beginning with step 120. After the interfering write lease has

terminated, a read lease can be granted as described in the next paragraph.

If no other lease clients hold valid write leases, the lease manager grants the requested
read lease, at a lease grant step 124. In this case, all read operations are performed locally at
the VFN receiver, at a local access step 126. Validation of the resource with the original of the

resource held by the origin file server 25 is not required.

It should be noted that a read request is denied when a write lease is held by another
lease client, but not when another read lease is held by another lease client. Therefore,
multiple VFN receivers (and multiple clients for each VEN receiver) can read a resource

simultaneously. Each lease client renews the lease, using steps 120 through 126, as long as its

client 28 is active.

The granted read lease remains valid until the earliest of: (i) the occurrence of its pre- |
set timeout in the absence of a renewal request, (ii) the voluntary revocation of the lease by the
lease client because it is no longer needed, or (jii) the revocation of the lease by the lease

manager, such as when another lease client requests a write lease for the resource, as described

below.

Fig. 9 is a flow chart that schematically illustrates a method for requesting a write
operation, in accordance with a preferred embodiment of the present invention. This method
is.used when a client 28 requests from a VFN receiver a write or read-write operation on a
resource registered with the VFN system and held by a remote file server 25, and the VEN
receiver does not already hold a write lease for the resource. After the request has been
intercepted by the VFN receiver of the local VFN gateway GW1, as described above with
reference to Fig. 6, the VFN receiver's lease client 38 requests a write lease from lease
manager 44 of the VFN transmitter that is the resource owner, at a write lease request step 132. -
The lease manager checks whether any other lease clients hold valid read leases for the
resource, at a read lease check step 134. In such a case, the lease manager revokes all of the
other outstanding read leases for the resource, either asynchronously or synchronously, at a

revoke other read leases step 142.

55

10

15

20

25

30

WO 03/012578 PCT/1L02/00627

In any case, the lease manager next checks whether any other lease clients hold valid
write leases for the resource, at a write lease outstanding check step 136. If so, the lease
manager revokes all outstanding read and write leases for the resource, at a revoke all leases .
step 144, and forces the lease clients in VFN receivers holding any revoked write leases to
flush updates to the peer VFN transmitters. The lease manager next checks the frequency of
read and write activity of previous read and write lease holders, at a check activity level step
145. 1f the activity level was low, which may indicate that a lease was held but not needed, the
lease manager proceeds to a read lease check step 137, described below. On the other hand, if
the previous lease holders were active, the lease manager denies the write lease request, at
lease denial step 146. Access to the requested resource is still provided to the client.
However, each client access to the resource requires validation of the resource with the
original of the resource held by the origin file server 25, and all writing must be performed by
write-through to the original resource held by the original file server 25, at a write-through step
148. Upon each subsequent write request, the method is repeated beginning with step 132.

After the interfering write lease has terminated, a write lease can be granted.

On the other hand, if no write leases are outstanding for the resource or outstanding
read and write leases were inactive, as determined at step 145, and if the lease manager is
revoking read leases synchronously, the lease manager checks whether any read leases were
revoked at step 142, at read lease check step 137. If so, the lease manager waits until the
earlier of (i) the acknowledgement by lease clients of any read lease revocations issued at step
142 or (ii) expiration of the read leases for which revocations were issued at step 142, at
acknowledgement/expiration wait step 138. If, on the other hand, the lease manager is
revoking leases asynchronously, the lease manager skips step 137. In either case, the lease
manager then grants the write lease (or grants the lease immediately, if no read leases were
revoked), at a lease grant step 139. The VEN transmitter commits the requested modifications
(which it received from client 28 when client 28 requested the write lease) to the resource. As
described above with reference to step 128 of Fig. 6, further read leases are not granted while
the write is in progress. Preferably, short write leases are granted so as to allow the granting of -
read leases as soon as possible thereafter. If the lease manager detects that the reads are no

longer active, it may grant longer write leases.

After receipt of the write lease, all read operations by client 28 are performed locally at

the VFN receiver, as described above. All write operations can be performed using a write-

56

10

L5

20

25

30

WO 03/012578 PCT/1L02/00627

back cache scheme, as described below, at a write-back caching step 140. When modifying
the resource, the VEN transmitter increments the version number of the resource, which is

used for synchronization and integration of changes from disconnected VFN gateways.

The granted write lease remains valid until the earliest of: (i) the occurrence of its pre-
set timeout in the absence of a renewal request, (ii) the voluntary revocation of the lease by the
lease client because it is no longer needed, or (iii) the revocation of the lease by the lease
manager, which occurs when another lease client request a write lease. Additionally, if
another lease client requests a read lease for the resource, the write lease holder is given the
option to downgrade its write lease to a read-only lease. If the write lease holder exercises this
option, generally because the holder is no longer actively updating the resource, the read lease

is granted. Otherwise, the read lease request is denied, at step 128, as described above.

The leasing approach described above ensures single copy semantics, whereby every
read operation sees the effect of all previous write operations, and read and write requests
cannot execute concurrently. When revoking a lease because a resource has been modified,
the VFN transmitter optionally includes hints (for example, ranges in a file that have been
modified) in order to improve update propagation to VFN receivers that held leases on the |

previous version of the resource.

After a read lease has been granted, it can be upgraded to a write lease upon a request
by the lease client holding it. Similarly, a write lease can be downgraded to a read lease after

the VFN receiver has flushed resource modifications to the VFN transmitter whose lease

manager granted the lease.

A lease is allowed to expire silently at the end of its specified duration if its associated
resource is no longer needed by the VFN receiver whose lease client holds the lease (for
example, if a file has been closed by its client 28). If the VEN receiver needs continued access
to the resource to proceed with an operation, the lease on the resource may be extended by the
lease manager pursuant to a request by the VFN receiver's lease client. Such extension
requests are preferably piggybacked on other data sent by the VFN transmitter and/or with
requests for invalidation of leases no longer needed. A lease can also optionally be extended
independently by its granting lease manager, typically by piggybacking the renewal on other
messages if the lease is about to expire. The automatic expiration of leases removes any

associated state at both the lease manger and lease client, without requiring the use of any

57

15

20

WO 03/012578 PCT/1L02/00627

WAN bandwidth. This bandwidth conservation is particularly advantageous when widely

cached resources are modified.

In a preferred embodiment of the present invention, the lease manager grants the lease
client a dual lease, which combines a short lease on the file set containing the resource (a "set |
lease") and a longer lease on the individual resource (an "object lease"). A file set is a logical
grouping of related resources, typically a whole share, such as an NFS mount point or a CIFS
network share, or a directory. Different file sets can also be configured by a VEN
administrator based on criteria such as spatial or temporal locality of resources. The use of a
set lease reduces the bandwidth and processor costs of renewing leases by amortizing the cost
of renewal over multiple related resources, and also may provide faster failure recovery. These
savings generally more than compensate for the relatively frequent renewals necessitated. The
combination of a set lease and an object lease typically provides the fault tolerance and
consistency of short leases with the low overhead and performance benefits of long leases.
The VFN receiver provides access to its cached resources to clients 28 so long as both the

object and set leases held by the VEN receiver's lease client are valid.

In another preferred embodiment of the present invention, the default behavior of the
VEN system is customized to improve file sharing in several common application classes.‘ For
example, for a large class of applications, such as applications that require resource-sharing
and process-synchronization over a mnetwork, tight file content synchronization is less
important than maintaining file system structure synchronization. Typically, these applications
create files to serve as semaphores or locks in order to achieve atomicity during critical
operations. For this class of applications, the VFN may be configured to handle file creation
and deletion in write-through mode, thereby allowing global application synchronization

across VFN gateways.

A second common application class creates temporary files (often multiple large files)
in shared directories that should not be available, or even visible, to a remote site. The VFN
system preferably allows the specification of file types that should remain local to each VFN

gateway and exempt from the consistency protocol.

Preferably, a VFN administrator can configure the VEN system to prevent granting of
write leases for certain resources during specified time periods. For example, write leases may

be prevented every day at a certain time when backup and file system updates are scheduled.

58

10

15

20

25

30

WO 03/012578 PCT/1L02/00627
Directives can also be issued that mandate write-through for certain resources. Update-delete

conflicts that arise are preferably resolved as they would be on the origin file server.

Because the VFN system is distributed over multiple remote sites, it should be
designed to gracefully handle conditions such as network failures or intentional bandwidth -
limitations. Thus, for example, the timeout periods of leases in the VFN system ensure that a
VFN transmitter can continue to commit changes to resources despite an occasional
connection or VFN receiver failure. In the event of such a failure, the VFN transmitter, in
order to commit changes, does not need to wait indefinitely for the VEN receiver's lease client
to acknowledge the VFN transmitter's lease manager's lease revocation, but rather only for the
lease to expire. Lease client 38 also participates in failure recovery by renewing leases it held

prior to the failure or disconnect.

Disconnected VFN receivers can continue optimistically serving resources to their
local clients. However, because such disconnected resource access cannot provide hard
consistency guarantees, the VFN system may restrict such access to read-only. (This may be
accomplished by having the lease client issuing dummy local read-only leases.) Read-only
access is provided for cached and unauthorized HTTP resources. Alternatively or additionally, -
during disconnected operation, when a user requests a file that is marked as requiring st'rong

consistency, a file-not-found exception is returned to the user.

Further alternatively, during disconnects, local clients may optimistically continue
making changes locally. These changes must later be reintegrated with the origin resource
held by file server 25. Upon reintegration, lease clients reconnect to lease managers and
request new read leases. Lease clients also attempt to reestablish write leases previously held.
Lease managers may renew a previously held write lease if the original write lease was for the
same version of the resource currently on the origin file server 25. If these write leases are still
available, modifications made since the last write update are sent to the VEN transmitter. If
these write leases are not available, most changes can be applied automatically and only write-
write conflicts must handled with manual intervention (although write-write conflicts are
generally very infrequent). In either case, while in disconnected mode, each VEN gateway
provides a consistent view of the set of its own locally cached files. When communication is
reestablished after a disconnection period, VFN receivers preferably attempt to reestablish the

validity of all cached replicas of resources (possibly using a single per-volume check).

59

15

20

25

WO 03/012578 PCT/1L02/00627

In order to enable lease manager 44 to revoke leases held by lease client 38, the VFN
receiver preferably is able to accept connections from the VFN transmitter, in addition to its
usual function of establishing such connections. If security considerations prohibit such
connections (since firewalls are often configured not to accept remote HTTP and FTP
connections), the VFN transmitter and VFN receiver can emulate bi-directional
communication over unidirectional transport, as described below in the section regarding the
adaptation layer, and thereby maintain HTTP and firewall friendliness. Alternatively, if bi-
directional communication is not possible, revocation is initiated by the lease client holding
the leases, by periodically polling the state of leases for a selected list of resources, termed the
working set, which consists of frequently accessed resources. In this implementation, access

to resources that are not in the working set requires validation and write-through.

Reference is now made to Fig. 10, which is a block diagram that schematically
illustrates the deployment of a VFN file agent 90, in accordance with a preferred embodiment
of the present invention. Preferably, a non-VFN local native client 92 can use and modify
resources held by file server 25 concurrently with VEN system access to the same resources.
To handle this possibility, the VFN system uses VFN file agent 90 to maintain consistency
between VFN transmitter 52 and file server 25. The VFN file agent functions as a watchdog |
that notifies lease manager 44 of VFN transmitter 52 in local VAN gateway 22 when changes

to resources registered with the VFN transmitter have been made directly by local native client
92, |

Alternatively, the VFN transmitter may periodically poll the origin file server to ensure
file consistency. When such local-client file server writes are detected, the VEN transmitter's
lease manager revokes all leases for the modified resource. If any modifications have been
made to the same resources by a holder of a write lease, these modifications are merged or
discarded, based on the preconfigured policies set by management subsystem 33. To enable
merging, modification records may be time-stamped, in which case the VFN system uses the
copy with the latest modification time-stamp, and preferably logs a warning that the conflict
has occurred. Alternatively, the system may be configured to always prefer the copy held by

file server 25.

Alternatively or additionally, a CIFS client in a VFN transmitter may open files in
shared mode on the local file server while a remote VFN receiver is writing a file locally,

When the file is opened by the VFN transmitter, and the CIFS client is granted an CIFS
60

10

15

30

WO 03/012578 PCT/IL02/00627

opportunistic lock (op-lock) from the origin server, the VFN transmitter preferably uses the
op-lock as a guarantee of exclusivity (read-write caching or read-caching only). This
approach allows more efficient synchronization between the VEN . transmitter and the origin
server. When using op-locks, in order to preserve strict coherency, all CIFS directory
operation are performed directly on the origin file server, because CIFS op-locks lock only '

files and not directories.

Preferably, a VFN administrator can configure the polling rate of VEN transmitter 52
to increase or decrease the consistency level, resulting in a higher or lower load on file server
25. Consistency between VFN transmitter 52 and file server 25 is preferably configured to be
lower than consistency between VFN transmitters and VFN receivers, to avoid incurring a
prohibitive overhead and load on the VEN transmitter or origin file server. Optionally, if the
file server's local clients require stronger consistency, these local clients can access the most

current replica through the local VEN gateway (loop-back access).

In a preferred embodiment of the present invention, the VFN system adaptively
optimizes the duration of leases by operation type. This optimization involves a trade-off
between increasing WAN communication efficiency (by using longer leases) and reducing
VEN transmitter server state (by using shorter leases). Shorter write leases also potentially |
provide stronger consistency. Preferably, the duration of a lease is set to the longest time

possible that is not likely to require revocation. For this purpose, the VEN transmitter varies

the lease period based on the type of resource in order to match file usage scenarios. For

example, "read-only" resources can have relatively longer lease periods than writeable

resources.

The VFN system preferably employs different consistency levels as appropriate for
each resource type. For example, the VEN system typically provides strong consistency for
resources held by file servers and weak consistency for resources held by Web servers. For
resources held by Web servers, the VFN system preferably uses standard HTTP cache
behavior. Preferably, the default cache policy for FTP servers provides relaxed consistency
guarantees, similar to those for HTTP, because FTP itself does not make consistency
guarantees. In order to apply the appropriate level of consistency, the VEN system keeps track -
of the type of server from which each resource originated, as described above. These general
rules may be varied by directives issued by the VFN administrator, so as to provide stronger

or weaker consistency for specific resources or types of resources, as described above.
61

wn

10

15

25

WO 03/012578 PCT/IL02/00627

The VEN system's use of leases provides several benmefits. Strong consistency
guarantees can be provided even when there are multiple concurrent readers and writers,
because 4 VEN transmitter must notify VEN receivers holding valid leases of any pending
changes to resource. Leases improve system performance because most operations can be
completed by the VFN receiver locally. Write-write and read-write conflicts between users of -
the same VEN gateway are resolved locally. Additionally, because leases are typed by their
operation, they minimize false client in%zalidations for read sharing, which sometimes occur in

distributed file systems that use leases or callbacks that are not typed.
Concurrency control

VFN gateways 22 preferably provide full native network file system functionality to
clients 28, including support for external application-generated lock requests. The support of
leases for consistency and support of locks for concurrency in the VFN system are essentially
unrelated functions, although there are certain similarities of implementation. (Locks can be
viewed as a special type of leases.) Consistency is an internal VFN system function, while
locks are supported to provide a service to external user applicatioﬁs. Preferably, file locking
is supported for multiple operating systems, including support for the UNIX NLM (Network
Lock Manager, the NFS network locking manager), and the Win32API access modes and

sharing modes for files in Windows.

File locking is used by processes to synchronize access to shared data. File systems
typically provide whole file or byte-range locking of two types: mandatory and advisory (also
called discretionary)., Mandatory locking is enforced by the file system. It prevents all
processes, except those of the lock holder, from accessing the locked file. Advisory locking
prevents others from locking a file (or a range within the file), but does not prevent others

from accessing the file. It can be effective between cooperative processes only.

The VEN system preferably supports both mandatory locking, as is used in CIFS, and
advisory locking, as is used in NFS. Both mechanisms are used to support lock requests from
user applications. Most preferably, byte-range locking is supported, as well, for both CIFS
and NLM. Optionally, the VFN system supports interoperating CIFS and NLM file locking
and sharing operations (at VFN transmitters and/or VFN receivers). When such support is
provided, operations contending for the same resource must adhere to the stricter locking
paradigm, i.e., mandatory locking, while maintaining the correct operation of other clients.

62

10

15

20

30

WO 03/012578 4 PCT/IL02/00627

Fig. 11 is a block diagram that schematically illustrates details of VEN system 20 that
relate to lock management, in accordance with a preferred embodiment of the present
invention. VFN transmitter 52 comprises at least one lock client 150, and VFN receiver 48
comprises a lock server 154. (These elements of VFN gateway 22 were omitted from Fig. 3
for the sake of simplicity.) The lock client and lock server communicate with one another
over WAN 29 and together facilitate the issuance and management of locks. Alternatively,
lock client 150 and lock server 154 can be implemented as part of transmitter application layer
42 and receiver application layer 40, respectively, rather than as separate components of VEN
transmitter 52 and VEN receiver 48. Preferably, VFN transmitter 52 comprises a separate
instance of lock client 150 for each file server 25 to which it is connected, or, optionally, for

each mount point on each file server.
Locks in the VFN system preferably have the following data structure:
Lock = { object id, client id, grant time, duration, epoch }

wherein object id represents the identity of the resource to which the lock applies, using the
internal resource identification numbers of the VFN system. For lock clients, client id denotes
the peer lock server from which the lock request was received. .For lock servers, client id
denotes the process on the client 28 that requested the lock. Grant time and duration are used -
for automatic lock expiration, as described below. Epoch is an identification of a specific
application instance (comprising, for example, one or more of the following parameters:
machine id, process-id, process creation time, or a random value). Epochs are used to
facilitate coordination of shared state in a distributed application. They are used to determine
if the shared state was created by the instance with which an application is currently
communicating (for example, in the case of a reconnect) or a previous instance (for example,

in the case of a restart).

Lock server 154 accepts lock and unlock requests from clients 28. Upon receiving a
request, the lock server preferably performs certain management functions, such as issuing any
denials based on locally-available information and/or caching and combining requests for
short periods in order to enhance system performance. If the request is not denied, the lock
server then passes the request to the lock client that resides in the VEN transmitter that owns
the resource. Upon receiving a response from this lock client, the lock server forwards the

response to its client 28. Lock server 154 preferably shares data with the servers in

63

15

30

WO 03/012578 PCT/1L02/00627
interception layer 54 (Fig. 3), such as with NES server 56, to ensure that locking is supported
on a per gateway basis. Preferably, lock server 154 supports NLM Version 3 in order to

support NFS Version 2 user re.qﬁests, and NLM Version 4 in order to support NFS Version 3

user requests.

Lock client 150 accepts lock and unlock requests from lock server 154, preferably
through a CGI interface. The lock client checks whether the requests conflict with any other
remote locks that the lock client has issued. If so, the lock client preferably resolves the
conflict by using arbitration logic. If not, the lock client executes the requests on file server
25, which in turn executes the request on its origin copy of the resource, using the file server's
native locking support (that is, outside the VFN system). Execution on the origin file server is
necessary in order to provide end-to-end coordination of locks. The lock client waits until it
receives a response from file server 25, and passes this response to the lock server. This
synchronous operation of the lock client and server with the file server ensures correct
arbitration of lock requests between multiple VFN receivers and avoid possible deadlocks.
The lock client preferably maintains tight control of all lock requests issued to file server 25 in
order to avoid accidentally reissuing a request (for example, for a different client), which

might result in the lock client locking itself out of access to a resource.

Preferably lock client 150 tracks outstanding locks using the following data structure

for each lock issued:
Map = { lock id, lock }

Lock id is a unique identifier for each lock issued, and lock is the lock object, whose data

structure is described above.

In order to maintain a lock on a file, operating systems generally require that the file
handle for the file remain open. Therefore, in order to maintain locks on files held by origin
file server 25, the VFN transmitter keeps locked files open on the file server. Preferably, in
order to enable scaling of the VFN system to support the issuance of large numbers of
simultaneous locks, the VFN transmitter supports the issuance of more locks than the number
of simultaneous handles allowed by the operating system for one process. For example, the
default maximum number of handles per process on UNIX is 1000, including all
communication handles such as file handles, sockets, and pipes. Support of larger numbers of

locks is preferably accomplished in the VFN system by spawning external slave processes

64

15

20

30

WO 03/012578 PCT/1L02/00627

only for the purpose of maintaining open handles. These external processes are supported by a
protocol between the origin VEN transmitter and its subsidiary slave processes. Optionally,
these slave processes may control lock agents to physically place and remove locks from

repositories.

Locking in system 20 can typically use at-least-once semantics, because reissuing a
held lock to the same client is generally not harmful. The exception to this generalization is
when the network file system on server 25 uses reference-counting of locks, in which case a
single response to each request is preferably ensured. When using at-least-one semantics, the
protocol between the lock server and lock client typically does not need to ensure a reliable

WAN connection because retransmissions are permitted.

Preferably, lock server 154 supports lock and unlock requests generated not only by
clients 28, but also by the VFEN receiver itself. This feature enables the VFN system to
generate internal lock commands (i.e., not user application-generated) for enhancing
consistency guarantees. For example, if a file is locked by the VFN system on the origin file
server (even though the lock was not requested by the client accessing the file), the file cannot
be modified without permission from the VFN transmitter. This approach generally provides
better consistency, albeit at the cost of reduced concurrency, which is often an accept’able

tradeoff. Additionally, the repository plug-in API preferably supports locking.

Preferably, the VFN system implements internal delays when executing unlock
operations in order increase efficiency and reduce load on the VFN transmitter and origin file
server. End-user applications typically request repeated locks for a file or region of files.
Preferably, when an application requests an unlock operation for a file or region, the VFN
receiver locally marks the file or region as unlocked, but does not relay the unlock request to
the VEN transmitter. This local unlock is preferably assigned a relatively short expiration
(such as less than 10 seconds), after which the unlock request is sent to the VEN transmitter.
During the period prior to expiration, if another local lock is requested, this lock operation is
completed locally at the VFN receiver, without the involvement of the VFN transmitter.
Additionally, if the VFN transmitter receives a lock request from a first VFN receiver for a file
that the VEN transmitter believes is locked by a second VFN receiver, the VFN transmitter
consults the second VEN receiver whether it is possible to unlock the resource. In such a case, -
the second VFN receiver will preferably release any delayed locks it is holding without active

user locks, or will refuse the request if the lock owner is a “real user.” This method of lock
65

10

15

30

WO 03/012578 PCT/IL02/00627
delegation is effective in a typical case of repeated access or low contention (if the delay

period is sufficiently long).

If liveliness status is required in the origin file server, it can be piggybacked on the

current VFN monitoring,

In the preferred embodiment shown in Fig. 11, VEN transmitter 52 and VFN receiver
48 each comprise a status monitor 158. Each status monitor 158 comprises a lock status |
monitor 152, which monitors the status of the VFN gateways in order to enable lock client 150
and lock server 154 to recover from reboots and system crashes. Alternatively, the
functionality of lock status monitor 152 can be provided by other monitoring utilities in the
VFEN gateway, rather than by a separate component. Preferably, locks are released and not
reestablished upon a crash. Alternatively, locks are reestablished, and the lock status monitors
maintain consistent state to enable such reestablishment. For efficient recovery from crashes,
each lock request is preferably assigned a unique identification number that is granted for a
specified duration. Locks not renewed during their periods expire automatically, in a manner
similar to the expiration of non-renewed consistency leases, as described above. The lock
agent in the origin site must maintain persistent list of files (or byte ranges) that are locked, to

allow their release after a crash.

Preferably, status monitor 158 in VFN receiver 48 further comprises a network status °
monitor (NSM) 156, which provides crash-recovery services to clients 28 implementing NFS,
pursuant to the standard NFS NSM protocol. Optionally, the standard NSM daemon (called
statd) can be used as this component for VFN receivers residing on a UNIX server.
Alternatively, NSM 156 can be implemented as part of the VFN receiver, rather than as a
separate component. For protocols, such as CIFS, that drop shared state (open file handles,
locks, etc.) upon disconnection, the VFN receiver preferably disconnects active clients when
disconnected from the VFN transmitter or when the VFN transmitter has been restarted. The
VEN receiver preferably detects such disconnection and restarts using its monitoring

information and epoch, as described above.
Crawling and archiving

In a preferred embodiment of the present invention, VFN transmitter 52 comprises a
crawler component (not shown) that traverses local file systems, HTTP, and FTP directory

trees in order to generate a list of available resources. This information is used, inter alia, for
66

10

15

20

25

30

WO 03/012578 PCT/1L02/00627

pre-positioning of resources, subject to apprbpriate directives and parameters, as described
above. The VFN transmitter sends this list to its peer VEN receivers, which pre-position the
resources as scheduled. Preferably the crawler monitors changes in specified directories by

periodically generating a current list of resources and their attributes, which may be used in the

virtual directory, as describe above.

Preferably, VFN transmitter 52 also comprises an archiver component. When the .
crawler encounters resources that are tagged with the archive parameter, as described above,
the archiver packages all the tagged resources into a single archived and compressed file, such
as a ZIP file. The VFN receiver downloads the compressed file during pre-positioning and

extracts the resources.

The crawler and archiver may be implemented as services in a single servlet container,
such as an Apache Tomcat servlet container. Alternatively, the crawler and/or archiver may

be deployed as stand-alone components, rather than as components of the VEN transmitter.

Export and import

In a preferred embodiment of the present invention, VEN system 20 supports the
export of remote resources, via a VFN receiver, into non-VEN native file systems. User
applications can directly access these exported resources via the appropriate native file system.
Resources exported from a VEN receiver preferably maintain the same relative path that the
resources have on the source VEN transmitter. The local native file system root path of the
export is determined based on the local configuration of the VEN receiver. The Uniform
Resource Identifier (URI) of the resource determines the relative path from the root, in a
manner that is specified in applicable directives. File properties of exported files, such as size,

modification time, and owner, are preferably identical to the properties of the source file.

Responsive to a synchronization parameter in an export directive and specific metadata
regarding each resource, the VFN system preferably keeps these exported resources
synchronized with their original copies. All VFN cache operations, including pre-positioning,
updating, and invalidation can be applied to exported resources. Because access to exported
resources cannot be intercepted by the VEN receiver, the consistency and view of the exported
resources may not always be accurate and/or complete. Typically, the VFN gateway does not

enforce access rights for exported resources, although enforcement of such access rights is

possible.
67

10

15

3]
=

WO 03/012578 PCT/1L02/00627
Export characteristics are preferably configured through the local configuration file of
each VFN receiver. By default, resources brought into the VFN receiver's cache are typically
not automatically exported, but aﬁtomatic export to an external file server may be configured,
for example, for backup. File and directory mode attributes for export are likewise
configurable at the local VFN receiver. The mode attribute can be set to one of the following

values:

» no_duplicate: operations are carried out only on the cache of the VEN receiver.
o duplicate_prefetch: when resources are pre-positioned they are also exported.

o duplicate_all: any cache operation applied to a resource is also applied to the

corresponding exported resource.

Preferably, the VFN system supports authenticated file export to FTP servers, as well

as the import of resources held by local native file systems into the VFN system.

Fetching queue

Each VFN receiver 48 preferably maintains a queue of requests for the fetching of
remote resources. The queue is ordered by the priority of the requests. Preferably two or three

priority levels are supported by adaptation layer 45. Priority is preferably in the following

order:
e current user application requests;
e read-ahead requests;
o requests scheduled by VFN administrator directive;
e locally-generated automatic pre-positioning requests; and

e automatically-triggered replication requests, which are replication requests
initiated by the VFN system without intervention through a directive. These
requests are preferably initiated based on internal heuristics and algorithms of

the VFN system, such as resource popularity and change frequency.

Lower-priority requests are deferred unless there is excess bandwidth. When
bandwidth is insufficient to simultaneously transfer all queued requests, lower-priority

requests may be frozen (preferably at the TCP level) in order to reduce competition for '

68

10

15

WO 03/012578 PCT/1L02/00627
bandwidth. After current-user requests are fetched, the VFN receiver preferably waits a
certain amount of time prior to fetching any other requests. This delay often improves
performance for the user, bec.ause user requests are frequently bursty and highly time-
correlated. Preferably, application transport layer 46 provides self-regulation of queue length,
including scheduling shortest tasks first and performing gate control (i.e., refusing new tasks

under certain conditions).
Web access to the VEN system

[n a preferred embodiment of the present invention, VEN system 20 supports Web
access to registered file system resources. A "home page" is provided at a VEN gateway,
containing the root directories of all registered file servers. Users can use this home page to
browse the remote file systems, without the need to define an HTTP proxy in their browsers.
Additionally, the VFN system preferably includes a component that serves registered
resources held by network file systems as HTTP content. HTTP clients without correct

credentials are generally prevented from accessing files cached in the VEN receiver cache

The VFN system preferably provides support for user client access to FTP resources.
Such access is provided by translating the FTP resource into HTTP for use by the client, via a
URL translation directive. Such FTP requests and responses are automatically gated and
transformed by the VFN receiver. The FTP client can operate in either an active mode, in -
which it opens and listens to a data port, or in a passive mode, in which it becomes active only

on demand. Preferably, the VEN receiver additionally supports the WebDAYV protocol.

ADAPTATION LAYER

Adaptation layer 45 (Figs. 3 and 4) provides the VFN transmitter and receiver
application layers with high-level services for bidirectional inter-VEN gateway
communications over the WAN. As shown in Fig. 4, the adaptation layer of a VFN
transmitter communicates with the adaptation layer of a VFN receiver of another VFN

gateway.

If security considerations prohibit native bidirectional connections (since firewalls are
often configured not to accept remote HTTP and FTP connections), the VFN transmitter and
VEN receiver can emulate bi-directional communication over unidirectional transport,

preferably using one of the following methods. The best choice of method depends on .

69

10

15

WO 03/012578 PCT/1L02/00627

network and firewall configurations, with the first method preferable if it is supported.

e The VFN transmitter uses HTTP/1.1 chunked responses and request pipelining
over persistent connections after the establishment of the initial session-like
communication. The VEN transmitter sends data as a chunk of some response,
thereby emulating a non-ending response. When another request is received on
the same connection, the response can be broken off and a new chunked
response established for the new request. This approach allows the VFN
transmitter to asynchronously send messages to the VEN receiver as soon as the
messages are available. The VEN receiver does not need to know the length of
the entire response (that is, the sum of the chunks), but only the length of each

chunk as it is being sent.

e The VFN receiver periodically polls the VFN transmitter by sending a "get-
pending-messages" request. The VFN transmitter replies with queued
messages. This approach is generally used with HTTP/1.0, which does not

support chunked responses.

The chunked response approach generally provides better responsiveness -and
bandwidth utilization than the polling approach, because socket creation and destruction is
eliminated from the path of each request, and additional TCP send/receive windows have a

better chance of adapting to the network over the course of prolonged connection.

The adaptation layer is implemented on top of application transport layer 46, which is
described below, and implements features used in the VFN system to emhance WAN
performance and utilization. Preferably four file 'system operations are optimized in
adaptation layer 45: read, write, open, and close. Other common operations, such as
directory-related operations, are preferably optimized in the VFN transmitter and receiver
application layers, as described above. Alternatively, some or all of the services described in
this section are implemented in application transport layer 46 and/or in VFN transmitter and

receiver application layers 40 and 42.

Read

Adaptation layer 45 supports inter-VFN gateway data transfers requested by the

transmitter and receiver application layers. In general, large resources are transferred from the -

70

(9]

10

15

20

WO 03/012578 PCT/IL02/00627
gateway that is perceived to have the highest throughput among the gateways holding an up-

to-date replica of the resource, as long as transfer from this gateway is permitted by the
applicable administration directives. As mentioned above, transfers are preferably prioritized

by the receiver application layer rather than by the adaptation layer.

Preferably, adaptation layer 45 uses an adaptive block size for transferring data over
the WAN. The block size depends on the currently available bandwidth and latency of the
link connecting the two VFN gateways that are communicating, and preferably is bound by .

| minimum and maximum size parameters. The block size is typically independent of the actual

size of the resource being transferred.

Typically, when a resource is being transferred pursuant to a file system requeét
processed by receiver application layer 40, the block size is larger than that which would be
used in the original file system request. The original request was optimized for efficient use of
the LAN, which has negligible latency and high-bandwidth. Increasing the block size
optimizes the request for efficient use of the WAN, which typically is characterized by
substantial protocol latency and overhead. Block size is preferably set to the equivalent of at
least a few seconds' data transfer, in order to allow TCP rate control sufficient time to
converge. Despite this larger block size, redundant data is generally not transmitted ovef the

WAN, since blocks are stored in the VEN receiver's cache for later use, as described above.
Preferably, the computation of the block size is performed using the following rule:

Block size equals RTD*REE, but not less then 4 kilobytes (as message overheads
makes lower values inefficient), and not more than a predetermined value such as 1

megabyte (otherwise caches may quickly overflow).

RTD equals the round-trip delay (in seconds) between the VEN receiver and VFN transmitter,
and REE equals the end-to-end transfer rate (in bytes per second). RTD and REE are
preferably dynamically calculated using measurements taken from past connections, to which
exponential window averaging is applied. These parameters are available from standard TCP

algorithms. Alternatively, RTD and REE may be configurable static parameters.

The calculated quantity RTD*REE represents the number of bytes that can be
transmitted over an end-to-end connection in a single round-trip cycle. The function above
bounds this quantity between a minimum of 4 kilobytes and a maximum of one megabyte,
although larger or smaller limits may alternatively be used. An isolated, single user request -

71

10

20

WO 03/012578 PCT/IL02/00627
cannot be served in less then RTD seconds, regardless of how small the requested resource is.
The function balances two considerations. First, it is inefficient to transfer a very large block
that will increase the client latehéy much above the RTD. Second, smaller blocks utilize the
WAN connection inefficiently. The choice of a 4 kilobyte minimum block size reflects HTTP
and VFN WAN protocol overheads, and the choice of a one-megabyte maximum block size
reflects a reasonable maximum cache block size. Because the adaptation layer preferably uses
paralle] connections and connection pipelining, this block size is generally not an efficiency

bottleneck, even in more loaded operations.

Adaptation layer 45 preferably uses a heuristic for performing lazy read-ahead of files
and file blocks in order to pre-position files and file blocks that are likely to be needed by a
user application. (A client application often accesses only certain blocks of a large file. This
block access is supported by the VFN system, both by the VEN receivers when serving
resources, and during inter-VEN gateway communications.) Preferably, an algorithm analyzes
real-time file usage patterns to detect sequential access patterns, which are common in many

applications.

Preferably, adaptation layer 45 adapts its detection of sequential access patterns
according to the file type of the resource. This adaptation is beneficial because some file types
are characterized by a particular access pattern that differs from typical sequential access.
Such files typically include a data structure that can be used for accessing data internal to the
document. Examples of such data structures include the directory structure used in ZIP files '
(listing file contents and attributes), a document map in Adobe® Portable Document Format
(PDF) files, and, for directory operations, Windows icons associated with an executable file
for displaying the executable file in a listing. Adaptation layer 45 preferably tracks access to
these files (either at the VFN receiver or VFN transmitter), collects access patterns, and
utilizes the access patterns to perform more predictive pre-positioning. Preferably, fixed
patterns in a file are detected. Alternatively or additionally, the adaptation layer (preferably in
the VFN transmitter) comprises application-specific handlers that analyze and push read-ahead
blocks. For example, ZIP directories and Windows icons may be referenced using an in-file

offset listed in specific locations of the file.

When particular usage patterns are detected, the VEN receiver attempts to pre-position
additional blocks of the same file before they are requested by the VFN receiver's client.

Additionally, the read-ahead algorithm preferably exploits common access patterns in each -
72

N

10

15

20

30

WO 03/012578 PCT/IL02/00627

network file system, such as access patterns resulting from a folder-browsing request.
Resources are pre-positioned if their request is found to be highly correlated with recent
requests for other resources. As noted above, the algorithm takes into account available
bandwidth by assigning a low priority to read-ahead transfers, thus avoiding delays in transfer
of data for on-demand requests. Preferably, the balance of a file is pre-positioned after a
certain number sequential reads of the file, typically five such reads. This threshold reflects
the observation that after five sequential reads, the probability of full file sequential access is

greater than 80%.

Additionally, the VFN receiver may attempt to pre-position files by detecting access
patterns that span multiple files, such as application-related files. Such patterns are preferably
detected using application- or application-class—specific. algorithms. For example, a rule might
be formulated pursuant to which when a file of a certain type is first read, all files with the
same base-name in another related directory are pre-fetched. Alternatively or additionally,

self-learning algorithms for detecting correlations may be used, as are known in the art.

Preferably, adaptation layer 45 uses compression for file transfer between the VFN
transmitter and the VFN receiver. Most preferably, the VFN system is pre-configured Wi'th a
default set of file types that are known to be compressible. Files of these types are
automatically compressed if greater than a certain minimum size. Additionally, a VFN
administrator can further configure the VFN system to compress files by certain other criteria,
such as file type, size, or location. For example, the VFN system can be configured to -
compress all Microsoft Word files greater than 200 kilobytes. Preferably, the adaptation layer
utilizes adaptive configuration to vary the parameters for applying compression based on
current WAN performance and constraints. For example, compression may be applied more
aggressively during business hours when WANs are generally more highly utilized.

Preferably, zlib compression is used, although other compression tools can be used, as well.

To implement compression, the VFN receiver preferably indicates that compression
should be attempted on a requested file by marking such a request in the VFN request header
sent to the VFN transmitter. Upon such a compression request, the VFN transmitter
compresses the file onto a temporary local copy and compares the size of the compressed file
with the original file. For real-time transfer requests, the compressed version is used only if
the overall responsive time is decreased, taking into consideration the decompression

processing latency. Alternatively, the decision to return the compressed version is based on .
73

10

15

25

WO 03/012578 PCT/IL02/00627

the compression percentage achieved (for example, at least 30%). Otherwise, the
uncompressed version is returned. For pre-positioning transfers, compression is triggered if
the compressed version is srnalll‘er than the uncompressed version. In all cases, the VFN

transmitter marks whether the file is compressed in the transmitter's response header.

Adaptation layer 45 preferably breaks large files into blocks for transfer via parallel
TCP connections, whereby multiple threads of adaptation layer 45 on the VFN receiver open
sockets and fetch different parts of the file concurrently. Parallel connections typically
significantly enhance effective throughput over a WAN link. The maximum number of -
concurrent TCP connections K is either pre-configured or adaptively set based on observed
throughput gain. The pre-configured default for K is preferably 4, similar to a typical Web
browser default. Alternatively, the adaptation layer of the VEN receiver attempts to increase
the number of concurrent connections to the VEN transmitter until no more overall throughput
gain is observed. If no overall bandwidth decrease is observed after the termination of a
connection, K is decreased by 1. Typically, setting K too high increases latency without

affecting total bandwidth. Additionally, K can be reduced by throttling, as described below.

Adaptation layer 45 preferably implements throttling to control the maximum
bandwidth used by the VFN system over a WAN connection. Throttling is desirable so ‘that
VEN data does not cause network congestion that interferes with the throughput of non-VEN
traffic. Throttling is particularly beneficial when there is asymmetry between the connection

speeds of interacting VFN gateways.

The throttling mechanism is preferably based on the weekly configuration (per
weekday per hour) of two bandwidth parameters: K (the maximum number of connections)
and the total bandwidth consumed by the VEN. The total number of connections generally
reflects the relative amount of bandwidth consumed by the VEN in relation to other TCP-
based applications, because multiple TCP connections originating from the same site will
generally distribute the bandwidth evenly in the absence of IP quality of service mechanisms.
Therefore, a small value of K will throttle VFN system traffic during WAN peak traffic
periods. Preferably, the VFN system additionally provides a configurable total bandwidth
limit or socket limit, which bounds the total bandwidth consumed by the VEN system
irrespective of other applications. Such limitations may be varied over different periods of the
day or on a weekly basis. Optionally, only VFN receivers monitor and throttle their bandwidth

use, while VFN transmitters, which are passive, do not regulate their response rates.
74

10

15

30

WO 03/012578 PCT/1L02/00627

Throttling preferably is used with queues in order to give preference to higher priority requests

over lower priority requests.

Adaptation layer 45 preferably uses pipelining, whereby the adaptation layer at the
VEN receiver issues multiple requests for blocks before waiting for responses on the socket.
This mechanism generally reduces the overall response time of the VFN system. The
adaptation layer retries failed transfers, and transfers only the remaining portion of a resource

after a failed transfer.

Adaptation layer 45 preferably uses IP multicasting in order to more efficiently -
perform large-scale replication. Reliable multicasting mechanisms are used, preferably
including forward error-correction techniques, as are known in the art, in order to save

retransmission bandwidth and delays.

Adaptation layer 45 is preferably self-adapting to different situations in order tb
maximize efficiency. For example, when an up-to-date large file is available at more than one
VEN transmitter, the VFN receiver preferably extends the methods of parallel transfer
described above to address multiple sources. The VFN receiver attempts to transfer the file by
concurrently transferring blocks of the file from all of the administratively-permitted VFN
transmitters. Source priority is based on transfer-rate statistics, administrative directives, and
source identity information recorded in the VFN metadata. Multi-source parallel transfer is
often particularly useful when a WAN is characterized by links with asymmetric and/or

heterogeneous rates. In such a case, faster links typically dominate the transfer.

The VFN receiver typically initiates a new block request each time a block transfer is
completed, thereby utilizing the bandwidth available from the faster connections. When all
blocks have been requested, but some blocks have yet to be received after a certain timeout

period, these blocks are requested again over a higher-performance connection.

Adaptive routing algorithms are preferably used by adaptation layer 45 in order to
provide faster file transfer. These algorithms determine which remote VEN transmitter is the
best source of the resource to be transferred. Each VFN gateway maintains a ranking of its
connection to all other VFN gateways based on continuous traffic measurements on each link.
When transferring a small file, the destination VFN gateway requests the file from the highest-
ranked VFN gateway that holds an up-to-date replica of the file. When transferring a large
file, the destination VFN gateway transfers the file from a high-throughput source VFN

75

10

15

30

WO 03/012578 PCT/IL02/00627
gateway holding an up-to-date replica of the file, or, alternatively, from more than one source
gateway using parallel transfer, as described above. For this purpose, the ranking of VFN

gateways is preferably determined by checking replicated LAR information, as described

above.

Adaptive routing can significantly accelerate file transfer, for example, when a
destination VFN gateway has a high-speed connection to the WAN, and the requested file is
available at several VEN gateways with low-speed connections to the WAN. File transfer can
also be significantly accelerated when a file is transferred to a local VFN gateway from a ‘
remote site over a low-speed connection, and the local VEN gateway is connected to other
VEN gateways over high-speed connections. In this case, if 6ne of these other VEN gateways
requests the file, the adaptive routing algorithm favors the local VFN gateway as the source of
the file. For example, a small branch office in Haifa can request files that reside in the Santa
Clara headquarters of an enterprise via a larger branch office of the enterprise in Tel Aviv. As
a result, files are transferred over the slow transatlantic link only once, and can then be used by
both branch sites. To implement schemes of this sort, VFN receivers are preferably able to
accept and respond to HTTP requests from other VEN receivers, resulting in a chain of

concatenated VFN receivers.

Adaptive routing can also be used to choose less expensive connections that are
available on the WAN. Additionally, the adaptive routing algorithm can be used to increase
VFN system availability and reliability in cases of temporary WAN disconnections or

slowdowns.

Adaptive routing is preferably implemented using hierarchical caching and virtual
directories. With hierarchical caching, VFN sites with higher long-distarice bandwidth serve
local sites (for example, a Tel Aviv site can serve a Haifa site from the Tel Aviv site's cached
replicas). Virtual directories provide information regarding which resources and resource
versions are currently available. For consistency, cached resources are used only if found to

be version-consistent with the corresponding file metadata retrieved from the origin site.

Preferably, adaptation layer 45 applies delta compression for updating files that have
been previously pre-positioned or cached. The request for such a file includes a description of
the current version held by the VEN receiver, including delta compression signatures, which

use a cryptographic signature (preferably a collision-free one-way hash function) to convey

76

U

10

15

20

WO 03/012578 PCT/1L02/00627

information about the content of blocks currently held by the VFN receiver. Based on this
information, the adaptation layer at the VEN transmitter transmits only the delta (missing or
changed parts) between the latest version of the requested file and the out-of-date version of
the same file held by the VFN receiver. The versions and delta information are preferably
managed so that additional file versions are not required for delta compression. Delta
compression by adaptation layer 45 can also be used to efficiently handle insertion and
deletions in mid-file, and can be optimized for multiple VEN gateways sharing the same

resource.

Use of delta compression is often particularly advantageous for whole file transfer,
such as during pre-positioning, and for read-ahead. Preferably, the VEN system is configured
to delta compress only certain files, based on criteria such as type, size, or location.
Additionally, other compression techniques, as described above, can be applied to the

generated delta files. Delta transfer may also be used for on-demand transfers.

Preferably, delta compression is applied using file version correlation and/or using
global compression. Compression based on file version correlation uses a delta compression
algorithm, such as rsync (an open-source utility), to locate and reuse file chunks that are
shared by different file versions of a file for which a transfer has been requested. The VFN
transmitter thus does not need to retransfer the data in any such reused blocks. Global
compression extends the reuse concept to identify shared chunks among multiple files, ideally
across the entire file system. Preferably, a utility such as LBFS (Low Bandwidth File System)
is used to implement global compression. In either compression method, when a file needs to -
be transferred from one place to another, its chunk signatures are sent. In response, directions
for creating the new version are received, such as whether to use a cached chunk or to transfer
the data from the VFN transmitter. Both compression methods are known in the art, where

they are typically used for offline, whole file transfers.
Write

Adaptation layer 45 supports inter-VFN gateway write operations requested by clients

28. In a preferred embodiment of the present invention, the VEN system uses a write-back

cache mechanism, whereby updated files are cached at the last writer's VEN receiver. The use

of such a mechanism transforms an apparently synchronous operation into an asynchronous

write operation at the adaptation layer. This approach significantly reduces the response time
77

10

15

20

30

WO 03/012578 PCT/IL02/00627
of VFN system 20 to user writes, while the write-back mechanism automatically creates

multiple synchronized copies of resources.

To implement write-back caching, each VFN receiver maintains a log of changes made
locally to the resource in question. Preferably, changes are synchronized with the peer VFN
transmitter upon the occurrence of one or more of the following events, based on

configuration settings:
e at the time of lease renewal, as described above;

 after a certain amount of time has passed from caching of the first write request.
Preferably, the default maximum delay is 30 seconds, which is the same as the

standard NFS client write buffer delay;
e after a certain amount of time has passed since the most recent synchronization;
o when the local VFN receiver buffer is exhausted;
o when files are closed; and/or
¢ when file sizes change.

The optimal write cache size is typically calculated in a similar manner to read block
size, as described above. Updates to file metadata are synchronously transferred to the source

VFN transmitter, in order to provide other clients with up-to-date directory information.

Write-back caching generally improves performance by eliminating the overhead
associated with write-through caching over a WAN, while simultaneously bounding the -
amount of time that can pass before changes are propagated to other VFN gateways.
Optionally, a VFN receiver can delay and batch write-backs over multiple lease renewals, or
until the receipt of an revocation from the lease manager of the peer VFN transmitter.
Preferably, write-back is disabled (resulting in write-through) when there are multiple holders
of write leases for a resource, as described above. Write-back may be disabled, for example,
by setting a zero-duration timeout period on the write leases. Preferably, all operations that

change directory structure or contents are performed in write-through mode.

Preferably, adaptation layer 45 utilizes compression, parallel connections, throttling,
and routing for writing in substantially the same manner as for reading. When the consistency
protocol permits the use of write-back, delta compression can be performed at the time the file

is closed, as described above. Optionally, to implement delta compression on write-back, the
78

10

15

25

30

WO 03/012578 PCT/1L02/00627

adaptation layer on the VFN receiver sends its peer adaptation layer on the VFN transmitter

instructions regarding how to create the new file version from the delta-compressed version.

Adaptation layer 45 is preferably pre-configured or configured by a VEN administrator
not to copy temporary files to the origin file server 25 unnecessarily. Temporary files include
files that are generated by an application for local backup and are removed when the

application terminates.
Open/close

The VEN system preferably enforces native file system access rights to files and -
directories transparently, including support of access control list (ACL) checking at the local
VEN receiver. Such access rights are enforced both for on-demand resource access and for
access to resources that have been pre-positioned or cached. This support is possible because
the relevant file metadata has usually been pre-positioned or cached in the VFN receiver, as
described above. Authorization is therefore checked locally at the VFN receiver. The VFN

receiver preferably caches and negative-caches authorization results to enhance system

performance.

The VEN receiver preferably supports share level security, allowing access to whole
file trees when the share (or mount) is initially mapped. For non-native requests, the VFN
system provides heuristics that permit a reasonable level of access without compromising
security guarantees of the native file system security model. Requests to set access

permissions are also supported.

Preferably, the VFN transmitter is configured to keep a resource on file server 25 open
for a certain amount of time after the resource has been closed by client 28 of the VFN
receiver. During this period, an open request from any of the clients of any of the peer VFN
receivers of the VFN transmitter is handled locally by the VEN transmitter, without the need
to interact with file server 25. This approach can improve VFN system performance when

there are multiple open and close requests for the same resource.

APPLICATION TRANSPORT LAYER

Application transport layer 46 is a framework for activating remote services used by
the higher VFN application layers (adaptation layer 45 and VFN transmitter and receiver

application layers 42 and 40). The application transport layer provides services that enable the
79

10

15

20

25

30

WO 03/012578 PCT/1L02/00627

different application layers to transfer data to and from one another.

Remote services are activated by bidirectionally transferring remote procedure call
(RPC) messages between a client application transport layer ("RPC client") on one VFN
gateway and a server application transport layer ("RPC server") on a second remote VFN
gateway. Preferably, the application transport layer functions asymmetrically, whereby the
RPC client sends RPC request messages to the RPC server, and the RPC server responds by
sending RPC response messages to the RPC client. RPC request messages include the request
and any necessary parameters, and RPC response messages include any necessary return
values, such as a file. RPC requests, RPC responses, parameters, and return values are
preferably Java objects, in order to support Java-based implementations of the higher
application layers. Alternatively, the application transport layer functions symmetrically,
whereby in addition to the RPC client issuing requests to the RPC server, the RPC server can
issue requests to the RPC client. In such a symmetric implementation, the RPC server can

connect to the RPC client at a later time in order to respond to an earlier request from the RPC

client.

The application transport layer is preferably implemented in such a manner that the
higher application layers are not aware of the details of the implementation, including the
choice of network protocols. The application transport layer provides a simple API to its
higher-level clients, which hides complexities, such as socket selection and resumption after
disconnect. Preferably, the application transport layer provides communication-related
properties to higher application layers, such as remotelP and remoteID. Higher-application
layers preferably are thus able to assign globally unique identifiers to their RPC requests. The
application transport layer may use these identifiers to provide message correlation between

RPC server replies and RPC client requests.

Preferably, the application transport layer supports reliable RPC between the RPC
client and RPC server, whereby both sides must agree on the result of a method call, such as
file locking. Each side is aware of which messages it has received and delivered to higher
application layers. The application transport layer enables retransmission of timed-out
requests and the recognition of such retransmissions by the recipient. Alternatively,

retransmission may be implemented in a higher application layer, between application

transport layer 46 and adaptation layer 45.

80

10

15

20

30

WO 03/012578 PCT/1L02/00627
Fig. 12 is a block diagram that schematically illustrates details of application transport
layer 46, in accordance with a preferred embodiment of the present invention. Application
transport layer 46 comprises a server application transport layer 168 ("RPC server") and a
client application transport layer 170 ("RPC client"). Server application transport layer 168
comprises an RPC server control layer 160, which corresponds to an RPC client transport
control layer 162 of client application transport layer 170. These RPC control layers provide

services directly to adaptation layers 45 located at VFN gateways remote from one another.

Both the server and client application transport layers further comprise a data
encapsulation layer 164 and a functional transport layer 166. The data encapsulation layer
provides services for encoding and decoding data passed in RPC messages. Preferably the

encapsulation is implemented using standard languages and protocols, such as XML and
MIME.

Transport layer 166 handles WAN connectivity and the actual transfer of RPC
messages between the client and server application transport layers. Preferably, functional
transport layer 166 also implements security and privécy of data, as described below. For
these purposes, the functional transport layer is most preferably implemented over HTTP, and
in particular over HTTP 1.1. The use of HTTP 1.1 simplifies the deployment of the VFN
system in enterprises that allow access to their sites only via HTTP and only through a single
port. In addition, most HTTP proxies and firewalls support HTTP 1.1, and those that do not
support HTTP 1.1 may support persistent connections and other features of HTTP 1.1.

The implementation of the functional transport layer and all higher layers, however, are
preferdbly abstracted away from the specific HTTP functional transport protocol. For this |
reason, RPC message structure, serialization, encoding, registration, and dispatch are all
decoupled from the functional transport layer. Thus, functional transport layer 166 can be
implemented using other protocols, such as FTP or TCP (particularly when VPNs are used). If

FTP is used, it is preferably configured to support authorization and credentials.

Application transport layer 46 preferably provides synchronous service to the protocol
layers above it (although internally the RPC calls may be executed asynchronously to provide
a more efficient and fair implementation). Higher layers may implement out-of-order
mechanisms using submit/poll against the remote service handlers. Alternatively, other

service patterns are supported, such as publish-subscribe, multicast delivery, or asynchronous

81

15

20

25

WO 03/012578 PCT/IL02/00627
notification, as are known in the art. In implementations that support asynchronous requests,

the application transport layer notifies the higher-level application when a requested transfer is

complete.

RPC client and RPC server are initialized as system services, which provide an RPC
client context object and an RPC server context object, respectively, to the higher protocol

layers. The RPC client and RPC server use similar RPC message structures, with differences

as described below.

Because application transport layer 46 may provide the same service on several remote
servers, and each RPC server may offer more than one service, an RPC request preferably
identifies the remote RPC server to which it is addressed, the identity of the remote service it
requires, and the identity of the method being called. Remote RPC servers are preferably
identified using hostnames or logical names, in a manner similar Ato that of path or dot-
notations used in URLs for HTTP. The identification of remote RPC servers may be included
in the VFN system-wide configuration, or alternatively, a hard-coded default path + port may
be used for each host name. Preferably, the Uniform Resource Name (URN) of an RPC server
is not based on HTTP, in order to maintain abstraction away from HTTP. The RPC client and

RPC server preferably use the same name for each service.

When logical names are used for RPC servers or services, the RPC framework of
application transport layer 46 preferably provides a translation mechanism that uses
configuration data to translate logical names into physical (hostname + path) server and
service names. This translation capability provides a layer of abstraction which enables
loosely coupled client and server parts. It also allows the VEN system to implement different

services with the same logical name on different PRC clients.

Application transport layer 46 preferably provides a generic mechanism for setting
local and remote properties, in order control the behavior of the application transport layer,
including its sub-layers. Some of these properties are user-defined. The user-defined
properties are assigned unique names and are preferably not passed as RPC request parameters
or RPC response return values. Other properties are generic and are automatically created by

RPC control layers 160 and 162, such as Client ID, Server ID, Local IP addresses, and Remote

[P addresses.

Secure transfer over the Internet is also provided by application transport layer 46

82

10

15

20

25

WO 03/012578 PCT/IL02/00627
when the VFN system is not operating over a secure VPN. Security is preferably provided by
encrypting all data to be transferred with SSL and by using strong authentication. In this
situation, a portion of VFN transmitter 52, including repository connector layer 50, resides
inside the network firewall, in order to transfer resources into the VEN transmitter. Another
portion of the VFN transmitter, including VFN HTTP server 78, resides in the Demilitarized
Zone (DMZ) between the Internet and the network firewall, in order to communicate over the

Internet. A similar arrangement applies to the VFN receiver.

Additional security may be provided by allowing HTTP access only from specified IP
addresses, and/or adding special headers that identify VFN components, including a signature
for privatization. ~ Alternatively or additionally, certificates, such as client and/or SSL .

certificates, and/or credentials, such HTTP basic or digest authentication, are used.

Encapsulation

Data encapsulation layer 164 provides services for encoding and decoding objects
passed as RPC requests, RPC responses, parameters, and return values in RPC messages
(referred to collectively herein as "RPC parameters"). As mentioned above, RPC parameters
are preferably Java objects. Before a Java object can be sent to a remote application, it must
be converted to an XML or binary representation. This conversion is commonly referred to as
serialization, or "encoding." The XML or binary representation is passed to the remote
application, which converts it back to the original Java object. This conversion back is
commonly referred to as deserialization, or "decoding." RPC client 170 and RPC server 168
use serializers to perform encoding, and deserializers to perform decoding. Preferably,
serializers and deserializers are Java objects that implement appropriate Java interfaces, as |

described below.

Each object class, or type, preferably has its own serializer and deserializer. Data
encapsulation layer 164 provides several generic serializers and deserializers for common
object types, such as String, Integer, Float, Boolean, and byte[]. These generic serializers and
deserializers may be provided for both XML and binary encapsulation. Custom serializers and
deserializers are preferably provided for each object type that a higher application layer may
include as an RPC parameter. These custom serializers and deserializers are preferably
registered in a registry (called RPCMappingRegistry). The data encapsulation layer and
higher application layers use this registry to look up appropriate serializers and deserializers

83

10

15

WO 03/012578 PCT/IL02/00627
for non-generic object types. An RPC context registration service is used to register non-
generic parameter types in this registry. Additionally, special serializers and deserializers are

preferably provided to allow the‘passing of unknown object types.

A preferred Java interface of the RPCMappingRegistry is shown in Listing 1. One or
more Java classes implementing this interface are used by applications to register and look up

serializers and deserializers for both generic and non-generic object types,
Listing 1

public void mapXMLType(String elementType, Class javaType, XMLSerializer xs,
XMLDeserializer xds);

public void mapBinaryType(String elementType, Class javaType, BinarySerializer bs,

BinaryDeserializer bds);

public XMLSerializer querySerializer(Class javaType) throws IllegalArgumentException;

public XMLDeserializer queryDeserializer(String xmlType) throws

lllegal ArgumentException;
public String queryElementType(Class javaType) throws llegal ArgumentException;

public Class queryJavaType(String elementType) throws lllegal ArgumentException;

A preferred Java interface of an XML serializer is shown in Listing 2. Serializers for

encoding object parameters to XML implement this interface.
Listing 2

public void serialize(Class javaType, Object src, Writer output, RPCMappingRegistry rpcmr)
throws Illegal ArgumentException, IOException;

public int getLength(Class javaType, Object src, RPCMappingRegistry rpemr) throws
lllegal ArgumentException, UnknownLengthException;

A preferred Java interface of an XML deserializer is shown in Listing 3. Serializers

for decoding XML-encoded parameters to Java objects implement this interface.
Listing 3

84

10

15

25

WO 03/012578 PCT/IL02/00627
public Object deSerialize(String elementType, Node src,

RPCMappingRegistry rpcmr) throws Illegal ArgumentException;

A preferred Java interface of a binary serializer is shown in Listing 4. Serializers for

encoding object parameters to a sequence of bytes implement this interface.
Listing 4

public void serialize(Class javaType, Object src, OutputStream output) throws

[llegal ArgumentException, IOException;

public int getLength(Class javaType, Object src) throws Illegal ArgumentException,
UnknownLengthException;

A preferred Java interface of a binary deserializer is shown in Listing 5. Serializers for

decoding binary parameters to Java objects implement this interface.
Listing 5

public Object deSerialize(String elementType, InputStream input) throws

[llegal ArgumentException;

RPC message structure

In a preferred embodiment of the present invention, RPC messages, including requests
and responses, are passed using XML, preferably using a variant of the Simple Object Access
Protocol (SOAP). When an RPC message includes at least one parameter, return value, or .
property of binary type, and the binary data is larger than a certain configurable size, the RPC
message is preferably encoded in MIME Multipart/Related Content-Type, with the binary data
included as an attachment. The use of MIME Multipart/Related standard separates the
request/reply XML portion of the RPC message from the binary data portion, such as a file
included in a response, in order to provide efficient transfer of binary data. Binary data of a

smaller size is preferably base64 encoded. XML is preferably implemented using Content-

Type: text/xml.

A preferred structure of an RPC message using MIME Multipart/Related is shown in

Listing 6:

85

WO 03/012578 PCT/IL02/00627
'Listing 6
MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

start="rpc_message"

5
--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Conteﬁt-Transfer-Encoding: 8bit
Content-ID: rpc_message
10

<?xml version='1.0' 7>
<RPCEnvelope>

<RPCBody>

15 <binary. href="part1"/>

</RPCBody>

</RPCEnvelope>

20 --MIME_boundary
Content-Type: byte[]
Content-Transfer-Encoding: binary
Content-Length: xxx

Content-ID: part1

86

WO 03/012578 7 PCT/IL02/00627
...binary byte[] data

--MIME_boundary--
As described above, RPC requests and RPC responses are preferably Java objects.
Java classes implementing the following RPC request and RPC response interfaces are

preferably used for RPC requests and RPC responses, respectively. A preferred Java interface

of an RPC request is shown in Listing 7:
Listing 7

public void setLocalProperty(String optName, Object opt);

public Object getLocalProperty(String optName);

public Enumeration getLocalPropertyNames(String optNamePrefix);

public Object getRemoteProperty(String optName);

public void setRemoteProperty(String optName, Object opt);

public Enumeration getLocalPropertyNames(String optNamePrefix);

public void setMethodName(String name);

public String getMetodName();

public void setMethodParameters(Object[] params) throws Illegal ArgumentException;

public Object[] getMethodParameters();
A preferred Java interface of an RPC response is shown in Listing 8:
Listing 8

public void setLocalProperty(String optName, Object opt);

public Object getLocalProperty(String optName); |

public Enumeration getLocalPropertyNames(String optNamePrefix);
public Object getRemoteProperty(String optName);

public void setRemoteProperty(String optName, Object opt);

public Enumeration getLocalPropertyNames(String optNamePrefix);
87

10

15

WO 03/012578 , PCT/IL02/00627
public void setReturnValues(Object[] retVals) throws lllegal ArgumentException;

public Object[]getReturnValues() throws RPCException;
public void setRPCException(RPCException rpcExp);
Preferably each RPC request message is assigned a unique identification number for

control and debugging purposes. RPC responses include the identification number of the

corresponding RPC request.
RPC client

Fig. 13 is a block diagram that schematically illustrates further details of client
application transport layer 170, in accordance with a preferred embodiment of the present
invention. The client application transport layer ("RPC client") is initialized as a system
service that provides an RPC client context object to the VFN system. Receiver application

layer 40 and adaptation layer 45 use the RPC client context in accessing their corresponding

remote peer layers.

A preferred Java interface of the RPC client context is shown in Listing 9:
Listing 9

public RPCRequest getRPCRequest();
public RPCResponse sendRPCRequest(RPCRequest req);

public void mapXMLType(String elementType, Class javaType, XMLSerializer xs,
XMLDeserializer xds);

public void mapBinaryType(String elementType, Class javaType, BinarySerializer bs,

BinaryDeserializer bds);

public String getRPCVersion();

Adaptation layer 45 communicates with the RPC client through RPC client control
layer 162, which comprises an RPC request factory 172, an RPC response factory 174, and an
RPC protocol manager 176. The RPC request and response factories are used to hide the
exact object creation and destruction details (for example, whether an object was reused from

a pre-allocated pool or newly created) and the concrete implementation (so that the user of an

88

10

15

30

WO 03/012578 PCT/1L02/00627

object is aware only of the interface returried by the factory and not the concrete class
implementation, which may be varied.) RPC protocol manager 176 preferably handles
network conditions (such as application failures, lost messages, out-of-order delivery, and
method dependencies) in a generic manner. The RPC protocol manager includes, for example,
a retransmission mechanism on the client side, and a response cache on the server side to aid

in implementing at-most-once semantics for some requests.

The RPC client further comprises data encapsulation layer 164 and functional transport
layer 166, as noted above, as well as an RPC management agent 178. RPC management agent
178 provides a management interface to the RPC component. This inteffacc includes, for
example, the host name and port number of each RPC server, the transport buffer sizes, and
maximum and minimum number of connections to open with each endpoint. The RPC
management agent is integrated with the component-wide management infrastructure of the
entire. VFN gateway.. This architecture supports both blocking and non-blocking

implementations of the application transport layer.

Fig. 14 is a flow chart that schematically illustrates a method for processing an RPC
request by RPC client 170, in accordance with a preferred embodiment of the present
invention. This method is invoked when the RPC client receives a request for RPC services
from a higher protocol layer, at an RPC request step 200. The RPC client requests an empty
RPC request object from the RPC context object, and sets the method name and parameters of
the RPC request, at a parameter setting step 202. The RPC client sets local and remote
properties, as described above, at a local property setting step 204 and remote property setting

step 206, respectively.

The RPC client then encodes the RPC request using data encapsulation layer 164, as
described above, at an encoding step 208. The RPC client sends the RPC request to the
appropriate RPC server using functional transport layer 166, at a send RPC request step 210.
The RPC client waits for an RPC response, at a RPC response wait step 212, until the RPC
client receives the RPC response, at a receive RPC response step 214. The RPC client
decodes the RPC response using data encapsulation layer 164, at a decoding step 216. The
RPC client then returns the response to the requesting higher protocol layer, at an application

response step 218.

Optionally, the operation of sending an RPC request and receiving the RPC response

89

10

15

20

WO 03/012578 PCT/IL02/00627
may be non-blocking. In such a case, the RPC client must guarantee that the parameters it

passed to the RPC server will not be modified until the RPC request is actually sent. RPC
client 170 is preferably also capable of controlling RPC sessions and invoking retransmits

when required, as well as canceling (preempting) both blocking and non-blocking sessions

when required.
RPC server

Fig. 15 is a block diagram that schematically illustrates details of server application
transport layer 168 ("RPC server"), in accordance with a preferred embodiment of the present
invention. The RPC server is initialized as a system service which provides an RPC server
context object for use by all RPC services in the VFN gateway. Alternatively, the RPC server
may be deployed as a servlet or a URL handler, and is initiated as such. RPC services use the .
RPC server context for registration and for other functions, such as registering serializers and
deserializers, security management, authentication, privatization, and authorization control.
RPC services are provided by handlers. Preferably, the handlers run in the same process as the
RPC server. Alternatively, handlers may run remotely and may be made available through the -
use of Java Remote Method Invocation (RMI) or application-specific protocols. Handlers

preferably implement the RPCServerInterface Java interface as shown in Listing 10:
Listing 10
public void handleRPC(RPCRequest req, RPCResponse res);

RPC services are explicitly registered in an RPC services registry 182, identifying the specific

services they provide. Each handler is preferably assigned a unique identifier for its service.

A preferred Java interface of the RPC server context is shown in Listing 11:
Listing 11

public void mapService(String prefix, RPCServiceHandler service);
public void sendRPCResponse(RPCResponse res);

public void mapXMLType(String elementType, Class javaType, XMLSerializer xs,
XMLDeserializer xds);

90

10

15

20

25

WO 03/012578 PCT/IL02/00627
public void mapBinaryType(String elementType, Class javaType, BinarySerializer bs,

BinaryDeserializer bds);

public String getRPCVersion();

RPC server 168 responds to RPC requests from RPC client 170. RPC server control
layer 160 of the RPC server comprises an RPC service dispatcher 180, which dispatches RPC
services pursuant to RPC requests received from RPC clients, as described below with
reference to Fig. 16. RPC server control layer 160 further comprises an RPC protocol
manager 176, as described above in connection with RPC client control layer 162. As noted
above, the RPC server also comprises data encapsulation layer 164 and functional transport
layer 166, as well as RPC management agent 178. This architecture supports both blockiﬁg

and non-blocking implementation of the application transport layer.

Fig. 16 is a flow chart that schematically illustrates a method for processing an RPC
request by RPC server 168, in accordance with a preferred embodiment of the present
invention. The RPC server waits for RPC requests, preferably on open HTTP sockets, at an
RPC request wait step 220, until an RPC request is received, at an RPC request receipt step
222. The RPC server decodes the RPC request using data encapsulation layer 164, at a
decoding step 224. If an error occurs in decoding the RPC request, at an error checking step
242, the RPC server generates an empty RPC response, at an empty response step 244. The
RPC server populates the RPC response with an error value or an empty response, at an error

creation step 246, and proceeds to step 238 below.

On the other hand, as long as data is extracted successfully at step 224, the RPC server
creates a service request object using the decoded data, at a service request object creation
step 226. The RPC server finds the appropriate RPC service by looking up the received .
method name in RPC services registry 182, at a service lookup step 228. The RPC server
generates an empty RPC response object for the outgoing response, at an empty RPC response
generation step 230, and passes this empty object and the service request object to the
appropriate RPC service handler, at a service dispatch step 232. When the request handler
completes the requested service, the handler returns the request and response tuple to the RPC
server. The request and response are passed by reference between all application layers in a
VFN gateway, including between the request handler and the RPC server, thereby avoiding

the overhead of copying data when crossing layer boundaries.
91

10

15

30

WO 03/012578 PCT/IL02/00627
After receiving a response from the RPC service handler, the RPC server processes the

RPC request and response, at a processing step 234. Based on the response from the RPC
service, the RPC server sets the RPC return values for the response to be sent to RPC client
170, at a return value setting step 236. Using data encapsulation layer 164, the RPC server
encapsulates the RPC response, at an encapsulation step 238, and sends the RPC response to
the requesting RPC client, using functional transport layer 166, at a send response step 240.
Preferably, only return values or a single exception, and remote service properties are returned
from the RPC server. Preferably, method parameters are read-only, and the handler explicitly
copies any modified objects to the return values set, thereby avoiding copying all parameters

and saving heap space.
Functional Transport Layer

The choice of which underlying transport protocol to use in functional transport layer
166 is driven by network constraints, particularly firewall policies. TCP may be preferable
from an engineering and performance point of view because it is natively bidirectional and
generally incurs less overhead than HTTP. However, in many cases it is preferable to use
HTTP because of its ability to pass through most firewalls without requiring custom network
f:onfiguration and security policy decisions. Preferably, functional transport layer 166
provides built-in resumption of failed connections. When HTTP is used as the underlying
transport protocol, layer 166 typically uses standard HTTP proxies, and is proxy-aware in
order to disable any caching of inter-VFN communications that standard HTTP proxies may
attempt to automatically implement. Alternatively or additionally, the functional transport
layer may be based on SOCKS gateways, as are known in the art. Preferably, layer 166 also

produces metrics that can be used by a monitoring tool, such as PerfMon.

Functional transport layer 166 preferably uses connection pooling, which allows -
multiple connection objects to be pooled and shared transparently among requesting clients.
By reusing open connections, the cost of connection establishment is amortized, pérticularly
for short messages, such as control messages. A connection may be kept open longer than
absolutely required in the expectation that another request will be sent over it. Connection
pooling also aggregates and multiplexes physical connections (the sockets) in logical sessions
between the VFN receiver and VFN transmitter. When using pooling, layer 166 attempts to

avoid permanent bias towards certain destinations, to avoid starvation of some destinations,

92

10

15

20

30

WO 03/012578 PCT/IL02/00627
and to provide fairness of service (i.e., proportional to traffic levels).

Communication by layer 166 is preferably synchronized: an RPC client sends an RPC
request to an RPC server and then waits for an RPC response to the specific RPC request. An
RPC response is thus always associated with an RPC request. This approach represents a
blocking model. Preferably, the underlying HTTP sockets are persistent (i.e., they are reused
for several transactions), by making proper use of the HTTP Content-Length field. The
following parameters are set for each VFN receiver-VFN transmitter pair: minimum number
of idle connections, maximum number of idle connections, and maximum number of

connections.

Alternatively, the underlying sockets may not be persistent, such as when using HTTP
1.0, which does not support persistent sockets. RPC communication in this cases uses the
RPC client thread context. Preemptive priorities are preferably provided for communication
scheduling, in order to handle priority inversions. Priority inversions may occur when
transmission of a low-priority message is initiated during a period when no high-priority
messages are pending, and a high-priority message is subsequently generated prior to
completion of the low-priority transfer. When such an inversion occurs, layer 166 preferably
preempts the ongoing lower-priority communications in order to promptly initiate the higher—

priority communication task.

Further alternatively, layer 166 may pipe RPC messages without maintaining message
order, using a pool of threads to send RPC requests over a pool of open HTTP connections,
Another pool of threads reads RPC responses from the same pool of connections. This piped
approach requires pipelined HTTP support, which is an HTTP 1.1 feature. It enables
implementation of a non-blocking model. In such an approach, the RPC client preferably

comprises the following components (not shown in the figures):

* Requests queue, which contains outgoing RPC requests to be sent in some order,
which is not necessarily first-in-first-out. Message priorities are defined and a fair
queuing algorithm is used to prevent starvation. The queue length may be

restricted in order to set a limit on resources that can be used.

e Writers, which are one or more threads that extract RPC requests from the queue

and send them over one or more HTTP connections.

* Readers, which are one or more threads that receive RPC responses from one or
93

10

15

20

30

WO 03/012578 PCT/1L02/00627
more HTTP connections. Each response is returned to the appropriate RPC request
issuer. The RPC responses may return out-of-order, that is, in a different order

from that in which their cdrresponding RPC requests were sent.

The issuer of an RPC request may block until the RPC response arrives, or it may be
non-blocking, in which case it is notified when the RPC response has been received. In both

cases, the parameters provided by application layer 40 are preferably not modified until the

RPC request has been sent.

Further alternatively, RPC messages may be aggregated and sent asynchronously.
With this approach, several RPC requests and/or RPC responses are aggregated into a single
HTTP message. The number of RPC messages included in the same HTTP message can Vafy.
Unique identifiers must be provided for messages, as described above, because RPC messages
often arrive out of order. This approach allows delayed and disconnected operation of
application transport layer 46. Both this aggregated approach and the piped approach
described above provide more efficient utilization of the HTTP connections, thus reducing the

waiting time of clients for responses.

RCP messages over HTTP are preferably HTTP-compliant, particularly the Request-
Line field, the Status-Line field, and the standard HTTP headers. In addition, the following
RPC-related HTTP headers are used:

e RPC-Version, for the version of the RPC protocol

e RPC-Msg-ID, which is an identification number associated with each HTTP RPC
message, allowing, for example, correlation between requests and responses or
managing RPC semi-reliable message delivery. (This header is not relevant in the
aggregated approach described above). Alternatively, the identifier is implemented

as an internal RPC data field, rather than as an HTTP header.
The following general HTTP headers are also used:
e Hostname
e Content-Type: either text/xml or multipart/related
o Content-Length (as described above)

When possible, functional transport layer 166 uses data compression. For example, the

Transfer-Encoding HTTP header may be used for compressing the entire HTTP message
94

wn

10

15

20

25

WO 03/012578 PCT/1L02/00627

content.
Error detection and handling

Several types of errors may occur in application transport layer 46:

» Transport errors, such as connection refused, HTTP protocol errors (incorrect

headers, misuse of HTTP, wrong URL path, etc.) and socket timeouts.

* Internal (local) errors, such as wrong object types (no serializer/deserializer found),

and no available service for a specific method.

* RPC protocol errors, such as incorrect RPC version and incorrect message

structure.

Preferably, the application transport layer shields the higher protocol layers from these
errors. Optibnally, application layers 40 and 42 are notified of the occurrence of some or all of .
these errors, using a meaningful set of error codes. Upon notification, the application layers
preferably log or handle the errors. For example, in certain cases, the application layer may set
a "disconnection" flag for a specific RPC server. The application transport layer is preferably
fail safe: RPC clients and RPC servers assume that the other may crash and are able to recover

from such crashes. When necessary, application layers 40 and 42 can cancel ongoing or

waiting requests.

REDIRECTION CONTROL

The VEN system provides means for redirecting requests from clients 28 to their local
VEN receiver 48. Redirection is described below for HTTP, NFS, and SMB resources.

Methods of redirection for other resources will be evident to those skilled in the art.

HTTP

The VFN receiver is configured to function as an HTTP proxy for HT’i’P client
requests to the VFN transmitter, by using the proxy auto configuration (PAC) mechanism.
This mechanism is supported by both Netscape® and Microsoft Internet Explorer browsers.
Manual configuration may also be used, but it does not allow selective proxying.
Alternatively, DNS-based redirection may be used, in which case the local DNS server

forwards requests (using the zone forwarding feature) to the VFN DNS. Further alternatively,

95

10

15

20

25

WO 03/012578 PCT/IL02/00627
WCCPv2-like redirection of specific IP addresses and ports is supported.

NES

The VEN system uses the standard NFS mount protocol. NFS client hosts mount the
VFEN receiver that resides on the local LAN, wherein the name of the mounted file system may

be identical to the remote path. The local VFN receiver subsequently handles access to remote

files.

SMB

The standard "mount” facility for SMB is used, by mapping a network drive to.a

directory on the VFN receiver that resides in the same LAN.

The VFN request redirection preferably provides automatic fail-over to the origin

server if a VFN receiver or VEN transmitter fails.

Although some features of preferred embodiments are described herein as being
implemented on both a VFN transmitter and a VFN receiver, these features may simillarly
applied to different combinations of clients, origin servers, VFN transmitters, and VEN
receivers. For example, features may be implemented on a file system client and file server,
without a VFN transmitter or VFN receiver. Additionally, features may be implemented on a
client and VFN transmitter than communicate with one another, without a VFN receiver, or on

a VFN receiver and server that communicate with one another, without a VFN transmitter.

Moreover, although preferred embodiments of the present invention have been
described with respect to interception of network file system protocol requests, some aspects

of the present invention can be implemented using file system drivers accessible by local

network clients.

Furthermore, although preferred embodiments are described herein with reference to
certain communication protocols, programming languages and file systems, the principles of
the present invention may similarly be applied using other protocols, languages and file
systems. It will thus be appreciated by persons skilled in the art that the present invention is
not limited to what has been particularly shown and described hereinabove. Rather, the scope
of the present invention includes both combinations and subcombinations of the various

features described hereinabove, as well as variations and modifications thereof that are not in

96

WO 03/012578 PCT/IL02/00627
the prior art, which would occur to persons skilled in the art upon reading the foregoing

description.

97

15

30

WO 03/012578 PCT/IL02/00627
CLAIMS

1. A method for enabling access to a data resource, which is held on a file server on a first

local area network (LAN), by a client on a second LAN, the method comprising:

intercepting a request for the data resource submitted by the client, using a proxy
receiver on the second LAN;

transmitting a message via a wide area network (WAN) from the proxy receiver to a
proxy transmitter on the first LAN, requesting the data resource;

retrieving a replica of the data resource from the file server to the proxy transmitter;

responsive to the message, conveying the replica of the data resource over the WAN
from the proxy transmitter to the proxy receiver; and

serving the replica of the data resource from the proxy receiver to the client over the

second LAN.,

2. A method according to claim 1, wherein the data resource comprises a file.
3. A method according to claim 1, wherein the data resource is a block of a file.
4. A method according to claim 1, wherein the data resource comprises a page of content

encoded in a markup language.

S. A method according to claim 1, wherein the data resource comprises a file system
directory.
6. A method according to claim 1, wherein conveying the replica of the data resource

comprises conveying metadata relating to the data resource.

7. A method according to claim 1, wherein conveying the replica of the data resource

comprises conveying an aecess list applicable to the data resource.

8. A method according to claim 1, wherein conveying the replica of the data resource

comprises conveying a permission applicable to the data resource.

9. A method according to claim 1, wherein retrieving the replica comprises monitoring
the file server using a watchdog agent to detect a change made to the data resource by a native
client on the first LAN, and retrieving the replica of the data resource from the file server to

the proxy transmitter again responsive to the change.

10. A method according to claim 1, wherein intercepting the request comprises intercepting

a lock request submitted by the client for a lock on the data resource, and wherein transmitting
98

15

20

WO 03/012578 PCT/1L02/00627
the message comprises transmitting a lock message via the WAN from the proxy receiver to
the proxy transmitter, requesting the lock, and comprising:
responsive to the lock message, issuing the lock at the proxy transmitter;
conveying the lock over the WAN from the proxy transmitter to the proxy receiver; and

serving the lock from the proxy receiver to the client.

11. A method according to claim 1, wherein retrieving the replica of the data resource from
the file server comprises checking the file server to determine whether the data resource is held
by the file server, and wherein conveying the replica of the data resource from the proxy
transmitter to the proxy receiver comprises conveying a negative response relating to the data
resource over the WAN from the proxy transmitter to the proxy receiver when it is determined
that the data resource is not held by the file server, and comprising caching the negative

response at the proxy receiver for a certain period.

12. A method according to claim 11, wherein transmitting the message from the proxy
receiver to the proxy transmitter comprises checking whether the negative response relating to
the requested data resource is present and not expired, and, responsive to determining that the
negative response is present and not expired, withholding transmitting the message to the

proxy transmitter, and serving the negative response from the proxy receiver to the client over
the second LAN.

13. A method according to claim 1, wherein intercepting the request comprises intercepting
a file system request submitted by the client for an operation on the data resource, and wherein
transmitting the message comprises transmitting the file system request and a request for a
lock via the WAN from the proxy receiver to the proxy transmitter, and comprising:

responsive to the request for the lock, obtaining the lock from the file server at the
proxy transmitter; and -

conveying the lock over the WAN from the proxy transmitter to the proxy receiver.
14. A method according to claim 13, and comprising, if the proxy receiver intercepts no

more file system requests from the client with respect to the data resource for a certain period,

issuing an unlock request from the proxy receiver to the proxy transmitter with respect to the

data resource.

15. A method according to claim 1, wherein intercepting the request comprises intercepting

the request for the data resource submitted in accordance with a first native network file

99

10

15

25

30)

WO 03/012578 PCT/IL02/00627
system of the client, and wherein retrieving the replica comprises translating the request for the
data resource from the first native network file system to a second native network file system .

used by the file server, and retrieving the replica of the data resource using the translated

request.

16. A method according to claim 1, wherein conveying the replica of the data resource over
the WAN comprises ascertaining an available bandwidth of the WAN, and conveying the
replica using a portion of the bandwidth that is less than a total available bandwidth,

responsive to a management directive downloaded to the proxy receiver over the WAN.

17. A method according to claim 1, wherein transmitting the message comprises

aggregating the message into a batch of messages, and transmitting the aggregated batch.

18. A method according to claim 1, wherein the proxy transmitter is one of a plurality of
proxy transmitters, and wherein conveying the replica comprises assessing an efficiency of
conveying the replica over the WAN to the proxy receiver from each of at least two of the

proxy transmitters, and selecting at least one of the proxy transmitters to convey the replica -

responsive to the assessed efficiency.

19. A method according to claim 18, wherein conveying the replica comprises conveying
respective portions of the replica from the at least two of the proxy transmitters, and

concatenating the portions to create the replica at the proxy receiver.

20. A method according to claim 1, wherein conveying the replica comprises:

checking a transmitter memory of the proxy transmitter to determine whether the
replica of the data resource is present in the transmitter memory and valid; and

responsive to the message and to determining that the replica in the transmitter memory
is present and valid, conveying the replica from the transmitter memory over the WAN to the

proxy receiver.

21. A method according to claim 20, wherein retrieving the replica of the data resource
from the file server comprises retrieving the replica of the data resource from the file server to
the transmitter memory when it is determined that the replica of the data resource is not

present in the transmitter memory or is not valid.

22. A method according to claim 1, and comprising conveying to the proxy receiver
metadata regarding the data resource on the file server and, responsive to the metadata,

presenting to the client a virtual directory of the file server.
100

W

10

15

20

25

WO 03/012578 PCT/IL02/00627
23. A method according to claim 22, wherein conveying the metadata comprises reading

the metadata from files held by the file server using the proxy transmitter, and conveying the .

metadata from the proxy transmitter to the proxy receiver.

24. A method according to claim 1, wherein transmiiting the message via the WAN
comprises encapsulating the message in accordance: with a WAN transport protocol and

transmitting the encapsulated message.

25. A method according to claim 24, wherein the WAN transport protocol comprises a

Hypertext Transfer Protocol (HTTP).

26. A method according to claim 1, wherein conveying the replica of the data resource over
the WAN comprises encapsulating the replica in accordance with a WAN transport protocol

and conveying the encapsulated replica.

27. A method according to claim 26, wherein the WAN transport protocol comprises a

Transmission Control Protocol (TCP).

28. A method according to claim 27, wherein the WAN transport protocol comprises a '

Hypertext Transfer Protocol (HTTP).

~

29. A method according to claim 1, wherein the request for the data resource is submitted
by the client using a call to a native network file system used by the file server, and wherein

retrieving the replica of the data resource comprises retrieving the replica of the data resource

using the native network file system.

30. A method according to claim 29, wherein the native network file system is selected
from a group of file systems consisting of Network File System (NFS), Common Internet File

System (CIFS), and NetWare file system.

31. A method according to claim 29, wherein transmitting the message comprises
encapsulating the call to the native file system for transmission in accordance with a WAN

transport protocol.

32. A method according to claim 1, wherein conveying the replica of the data resource
comprises compressing the replica at the proxy transmitter, conveying the compressed replica
over the WAN, and decompressing the compressed replica at the proxy receiver.

33. A method according to claim 32, wherein compressing the replica comprises applying

101

10

15

20

30

WO 03/012578 PCT/IL02/00627
delta compression at the proxy transmitter to the replica responsive to information provided to

the proxy transmitter by the proxy receiver.

34. A method according to claim 33, wherein applying the delta compression comprises
correlating the replica at the proxy transmitter with another version of the replica that is

available at the proxy transmitter and at the proxy receiver.

35. A method according to claim 33, wherein applying the delta compression comprises
correlating the replica at the proxy transmitter with one or more resource blocks of one or

more other resources that are available at the proxy transmitter and at the proxy receiver.

36. A method according to claim 1, and comprising storing the replica of the data resource
in a memory of the proxy receiver, and wherein serving the replica of the data resource from

the proxy receiver comprises serving the replica of the data resource from the memory of the

proxy receiver.

37. A method according to claim 36, and comprising:

intercepting a further request for the data resource from another client on the second .
LAN,;

checking the memory to determine whether the replica of the data resource is present in
the memory and valid; and

responsive to the further request and to determining that the replica is present and

valid, serving the replica of, the data resource from the memory of the proxy receiver to the

other client over the second LAN.

38. A method according to claim 36, wherein the data resource is a file comprising a
plurality of file blocks, and wherein conveying the replica comprises analyzing a pattern of
access by the client to the file blocks, and conveying replicas of a portion of the file blocks not

yet requested by the client, responsive to the pattern.

39. A method according to claim 36, wherein the client is a first client among a plurality of
clients on the second LAN, and wherein serving the replica of the data resource from the .
memory comprises serving the replica both to the first client and to a second client among the

plurality of clients.

40. A method according to claim 36, wherein serving the replica comprises periodically

checking at the proxy receiver whether the replica of the data resource in the memory of the

102

10

15

25

WO 03/012578 PCT/IL02/00627
proxy receiver is consistent with the data resource held by the file server, and deleting the

replica from the memory upon determining that the replica is not consistent.

41. A method according to claim 36, and comprising deleting the replica from the memory

responsive to a predetermined cache removal policy.

42. A method according to claim 36, wherein conveying the replica of the data resource
comprises conveying a read lease relating to the data resource to the proxy receiver, and
wherein serving the replica of the data resource comprises serving the replica so long as the

read lease has not expired or been revoked by the proxy transmitter.

43. A method according to claim 42, wherein the proxy receiver is a first proxy receiver
among a plurality of proxy receivers, and comprising revoking, at the proxy transmitter, the
read lease conveyed to the first proxy receiver if a second proxy receiver among the plurality

of proxy receivers modifies the data resource.

44. A method according to claim 42, wherein conveying the read lease comprises setting

an expiration period of the read lease responsive to a file type of the data resource.

45. A method according to claim 44, wherein conveying the read lease comprises locking
the data resource at the file server, and comprising unlocking the data resource at the file

server upon termination of the expiration period of the read lease.

46. A method according to claim 36, and comprising performing an operation on the
replica of the data resource in the memory responsive to a management directive downloaded

to the proxy receiver over the WAN.

47. A method according to claim 46, wherein the directive is encoded in a tag-based
markup language, and wherein performing the operation responsive to the directive comprises

parsing the markup language.

48. A method according to claim '36, wherein intercepting the request comprises
intercepting a group of one or more requests for first data resources on the file server, and
comprising analyzing a pattern of the group of requests, and retrieving replicas of one or more -
second data resources from the file server to the memory of the proxy receiver, responsive to

the pattern.

103

10

15

30

WO 03/012578 PCT/IL02/00627
49. A method according to claim 48, wherein retrieving the replicas of the one or more

second data resources comprises retrieving the second data resources before the client requests

the second data resources.

50. A method according to claim 48, wherein analyzing the pattern comprises calculating
for each of the second data resources on the file server a relation of an expected usage of the
replicas of the second data resources at the proxy receiver to an expected modification rate of

the second data resources at the file server.

51. A method according to claim 48, wherein retrieving the replicas of the one or more
second data resources comprises analyzing a relation of an available bandwidth of the WAN to
an expected usage of the replicas of the second data resources at the proxy receiver, and

determining, responsive to the relation, when to retrieve a replica of the second data resource.

52. A method according to claim 48, wherein retrieving the replicas of the one or more
second data resources comprises analyzing a first relation of an expected usage of the replicas
of the second data resources at the proxy receiver to an expected modification rate of the
second data resources at the file server, determining a second relation between an available -
bandwidth of the WAN and the first relation, and determining, responsive to the seqond

relation, when to retrieve a replica of the second data resource.

53. A method according to claim 48, wherein retrieving replicas of the one or more second
data resources comprises determining an order of retrieval of the second data resources

responsive to a predetermined retrieval policy, and conveying the replicas over the WAN in

the determined order.

54. A method according to claim 53, wherein in accordance with the retrieval policy, the

first data resources requested by the client are retrieved with a higher priority than the second

data resources.

5. A method according to claim 1, and comprising:

intercepting at the proxy receiver a write request submitted by the client for application

to the data resource;

transmitting the write request via the WAN from the proxy receiver to the proxy

transmitter; and

passing the write request via the first LAN from the proxy transmitter to the file server.

104

10

15

20

30

WO 03/012578 PCT/1L02/00627

56. A method according to claim 55, wherein intercepting the write request comprises
intercepting multiple write requests submitted by the client for application to the data resource,
and aggregating the write requests in a write memory of the proxy receiver, and

wherein transmitting the write requests comprises transmitting the aggregated write

requests together via the WAN from the write memory of the proxy receiver to the proxy

transmitter.

57. A method according to claim 56, wherein the data resource comprises multiple separate
data resource items, and wherein aggregating the write requests comprises aggregating the
write requests with respect to the multiple data resources items so as to transmit the aggregated

write requests together.

58. A method according to claim 55, wherein conveying the replica of the data resource
comprises conveying to the proxy receiver a write lease relating to the data resource,

and wherein transmitting the write request via the WAN from the proxy receiver to the
proxy transmitter comprises transmitting the write request via the WAN from the proxy

receiver to the proxy transmitter upon expiration or revocation of the write lease.

59. A method according to claim 58, wherein the proxy receiver is a first proxy receiver
among a plurality of proxy receivers, and comprising revoking, at the proxy transmitter, the
write lease conveyed to the first proxy receiver if a second proxy receiver among the plurality

of proxy receivers conducts a file system operation on the data resource.

60. A method according to claim 58, wherein conveying the write lease comprises setting

an expiration period of the write lease responsive to a file type of the data resource.

61. A method according to claim 60, wherein conveying the write lease comprises locking
the data resource at the file server, and comprising unlocking the data resource at the file

server upon termination of the expiration period of the write lease.

62. A method according to claim 58, wherein conveying the write lease comprises
checking a connection status of the WAN, and determining whether to maintain the write lease

responsive to the connection status.

63. A method according to claim 62, wherein intercepting the write request comprises
receiving and holding the write request from the client at the proxy receiver while the WAN is

disconnected, and wherein transmitting the write request comprises transmitting the write

105

10

15

30

WO 03/012578 PCT/IL02/00627
request when the WAN is reconnected, and comprising integrating the write request with the

data resource at the file server.

64. A method for enabling-access to a data resource held on a file server on a first local -
area network (LAN) by a client on a second LAN, the method comprising:

intercepting a request to perform a file operation on the data resource submitted by the
client, using a proxy receiver on the second LAN;

checking a receiver cache held by the proxy receiver to determine whether valid
information necessary to fulfill the request is already present in the receiver cache;

responsive to the request and to determining that the valid information is not present in
the receiver cache, transmitting via a wide area network (WAN) a message requesting the
information from the proxy receiver to a proxy transmitter on the first LAN;

responsive to the message, conveying the information over the WAN from the proxy
transmitter to the proxy receiver; and

fulfilling the request at the proxy receiver to the client using the information.

65. A method according to claim 64, wherein the valid information comprises the data

resource.

66. A method according to claim 64, wherein the valid information comprises metadata

relating to the data resource.
67. A method according to claim 64, wherein the data resource is a block of a file.

68. A method according to claim 64, wherein the data resource comprises a page of content

encoded in a markup language.

69. A method according to claim 64, wherein the data resource comprises a file system

directory.

70. A method according to claim 64, wherein the file operation is a metadata-only file

operation, and wherein the information comprises metadata.

71. A method according to claim 64, wherein the request for the data resource is submitted
by the client using a call to a native network file system used by the file server, and wherein

transmitting the message via the WAN comprises transmitting the message via the WAN using

the native network file system.

72. A method according to claim 64, and comprising:

106

10

15

WO 03/012578 PCT/1L02/00627
intercepting a further request to perfofm an operation on the data resource from another
client on the second LAN;
checking the receiver cache to determine whether the valid information if already
present in the receiver cache; and
responsive to the further request and to determining that the valid information is
present, fulfilling the further request at the proxy receiver to the other client using the valid

information.

73. A method according to claim 64, wherein conveying the information comprises
checking a transmitter cache held by the proxy transmitter to determine whether the valid
information necessary to fulfill the request is already present in the transmitter cache and, if so,

conveying the information from the transmitter cache over the WAN to the proxy receiver.

74. A method according to claim 73, wherein conveying the information comprises, upon

determining that the valid information is not present in the transmitter cache, fetching the
information from the file server to the proxy transmitter, and conveying the fetched

information over the WAN to the proxy receiver.

75. A method according to claim 64, and comprising conveying to the proxy receiver
metadata regarding the data resource on the file server and, responsive to the metadata,

presenting to the client a virtual directory of the file server.

76. A method according to claim 75, wherein conveying the metadata comprises reading
the metadata from files held by the file server using the proxy transmitter, and conveying the

metadata from the proxy transmitter to the proxy receiver.

77. A method for enabling access to a data resource, which is held on a file server on a first
local area network (LAN), by a client on a second LAN, the method comprising:

conveying a replica of the data resource over a wide area network (WAN) from the file
server to a cache held by a proxy receiver on the second LAN;

intercepting at the proxy receiver a file system request for the data resource submitted
by the client over the second LAN;

checking the cache to determine whether the replica of the data resource is present in

the cache and valid; and

107

wn

10

15

20

WO 03/012578 PCT/IL02/00627
responsive to the file system request and to determining that the replica is present and

valid, serving the replica of the data resource from the cache of the proxy receiver to the client

over the second LAN.
78. A method according to claim 77, wherein the data resource comprises a file.
79. A method according to claim 77, wherein the data resource is a block of a file.

80. A method according to claim 77, wherein the data resource comprises a page of content

encoded in a markup language.

81. A method according to claim 77, wherein the data resource comprises a file system
directory.
82. A method according to claim 77, wherein conveying the replica of the data resource

comprises conveying metadata relating to the data resource.

' 83. A method according to claim 77, wherein conveying the replica of the data resource

comprises conveying an access list applicable to the data resource.

84. A method according to claim 77, wherein conveying the replica of the data resource

comprises conveying a permission applicable to the data resource.
hY

85. A method aécording to claim 77, wherein the request for the data resource is submitted

by the client using a call to a native network file system used by the file server.

86. A method according to claim 77, and comprising:

intercepting a further request for the data resource from another client on the second
LAN;

checking the cache to determine whether the replica of the data resource is present in
the cache and valid; and

responsive to the further request and to determining that the replica is present and
valid, serving the replica of the data resource from the cache of the proxy receiver to the other

client over the second LAN.

87. A method according to claim 77, wherein conveying the replica comprises monitoring
the file server using a watchdog agent to detect a change made to the data resource by a native
client on the first LAN, and conveying the replica of the data resource from the file server to

the proxy receiver again responsive to the change.

108

10

15

20

25

30

WO 03/012578 PCT/IL02/00627
88. A method according to claim 77, wherein the data resource is a file comprising a

plurality of file blocks, and wherein conveying the replica comprises analyzing a pattern of
access by the client to the file blocks, and conveying replicas of a portion of the file blocks not

yet requested by the client, responsive to the pattern.

89. A method according to claim 77, wherein the client is a first client among a plurality of
clients on the second LAN, and wherein serving the replica of the data resource from the cache
comprises serving the replica both to the first client and to a second client among the plurality

of clients.

90. A method according to claim 77, wherein serving the replica comprises periodically
checking at the proxy receiver whether the replica of the data resource in the cache of the
proxy receiver is consistent with the data resource held by the file server, and deleting the

replica from the cache upon determining that the replica is not consistent.

91. A method according to claim 77, and comprising deleting the replica from the cache

responsive to a predetermined cache removal policy.

92. A method according to claim 77, and comprising conveying to the proxy receiver
metadata regarding the data resource on the file server and, responsive to the metadata, -

presenting to the client a virtual directory of the file server.

93. A method according to claim 77, wherein intercepting the request comprises
intercepting a lock request submitted by the client for a lock on the data resource, and wherein
conveying the replica over the WAN comprises transmitting a lock message via the WAN
from the proxy receiver to the file server, requesting the lock, and comprising;

responsive to the lock message, issuing the lock at the file server;

conveying the lock over the WAN from the file server to the proxy receiver; and

serving the lock from the proxy receiver to the client.

94. A method according to claim 77, wherein conveying the replica of the data resource
from the file server to the cache held by the proxy receiver comprises determining whether the
data resource is held by the file server, and conveying a negative response relating to the data
resource from the file server to the proxy receiver when it is determined that the data resource -
is not held by the file server, and comprising caching the negative response at the proxy

receiver for a certain period.

109

10

15

20

WO 03/012578 PCT/IL02/00627
95. A method according to claim 94, wherein serving the replica of the data resource from

the cache of the proxy receiver to the client comprises checking whether the negative response
relating to the requested data resource is present and not expired, and, responsive to
determining that the negative response is present and not expired, serving the negative

response from the proxy receiver to the client over the second LAN,

96. A method according to claim 77, wherein intercepting the request comprises
intercepting a file system request submitted by the client for an operation on the data resource,
and wherein transmitting the message comprises transmitting the file system request and a
request for a lock via the WAN from the proxy receiver to the file server, and comprising,

responsive to the request for the lock, obtaining the lock from the file server at the proxy

receiver.

97. A method according to claim 96, and comprising, if the proxy receiver intercepts no
more file system requests from the client with respect to the data resource for a certain period,
issuing an unlock request from the proxy receiver to the file server with respect to the data

resource.

98. A method according to claim 77, wherein intercepting the request comprises
intercepting the request for the data resource submitted in accordance with a first native
network file system of the client, and wherein conveying the replica comprises:

translating the request for the data resource from the first native network file system to
a second native network file system used by the file server,

requesting the resource from the file server using the translated request, and

conveying the replica of the data source to the proxy receiver over the WAN.

99. A method according to claim 77, wherein conveying the replica of the data resource
over the WAN comprises ascertaining an available bandwidth of the WAN, and conveying the
replica using a portion of the bandwidth that is less than a total available bandwidth,

responsive to a management directive downloaded to the proxy receiver over the WAN.

100. A method according to claim 77, and comprising, upon determining that the replica is
not present or not valid, requesting that the replica be conveyed again from the file server to

the proxy receiver,

110

10

15

20

WO 03/012578 PCT/IL02/00627
101. A method according to 01{ “} 100, wherein requesting that the replica be conveyed

comprises requesting that the replica be conveyed using a native file network system of the file

SEIVEr.

102. A method according to claim 77, wherein conveying the replica of the data resource
over the WAN comprises encapsulating the replica in accordance with a WAN transport

protocol and conveying the encapsulated replica.

103. A method according to claim 102, wherein the WAN transport protocol comprises a

Transmission Control Protocol (TCP).

104. A method according to claim 103, wherein the WAN transport protocol comprises a

Hypertext Transfer Protocol (HTTP).

105. A method according to claim 77, and comprising performing an operation on the
replica of the data resource in the cache responsive to a management directive downloaded to

the proxy receiver over the WAN,

106. A method according to claim 105, wherein the directive is encoded in a tag-based

markup language, and wherein performing the operation responsive to the directive comprises

parsing the markup language.

107. A method according to claim 77, wherein intercepting the request comprises
intercepting a group of one or more requests for first data resources on the file server, and
comprising analyzing a pattern of the group of requests, and retrieving replicas of one or more
second data resources from the file server to the cache of the proxy receiver, responsive to the

pattern.

108. A method according to claim 107, wherein retrieving the replicas of the one or more
second data resources comprises retrieving the second data resources before the client requests

the second data resources.

109. A method according to claim 107, wherein analyzing the pattern comprises calculating
for each of the second data resources on the file server a relation of an expected usage of the
replicas of the second data resources at the proxy receiver to an expected modification rate of

the second data resources at the file server.

110. A method according to claim 107, wherein retrieving the replicas of the one or more

second data resources comprises analyzing a relation of an available bandwidth of the WAN to

111

10

15

20

30

WO 03/012578 PCT/1L02/00627

an expected usage of the replicas of the second data resources at the proxy receiver, and

determining, responsive to the relation, when to retrieve a replica of the second data resource.

111. A method according to claim 107, wherein retrieving the replicas of the one or more
second data resources comprises analyzing a first relation of an expected usage of the replicas
of the second data resources at the proxy receiver to an expected modification rate of the
second data resources at the file server, determining a second relation between an available
bandwidth of the WAN and the first relation, and determining, responsive to the second

relation, when to retrieve a replica of the second data resource.

112. A method according to claim 107, wherein retrieving replicas of the one or more
second data resources comprises determining an order of retrieval of the second data resources
responsive to a predetermined retrieval policy, and conveying the replicas over the WAN in

the determined order.

113. A method according to claim 112, wherein in accordance with the retrieval policy, the
first data resources requested by the client are retrieved with a higher priority than the second

data resources.

114. A method according to claim 77, and comprising intercepting at the proxy receiver a
write request submitted by the client for application to the data resource, and passing the write

request over the WAN from the proxy receiver to the file server.

115. A method according to claim 114, wherein intercepting the write request comprises
intercepting multiple write requests submitted by the client for application to the data resource,
and aggregating the write requests in a write memory of the proxy receiver, and wherein
passing the write request comprises passing the aggregated write requests over the WAN from

the proxy receiver to the file server.

116. A method according to claim 115, wherein the data resource comprises multiple
separate data resource items, and wherein aggregating the write requests comprises
aggregating the write requests with respect to the multiple data resources items so as to pass

the aggregated write requests together.

117. A method for enabling access to data resources held on a file server on a first local area
network (LAN) by a client on a second LAN, the method comprising;

reading metadata from the file server using a proxy transmitter on the first LAN;

112

10

15

30

WO 03/012578 PCT/1L02/00627
transmitting the metadata via a wide area network (WAN) from the proxy transmitter
to a proxy receiver on the second LAN; and
based on the metadata, constructing at the proxy receiver a directory of the data

resources on the file server, for use by the client in accessing the data resources.

118. A method according to claim 117, wherein reading the metadata comprises reading -
updated metadata from the file server subsequent to constructing the directory, and wherein
constructing the directory comprises synchronizing the directory with the file server responsive

to the updated metadata.

119. A method according to claim 117, wherein the metadata includes file attributes of the
data resources, which file attributes are stored in a directory object on the file server, and

wherein reading the metadata comprises reading the file attributes from the directory object.

120. A method according to claim 117, wherein the data resources comprise files, and
wherein the metadata includes file attributes that are stored in the files, and wherein reading

the metadata comprises reading the file attributes from the files.

121. A method according to claim 117, and comprising intercepting at the proxy receiver a
file system request with respect to one of the data resources in the directory submitted by the
client over the second LAN, and, responsive to the file system request, serving data from the

one of the data resources from the proxy receiver to the client over the second LAN.

122. A method according to claim 121, wherein intercepting the file system request
comprises intercepting a file operation request based on the metadata, and comprising
fulfilling the file operation request at the proxy receiver, and conveying a result of the fulfilled

file operation request to the client over the second LAN.

123. A method for enabling access to a data resource held by a file server, the method
comprising;

submitting a first request via a wide area network (WAN) for access to the data
resource from one or more sources able to receive the data resource from the file server;

receiving a response from a first source among the one or more sources indicating that
the first source cannot provide a valid replica of the data resource;

caching a record indicating that the first source is unable to provide the valid replica of

the data resource; and

113

1

[3]

5

WO 03/012578 PCT/IL02/00627
submitting a second request for access to the data resource to at least a second source

among the one or more sources, while avoiding, responsive to the cached record, sending the

second request to the first source.

124. A method fof enabling access to a data resource, which is held on a file server on a first
local area network (LAN), by a client on a second LAN, the method comprising:

intercepting a request for the data resource submitted by the client, using a file system
driver on the second LAN;

transmitting a message via a wide area network (WAN) from the file system driver to a
proxy transmitter on the first LAN, requesting the data resource;

retrieving a replica of the data resource from the file server to the proxy transmitter;

responsive to the message, conveying the replica of the data resource over the WAN
from the proxy transmitter to the file system driver; and

serving the replica of the data resource from the file system driver to the client over the

second LAN.

125. Apparatus for enabling access to a data resource, which is held on a file server on a
first local area network (LAN), by a client on a second LAN, the apparatus comprising;

a proxy transmitter, which is adapted to retrieve a replica of the data resource from the
file server over the first LAN; and |

a proxy receiver, which is adapted to intercept a request for the data resource submitted
by the client on the second LAN, and responsive to the request, to send a message via a wide
area network (WAN) to the proxy transmitter on the first LAN, requesting the data resource,
thus causing the proxy transmitter to convey the replica of the data resource over the WAN to

the proxy receiver, which serves the replica of the data resource to the client over the second
LAN.

126. Apparatus according to claim 125, wherein the data resource comprises a file.
127. Apparatus according to claim 125, wherein the data resource is a block of a file.

128. Apparatus according to claim 125, wherein the data resource comprises a page of

content encoded in a markup language.

129. Apparatus according to claim 125, wherein the data resource comprises a file system -

directory.

114

10

15

20

WO 03/012578 PCT/IL02/00627
130. Apparatus according to claim 125, wherein the replica of the data resource comprises

metadata relating to the data resource.

131. Apparatus according to claim 125, wherein the replica of the data resource comprises

an access list applicable to the data resource.

[32. Apparatus according to claim 125, wherein the replica of the data resource comprises a -

permission applicable to the data resource.

. 133. Apparatus according to claim 125, comprising a watchdog agent adapted to detect a

change made to the data resource by a native client on the first LAN, and wherein the proxy
transmitter is adapted to retrieve the replica of the data resource from the file server again

responsive to the change.

134, Apparatus according to claim 125, wherein the proxy receiver is adapted to intercept a
lock request submitted by the client for a lock on the data resource and to send a lock message
via the WAN to the proxy transmitter, requesting the lock, wherein the proxy transmitter is
adapted to issue the lock responsive to the lock message and to convey the lock over the WAN

to the proxy receiver, and wherein the proxy receiver is adapted to serve the lock to the client.

135. Apparatus according to claim 125, wherein the proxy transmitter is adapted to check
the file server to determine whether the data resource is held by the file server, and to convey a -
negative response relating to the data resource over the WAN to the proxy receiver when it is
determined that the data resource is not held by the file server, and. wherein the proxy receiver

is adapted to cache the negative response for a certain period.

136. Apparatus according to claim 135, wherein the proxy receiver is adapted to check
whether the negative response relating to the requested data resource is present and not
expired, and, responsive to determining that the negative response is present and not expired,
withhold sending the message to the proxy transmitter, and to serve the negative response to

the client over the second LAN.

137. Apparatus according to claim 125, wherein the proxy receiver is adapted to intercept a
file system request submitted by the client for an operation on the data resource, and to send
the file system request and a request for a lock via the WAN to the proxy transmitter, and
wherein the proxy transmitter is adapted to obtain the lock from the file server, responsive to

the request for the lock, and to convey the lock over the WAN to the Proxy receiver.

115

wn

15

20

WO 03/012578 PCT/1L02/00627

138. Apparatus according to claim 137, wherein the proxy receiver is adapted to issue an
unlock request to the proxy transmitter with respect to the data resource, if the proxy receiver

intercepts no more file system requests from the client with respect to the data resource for a

certain period.

139. Apparatus according to claim 125, wherein the proxy receiver is adapted to intercept
the request for the data resource submitted in accordance with a first native network file '
system of the client, and wherein the proxy transmitter is adapted to translate the request for
the data resource from the first native network file system to a second native network file
system used by the file server, and to retrieve the replica of the data resource using the

translated request.

140. Apparatus according to claim 125, wherein the proxy transmitter is adapted to ascertain
an available bandwidth of the WAN and to convey the replica using a portion of the bandwidth
that is less than a total available bandwidth, responsive to a management directive downloaded

to the proxy receiver over the WAN,

141. Apparatus according to claim 125, wherein the proxy receiver is adapted to aggregate

the message into a batch of messages and transmit the aggregated batch.

142. Apparatus according to claim 125, wherein the proxy transmitter comprises a plurality -
of proxy transmitters, and wherein the proxy receiver is adapted to assess an efficiency of
conveying the replica over the WAN to the proxy receiver from each of at least two of the
proxy transmitters, and to select at least one of the proxy transmitters to convey the replica

responsive to the assessed efficiency.

143. Apparatus according to claim 142, wherein the proxy receiver is adapted to send the
message via the WAN to at least two of the proxy transmitters, requesting respective portions
of the replica from the at least two of the proxy transmitters, and is adapted to concatenate the

portions to create the replica.

144. Apparatus according to claim 125, wherein the proxy transmitter comprises a
transmitter memory, and wherein the proxy transmitter is adapted to check the transmitter
memory to determine whether the replica of the data resource is present in the transmitter

memory and valid, and

116

10

15

20

WO 03/012578 PCT/1L02/00627
responsive to the message and to determining that the replica in the transmitter memory
is present and valid, to convey the replica from the transmitter memory over the WAN to the

proxy receiver.

145. Apparatus according to claim 144, wherein the proxy transmitter is adapted to retrieve
the replica of the data resource from the file server to the transmitter memory when it is

determined that the replica of the data resource is not present in the transmitter memory or is -

not valid.

146. Apparatus according to claim 125, wherein the proxy transmitter is adapted to convey
to the proxy receiver metadata regarding the data resource on the file server, and wherein the
proxy receiver is adapted to present to the client a virtual directory of the file server,

responsive to the metadata.

147. Apparatus according to claim 146, wherein the proxy transmitter is adapted to read the

metadata from files held by the file server and to convey the metadata to the proxy receiver.

148. Apparatus according to claim 125, wherein the proxy receiver is adapted to encapsulate
the message in accordance with a WAN transport protocol and to send the encapsulated

message to the proxy transmitter.

149. Apparatus according to claim 148, wherein the WAN transport protocol comprises a
Hypertext Transfer Protocol (HTTP).

150. Apparatus according to claim 125, wherein the proxy transmitter is adapted to
encapsulate the replica in accordance with a WAN transport protocol and convey the

encapsulated replica to the proxy receiver.

151. Apparatus according to claim 150, wherein the WAN transport protocol comprises a

Transmission Control Protocol (TCP).

152. Apparatus according to claim 151, wherein the WAN transport protocol comprises a

Hypertext Transfer Protocol (HTTP).

153. Apparatus according to claim 125, wherein the request for the data resource is
submitted by the client using a call to a native network file system used by the file server, and
wherein the proxy transmitter is adapted to retrieve the replica of the data resource using the

native network file system.

117

10

15

20

WO 03/012578 PCT/1L02/00627

154. Apparatus according to claim 153, wherein the native network file system is selected
from a group of file systems consisting of Network File System (NFS), Common Internet File

System (CIFS), and NetWare file system.

155. Apparatus according to claim 153, wherein the proxy receiver is adapted to encapsulate
the call to the native file system for transmission in accordance with a WAN transport

protocol.

156. Apparatus according to claim 125, wherein the proxy transmitter is adapted to
compress the replica and to convey the compressed replica over the WAN, and wherein the

proxy receiver is adapted to decompress the compressed replica.

157. Apparatus according to claim 156, wherein the proxy transmitter is adapted to
compress the replica by applying delta compression to the replica responsive to information

provided to the proxy transmitter by the proxy receiver.

158. Apparatus according to claim 157, wherein the proxy transmitter is adapted to apply
the delta compression by correlating the replica at the proxy transmitter with another version

of the replica that is available at the proxy transmitter and at the proxy receiver.

159. Apparatus according to claim 157, wherein the proxy transmitter is adapted to apply
the delta compression by correlating the replica at the proxy transmitter with one or more
resource blocks of one or more other resources that are available at the proxy transmitter and at

the proxy receiver.

160. Apparatus according to claim 125, wherein the proxy receiver comprises a memory,
and is adapted to store the replica of the data resource in the memory, and to serve the replica

of the data resource from the memory.

161. Apparatus according to claim 160, wherein the proxy receiver is adapted to:

intercept a further request for the data resource from another client on the second LAN,

check the memory to determine whether the replica of the data resource is present in
the memory and valid, and

responsive to the further request and to determining that the replica is present and
valid, serve the replica of the data resource from the memory to the other client over the

second LAN.

118

10

15

WO 03/012578 PCT/1L02/00627
162. Apparatus according to claim 160, wherein the data resource comprises a file
comprising a plurality of file blocks, and wherein the proxy transmitter is adapted to analyze a
pattern of access by the client to the file blocks, and to convey replicas of a portion of the file

blocks not yet requested by the client, responsive to the pattern.

163. Apparatus according to claim 160, wherein the client is a first client among a plurality
of clients on the second LAN, and the proxy receiver is adapted to serve the replica from the

memory both to the first client and to a second client among the plurality of clients,

164. Apparatus according to claim 160, wherein the proxy receiver is adapted to periodically
check whether the replica of the data resource in the memory is consistent with the data
resource held by the file server, and to delete the replica from the memory upon determiniﬁg

that the replica is not consistent.

165. Apparatus according to claim 160, wherein the proxy receiver is adapted to delete the

replica from the memory responsive to a predetermined cache removal policy.

166. Apparatus according to claim 160, wherein the proxy transmitter is adapted to convey a
read lease relating to the data resource to the proxy receiver, and wherein the proxy receiver is

adapted to serve the replica so long as the read lease has not expired or been revoked by the

proxy transmitter.

167. Apparatus according to claim 166, wherein the proxy receiver is a first proxy receiver
among a plurality of proxy receivers, and the proxy transmitter is adapted to revoke the read
lease conveyed to the first proxy receiver if a second proxy receiver among the plurality of

proxy receivers modifies the data resource.

168. Apparatus according to claim 166, wherein the proxy transmitter is adapted to set an

expiration period of the read lease responsive to a file type of the data resource.

169. Apparatus according to claim 168, wherein the proxy transmitter is adapted to lock the
data resource at the file server upon conveying the read lease, and to unlock the data resource

at the file server upon termination of the expiration period of the read lease.

170. Apparatus according to claim 160, wherein the proxy receiver is adapted to perform an
operation on the replica of the data resource in the memory responsive to a management

directive downloaded to the proxy receiver over the WAN.

119

wn

10

15

30

WO 03/012578 PCT/IL02/00627
[71. Apparatus according to claim 170, wherein the directive is encoded in a tag-based

markup language, and wherein the proxy receiver is adapted to parse the markup language.

172. Apparatus according to claim 160, wherein the proxy receiver is adapted to:

intercept a group of one or more requests for first data resources on the file server,

analyze a pattern of the group of requests,

responsive to the pattern, cause the proxy transmitter to retrieve replicas of one or more
second data resources from the file server and to convey the retrieved replicas to the proxy
receiver, and

store the retrieved replicas in the memory.

173. Apparatus according to claim 172, wherein the proxy transmitter is adapted to retrieve
the one or more second data resources before the client requests the one or more second data

resources.

174. Apparatus according to claim 172, wherein the proxy receiver is adapted to analyze the
pattern by calculating for each of the second data resources on the file server a relation of an
expected usage of the replicas of the second data resources at the proxy receiver to an expected

modification rate of the second data resources at the file server.

175. Apparatus according to claim 172, wherein the proxy receiver is adapted to analyze a
relation of an available bandwidth of the WAN to an expected usage of the replicas of the
second data resources at the proxy receiver, and to determine, responsive to the relation, when

to cause the proxy transmitter to retrieve a replica of the second data resource.

176. Apparatus according to claim 172, wherein the proxy receiver is adapted to analyze a
first relation of an expected usage of the replicas of the second data resources at the proxy
receiver to an expected modification rate of the second data resources at the file server,
determine a second relation between an available bandwidth of the WAN and the first relation,
and determine, responsive to the second relation, when to cause the proxy transmitter to

retrieve a replica of the second data resource.

177. Apparatus according to claim 172, wherein the proxy transmitter is adapted to:
determine an order of retrieval of the one or more second data resources responsive to a
predetermined retrieval policy,
retrieve replicas of the second data resources from the file server responsive to the
determined order of retrieval, and

120

(94

10

15

25

30

WO 03/012578 PCT/1L02/00627

convey the replicas over the WAN to the proxy receiver in the détermined order.

178. Apparatus according to claim 177, wherein the proxy transmitter is adapted to retrieve
the first data resources requested by the client with a higher priority than the second data

resources, in accordance with the retrieval policy.

179. Apparatus according to claim 125, wherein the proxy receiver is adapted to intercept a
write request submitted by the client for application to the data resource, and to transmit the
write request via the WAN to the proxy transmitter, and wherein the proxy transmitter is

adapted to pass the write request via the first LAN to the file server.

180. Apparatus according to claim 179, wherein the proxy receiver comprises a write
memory, and wherein the proxy receiver is adapted to intercept multiple write requests
submitted by the client for application to the data resource, to aggregate the write requests in
the write memory, and to transmit the aggregated write requests together via the WAN from

the write memory to the proxy transmitter.

181. Apparatus according to claim 180, wherein the data resource comprises multiple
separate data resource items, and wherein the proxy receiver is adapted to aggregate the write
requests with respect to the multiple data resources items so as to transmit the aggregated write

requests together.

182. Apparatus according to claim 179, wherein the.proxy transmitter is adapted to convey
to the proxy receiver a write lease relating to the data resource, and wherein the proxy receiver
is adapted to transmit the write request via the WAN to the proxy transmitter upon expiration

or revocation of the write:lease.

183. Apparatus according to claim 182, wherein the proxy receiver is a first proxy receiver
among a plurality of proxy receivers, and wherein the proxy transmitter is adapted to revoke
the write lease conveyed to the first proxy receiver is a second proxy receiver among the

plurality of proxy receivers conducts a file system operation on the data resource.

184. Apparatus according to claim 182, wherein the proxy transmitter is adapted to set an

expiration period of the write lease responsive to a file type of the data resource.

185. Apparatus according to claim 184, wherein the proxy transmitter is adapted to lock the
data resource at the file server upon conveying the write lease, and to unlock the data resource

at the file server upon termination of the expiration period of the read lease.

121

10

15

20

WO 03/012578 PCT/IL02/00627
186. Apparatus according to claim 182, wherein the proxy transmitter is adapted to check a
connection status of the WAN, and to determine whether to maintain the write lease

responsive to the connection status.

187. Apparatus according to claim 186, wherein the proxy receiver is adapted to receive and
hold the write request from the client while the WAN is disconnected, and to transmit the
write request when the WAN is reconnected, so that the write request is integrated with the

data resource at the file server.

t

188. Apparatus for enabling access to a data resource held on a file server on a first locar’
area network (LAN) by a client on a second LAN, the apparatus comprising;

a proxy transmitteir, which is adapted to hold the data resource; and

a proxy receiver, which comprises a receiver cache, and which is adapted to intercept a
request to perform a file operation on the data resource submitted by the client on the second
LAN, to check the receiver cache to determine whether valid information necessary to fulfill
the request is already present in the receiver cache, and responsive to the request and to
determining that the valid information is not present in the receiver cache, to transmit a
message requesting the information via a wide area network (WAN) to the proxy transmitter,
thus causing the proxy transmitter to convey the information over the WAN to the pfoxy '

receiver, which fulfills the request using the information.

189. Apparatus according to claim 188, wherein the valid information comprises the data

resource.

190. Apparatus according to claim 188, wherein the valid information comprises metadata

relating to the data resource.
191. Apparatus according to claim 188, wherein the data resource is a block of a file.

192. Apparatus according to claim 188, wherein the data resource comprises a page of

content encoded in a markup language.

193. Apparatus according to claim 188, wherein the data resource comprises a file system

directory.

194, Apparatus according to claim 188, wherein the file operation is a metadata-only file

operation, and wherein the information comprises metadata.

122

15

Q]
wn

30

WO 03/012578 PCT/IL02/00627
195. Apparatus according to claim 188, wherein the request for the data resource is

submitted by the client using a call to a native network file system used by the file server, and
wherein the proxy receiver is adapted to transmit the message via the WAN using the native

network file system.

196. Apparatus according to claim 188, wherein the proxy receiver is adapted to intercept a '
further request to perform an operation on the data resource from another client on the second
LAN, to check the receiver cache to determine whether the valid information if already present
in the receiver cache, and, responsive to the further réquest and to determining that the valid
information is present, to fulfill the further request to the other client using the valid

information.

197. Apparatus according to claim 188, wherein the proxy transmitter comprises a
transmitter cache, and wherein the proxy transmitter is adapted to check the transmitter cache
to determine whether the valid information necessary to fulfill the request is already present in
the transmitter cache and, if so, to convey the information from the transmitter cache over the

WAN to the proxy receiver.

198. Apparatus according to claim 197, wherein the proxy transmitter is adapted to fetch the
information from the file server, upon determining that the valid information is not present in '
the transmitter cache, and to convey the fetched information over the WAN to the proxy

receiver.

199. Apparatus according to claim 188, wherein the proxy transmitter is adapted to convey
to the proxy receiver metadata regarding the data resource on the file server, and the proxy

receiver is adapted to present to the client a virtual directory of the file server responsive to the

metadata.

200. Apparatus according to claim 199, wherein the proxy transmitter is adapted to read the

metadata from files held by the file server, and to convey the metadata to the proxy receiver.

201. Apparatus for enabling access to a data resource, which is held on a file server on a
first local area network (LAN), by a client on a second LAN, the apparatus comprising a proxy
receiver, which is located on the second LAN and comprises a cache, and which is adapted to
retrieve a replica of the data resource from the file server over a wide area network (WAN) to
the cache, to intercept a file system request for the data resource submitted by the client over
the second LAN, to check the cache to determine whether the replica of the data resource is

123

10

15

20

WO 03/012578 PCT/IL02/00627
present in the cache and valid, and, responsive to the file system request and to determining

that the replica is present and valid, to serve the replica of the data resource from the cache to

the client over the second LAN,
202. Apparatus according to claim 201, wherein the data resource comprises a file.
203. Apparatus according to claim 201, wherein the data resource is a block of a file.

204. Apparatus according to claim 201, wherein the data resource comprises a page of

content encoded in a markup language.

205. Apparatus according to claim 201, wherein the data resource comprises a file system

directory.

206. Apparatus according to claim 201, wherein the proxy receiver is adapted to retrieve

metadata from the file server to the cache.

207. Apparatus according to claim 201, wherein the proxy receiver is adapted to retrieve

from the file server an access list applicable to the data resource.

208. Apparatus according to claim 201, wherein the proxy receiver is adapted to retrieve

from the file server a permission applicable to the data resource.

209. Apparatus according to claim 201, wherein the request for the data resource is '

submitted by the client using a call to a native network file system used by the file server.

210. Apparatus according to claim 201, wherein the proxy receiver is adapted to intercept a
further request for the data resource from another client on the second LAN, to check the cache
to determine whether the replica of the data resource is present in the cache and valid, and,
responsive to the further request and to determining that the replica is present and valid, to

serve the replica of the data resource from the cache to the other client over the second LAN.

211. Apparatus according to claim 201, and comprising a watchdog agent, which is adapted
to monitor the file server to detect a change made to the data resource by a native client on the
first LAN, wherein the proxy receiver is adapted to retrieve the replica of the data resource

again from the file server responsive to the change.

212. Apparatus according to claim 201, wherein the data resource is a file comprising a ‘

plurality of file blocks, and wherein the proxy receiver is adapted to analyze a pattern of access

124

10

15

WO 03/012578 PCT/IL02/00627
by the client to the file blocks, and to retrieve from the file server replicas of a portion of the

file blocks not yet requested by the client, responsive to the pattern.

213. Apparatus according to claim 201, wherein the client is a first client among a plurality
of clients on the second LAN, and wherein the proxy receiver is adapted to serve the replica

both to the first client and to a second client among the plurality of clients.

214. Apparatus according to claim 201, wherein the proxy receiver is adapted to periodically
check whether the replica of the data resource in the cache is consistent with the data resource
held by the file server, and to delete the replica from the cache upon determining that the

replica is not consistent.

215. Apparatus according to claim 201, wherein the proxy receiver is adapted to delete the

replica from the cache responsive to a predetermined cache removal policy.

216. Apparatus according to claim 201, wherein the proxy receiver is adapted to retrieve
from the file server metadata regarding the data resource on the file server, and to present to

the client a virtual directory of the file server, responsive to the metadata.

217. Apparatus according to claim 201, wherein the proxy receiver is adapted to intercept a
lock request submitted by the client for a lock on the data resource, to transmit a lock message
via the WAN to the file server, requesting the lock, to receive over the WAN a lock issued by

the file server, and to serve the lock to the client.

218. Apparatus according to claim 201, wherein the proxy receiver is adapted to determine
whether the data resource is held by the file server, and to cache a negative response relating to
the data resource for a certain period, when it is determined that the data resource is not held

by the file server.

219. Apparatus according to claim 218, wherein the proxy receiver is adapted to check
whether the negative response relating to the requested data resource is present and not
expired, and, responsive to determining that the negative response is present and not expired,

to serve the negative response to the client over the second LAN.

220. Apparatus according to claim 201, wherein the proxy receiver is adapted to intercept a
file system request submitted by the client for an operation on the data resource, and to send

the file system request and a request for a lock via the WAN to the file server, and wherein the

125

10

15

20

WO 03/012578 PCT/IL02/00627
proxy receiver is adapted to obtain the lock from the file server, responsive to the request for

the lock.

221. Apparatus according to-claim 220, wherein the proxy receiver is adapted to issue an
unlock request to the file server with respect to the data resource, if the proxy receiver
intercepts no more file system requests from the client with respect to the data resource for a

certain period.

222. Apparatus according to claim 201, wherein the proxy receiver is adapted to intercept
the request for the data resource submitted in accordance with a first native network file
system of the client, to translate the request for the data resource from the first native network
file system to a second native network file system used by the file server, to request the
resource from the file server using the translated request, and to retrieve from the file server

the replica of the data source over the WAN.

223. Apparatus according to claim 201, wherein the proxy receiver is adapted to ascertain an
available bandwidth of the WAN, and to retrieve from the file server the replica using a
portion of the bandwidth that is less than a total available bandwidth, responsive to a

management directive downloaded to the proxy receiver over the WAN.

224. Apparatus according to claim 201, wherein the proxy receiver is adapted to request that
the replica be conveyed again from the file server to the proxy receiver, upon determining that

the replica is not present or not valid.

225. Apparatus according to claim 224, wherein the proxy receiver is adapted to request that

the replica be conveyed using a native file network system of the file server.

226. Apparatus according to claim 201, wherein the proxy receiver is adapted to cause the
file server to encapsulating the replica in accordance with a WAN transport protocol, and to

retrieve the encapsulated replica from the file server.

227. Apparatus according to claim 226, wherein the WAN transport protocol comprises a

Transmission Control Protocol (TCP).

228. Apparatus according to claim 227, wherein the WAN transport protocol comprises a
Hypertext Transfer Protocol (HTTP).

126

10

15

20

25

30

WO 03/012578 PCT/IL02/00627
229. Apparatus according to claim 201, wherein the proxy receiver is adapted to perform an

operation on the replica of the data resource in the cache responsive to a management directive

downloaded to the proxy receiver over the WAN.

230. Apparatus according to claim 229, wherein the directive is encoded in a tag-based
markup language, and wherein the proxy receiver is adapted to parse the markup language and

to perform the operation responsive to the directive.

231. Apparatus according to claim 201, wherein the proxy receiver is adapted to intercept a
group of one or more requests for first data resources on the file server, to analyze a pattern of
the group of requests, and to retrieve replicas of one or more second data resources from the

file server to the cache, responsive to the pattern.

232. Apparatus according to claim 231, wherein the proxy receiver is adapted to retrieving
the replicas of the one or more second data resources before the client requests the second data

resources.

233. Apparatus according to claim 231, wherein the proxy receiver is adapted to calculate
for each of the second data resources on the file server a relation of an expected usage of the
replicas of the second data resources at the proxy receiver to an expected modification rate of
the second data resources at the file server, and to retrieve the replicas from the file server to

the cache, responsive to the calculation.

234. Apparatus according to claim 231, wherein the proxy receiver is adapted to analyze a
relation of an available bandwidth of the WAN to an expected usage of the replicas of the
second data resources at the proxy receiver, and to determine, responsive to the relation, when

to retrieve a replica of the second data resource.

235. Apparatus according to claim 231, wherein the proxy receiver is adapted to analyze a
first relation of an expected usage of the replicas of the second data resources at the proxy
receiver to an expected modification rate of the second data resources at the file server, to
determine a second relation between an available bandwidth of the WAN and the first relation,
and to determine, responsive to the second relation, when to retrieve a replica of the second

data resource.

236. Apparatus according to claim 231, wherein the proxy receiver is adapted to determine
an order of retrieval of the second data resources responsive to a predetermined retrieval

policy, and to retrieve the replicas from the file server over the WAN in the determined order.
127

10

15

20

30

WO 03/012578 PCT/IL02/00627
237. Apparatus according to claim 236, wherein the proxy receiver is adapted to retrieve the

first data resources requested by the client with a higher priority than the second data

resources, in accordance with the retrieval policy.

238. Apparatus according to claim 201, wherein the proxy receiver is adapted to intercept a
write request submitted by the client for application to the data resource, and to pass the write

request over the WAN to the file server.

239. Apparatus according to claim 238, wherein the proxy receiver comprises a write
memory, and wherein the proxy receiver is adapted to intercept multiple write requests
submitted by the client for application to the data resource, to aggregate the write requests in

the write memory, and to pass the aggregated write requests over the WAN to the file server. '

240. Apparatus according to claim 239, wherein the data resource comprises multiple
separate data resource items, and wherein the proxy receiver is adapted to aggregate the write
requests with respect to the multiple data resources items so as to pass the aggregated write

requests together.

241. Apparatus for enabling access to data resources held on a file server on a first local area
network (LAN) by a client on a second LAN, the apparatus comprising:

a proxy transmitter, located on the first LAN and adapted to read metadata from the file
server, to transmit the metadata via a wide area network (WAN) to the second LAN; and

a proxy receiver, located on the second LAN, which is adapted to construct a directory,
based on the metadata, of the data resources on the file server, for use by the client in accessing

the data resources.

242. Apparatus according to claim 241, wherein the proxy transmitter is adapted to read
updated metadata from the file server subsequent to construction of the directory by the proxy
receiver, and wherein the proxy receiver is adapted to synchronizing the directory with the file

server responsive to the updated metadata.

243. Apparatus according to claim 241, wherein the metadata includes file attributes of the
data resources, which file attributes are stored in a directory object on the file server, and

wherein the proxy transmitter is adapted to read the file attributes from the directory object.

244. Apparatus according to claim 241, wherein the data resources comprise files, and
wherein the metadata includes file attributes that are stored in the files, and wherein the proxy -

transmitter is adapted to read the file attributes from the files.
128

10

15

WO 03/012578 PCT/IL02/00627
245. Apparatus according to claim 241, wherein the proxy receiver is adapted to intercept a

file system request with respect to one of the data resources in the directory submitted by the
client over the second LAN, and, responsive to the file system request, to serve data from the

one of the data resources to the client over the second LAN.

246. Apparatus according to claim 245, wherein the proxy receiver is adapted to intercept a
file operation request based on the metadata, to fulfill the file operation request, and to convey

a result of the fulfilled file operation request to the client over the second LAN.,

247. Apparatus for enabling access by a client to a data resource held by a file server, the
apparatus comprising a proxy receiver for serving the resource to the client, wherein the proxy
receiver is adapted to submit a first request via a wide area network (WAN) for access to the
data resource from one or more sources able to receive the data resource from the file server,
and upon receiving a response from a first source among the one or more sources indicating.
that the first source cannot provide a valid replica of the data resource, to cache a record
indicating that the first source is unable to provide the valid replica of the data resource, so that
responsive to the cached record, the proxy receiver avoids sending to the first source a second
request for access to the data resource, while submitting the second request to at least a second

source among the one or more sources.

248. Apparatus for enabling access to a data resource, which is held on a file server on a
first local area network (LAN), by a client on a second LAN, the apparatus comprising:

a proxy transmitter, which is adapted to retrieve a replica of the data resource from the
file server over the first LAN;

a file system driver, which is adapted to intercept a request for the data resource
submitted by the client on the second LAN, and responsive to the request, to send a message
via a wide are network (WAN) to the proxy transmitter on the first LAN, requesting the data
resource, thus causing the proxy transmitter to convey the replica of the data resource over the
WAN to the file system driver, which serves the replica of the data resource to the client over

the second LAN.

249. A computer software product for enabling access to a data resource, which is held on a
file server on a first local area network (LAN), by a client on a second LAN, the product
comprising a computer-readable medium, in which program instructions are stored, which

instructions, when read by a first computer on the first LAN, cause the computer to operate as

129

10

15

25

WO 03/012578 PCT/1L02/00627

a proxy transmitter, so as to retrieve a replica of the data resource from the file server over the
first LAN, and which instructions, when read by a second computer on the second LAN, cause
the second computer to operate as a proxy receiver, so as to intercept a request for the data
resource submitted by the client on the second LAN, and responsive to the responsive, to send
a message via a wide area network (WAN) to the proxy transmitter on the first LAN,
requesting the data resource, thus causing the proxy transmitter to convey the replica of the
data resource over the WAN to the proxy receiver, which serves the replica of the data

resource to the client over the second LAN.
250. A product according to claim 249, wherein the data resource comprises a file.
251. A product according to claim 249, wherein the data resource is a block of a file.

252. A product according to claim 249, wherein the data resource comprises a page of

content encoded in a markup language.

253. A product according to claim 249, wherein the data resource comprises a file system

directory.

254. A product according to claim 249, wherein the replica of the data resource comprises

metadata relating to the data resource.

255. A product according to claim 249, wherein the replica of the data resource comprises

an access list applicable to the data resource.

256. A product according to claim 249, wherein the replica of the data resource comprises a

permission applicable to the data resource.

257. A product according to claim 249, wherein the instructions, when read by a third
computer on the first LAN, cause the third computer to operate as a watchdog agent adapted to
detect a change made to the data resource by a native client on the first LAN, and wherein the
instructions cause the first computer to retrieve the replica of the data resource from the file

server again responsive to the change.

258. A product according to claim 249, wherein the instructions cause the second computer
to intercept a lock request submitted by the client for a lock on the data resource and to send a
lock message via the WAN to the proxy transmitter, requesting the lotk, wherein the

instructions cause the first computer to issue the lock responsive to the lock message and to

130

10

15

(%)
=

WO 03/012578 PCT/IL02/00627
convey the lock over the WAN to the proxy receiver, and wherein the instructions cause the

second computer to serve the lock to the client.

259. A product according to claim 249, wherein the instructions cause the first computer to
check the file server to determine whether the data resource is held by the file server, and to
convey a negative response relating to the data resource over the WAN to the proxy receiver
when it is determined that the data resource is not held by the file server, and wherein the

instructions cause the second computer to cache the negative response for a certain period.

260. A product according to claim 259, wherein the instructions cause the second computer
to check whether the negative response relating to the requested data resource is present and
not expired, and, responsive to determining that the-negative response is present and not
expired, to withhold sending the message to the proxy transmitter, and to serve the negative

response to the client over the second LAN.

261. A product according to claim 249, wherein the instructions cause the second computer
to intercept a file system request submitted by the client for an operation on the data resource,
and to send the file system request and a request for a lock via the WAN to the proxy
transmitter, and wherein the instructions cause the first computer to obtain the lock from the

file server, responsive to the request for the lock, and to convey the lock over the WAN to the

proxy receiver.

262. A product according to claim 261, wherein the instructions cause the second computer -
to issue an unlock request to the proxy transmitter with respect to the data resource, if the
second computer intercepts no more file system requests from the client with respect to the

data resource for a certain period.

263. A product according to claim 249, wherein the instructions cause the second computer
to intercept the request for the data resource submitted in accordance with a first native
network file system of the client, and wherein the instructions cause the first computer to
translate the request for the data resource from the first native network file system to a second
native network file system used by the file server, and to retrieve the replica of the data

resource using the translated request.

264. A product according to claim 249, wherein the instructions cause the first computer to

ascertain an available bandwidth of the WAN and to convey the replica using a portion of the

131

10

15

WO 03/012578 PCT/IL02/00627
bandwidth that is less than a total available bandwidth, responsive to a management directive

downloaded to the proxy receiver over the WAN.,

265. A product according to claim 249, wherein the instructions cause the second computer

to aggregate the message into a batch of messages and transmit the aggregated batch.

266. A product according to claim 249, wherein the first computer is one of a plurality of
first computers, and the instructions, when read by the plurality of first computers, cause the
first computers to operate as proxy transmitters, and wherein the instructions cause the second ‘
computer to assess an efficiency of conveying the replica over the WAN to the proxy receiver
from each of at least two of the proxy transmitters, and to select at least one of the proxy

transmitters to convey the replica responsive to the assessed efficiency.

267. A product according to claim 266, wherein the instructions cause the second computer
to send the message via the WAN to at least two of the proxy transmitters, requesting
respective portions of the replica from the at least two of the proxy transmitters, and to

concatenate the portions to create the replica.

268. A product according to claim 249, wherein the first computer comprises a transmitter
memory, and wherein the instructions cause the first computer to check the transmitter
memory to determine whether the replica of the data resource is present in the transmitter
memory and valid, and responsive to the message and to determining that the replica in the
transmitter memory is present and valid, to convey the replica from the transmitter memory '

over the WAN to the proxy receiver.

269. A product according to claim 268, wherein the instructions cause the first computer to
retrieve the replica of the data resource from the file server to the transmitter memory when it
is determined that the replica of the data resource is not present in the transmitter memory or is

not valid.

270. A product according to claim 249, wherein the instructions cause the first computer to
convey to the proxy receiver metadata regarding the data resource on the file server, and
wherein the instructions cause the second computer to present to the client a virtual directory

of the file server, responsive to the metadata.

271. A product according to claim 270, wherein the instructions cause the first computer to
read the metadata from files held by the file server and convey the metadata to the proxy

receiver.
132

10

15

20

WO 03/012578 PCT/IL02/00627
272. A product according to claim 249, wherein the instructions cause the second computer

to encapsulate the message in accordance with a WAN transport protocol and send the

encapsulated message.

273. A product according to claim 272, wherein the WAN transport protocol comprises a

Hypertext Transfer Protocol (HTTP).

274. A product according to claim 249, wherein the instructions cause the first computer to
encapsulate the replica in accordance with a WAN transport protocol and convey the

encapsulated replica.

275. A product according to claim 274, wherein the WAN transport protocol comprises a

Transmission Control Protocol (TCP).

276. A product according to claim 275, wherein the WAN transport protocol comprises a
Hypertext Transfer Protocol (HTTP).

277. A product according to claim 249, wherein the request for the data resource is
submitted by the client using a call to a native network file system used by the file server, and
wherein the instructions cause the first computer to retrieve the replica of the data resource

using the native network file system.

278. A product according to claim 277, wherein the native network file system is selected
from a group of file systems consisting of Network File System (NFS), Common Internet File

System (CIFS), and NetWare file system.

279. A product according to claim 277, wherein the instructions cause the second computer
to encapsulate the call to the native file system for transmission in accordance with a WAN

transport protocol.

280. A product according to claim 249, wherein the instructions cause the first computer to
compress the replica and to convey the compressed replica over the WAN, and wherein the

instructions cause the second computer to decompress the compressed replica.

281. A product according to claim 280, wherein the instructions cause the first computer to
compress the replica by applying delta compression to the replica responsive to information

provided to the first computer by the second computer..

133

10

[5

30

WO 03/012578 PCT/IL02/00627
282. A product according to claim 281, wherein the instructions cause the first computer to

apply the delta compression by correlating the replica at the proxy transmitter with another

version of the replica that is available at the proxy transmitter and at the Droxy receiver.

283. A product according to claim 281, wherein the instructions cause the first computer to
apply the delta compression by correlating the replica at the proxy transmitter with one or
more resource blocks of one or more other resources that are available at the proxy transmitter

and at the proxy receiver.

284. A product according to claim 249, wherein the second computer comprises a memory, -
and the instructions cause the second computer to store the replica of the data resource in the

memory, and to serve the replica of the data resource from the memory.

285. A product according to claim 284, wherein the instructions cause the second computer
to:

intercept a further request for the data resource from another client on the second LAN)

check the memory to determine whether the replica of the data resource is present in
the memory and valid, and

responsive to the further request and to determining that the replica is present and
valid, serve the replica of the data resource from the memory to the other client over the

second LAN.,

286. A product according to claim 284, wherein the data resource comprises a file
comprising a plurality of file blocks, and wherein the instructions cause the first computer to -
analyze a pattern of access by the client to the file blocks, and to convey replicas of a portion

of the file blocks not yet requested by the client, responsive to the pattern.

287. A product according to claim 284, wherein the client is a first client among a plurality
of clients on the second LAN, and the instructions cause the second computer to serve the

replica from the memory both to the first client and to a second client among the plurality of

clients.

288. A product according to claim 284, wherein the instructions cause the second computer
to periodically check whether the replica of the data resource in the memory is consistent with
the data resource held by the file server, and to delete the replica from the memory upon

determining that the replica is not consistent.

134

10

15

3]
=

WO 03/012578 PCT/IL02/00627
289. A product according to claim 284, wherein the instructions cause the second computer

to delete the replica from the memory responsive to a predetermined cache removal policy.

290. A product according to claim 284, wherein the instructions cause the first computer to
convey a read lease relating to the data resource to the proxy receiver, and wherein the
instructions cause the second computer to serve the replica so long as the read lease has not

expired or been revoked by the proxy transmitter.

291. A product according to claim 290, wherein the second computer is a primary second
computer among a plurality of second computers, and wherein the instructions cause the first -
computer to revoke the read lease conveyed to the primary second computer if another second

computer among the plurality of second computers modifies the data resource.

292. A product according to claim 290, wherein the instructions cause the first computer to

set an expiration period of the read lease responsive to a file type of the data resource.

293. A product according to claim 292, wherein the instructions cause the first computer to
lock the data resource at the file server upon conveying the read lease, and to unlock the data

resource at the file server upon termination of the expiration period of the read lease.

294, A product according to claim 284, wherein the instructions cause the second computer
to perform an operation on the replica of the data resource in the memory responsive to a

management directive downloaded to the proxy receiver over the WAN.

295. A product according to claim 294, wherein the directive is encoded in a tag-based

markup language, and wherein the instructions cause the second computer to parse the markup -

language.

296. A product according to claim 284, wherein the instructions cause the second computer
to:

intercept a group of one or more requests for first data resources on the file server,

analyze a pattern of the groﬁp of requests,

responsive to the pattern, cause the proxy transmitter to retrieve replicas of one or more
second data resources from the file server and to convey the retrieved replicas to the proxy
receiver, and

store the retrieved replicas in the memory.

135

10

15

30

WO 03/012578 PCT/IL02/00627
297. A product according to claim 296, wherein the instructions cause the first computer to

retrieve the one or more second data resources before the client requests the one or more

second data resources.

298. A product according to claim 296, wherein the instructions cause the second computer
to analyze the pattern by calculating for each of the second data resources on the file server a
relation of an expected usage of the replicas of the second data resources at the proxy receiver

to an expected modification rate of the second data resources at the file server.

299. A product according to claim 296, wherein the instructions cause the second computer
to analyze a relation of an available bandwidth of the WAN to an expected usage of the '
replicas of the second data resources at the proxy receiver, and to determine, responsive to the

relation, when to cause the proxy transmitter to retrieve a replica of the second data resource.

300. A product according to claim 296, wherein the instructions cause the second computer
to analyze a first relation of an expected usage of the replicas of the second data resources at
the proxy receiver to an expected modification rate of the second data resources at the file
server, to determine a second relation between an available bandwidth of the WAN and the
first relation, and to determine, responsive to the second relation, when to cause the proxy

transmitter to retrieve a replica of the second data resource.

301. A product according to claim 296, wherein the instructions cause the first computer to:
determine an order of retrieval of the one or more second data resources responsive to a
predetermined retrieval policy,
retrieve replicas of the second data resources from the file server responsive to the
determined order of retrieval, and

convey the replicas over the WAN to the proxy receiver in the determined order.

302. A product according to claim 301, wherein the instructions cause the first computer to
retrieve the first data resources requested by the client with a higher priority than the second

data resources, in accordance with the retrieval policy.

303. A product according to claim 249, wherein the instructions cause the second computer
to intercept a write request submitted by the client for application to the data resource, and to
transmit the write request via the WAN to the proxy transmitter, and wherein the instructions

cause the first computer to pass the write request via the first LAN to the file server.

136

10

15

25

30

WO 03/012578 PCT/IL02/00627
304. A product according to claim 303, wheiein the instructions cause the second computer

to intercept multiple write requests submitted by the client for application to the data resource,
to aggregate the write requests in a write memory of the proxy receiver, and to transmit the
aggregated write requests together via the WAN from the write memory to the proxy

transmitter.

305. A product according to claim 304, wherein the data resource comprises multiple
separate data resource items, and wherein the instructions cause the second computer to
aggregate the write requests with respect to the multiple data resources items so as to transmit

the aggregated write requests together.

306. A product according to claim 303, wherein the instructions cause the first computer to
convey to the proxy receiver a write lease relating to the data resource, and wherein the
instructions cause the second computer to transmit the write request via the WAN to the proxy

transmitter upon expiration or revocation of the write lease..

307. A product according to claim 306, wherein the second computer is a primary second
computer among a plurality of second computers, and wherein the instructions cause the first
computer to revoke the write lease conveyed to the primary second computer if another second

computer among the plurality of second computers conducts a file system operation on the

data resource.

308. A product according to claim 306, wherein the instructions cause the first computer to

set an expiration period of the write lease responsive to a file type of the data resource.

309. A product according to claim 308, wherein the instructions cause the first computer to -
lock the data resource at the file server upon conveying the write lease, and to unlock the data

resource at the file server upon termination of the expiration period of the write lease.

310. A product according to claim 306, wherein the instructions cause the first computer to
check a connection status of the WAN, and to determine whether to maintain the write lease

responsive to the connection status.

311. A product according to claim 310, wherein the instructions cause the second computer
to receive and hold the write request from the client while the WAN is disconnected, and to
transmit the write request when the WAN is reconnected, so as to integrate the write request

with the data resource at the file server.

137

10

15

30

WO 03/012578 PCT/IL02/00627
312. A computer software product for enabling access to a data resource held on a file server

on a first local area network (LAN) by a client on a second LAN, the product comprising a
computer-readable medium, in which program instructions are stored, which instructions,
when read by a computer on the second LAN, cause the computer to operate as a proxy
receiver having a receiver cache, so as to intercept a request to perform a file operation on the
data resource submitted by the client on the second LAN, and to check the receiver cache to
determine whether valid information necessary to fulfill the request is already present in the
receiver cache, and responsive to the request and to determining that the valid information is
not present in the receiver cache, to transmit a message requesting the information via a wide
area network (WAN) to a proxy transmitter on the first LAN, thus causing the proxy -
transmitter to convey the information over the WAN transmitter to the computer, which fulfills

the request using the information.

313. A product according to claim 312, wherein the valid information comprises the data

resource.

314. A product according to claim 312, wherein the valid information comprises metadata

relating to the data resource.
315. A product according to claim 312, wherein the data resource is a block of a file.

316. A product according to claim 312, wherein the data resource comprises a page of

content encoded in a markup language.

317. A product according to claim 312, wherein the data resource comprises a file system

directory.

318. A product according to claim 312, wherein the file operation is a metadata-only file

operation, and wherein the information comprises metadata.

319. A product according to claim 312, wherein the request for the data resource is
submitted by the client using a call to a native network file system used by the file server, and
wherein the instructions cause the computer to transmit the message via the WAN using the

native network file system.

320. A product according to claim 312, wherein the instructions cause the computer to
intercept a further request to perform an operation on the data resource from another client on

the second LAN, to check the receiver cache to determine whether the valid information if

138

15

25

30

WO 03/012578 PCT/1L02/00627

already present in the receiver cache, and, responsive to the further request and to determining
that the valid information is present, to fulfill the further request to the other client using the

valid information.

321. A product according to claim 312, wherein the proxy transmitter comprises a
transmitter cache, and wherein the instructions further cause the proxy transmitter to check the
transmitter cache to determine whether the valid information necessary to fulfill the request is
already present in the transmitter cache and, if so, to convey the information from the

transmitter cache over the WAN to the proxy receiver.

322. A product according to claim 321, wherein the instructions cause the proxy transmitter
to fetch the information from the file server, upon determining that the valid information is not '
present in the transmitter cache, and to convey the fetched information over the WAN to the

proxy receiver.

323. A product according to claim 312, wherein the instructions cause the proxy transmitter
to convey to the proxy receiver metadata regarding the data resource on the file server, and the
instructions cause the second computer to present to the client a virtual directory of the file

server responsive to the metadata.

324. A product according to claim 323, wherein the instructions cause the proxy transmitter
to read the metadata from files held by the file server, and to convey the metadata to the proxy

receiver.

325. A computer software product for enabling access to a data resource, which is held on a
file server on a first local area network (LAN), by a client on a second LAN, the product
comprising a computer-readable medium, in which program instructions are stored, which
instructions, when read by a computer on the second LAN, cause the computer to operate as a
proxy receiver having a cache, so as to retrieve a replica of the data resource from the file
server over a wide area network (WAN) to the cache, to intercept a file system request for the
data resource submitted by the client over the second LAN, to check the cache to determine
whether the replica of the data resource is present in the cache and valid, and, responsive to the
file system request and to determining that the replica is present and valid, to serve the replica

of the data resource from the cache to the client over the second LAN.
326. A product according to claim 325, wherein the data resource comprises a file.

327. A product according to claim 325, wherein the data resource is a block of a file.
139

wn

10

15

20

WO 03/012578 PCT/IL02/00627
328. A product according to claim 325, wherein the data resource comprises a page of

content encoded in a markup language.

329. A product according to claim 325, wherein the data resource comprises a file system

directory.

-

330. A product according to claim 325, wherein the instructions cause the computer to

retrieve metadata from the file server to the cache.

331. A product according to claim 325, wherein the instructions cause the computer to

retrieve from the file server an access list applicable to the data resource.

332. A product according to claim 325, wherein the instructions cause the computer {0

retrieve from the file server a permission applicable to the data resource.

333. A product according to claim 325, wherein the request for the data resource is

submitted by the client using a call to a native network file system used by the file server.

334. A product according to claim 325, wherein the instructions cause the computer to
intercept a further request for the data resource from another client on the second LAN, to
check the cache to determine whether the replica of the data resource is present in the cache
and valid, and, responsive to the further request and to determining that the replica is présent
and valid, to serve the replica of the data resource from the cache to the other client over the

second LAN,

335. A product according to claim 325, wherein a further computer on the first LAN is
adapted to operate as a watchdog agent so as to detect a change made to the data resource by a
native client on the first LAN, and wherein the instructions cause the computer on the second .
LAN to retrieve the replica of the data resource from the file server again responsive to the

change.

336. A product according to claim 325, wherein the data resource is a file comprising a
plurality of file blocks, and wherein the instructions cause the computer to analyze a pattern of
access by the client to the file blocks, and to retrieve from the file server replicas of a portion

of the file blocks not yet requested by the client, responsive to the pattern.

337. A product according to claim 325, wherein the client is a first client among a plurality
of clients on the second LAN, and wherein the instructions cause the computer to serve the

replica both to the first client and to a second client among the plurality of clients.

140

n

10

15

20

WO 03/012578 PCT/IL02/00627
338. A product according to claim 325, wherein the instructions cause the computer to

periodically check whether the replica of the data resource in the cache is consistent with the
data resource held by the file server, and to delete the replica from the cache upon determining

that the replica is not consistent.

339. A product according to claim 325, wherein the instructions cause the computer to

delete the replica from the cache responsive to a predetermined cache removal policy.

340. A product according to claim 325, wherein the instructions cause the computer to
retrieve from the file server metadata regarding the data resource on the file server, and to

present to the client a virtual directory of the file server, responsive to the metadata.

341. A product according to claim 325, wherein the instructions cause the computer to -
intercept a lock request submitted by the client for a lock on the data resource, to transmit a
lock message via the WAN to the file server, requesting the lock, to receive over the WAN a

lock issued by the file server, and to serve the lock to the client.

342. A product according to claim 325, wherein the instructions cause the computer to
determine whether the data resource is held by the file server, and to cache a negative response
relating to the data resource for a certain period, when it is determined that the data resource is

not held by the file server.

343. A product according to claim 342, wherein the instructions cause the computer to
check whether the negative response relating to the requested data resource is present and not
expired, and, responsive to determining that the negative response is present and not expired,

to serve the negative response to the client over the second LAN.

344. A product according to claim 325, wherein the instructions cause the computer to '
intercept a file system request submitted by the client for an operation on the data resource,
and to send the file system request and a request for a lock via the WAN to the file server, and

to obtain the lock from the file server, responsive to the request for the lock.

345. A product according to claim 344, wherein the instructions cause the computer to issue
an unlock request to the file server with respect to the data resource, if the computer intercepts
no more file system requests from the client with respect to the data resource for a certain

period.

141

10

15

WO 03/012578 PCT/IL02/00627
346. A product according to claim 325, wherein the instructions cause the computer to

intercept the request for the data resource submitted in accordance with a first native network
file system of the client, to translate the request for the data resource from the first native
network file system to a second native network file system used by the file server, to request
the resource from the file server using the translated request, and to retrieve from the file

server the replica of the data source over the WAN.

347. A product according to claim 325, wherein the instructions cause the computer to
ascertain an available bandwidth of the WAN, and to retrieve from the file server the replica
using a portion of the bandwidth that is less than a total available bandwidth, responsive to a

management directive downloaded to the proxy receiver over the WAN.,

348. A product according to claim 325, wherein the instructions cause the computer to
request that the replica be conveyed again from the file server to the proxy receiver, upon

determining that the replica is not present or not valid.

349. A product according to claim 348, wherein the instructions cause the computer to

request that the replica be conveyed using a native file network system of the file server.

350. A product according to claim 325, wherein the instructions cause the computer to cause
the file server to encapsulate the replica in accordance with a WAN transport protocol, and to

retrieve the encapsulated replica from the file server.

351. A product according to claim 350, wherein the WAN transport protocol comprises a

Transmission Control Protocol (TCP).

352. A product according to claim 351, wherein the WAN transport protocol comprises a

Hypertext Transfer Protocol (HTTP).

353. A product according to claim 325, wherein the instructions cause the computer to
perform an operation on the replica of the data resource in the cache responsive to a

management directive downloaded to the computer over the WAN.

354. A product according to claim 353, wherein the directive is encoded in a tag-based
markup language, and wherein the instructions cause the computer to parse the markup

language and to perform the operation responsive to the directive.

355. A product according to claim 325, wherein the instructions cause the computer to

intercept a group of one or more requests for first data resources on the file server, to analyze a

142

10

15

20

25

30

WO 03/012578 PCT/IL02/00627
pattern of the group of requests, and to retrieve replicas of one or more second data resources

from the file server to the cache, responsive to the pattefn.

356. A product according to claim 355, wherein the instructions cause the computer to

retrieving the replicas of the one or more second data resources before the client requests the

second data resources.

357. A product according to claim 355, wherein the instructions cause the computer to
calculate for each of the second data resources on the file server a relation of an expected
usage of the replicas of the second data resources at the proxy receiver to an expected
modification rate of the second data resources at the file server, and to retrieve the replicas

i

from the file server to the cache, responsive to the calculation.

358. A product according to claim 355, wherein the instructions cause the computer to
analyze a relation of an available bandwidth of the WAN to an expected usage of the replicas
of the second data resources at the proxy receiver, and to determine, responsive to the relation,

when to retrieve a replica of the second data resource.

359. A product according to claim 355, wherein the instructions cause the computer to
analyze a first relation of an expected usage of the replicas of the second data resources at the
proxy receiver to an expected modification rate of the second data resources at the file server,
to determine a second relation of an available bandwidth of the WAN and the first relation,
and to determine, responsive to the second relation, when to retrieve a replica of the second

data resource.

360. A product according to claim 355, wherein the instructions cause the computer to
determine an order of retrieval of the second data resources responsive to a predetermined

retrieval policy, and to retrieve the replicas from the file server over the WAN in the

determined order.

361. A product according to claim 360, wherein the instructions cause the computer to
retrieve the first data resources requested by the client with a higher priority than the second

data resources, in accordance with the retrieval policy.

362. A product according to claim 325, wherein the instructions cause the computer to
intercept a write request submitted by the client for application to the data resource, and to

pass the write request over the WAN to the file server.

143

10

15

30

WO 03/012578 PCT/IL02/00627
363. A product according to claim 362, wherein the computer comprises a write memory,

and wherein the instructions cause the computer to intercept multiple write requests submitted
by the client for application to the data resource, to aggregate the write requests in the write

memory, and to pass the aggregated write requests over the WAN to the file server.

364. A product according to claim 363, wherein the data resource comprises multiple
separate data resource items, and wherein the instructions cause the computer to aggregate the
write requests with respect to the multiple data resources items so as to pass the aggregated

write requests together.

365. A computer software product for enabling access to data resources held on a file server
on a first local area network (LAN) by a client on a second LAN, the product comprising a
computer-readable medium, in which program instructions are stored, which instructions, -
when read by a first computer on the first LAN, cause the first computer to operate as a proxy
transmitter, so as to read metadata from the file server, and to transmit the metadata via a wide
area network (WAN) to the second LAN, and which instructions, when read by a second
computer on the second LAN, cause the second computer to operate as a proxy receiver, and to
construct a directory, based on the metadata, of the data resources on the file server, for use by

the client in accessing the data resources.

366. A product according to claim 365, wherein the instructions cause the first computer to
read updated metadata from the file server subsequent to construction of the directory by the
proxy receiver, and wherein the instructions cause the second computer to synchronize the

directory with the file server responsive to the updated metadata.

367. A product according to claim 365, wherein the metadata includes file attributes of the
data resources, which file attributes are stored in a directory object on the file server, and -
wherein the instructions cause the first computer to read the file attributes from the directory

object.

368. A product according to claim 365, wherein the data resources comprise files, and
wherein the metadata includes file attributes that are stored in the files, and wherein the

instructions cause the first computer to read the file attributes from the files.

369. A product according to claim 365, wherein the instructions cause the second computer

to intercept a file system request with respect to one of the data resources in the directory

144

15

30

WO 03/012578 PCT/IL02/00627
submitted by the client over the second LAN; and, responsive to the file system request, to

serve data from the one of the data resources to the client over the second LAN.

370. A product according to claim 369, wherein the instructions cause the second computer
to intercept a file operation request based on the metadata, to fulfill the file operation request,

and to convey a result of the fulfilled file operation request to the client over the second LAN.

371. A computer software product for enabling access by a client to a data resource held by
a file server, the product comprising a computer-readable medium in which program
instructions are stored, which instructions, when read by a computer, cause the computer to
submit a first request via a wide area network (WAN) for access to the data resource from one
or more sources able to receive the data resource from the file server, so as to provide the dafa
resource to the client, and wherein the instructions further cause the computer, upon receiving
a response from a first source among the one or more sources indicating that the first source
cannot provide a valid replica of the data resource, to cache a record indicating that the first
source is unable to provide the valid replica of the data resource, so that responsive to the
cached record, the computer avoids sending to the first source a second request for access to
the data resource, while submitting the second request to at least a second source among the

one or more sources.

372. A computer software product for enabling access to a data resource, which is held on a
file server on a first local area network (LAN), by a client on a second LAN, the product
comprising a computer-readable medium, in which program instructions are stored, which
instructions, when read by a first computer on the first LAN, cause the computer to operate as
a proxy transmitter, so as to retrieve a replica of the data resource from the file server over the
first LAN, and which instructions, when read by a second computer on the second LAN, cause
the second computer to operate as a file system driver, so as to intercept a request for the data
resource submitted by the client on the second LAN, and responsive to the request, to send a
message via a wide are network (WAN) to the proxy transmitter on the first LAN, requesting
the data resource, thus causing the proxy transmitter to convey the replica of the data resource
over the WAN to the file system driver, which serves the replica of the data resource to the

client over the second LAN.

145

PCT/1L02/00627

WO 03/012578

1/12

Amm

6¢
Arum nnnnn ~= JLLINSNVUL NAA

Amm Amw
q1g |
INAIT) A|m|_|V JAAIIOHY NJAA
4 NVI
omW

1 Ol

ge

ele
V NVI

81

PCT/1L02/00627

WO 03/012578

2/12

gy 22
292 a1 A %
m@vﬁ_m YTATTS %ﬁ%mx
114/ 90 11
> o ||V e - :
_ |
L |
5 AVAILVD i
0 NVI NYM ! eg¥ F
o2 > i O S
~N ~N\) L o)
INATT) Zogz INATT) Togo Ve i LWN L m@mmmﬁ E% m\vm
Ea 1/41)
! MALLINSNVAL
e W -
T 9
egs
a9y | %mm N e AVMALYD
q92 qez 0 62 —= NVA Qmw . vV NVI
el
YAANAS|) [dIANAS mﬁm\wmx [\ A
R B | INATT) 7 INAIT [
AL/ qAM AT LTSN q92 It
S K NiA
> o)
426 i 62)
| AVARLVD | | ¢ 9ld /
\\ g NVI NVA NVAL
q72 o . % 02
INATT) INATT) Q2
cqgy Tqgz

PCT/1L02/00627

WO 03/012578

AVMALYD
NVA

S
144

JIATIS

11
dLd/gan
%€ ST — %
A %ﬁ% mmeAE) | [INaD L
84 TORINOD asva || OV dL/dLH [
MIAYTS 3 T 1 H w DL i
dLIH |=—={IN0dSNYAL ; s [
NdA govy | o WIAVT [_ po || T8 T O
iy = vouvLavay [~—=|NOLVOIddy [o— Lt INATD)
¢y |[IALLINSNVHL SIN N a9
- _
05— 26—
2
9t g Y —
< 9 S
A INTOV INAIT) | [growq [© 1| SHATAS |
B4 TOLINOD SV |l o
TAAYAS B P|I w M T | Lraargas) ~
AKXV |
[e = NOLLVOITddY |-—— || 4HAYIS | gz
o7 Nouvidvay [7 NIl A!ﬂL s g,
\ ——
g7 e gz

¢ "Old

PCT/1L02/00627

WO 03/012578

4/12

AVMALVY

-\ NIA [
AVAALYD A% ; ¢6 | KVMALYD N
NAA // " \\ NJA ey
// 1 \\
S 914 N
| | TTOSNOD |, _| JAIVNVI|_|
: m\/\m TIOTAV N T SNOILVOITddY
]]
TE 067 e J
NVT NVM NVT
7L 1000L08d T000109d | T0D0104d T000L04d T090L04d 1000108d M> T4
NV L NVT NVM AL FAS] NVAL NVT P NV1
M B TR PPN 24 e
I dl dl s a dl dl dl
04 dan/dol | g, ~f dan/doL dol 0L 0L dolL, dan/ddol [~qy |dan/dol Mol
T90dSNVAL TI0dSNVAL
| s e mw»_mmm bisw 97 9P g E”Ew q_mwem»m _~0c m,%.mwm N
ge NOIIVIAVAV | \-S¥ SF~/"] NOLLVIJVQY . 82
MAAVT NOLLVOITAdV TAAVT NOILVOITddY
MAAIIDTY NAA AV A A SALLIASNVIL NAA

AN

v Ol

/\/%

WO 03/012578

5/12

FIG. 6

CLIENT REQUESTS OPERATION
ON RESOURCE R

é;

REQUEST INTERCEPTED BY
LOCAL VFN GATEWAY GW1

PCT/1L02/00627

106

\ /" |RESOURCE FROM REMOTE OWNER

VFN GATEWAY GW1 REQUESTS
VFN GATEWAY GWR

110

VFN GATEWAY GW2 FETCHES
R FROM LOCAL FILE SERVER

i

112~

VFN GATEWAY GW2 STORES
COPY OF R IN ITS CACHE

!

114~

VFN GATEWAY GW2 TRANSFERS
R TO VFN GATEWAY GW1 [°

x‘r

116~

VFN GATEWAY GW1 STORES
COPY OF R IN ITS CACHE

Jz

118~

VFN GATEWAY GW1 REPLIES

TO CLIENT REQUEST

WO 03/012578 PCT/1L02/00627

6/12

~84
~"82
8

" 82
~" 86

784

84~/

861
827

™~

—O: —

L
q %03
))

S\
L
LR
. 2 4

WO 03/012578 PCT/1L02/00627

7/12

FIG. 8

120 LEASE CLIENT REQUESTS
READ LEASE FROM LEASE
MANAGER OF RESOURCE OWNER

OTHER YES DENY | {28
LEASE CLIENT HOLDS ~ READ |~/
WRITE LEASE LEASE
9
NO
124 130
- <
LEASE GRANTED RESOURCE
ACCESS REQUIRES
VALIDATION
126 > WITH ORIGIN
I SERVER

RESOURCE ACCESS PROVIDED
BY LOCAL VFN RECEIVER

WO 03/012578

8/12

FIG. 9

PCT/1L02/00627

132
L~

LEASE CLIENT REQUESTS
WRITE LEASE FROM LEASE

MANAGER OF REMOTE OWNER

REVOKE ALL
READ AND WRITE

144
N/ YES

LEASES

REVOKED
LEASES WERE
ACTIVE

?

YES

145

NO

$

LEASE CLIENT HOLDS
READ LEASE
?

OTHER
LEASE CLIENT HOLDS
WRITE LEASE
?

DENY LEASE

146
—/

Y

REQUIRE
WRITE-THROUGH
TO ORIGINAL
SQURCE

— 148

1395 Ino

140
-
PERMIT
WRITE-BACK
CACHING

REVOKE
ALL READ
LEASES

138
9

142

WAIT FOR

ACKNOWLEDGEMENTS

OR EXPIRATIONS

LEASE GRANTED ~———

PCT/1L02/00627

WO 03/012578

9/12

Awm

LNATT)

= INdIT) ¥D0T [=

QOLINOW [-{ga1

SNIVIS YHOMLAN|| |~ger
YOLINOW

Snavis %ot [P

JUATADHY

N4A

06~

d4asn
NJA-NON

Te

AVMILYD

(44

NJA

28 o
Q
N |
HOLINOR
SOLVIS ¥001 [¢8T
= INAIT) XD01 |=
st |
YALIINSNVEL NAA
0Ol 914

Go

PCT/1L02/00627

WO 03/012578

10/12

_q---,}:---}::---- :---
L~ L~
911 | WAAVT IHOdSNVAL |~ ~ wAvI zaoasnval [~ 0
| |
04T w W 891
MLV HAAVT
- SECUREN SN — —
A~ P ouvinsavona_viva NowvInSavona _ vava~—| "'
9 H
4ARVT TO0INOD |, | _______] _ | amvi oo
29Tt | INATD) 0dd MIANAS DY |t 091
i
| ﬁ
gy IRV NOWVLAVAY = | WAAVT NOLLVIAVAY [~
¢l "9l

WO 03/012578 PCT/1L02/00627

11/12

178

21~ RPC MANAGEMENT
172

| | RPC REQUEST |

~ FACTORY — 162
174

G wemes) |

FIG. 13
176 | | | RPC PROTOCOL
- MANAGER
164 | _[DATA ENCAPSULATION
LAYER

166

21 —~| TRANSPORT IAYER

200 [GET RPC REQUEST FROM APPLICATION

202~ SET METHOD PARAMETERS
204~ SET LOCAL PROPERTIES

206~ SET REMOTE PROPERTIES

FIG. 14 504 ~ENCODE RPC REQUEST

210~y SEND RPC REQUEST

i

212~ WAIT FOR EPC RESPONSE

6

914~ BECEIVE RPC RESPONSE

!

216~ DECODE RPC RESPONSE

ain ~ REQRPAND TN APDITCATION |

WO 03/012578 PCT/IL02/00627

12/12
178
~—|_RPC MANAGEMENT |
180
| [rec SERVICE |
“T7| DISPATCHER — 160
182 RPC SERVICES
~ REGISTRY 168
FIG. 15 17 | | [Rec proocor
- MANAGER

164\ DATA ENCAPSULATION
LAYER

166
~"1 TRANSPORT LAYER

220~~~ WAIT FOR RPC REQUEST |

222~ RECEIVE RPC REQUEST|

FIG. 16
224~ DECODE RPC REQUEST |
242 i YES
'NO J
%26~ CREATE SERVICE REQUEST OBJECT | CENERATE
EMPTY RPC |/'244
928 ~~LOOK UP RPC SERVICE| RESPONSE
230~ GENERATE EMPTY RPC RESPONSE| i
CREATE
932 ~~ DISPATCH RPC SERVICE | R%Br%%% 246
VALUE

234~~PROCESS RPC REQUEST AND RESPONSE|

236—~SET RPC RETURN VALUES |

238~ ENCODE RPC RESPONSE |=

DAN . Al e e v aarmee

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

