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50 (57) Abstract: A video coder uses illumination compensation (IC) to generate a
non-square predictive block of a current prediction unit (PU) of a current coding
unit (CU) of a current picture of the video data. In doing so, the video coder sub-
samples a first set of reference samples such that a total number of reference
samples in the first sub-sampled set of reference samples is equal to 2™. Addi-
tionally, the video coder sub-samples a second set of view reference samples
such that a total number of reference samples in the second sub-sampled set of
reference samples is equal to 2™, The video coder determines a first IC parameter
based on the first sub-sampled set of reference samples and the second sub-
56 sampled set of reference samples. The video coder uses the first IC parameter to
determine a sample of the non-square predictive block.
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ILLUMINATION COMPENSATION WITH NON-SQUARE PREDICTIVE
BLOCKS IN VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Patent Application
62/260,103, filed November 25, 2015, and U.S. Provisional Patent Application
62/310,271, filed March 18, 2016, the entire content of each of which is incorporated

herein by reference.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and video decoding.

BACKGROUND
[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard, and extensions of such standards. The video devices may
transmit, receive, encode, decode, and/or store digital video information more
efficiently by implementing such video coding techniques.
[0004] Video coding techniques include spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Pictures may be referred to as
frames, and reference pictures may be referred to as reference frames.
[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. For further compression, the residual data may be

transformed from the pixel domain to a transform domain, resulting in residual
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transform coefficients, which then may be quantized. Entropy coding may be applied to

achieve even more compression.

SUMMARY
[0006] This disclosure is related to intra and inter prediction partitions, non-square
transforms, intra and inter coding modes for non-square blocks, and associated entropy
coding. Techniques of this disclosure may be used in the context of advanced video
codecs, such as extensions of HEVC or the next generation of video coding standards.
In one example, an Illumination Compensation process is adapted for use with non-
square prediction units (PUs). Particularly, techniques are described for determining
parameters used for IC in the presence of non-square prediction blocks.
[0007] In one example, this disclosure describes a method of decoding video data, the
method comprising: receiving, by a video decoder, a bitstream that comprises an
encoded representation of the video data; using, by the video decoder, illumination
compensation (IC) to generate a non-square predictive block of a current prediction unit
(PU) of a current coding unit (CU) of a current picture of the video data, wherein using
IC to generate the non-square predictive block comprises: determining, by the video
decoder, based on a vector of the current PU, a reference block in a reference picture,
the reference block and the non-square predictive block being the same size and shape;
sub-sampling, by the video decoder, a first set of reference samples to generate a first
sub-sampled set of reference samples with a first sub-sampling ratio, a total number of
reference samples in the first set of reference samples not being equal to 2™ and a total
number of reference samples in the first sub-sampled set of reference samples being
equal to 2™, wherein the first set of reference samples comprises samples outside the
non-square predictive block along a left side and a top side of the non-square predictive
block, and m is an integer; sub-sampling, by the video decoder, a second set of
reference samples to generate a second sub-sampled set of reference samples with a
second sub-sampling ratio, a total number of reference samples in the second set of
reference samples not being equal to 2™ and a total number of reference samples in the
second sub-sampled set of reference samples being equal to 2™, wherein the second set
of reference samples comprises samples outside the reference block along a left side and
a top side of the reference block; determining, by the video decoder, a first IC parameter
based on the total number of reference samples in the first sub-sampled set of reference

samples and the total number of reference samples in the second sub-sampled set of
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reference samples, the first sub-sampled set of reference samples, and the second sub-
sampled set of reference samples; and determining, by the video decoder, a sample of
the non-square predictive block based on the first IC parameter; and reconstructing, by
the video decoder, based on the non-square predictive block, a coding block of the
current CU.

[0008] In another example, this disclosure describes a method of encoding video data,
the method comprising: receiving, by a video encoder, the video data; using, by the
video encoder, illumination compensation (IC) to generate a non-square predictive
block of a current prediction unit (PU) of a current coding unit (CU) of a current picture
of the video data, wherein using IC to generate the non-square predictive block
comprises: determining, by the video encoder, based on a vector of the current PU, a
reference block in a reference picture, the reference block and the non-square predictive
block being the same size and shape; sub-sampling, by the video encoder, a first set of
reference samples to generate a first sub-sampled set of reference samples with a first
sub-sampling ratio, a total number of reference samples in the first set of reference
samples not being equal to 2™ and a total number of reference samples in the first sub-
sampled set of reference samples being equal to 2™, wherein the first set of reference
samples comprises samples outside the non-square predictive block along a left side and
a top side of the non-square predictive block, and m is an integer; sub-sampling, by the
video encoder, a second set of reference samples to generate a second sub-sampled set
of reference samples with a second sub-sampling ratio, a total number of reference
samples in the second set of reference samples not being equal to 2™ and a total number
of reference samples in the second sub-sampled set of reference samples being equal to
2™ wherein the second set of reference samples comprises samples outside the
reference block along a left side and a top side of the reference block; determining, by
the video encoder, a first IC parameter based on the total number of reference samples
in the first sub-sampled set of reference samples and the total number of reference
samples in the second sub-sampled set of reference samples, the first sub-sampled set of
reference samples, and the second sub-sampled set of reference samples; and
generating, by the video encoder, residual data based on the non-square predictive
block; and outputting, by the video encoder, a bitstream that includes data based on the
residual data.

[0009] In another example, this disclosure describes an apparatus for decoding video

data, the apparatus comprising: one or more storage media configured to store the video
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data; and a video decoder configured to: receive a bitstream that comprises an encoded
representation of the video data; use illumination compensation (IC) to generate a non-
square predictive block of a current prediction unit (PU) of a current coding unit (CU)
of a current picture of the video data, wherein the video decoder is configured such that,
as part of using IC to generate the non-square predictive block, the video decoder:
determines, based on a vector of the current PU, a reference block in a reference picture,
the reference block and the non-square predictive block being the same size and shape;
sub-samples a first set of reference samples to generate a first sub-sampled set of
reference samples with a first sub-sampling ratio, a total number of reference samples in
the first set of reference samples not being equal to 2™ and a total number of reference
samples in the first sub-sampled set of reference samples being equal to 2™, wherein the
first set of reference samples comprises samples outside the non-square predictive block
along a left side and a top side of the non-square predictive block, and m is an integer;
sub-samples a second set of reference samples to generate a second sub-sampled set of
reference samples with a second sub-sampling ratio, a total number of reference samples
in the second set of reference samples not being equal to 2™ and a total number of
reference samples in the second sub-sampled set of reference samples being equal to 2™,
wherein the second set of reference samples comprises samples outside the reference
block along a left side and a top side of the reference block; determines a first IC
parameter based on the total number of reference samples in the first sub-sampled set of
reference samples and the total number of reference samples in the second sub-sampled
set of reference samples, the first sub-sampled set of reference samples, and the second
sub-sampled set of reference samples; and determines a sample of the non-square
predictive block based on the first IC parameter; and reconstruct, based on the non-
square predictive block, a coding block of the current CU.

[0010] In another example, this disclosure describes an apparatus for encoding video
data, the apparatus comprising: one or more storage media configured to store video
data; and a video encoder configured to: use illumination compensation (IC) to generate
a non-square predictive block of a current prediction unit (PU) of a current coding unit
(CU) of a current picture of the video data, wherein the video encoder is configured
such that, as part of using IC to generate the non-square predictive block, the video
encoder: determines, based on a vector of the current PU, a reference block in a
reference picture, the reference block and the non-square predictive block being the

same size and shape; sub-samples a first set of reference samples to generate a first sub-
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sampled set of reference samples with a first sub-sampling ratio, a total number of
reference samples in the first set of reference samples not being equal to 2™ and a total
number of reference samples in the first sub-sampled set of reference samples being
equal to 2™, wherein the first set of reference samples comprises samples outside the
non-square predictive block along a left side and a top side of the non-square predictive
block, and m is an integer; sub-samples a second set of reference samples to generate a
second sub-sampled set of reference samples with a second sub-sampling ratio, a total
number of reference samples in the second set of reference samples not being equal to
2™ and a total number of reference samples in the second sub-sampled set of reference
samples being equal to 2", wherein the second set of reference samples comprises
samples outside the reference block along a left side and a top side of the reference
block; determines a first IC parameter based on the total number of reference samples in
the first sub-sampled set of reference samples and the total number of reference samples
in the second sub-sampled set of reference samples, the first sub-sampled set of
reference samples, and the second sub-sampled set of reference samples; and determines
a sample of the non-square predictive block based on the first IC parameter; and
generate residual data based on the non-square predictive block; and output a bitstream
that includes data based on the residual data.

[0011] In another example, this disclosure describes an apparatus for decoding video
data, the apparatus comprising: means for receiving a bitstream that comprises an
encoded representation of the video data; means for using illumination compensation
(IC) to generate a non-square predictive block of a current prediction unit (PU) of a
current coding unit (CU) of a current picture of the video data, wherein the means for
using IC to generate the non-square predictive block comprises: means for determining,
based on a vector of the current PU, a reference block in a reference picture, the
reference block and the non-square predictive block being the same size and shape;
means for sub-sampling a first set of reference samples to generate a first sub-sampled
set of reference samples with a first sub-sampling ratio, a total number of reference
samples in the first set of reference samples not being equal to 2™ and a total number of
reference samples in the first sub-sampled set of reference samples being equal to 2",
wherein the first set of reference samples comprises samples outside the non-square
predictive block along a left side and a top side of the non-square predictive block, and
m 18 an integer; means for sub-sampling a second set of reference samples to generate a

second sub-sampled set of reference samples with a second sub-sampling ratio, a total
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number of reference samples in the second set of reference samples not being equal to
2™ and a total number of reference samples in the second sub-sampled set of reference
samples being equal to 2™, wherein the second set of reference samples comprises
samples outside the reference block along a left side and a top side of the reference
block; means for determining a first IC parameter based on the total number of
reference samples in the first sub-sampled set of reference samples and the total number
of reference samples in the second sub-sampled set of reference samples, the first sub-
sampled set of reference samples, and the second sub-sampled set of reference samples;
and means for determining a sample of the non-square predictive block based on the
first IC parameter; and means for reconstructing, by the video decoder, based on the
non-square predictive block, a coding block of the current CU.

[0012] In another example, this disclosure describes an apparatus for encoding video
data, the apparatus comprising: means for receiving the video data; means for using
illumination compensation (IC) to generate a non-square predictive block of a current
prediction unit (PU) of a current coding unit (CU) of a current picture of the video data,
wherein the means for using IC to generate the non-square predictive block comprises:
means for determining, based on a vector of the current PU, a reference block in a
reference picture, the reference block and the non-square predictive block being the
same size and shape; means for sub-sampling a first set of reference samples to generate
a first sub-sampled set of reference samples with a first sub-sampling ratio, a total
number of reference samples in the first set of reference samples not being equal to 2™
and a total number of reference samples in the first sub-sampled set of reference
samples being equal to 2", wherein the first set of reference samples comprises samples
outside the non-square predictive block along a left side and a top side of the non-square
predictive block, and m is an integer; means for sub-sampling a second set of reference
samples to generate a second sub-sampled set of reference samples with a second sub-
sampling ratio, a total number of reference samples in the second set of reference
samples not being equal to 2™ and a total number of reference samples in the second
sub-sampled set of reference samples being equal to 2™, wherein the second set of
reference samples comprises samples outside the reference block along a left side and a
top side of the reference block; means for determining a first IC parameter based on the
total number of reference samples in the first sub-sampled set of reference samples and
the total number of reference samples in the second sub-sampled set of reference

samples, the first sub-sampled set of reference samples, and the second sub-sampled set
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of reference samples; and means for determining a sample of the non-square predictive
block based on the first IC parameter; and means for generating residual data based on
the non-square predictive block; and means for outputting a bitstream that includes data
based on the residual data.

[0013] In another example, this disclosure describes a computer-readable medium
having instructions stored thereon that, when executed, configure an apparatus for
decoding video data to: receive a bitstream that comprises an encoded representation of
the video data; use illumination compensation (IC) to generate a non-square predictive
block of a current prediction unit (PU) of a current coding unit (CU) of a current picture
of the video data, wherein the instructions configure the apparatus such that, as part of
using IC to generate the non-square predictive block, the apparatus: determines, based
on a vector of the current PU, a reference block in a reference picture, the reference
block and the non-square predictive block being the same size and shape; sub-samples a
first set of reference samples to generate a first sub-sampled set of reference samples
with a first sub-sampling ratio, a total number of reference samples in the first set of
reference samples not being equal to 2™ and a total number of reference samples in the
first sub-sampled set of reference samples being equal to 2™, wherein the first set of
reference samples comprises samples outside the non-square predictive block along a
left side and a top side of the non-square predictive block, and m is an integer; sub-
samples a second set of reference samples to generate a second sub-sampled set of
reference samples with a second sub-sampling ratio, a total number of reference samples
in the second set of reference samples not being equal to 2™ and a total number of
reference samples in the second sub-sampled set of reference samples being equal to 2™,
wherein the second set of reference samples comprises samples outside the reference
block along a left side and a top side of the reference block; determines a first IC
parameter based on the total number of reference samples in the first sub-sampled set of
reference samples and the total number of reference samples in the second sub-sampled
set of reference samples, the first sub-sampled set of reference samples, and the second
sub-sampled set of reference samples; and determines a sample of the non-square
predictive block based on the first IC parameter; and reconstruct, based on the non-
square predictive block, a coding block of the current CU.

[0014] In another example, this disclosure describes a computer-readable medium
having instructions stored thereon that, when executed, configure an apparatus for

encoding video data to: receive the video data; use illumination compensation (IC) to
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generate a non-square predictive block of a current prediction unit (PU) of a current
coding unit (CU) of a current picture of the video data, wherein the instructions, when
executed, configure the apparatus such that, as part of using IC to generate the non-
square predictive block, the apparatus: determines, based on a vector of the current PU,
a reference block in a reference picture, the reference block and the non-square
predictive block being the same size and shape; sub-samples a first set of reference
samples to generate a first sub-sampled set of reference samples with a first sub-
sampling ratio, a total number of reference samples in the first set of reference samples
not being equal to 2™ and a total number of reference samples in the first sub-sampled
set of reference samples being equal to 2™, wherein the first set of reference samples
comprises samples outside the non-square predictive block along a left side and a top
side of the non-square predictive block, and m is an integer; sub-samples a second set of
reference samples to generate a second sub-sampled set of reference samples with a
second sub-sampling ratio, a total number of reference samples in the second set of
reference samples not being equal to 2™ and a total number of reference samples in the
second sub-sampled set of reference samples being equal to 2™, wherein the second set
of reference samples comprises samples outside the reference block along a left side and
a top side of the reference block; determines a first IC parameter based on the total
number of reference samples in the first sub-sampled set of reference samples and the
total number of reference samples in the second sub-sampled set of reference samples,
the first sub-sampled set of reference samples, and the second sub-sampled set of
reference samples; and determines a sample of the non-square predictive block based on
the first IC parameter; and generates residual data based on the non-square predictive
block; and outputs a bitstream that includes data based on the residual data.

[0015] The details of one or more aspects of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the techniques described in this disclosure will be apparent from the

description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS
[0016] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system configured to implement techniques of the disclosure.
[0017] FIG. 2A is a conceptual diagram illustrating an example transform scheme based

on a residual quadtree in High Efficiency Video Coding (HEVC).
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[0018] FIG. 2B is a conceptual diagram illustrating a residual quadtree for the coding
unit of FIG. 2A.

[0019] FIG. 3 is a conceptual diagram illustrating an example coefficient scan based on
coefticient groups in HEVC.

[0020] FIG. 4 is a conceptual diagram illustrating an example of intra prediction for a
16x16 block.

[0021] FIG. 5 is a conceptual diagram illustrating an example of 35 intra prediction
modes defined in HEVC.

[0022] FIG. 6 is a conceptual diagram illustrating a planar mode defined in HEVC.
[0023] FIG. 7 is a conceptual diagram of an example angular mode defined in HEVC.
[0024] FIG. 8 is a conceptual diagram of partition modes for splitting a coding unit for
inter prediction in HEVC.

[0025] FIG. 9 is a conceptual diagram of short distance intra prediction (SDIP) unit
partitions.

[0026] FIG. 10 is a conceptual diagram of a 16x4 coefficient matrix scanned and
reorganized into an 8x8 matrix.

[0027] FIG. 11 is a conceptual diagram of 64 intra prediction modes.

[0028] FIG. 12A is a conceptual diagram of boundary filters for intra mode 34.

[0029] FIG. 12B is a conceptual diagram of boundary filters for intra mode 30-33.
[0030] FIG. 13 is a conceptual diagram illustrating example locations of samples used
for derivation of Linear Model (LM) parameters « and S.

[0031] FIG. 14 is a conceptual diagram illustrating an example of luma positions and
chroma positions for down-sampling samples of a reconstructed luma block of a current
prediction unit (PU).

[0032] FIG. 15 is a conceptual diagram illustrating an example of luma positions and
chroma positions for down-sampling samples of a luma block for generating a
predictive block.

[0033] FIG. 16 is a conceptual diagram illustrating an nRx2N prediction mode with an
NxN transform.

[0034] FIG. 17 is a conceptual diagram illustrating a non-square quadtree (NSQT) for
2NxN, 2NxnD, and 2N*nU prediction modes.

[0035] FIG. 18 is a conceptual diagram illustrating a NSQT for Nx2N, nR*x2N, and

nLx2N prediction modes.
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[0036] FIG. 19 illustrates neighboring pixels used for estimating parameters in an
[lumination Compensation (IC) model.

[0037] FIG. 20 is a conceptual diagram illustrating example neighboring pixels used to
estimate parameters in an IC model, in which a reference block of a current coding unit
is found by using a current prediction unit’s disparity or motion vector.

[0038] FIG. 21 is a conceptual diagram illustrating an example transform structure for a
partition size equal to 2NxN.

[0039] FIG. 22 is a conceptual diagram illustrating a transform structure for a partition
size equal to NxN/4(U), in accordance with a technique of this disclosure.

[0040] FIG. 23 is a conceptual diagram illustrating a transform structure for a partition
size equal to NxN/4(U), in accordance with a technique of this disclosure.

[0041] FIG. 24 is a block diagram illustrating an example video encoder that may
implement the techniques of this disclosure.

[0042] FIG. 25 is a block diagram illustrating an example video decoder that is
configured to implement the techniques of this disclosure.

[0043] FIG. 26 is a block diagram illustrating an example video encoder that supports
LM-based encoding in accordance with a technique of this disclosure.

[0044] FIG. 27 is a block diagram illustrating an example video decoder that supports
LM-based decoding in accordance with a technique of this disclosure.

[0045] FIG. 28 is a flowchart illustrating an example operation of a video encoder in
accordance with a LM-based coding technique of this disclosure.

[0046] FIG. 29 is a flowchart illustrating an example operation of a video decoder in
accordance with a LM-based coding technique of this disclosure.

[0047] FIG. 30 is a flowchart illustrating an example operation of a video encoder, in
accordance with a quantization technique of this disclosure.

[0048] FIG. 31 is a flowchart illustrating an example operation of a video decoder, in
accordance with a quantization technique of this disclosure.

[0049] FIG. 32 is a flowchart illustrating an example operation of a video encoder, in
accordance with a technique of this disclosure that uses IC.

[0050] FIG. 33 is a flowchart illustrating an example operation of a video decoder, in
accordance with a technique of this disclosure that uses IC.

[0051] FIG. 34 is a flowchart illustrating an example operation of a video encoder, in

accordance with a technique of this disclosure that uses a flexible residual tree.
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[0052] FIG. 35 is a flowchart illustrating an example operation of a video decoder, in

accordance with a technique of this disclosure that uses a flexible residual tree.

DETAILED DESCRIPTION
[0053] In general, this disclosure is related to intra and inter prediction partitions, non-
square transforms, intra and inter coding modes for non-square blocks, and associated
entropy coding. Techniques of this disclosure may be used in the context of advanced
video codecs, such as extensions of High Efficiency Video Coding (HEVC) or the next
generation of video coding standards.
[0054] In HEVC, a video coder (i.e., a video encoder or a video decoder) partitions a
coding unit (CU) of a picture into one or more prediction units (PUs). The video coder
uses intra prediction or inter prediction to generate predictive blocks for each PU of the
CU. The residual data of the CU represents differences between the predictive blocks
for the PUs of the CU and an original coding block of the CU. In instances where the
CU is intra predicted (i.e., the predictive blocks for the PUs of the CU are generated
using intra prediction), the residual data of the CU may be partitioned into one or more
square-shaped transform units (TUs). However, in instances where the CU 1is inter
predicted (i.e., the predictive blocks for the PUs of the CU are generated using inter
prediction), the residual data of the CU may be partitioned into one or more square or
non-square TUs. In this disclosure, references to shapes of units (e.g., CUs, PUs, TUs)
may refer to the shapes of corresponding blocks. Thus, a non-square PU may be
interpreted as referring to a non-square prediction block, a non-square TU may be
interpreted as referring to a non-square transform block, and vice versa. Furthermore, it
is noted that a prediction block need not be tied to the concept of a PU as PU is defined
in HEVC, but rather have the meaning of a block of samples on which a prediction (e.g.,
inter prediction, intra prediction) is performed. Similarly, a transform block need not be
tied to the concept of a TU as TU is defined in HEVC, but rather have the meaning of a
block of samples on which a transform is applied.
[0055] As described below, the introduction of non-square TUs may introduce certain
problems when used with particular coding tools.
[0056] For example, linear modeling (LM) prediction mode is a technique for reducing
cross-component correlation that was studied during development of HEVC. When a
video coder uses the LM prediction mode, the video coder predicts chroma samples of a

PU based on reconstructed luma samples of a PU of a CU. The chroma samples of a
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PU are chroma samples of a chroma predictive block of the PU. Example types of
chroma samples include Cb samples and Cr samples. The video coder may generate the
reconstructed luma samples of the PU by summing samples of a luma predictive block
of the PU with corresponding luma residual samples of the PU.

[0057] In particular, when a video coder uses the LM prediction mode, the video coder
may determine a predicted chroma sample of the PU at position (i, J) as a - reci(i,j) + B,
where reci(1,)) is a reconstructed luma sample of the PU at position (i, ) and a and f are
parameters. In some cases, such as in the 4:2:0 color format, one MxK chroma block
corresponds to an 2Mx2K luma block, in this case, rec.(i,)) indicates the value located
at (i, j) of a down-sampled version (with MxK) of the 2M=2K luma block. The video
coder determines the value of o and f based on the values of reconstructed luma
reference samples and reconstructed chroma reference samples. The reconstructed luma
reference samples and the reconstructed chroma reference samples are samples along
the top and left sides of the PU. The formulas for determining f involve a division
operation by the total number of reference samples (denoted /, which is equal to the
summation of M and K). In typical cases, M and K are equal and can be represented by
2! in HEVC, /is a positive integer value. So long as the prediction block is square, /is
equal to 2™, where m may vary for different prediction block sizes. Thus, instead of
performing a division operation to divide by /, the video coder may perform a right shift
operation when calculating the value of f. Right shift operations are significantly faster
and less complex to implement than division operations. In this disclosure, references
to sizes of various types of blocks, such as CUs, TUs, and PUs, refer to the sizes of
coding blocks, transform blocks, and prediction blocks of the CUs, TUs, and PUs,
respectively. Furthermore, in this disclosure, references to the sides of various types of
video coding units, such as CUs, TUs, and PUs, refer to sides of blocks (e.g., coding
blocks, transform blocks, prediction/predictive blocks) corresponding to the various
types of blocks.

[0058] However, if a luma block (e.g., a luma prediction block of a PU) is not square
(e.g., Mis equal to 12 and K is equal to 16), / is not always equal to 2. Hence, if the
luma block is not square, it may not be possible to use a right shift operation in place of
the division operation when calculating the value of #. Thus, the video coder may need
to implement a costly division operation to calculate the value of .

[0059] This disclosure describes a technique that may eliminate the need to implement a

division operation when calculating the value of £ when using the LM prediction mode
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for a non-square blocks. In some cases, even for a square PU wherein M is equal to K
but M is not a power of 2, the technique described here may also be applicable. In
accordance with an example of this technique, a video coder may reconstruct a set of
luma reference samples and a set of chroma reference samples. The set of luma
reference samples may comprise luma samples neighboring a top side of a non-square
luma block of a current picture of the video data and luma samples neighboring a left
side of the non-square luma block. The non-square luma block may be a luma
prediction block of a PU. Hence, the PU may be a considered a non-square PU. The set
of chroma reference samples may comprise chroma samples neighboring the top side of
a non-square chroma block and chroma samples neighboring the left side of the non-
square chroma block. The non-square chroma block may be a chroma prediction block
of the PU. Additionally, the video coder may reconstruct luma samples of the non-
square prediction block. Furthermore, the video coder may sub-sample the set of luma
reference samples such that a total number of luma reference samples in the set of luma
reference samples that neighbor a longer side of the non-square luma block is the same
as a total number of luma reference samples of the set of luma reference samples that
neighbor a shorter side of the non-square luma block. The video coder may determine a

first parameter equal to:

RO RN
IZx, - X, —Zx, -le
where / is a total number of reference samples in the set of the luma reference samples,
xi 1s a luma reference sample in the set of luma reference samples, and yiis a chroma
reference sample in the set of chroma reference samples. Additionally, the video coder

may determine a second parameter equal to:

ﬂ:(Zy,—a-le)/]

For each respective chroma sample of a predictive chroma block, the video coder may
determine a value of the respective chroma sample such that the value of the respective
chroma sample is equal to a multiplied by a respective reconstructed luma sample
corresponding to the respective chroma sample, plus f. The predictive chroma block
may be a predictive chroma block for the non-square PU. The video coder may
reconstruct, based in part on the predictive chroma block, a coding block.

[0060] In the example above, by sub-sampling the set of luma reference samples such

that the total number of luma reference samples that neighbor the longer side of the non-



WO 2017/091773 PCT/US2016/063677
14

square luma block is the same as the total number of luma reference samples that
neighbor a shorter side of the non-square luma block, the video coder may ensure that
the total number of reference samples in the set of luma reference samples is a power of
2. Hence, the video coder may be able to use a right shift operation instead of a division
operation when calculating the value of . Therefore, a video coder implementing the
example above may be less complex and/or faster than a video decoder forced to use a
division operation when calculating the value of £. It is noted however that a video
coder may perform the actions described in the example above using a division
operation instead of a shift operation, although such a video coder may not have the
advantages of using the shift operation instead of the division operation. In some
examples, the reference samples that neighbor a short or long side of the non-square
prediction block may be unavailable, in this case, there may be no need to perform the
sub-sampling process to available reference samples located at the other side.

[0061] In HEVC, a video encoder applies a transform to blocks of residual data (i.e.,
transform blocks) to convert the blocks of residual data into blocks of transform
coefficients. At a high level, the video encoder may generate a block of transform
coefficients (i.e., a transform coefficient block), by first generating a block of
intermediate values by applying a N-point 1-dimension DCT transform to columns of
the transform block. N is equal to the height and width of the transform block. The
video encoder may then generate the block of transform coefficients by applying the
same N-point 1-dimensional DCT transform to the rows of the block of intermediate
values. A video decoder inverses the transform in a similar way to recover the
transform block.

[0062] As one can see from the discussion above, the process of applying the transform
in HEVC is reliant on transform blocks being square. However, it may be desirable to
have non-square transform blocks. For instance, compression performance may be
reduced when the boundaries of transform blocks cross boundaries of inter or intra
predictive blocks. The use of non-square predictive blocks may be valuable to capture
objects that do not fall into square areas. Therefore, non-square predictive blocks and/or

non-square transforms may be useful in terms of coding performance improvement. A

transform matrix coefficient is defined with a denominator equal to VN if the transform

matrix coefficient is a N-point 1-dimension DCT transform. Previous to this disclosure,

the denominator v/N was considered as the normalization factor and implemented by a
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right shift in a quantization process. Taking a 2-dimension DCT transform into
consideration, for example, a KxL transform, the normalization factor would be (VK *
VL). If N is defined by the one satisfying the equation log2(N*N) = ((log2(K) +
log2(L)) >> 1) << 1), the ratio of utilized normalization factor (sqrt(N)*sqrt(N)) and the
real normalization factor (VK *+/L) would be 1/v/2. Directly applying a square
transform (e.g., a N-point transform applied to both columns and rows) to a non-square
transform block may change the total energy (i.e., the sum of squares of all transformed
coefficients after quantization) in the resulting transform coefficient block due to the
increased normalization factor, which results in reduced compression performance.

[0063] As described in detail elsewhere in this disclosure, for a transform block of size
KxL, the video encoder multiplying the transform coefficients by v2 when (log2(K) +

log2(L)) is odd, and the video decoder dividing the transform coefficients by v2 when
(log2(K) + log2(L)) is odd may address this problem.

[0064] 3D-HEVC is an extension of HEVC for 3-dimensional (3D) video data. 3D-
HEVC provides for multiple views of the same scene from different viewpoints. The
standardization efforts for 3D-HEVC include the standardization of a multi-view video
codec based on HEVC. In 3D-HEVC, inter-view prediction based on reconstructed
view components (i.e., reconstructed pictures) from different views is enabled.
Furthermore, 3D-HEVC implements inter-view motion prediction and inter-view
residual prediction.

[0065] The pictures of each view that represent the same time instance of video include
similar video content. However, the video content of views may be displaced spatially
relative to one another. In particular, the video content of the views may represent
different perspectives on the same scene. For example, a video block in a picture in a
first view may include video content that is similar to a video block in a picture in a
second view. In this example, the location of the video block in the picture in the first
view and the location of the video block in the picture in the second view may be
different. For example, there may be some displacement between the locations of the
video blocks in the different views.

[0066] A disparity vector for a video block provides a measure of this displacement.
For example, a video block of a picture in a first view may be associated with a
disparity vector that indicates the displacement of a corresponding video block in a

picture in a second view.
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[0067] Because of different camera settings or different distances from light sources,
pictures corresponding to the same time instance, but in different views, may contain
nearly the same image, but objects in one of the pictures may be brighter than
corresponding objects in the other picture. Illumination compensation (IC) is a
technique implemented in 3D-HEVC for compensating for such differences in
illumination between views when performing inter-view prediction. In 3D-HEVC, a
video coder determines a disparity vector for a current PU of a current CU of a current
picture. In addition, the video coder may calculate two IC parameters for the current
CU. This disclosure denotes the IC parameters as a and . Additionally, for each
respective sample of a luma predictive block of the current PU, the video coder

calculates:

pi, H=a*r(i+dv,j+dv+b)

In the equation above, p(i, j) is the respective sample of the luma predictive block of the
current PU, (7, ) are coordinates indicating a location of the respective sample relative
to a top-left corner of the current picture, dvx is a horizontal component of the disparity
vector for the current PU, dyy is a vertical component of the disparity vector for the
current PU, and a and b are the IC parameters.

[0068] As described in greater detail elsewhere in this disclosure, the formula defining
the IC parameter b in 3D-HEVC involves a division operation by the number of
reference samples neighboring the current CU’s top and left sides. In 3D-HEVC, the
number of reference samples neighboring the current CU’s top and left sides is always a
power of 2. Consequently, the division operation in the formula defining the IC
parameter b may be implemented using a right-shift operation. As described elsewhere
in this disclosure, a right-shift operation may be significantly less complicated to
implement than a division operation and may be significantly faster than implementing
a division operation.

[0069] For 2-dimension video coding, as described in H. Liu, “Local Illumination
Compensation,” ITU — Telecommunications Standardization Sector, Study Group 16
Question 6, Video Coding Experts Group (VCEG), 52" Meeting, 19-26 June 2015,
Warsaw, Poland, document VCEG-AZ06 (hereinafter, “VCEG-AZ067), Local
[lumination Compensation (LIC) is enabled or disabled adaptively for each inter-mode

coded coding unit (CU), and LIC is based on a linear model for illumination changes,
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using a scaling factor a and an offset 5. When LIC applies for a CU, for each PU/sub-
PU belonging to the CU, LIC parameters are derived in a way that uses subsampled (2:1
subsampling) neighboring samples of the CU and the corresponding pixels (identified
by motion information of the current PU/sub-PU) in the reference picture. For a CU
with size equal to NxN, the total number of boundary pixels used in parameter
calculation is N instead of 2N. An example is illustrated in FIG. 20. The LIC
parameters are derived and applied for each prediction direction separately. A least
square error method is employed to derive the parameters a and b based on the
abovementioned neighboring samples.

[0070] IC was only used when a CU only has a single PU. However, it may be
desirable to use IC in instances where a CU has multiple PUs, including instances where
the CU is partitioned into 2 or 3 PUs and/or the CU is partitioned asymmetrically. In
such instances, the number of reference samples neighboring the current CU’s top and
left sides may no longer be a power of 2. Therefore, it may not be possible to calculate
the IC parameter b using a right-shift operation. Rather, the video coder may need to
use a slower and more complicated division operation to calculate the IC parameter 5.
[0071] To address this issue, a video coder may sub-sample a first set of reference
samples to generate a first sub-sampled set of reference samples that includes a total of
2™ reference samples, where m is an integer. In this disclosure, the terms sub-sampling
indicates selection of one or more samples from a set of samples and down-sampling
indicates a filtering process wherein several reference samples may be used together to
derive a filtered sample. The set of reference samples may comprise samples outside
the non-square predictive block of a PU along a left side and a top side of the non-
square predictive block. Hence, the reference samples may also be referred to herein as
neighbor samples or neighboring samples. Additionally, the video coder may sub-
sample a second set of reference samples to generate a second sub-sampled set of
reference samples that includes a total of 2™ reference samples, where m is an integer.
The second set of reference samples may comprise samples outside a reference block
(e.g., an inter-view reference block or temporal reference block) along a left side and a
top side of the reference block. The video coder may then determine at least the IC
parameter b based on the first sub-sampled set of reference samples and the second sub-
sampled set of reference samples. Because the first sub-sampled set of reference
samples and the second sub-sampled set of reference samples each include 2™ samples,

the video coder may use the right shift operation to calculate the IC parameter b instead
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of a division operation. In this way, the techniques of this disclosure may decrease
complexity of the video coder and/or accelerate video coding.

[0072] As mentioned above, the introduction of non-square TUs may introduce certain
problems. For example, previous techniques of partitioning a CU into TUs followed a
quad-tree splitting pattern, even if the PUs of the CU are not square. In this disclosure,
a quad-tree may also be referred to as a quarter-tree. Always using a quad-tree splitting
pattern may result in sub-optimal video data compression performance, especially if the
quad-tree splitting pattern does not align the sides of the TUs with sides of the PUs of
the CU.

[0073] Hence, in accordance with a technique of this disclosure, a transform tree of a
CU is not restricted to the quad-tree splitting pattern. Rather, a node in the transform
tree may have two child nodes. Thus, in one example, a video decoder may determine a
CU is partitioned into TUs based on a tree structure. In this example, the video decoder
may determine that a node in the tree structure has exactly two child nodes in the tree
structure. In this example, a root node of the tree structure corresponds to a coding
block of the CU, each respective non-root node of the tree structure corresponds to a
respective block that is a partition of a block that corresponds to a parent node of the
respective non-root node, and leaf nodes of the tree structure correspond to the TUs of
the CU. In some examples, nodes in the transform tree may have 2 or 4 child nodes.
The flexibility of a node to have 2 or 4 child nodes may increase video coding
compression performance.

[0074] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques of this disclosure. As shown in FIG. 1, system 10
includes a source device 12 that provides encoded video data to be decoded at a later
time by a destination device 14. In particular, source device 12 provides the video data
to destination device 14 via a computer-readable medium 16. Source device 12 and
destination device 14 may comprise any of a wide range of devices, including desktop
computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone
handsets such as so-called “smart” phones, tablet computers, televisions, cameras,
display devices, digital media players, video gaming consoles, video streaming device,
or the like. In some cases, source device 12 and destination device 14 may be equipped
for wireless communication.

[0075] In the example of FIG. 1, source device 12 includes a video source 18, a storage

medium 19 configured to store video data, a video encoder 20, and an output interface
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22. Destination device 14 includes an input interface 28, a storage medium 29
configured to store video data, a video decoder 30, and a display device 32. In other
examples, a source device and a destination device may include other components or
arrangements. For example, source device 12 may receive video data from an external
video source, such as an external camera. Likewise, destination device 14 may interface
with an external display device, rather than including an integrated display device.
[0076] The illustrated system 10 of FIG. 1 is merely one example. Techniques for
processing video data may be performed by any digital video encoding and/or decoding
device. Although generally the techniques of this disclosure are performed by a video
encoding device, the techniques may also be performed by a video encoder/decoder,
typically referred to as a “CODEC.” Source device 12 and destination device 14 are
merely examples of such coding devices in which source device 12 generates coded
video data for transmission to destination device 14. In some examples, devices 12, 14
may operate in a substantially symmetrical manner such that each of devices 12, 14
include video encoding and decoding components. Hence, system 10 may support one-
way or two-way video transmission between video devices 12, 14, e.g., for video
streaming, video playback, video broadcasting, or video telephony.

[0077] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video data from a video content provider. As a further
alternative, video source 18 may generate computer graphics-based data as the source
video, or a combination of live video, archived video, and computer-generated video. In
some cases, source device 12 and destination device 14 may form so-called camera
phones or video phones. Source device 12 may comprise one or more data storage
media (e.g., storage media 19) configured to store the video data. The techniques
described in this disclosure may be applicable to video coding in general, and may be
applied to wireless and/or wired applications. In each case, the captured, pre-captured,
or computer-generated video may be encoded by video encoder 20. Output interface 22
may then output the encoded video information onto computer-readable medium 16.
[0078] Output interface 22 may comprise various types of components or devices. For
example, output interface 22 may comprise a wireless transmitter, a modem, a wired
networking component (e.g., an Ethernet card), or another physical component. In
examples where output interface 22 comprises a wireless receiver, output interface 22

may be configured to receive data, such as the bitstream, modulated according to a
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cellular communication standard, such as 4G, 4G-LTE, LTE Advanced, 5G, and the like.
In some examples where output interface 22 comprises a wireless receiver, output
interface 22 may be configured to receive data, such as the bitstream, modulated
according to other wireless standards, such as an IEEE 802.11 specification, an IEEE
802.15 specification (e.g., ZigBee ™), a Bluetooth ™ standard, and the like. In some
examples, circuitry of output interface 22 may be integrated into circuitry of video
encoder 20 and/or other components of source device 12. For example, video encoder
20 and output interface 22 may be parts of a system on a chip (SoC). The SoC may also
include other components, such as a general purpose microprocessor, a graphics
processing unit, and so on.

[0079] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In one example, computer-readable medium 16 may comprise
a communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate
communication from source device 12 to destination device 14. Destination device 14
may comprise one or more data storage media configured to store encoded video data
and/or decoded video data.

[0080] In some examples, output interface 22 may output encoded data to a storage
device. Similarly, input interface 28 may access encoded data from the storage device.
The storage device may include any of a variety of distributed or locally accessed data
storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, flash memory,
volatile or non-volatile memory, or any other suitable digital storage media for storing
encoded video data. In a further example, the storage device may correspond to a file
server or another intermediate storage device that may store the encoded video

generated by source device 12. Destination device 14 may access stored video data
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from the storage device via streaming or download. The file server may be any type of
server capable of storing encoded video data and transmitting that encoded video data to
the destination device 14. Example file servers include a web server (e.g., for a
website), a file transfer protocol (FTP) server, network attached storage (NAS) devices,
or a local disk drive. Destination device 14 may access the encoded video data through
any standard data connection, including an Internet connection. This may include a
wireless channel (e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable
modem, etc.), or a combination of both that is suitable for accessing encoded video data
stored on a file server. The transmission of encoded video data from the storage device
may be a streaming transmission, a download transmission, or a combination thereof.
[0081] The techniques may be applied to video coding in support of any of a variety of
multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, satellite television transmissions, Internet streaming video transmissions,
such as dynamic adaptive streaming over HTTP (DASH), digital video that is encoded
onto a data storage medium, decoding of digital video stored on a data storage medium,
or other applications. In some examples, system 10 may be configured to support one-
way or two-way video transmission to support applications such as video streaming,
video playback, video broadcasting, and/or video telephony.

[0082] Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission, or storage media (that is, non-transitory
storage media), such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a
computing device of a medium production facility, such as a disc stamping facility, may
receive encoded video data from source device 12 and produce a disc containing the
encoded video data. Therefore, computer-readable medium 16 may be understood to
include one or more computer-readable media of various forms.

[0083] Input interface 28 of destination device 14 receives information from computer-
readable medium 16. Input interface 28 may comprise various types of components or
devices. For example, input interface 28 may comprise a wireless receiver, a modem, a
wired networking component (e.g., an Ethernet card), or another physical component.
In examples where input interface 28 comprises a wireless receiver, input interface 28

may be configured to receive data, such as the bitstream, modulated according to a
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cellular communication standard, such as 4G, 4G-LTE, LTE Advanced, 5G, and the like.
In some examples where input interface 28 comprises a wireless receiver, input
interface 28 may be configured to receive data, such as the bitstream, modulated
according to other wireless standards, such as an IEEE 802.11 specification, an IEEE
802.15 specification (e.g., ZigBee ™), a Bluetooth ™ standard, and the like. In some
examples, circuitry of input interface 28 may be integrated into circuitry of video
decoder 30 and/or other components of destination device 14. For example, video
decoder 30 and input interface 28 may be parts of a system on a chip (SoC). The SoC
may also include other components, such as a general purpose microprocessor, a
graphics processing unit, and so on.

[0084] The information of computer-readable medium 16 may include syntax
information defined by video encoder 20, which is also used by video decoder 30, that
includes syntax elements that describe characteristics and/or processing of blocks and
other coded units, e.g., groups of pictures (GOPs). Display device 32 may display the
decoded video data to a user. For instance, destination device 14 or video decoder 30
may output, for display by display device 32, reconstructed pictures of the video data.
Such reconstructed pictures may comprise reconstructed blocks. Display device 32 may
comprise any of a variety of display devices such as a cathode ray tube (CRT), a liquid
crystal display (LCD), a plasma display, an organic light emitting diode (OLED)
display, or another type of display device.

[0085] Video encoder 20 and video decoder unit 30 each may be implemented as any of
a variety of suitable encoder circuitry, such as one or more microprocessors, digital
signal processors (DSPs), application specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs), discrete logic, software, hardware, firmware or any
combinations thereof. When the techniques are implemented partially in software, a
device may store instructions for the software in a suitable, non-transitory computer-
readable medium and execute the instructions in hardware using one or more processors
to perform the techniques of this disclosure. Each of video encoder 20 and video
decoder 30 may be included in one or more encoders or decoders, either of which may
be integrated as part of a combined encoder/decoder (CODEC) in a respective device.
[0086] In some examples, video encoder 20 and video decoder 30 may operate
according to a video coding standard. Example video coding standards include, but are
not limited to, ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC
MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also
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known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC) and
Multi-view Video Coding (MVC) extensions. In addition, a new video coding standard,
namely High Efficiency Video Coding (HEVC), has recently been developed by the
Joint Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts
Group (VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). Wang et al,
“High Efficiency Video Coding (HEVC) Defect Report,” Joint Collaborative Team in
Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 14
Meeting, Vienna, AT, 25 July — 2 August 2013, document JCTVC-N1003 vl
(hereinafter, “JCTVC-N1003") is a draft of the HEVC standard. JCTVC-N1003 is
available from http://phenix.int-

evry fr/jct/doc_end user/documents/14 Vienna/wgl1/JCTVC-N1003-v1.zip.

[0087] In HEVC and other video coding specifications, a video sequence typically
includes a series of pictures. Pictures may also be referred to as “frames.” A picture
may include one or more sample arrays. Each respective sample array of a picture may
comprise an array of samples for a respective color component. In HEVC, a picture
may include three sample arrays, denoted Si, Scb, and Scr. Sv is a two-dimensional
array (i.e., a block) of luma samples. Scv is a two-dimensional array of Cb chroma
samples. Scris a two-dimensional array of Cr chroma samples. In other instances, a
picture may be monochrome and may only include an array of luma samples.

[0088] As part of encoding video data, video encoder 20 may encode pictures of the
video data. In other words, video encoder 20 may generate encoded representations of
the pictures of the video data. An encoded representation of a picture may be referred to
as a “coded picture” or an “encoded picture.”

[0089] To generate an encoded representation of a picture, video encoder 20 may
generate a set of coding tree units (CTUs). Each of the CTUs may comprise a CTB of
luma samples, two corresponding CTBs of chroma samples, and syntax structures used
to code the samples of the CTBs. In monochrome pictures or pictures having three
separate color planes, a CTU may comprise a single CTB and syntax structures used to
code the samples of the CTB. A CTB may be an NxN block of samples. A CTU may
also be referred to as a “tree block” or a “largest coding unit” (LCU). A syntax
structure may be defined as zero or more syntax elements present together in the
bitstream in a specified order. A slice may include an integer number of CTUs ordered

consecutively in a raster scan order.



WO 2017/091773 PCT/US2016/063677
24

[0090] This disclosure may use the term “video unit” or “video block™ or “block” to
refer to one or more sample blocks and syntax structures used to code samples of the
one or more blocks of samples. Example types of video units may include CTUs, CUs,
PUs, transform units (TUs), macroblocks, macroblock partitions, and so on. In some
contexts, discussion of PUs may be interchanged with discussion of macroblocks or
macroblock partitions.

[0091] In HEVC, to generate a coded CTU, video encoder 20 may recursively perform
quad-tree partitioning on the coding tree blocks of a CTU to divide the coding tree
blocks into coding blocks, hence the name “coding tree units.” A coding block is an
NxN block of samples. A CU may comprise a coding block of luma samples and two
corresponding coding blocks of chroma samples of a picture that has a luma sample
array, a Cb sample array, and a Cr sample array, and syntax structures used to code the
samples of the coding blocks. In monochrome pictures or pictures having three separate
color planes, a CU may comprise a single coding block and syntax structures used to
code the samples of the coding block.

[0092] Video encoder 20 may encode CUs of a picture of the video data. As part of
encoding a CU, video encoder 20 may partition a coding block of the CU into one or
more prediction blocks. A prediction block is a rectangular (i.e., square or non-square)
block of samples on which the same prediction is applied. A prediction unit (PU) may
comprise a prediction block of luma samples, two corresponding prediction blocks of
chroma samples, and syntax structures used to predict the prediction blocks. In
monochrome pictures or pictures having three separate color planes, a PU may comprise
a single prediction block and syntax structures used to predict the prediction block.
Video encoder 20 may generate predictive blocks (e.g., luma, Cb, and Cr predictive
blocks) for prediction blocks (e.g., luma, Cb, and Cr prediction blocks) of each PU of
the CU.

[0093] Thus, in general, a PU may comprise one or more prediction blocks of samples
and syntax structures used to predict the prediction blocks. In some example codecs,
such as HEVC, a PU may be a sub-unit of a CU. In other example codecs, there may be
no distinction between a CU and a PU. In some examples, other terms may be used for
PU.

[0094] Video encoder 20 may use intra prediction or inter prediction to generate a
predictive block of a PU. If video encoder 20 uses intra prediction to generate a

predictive block of a PU, video encoder 20 may generate the predictive block of the PU
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based on decoded samples of the picture that includes the PU. If video encoder 20 uses
inter prediction to generate a predictive block of a PU of a current picture, video
encoder 20 may generate the predictive block of the PU based on decoded samples of a
reference picture (i.e., a picture other than the current picture).

[0095] After video encoder 20 generates predictive blocks (e.g., luma, Cb, and Cr
predictive blocks) for one or more PUs of a CU, video encoder 20 may generate one or
more residual blocks for the CU. For instance, video encoder 20 may generate a luma
residual block for the CU. Each sample in the CU’s luma residual block indicates a
difference between a luma sample in one of the CU’s predictive luma blocks and a
corresponding sample in the CU’s original luma coding block. In addition, video
encoder 20 may generate a Cb residual block for the CU. Each sample in the Cb
residual block of a CU may indicate a difference between a Cb sample in one of the
CU’s predictive Cb blocks and a corresponding sample in the CU’s original Cb coding
block. Video encoder 20 may also generate a Cr residual block for the CU. Each
sample in the CU’s Cr residual block may indicate a difference between a Cr sample in
one of the CU’s predictive Cr blocks and a corresponding sample in the CU’s original
Cr coding block.

[0096] To reiterate, in HEVC, the largest coding unit in a slice is called a CTU. Each
picture is divided into CTUs, which may be coded in raster scan order for a specific tile
or slice. A CTU is a square block and represents the root of a quadtree, i.e., the coding
tree. A CTU contains a quad-tree, the nodes of which are CUs. In some instances, the
size of a CTU can range from 16x16 to 64x64 in the HEVC main profile (although
technically 8x8 CTU sizes can be supported). In some instances, the CTU size may
range from 8x8 to 64x64 luma samples, but typically 64x64 is used. Each CTU can be
further split into smaller square blocks called CUs. A CU can be the same size of a
CTU, although a CU can be as small as 8x8. Each CU is coded with one mode. For
instance, a CU may be inter coded or intra coded. When a CU is inter coded, the CU
may be further partitioned into 2 or 4 PUs or may become just one PU when further
partition does not apply. When two PUs are present in one CU, the two PUs can be half
size rectangles or two rectangle sizes with %4 or % size of the CU. When a CU is inter
coded, one set of motion information is present for each PU. In addition, each PU is
coded with a unique inter-prediction mode to derive the set of motion information. In

other words, each PU may have its own set of motion information.
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[0097] Furthermore, video encoder 20 may decompose the residual blocks of a CU into
one or more transform blocks. For instance, video encoder 20 may use quad-tree
partitioning to decompose the residual blocks (e.g., the luma, Cb, and Cr residual
blocks) of a CU into one or more transform blocks (e.g., luma, Cb, and Cr transform
blocks). A transform block is a rectangular (e.g., square or non-square) block of
samples on which the same transform is applied.

[0098] A transform unit (TU) of a CU may comprise a transform block of luma
samples, two corresponding transform blocks of chroma samples, and syntax structures
used to transform the transform block samples. Thus, each TU of a CU may have a
luma transform block, a Cb transform block, and a Cr transform block. The luma
transform block of the TU may be a sub-block of the CU’s luma residual block. The Cb
transform block may be a sub-block of the CU’s Cb residual block. The Cr transform
block may be a sub-block of the CU’s Cr residual block. In monochrome pictures or
pictures having three separate color planes, a TU may comprise a single transform block
and syntax structures used to transform the samples of the transform block.

[0099] Video encoder 20 may apply one or more transforms to a transform block of a
TU to generate a coefficient block for the TU. For instance, video encoder 20 may
apply one or more transforms to a luma transform block of a TU to generate a luma
coefficient block for the TU. A coefficient block may be a two-dimensional array of
transform coefficients. A transform coefficient may be a scalar quantity. In some
examples, the one or more transforms convert the transform block from a pixel domain
to a frequency domain.

[0100] In some examples, video encoder 20 does not apply the transform to the
transform block. In other words, video encoder 20 skips application of the transforms to
the transform block. In such examples, video encoder 20 may treat residual sample
values in the same way as transform coefficients. Thus, in examples where video
encoder 20 skips application of the transforms, the following discussion of transform
coefficients and coefficient blocks may be applicable to transform blocks of residual
samples.

[0101] After generating a coefficient block (e.g., a luma coefficient block, a Cb
coefficient block or a Cr coefficient block), video encoder 20 may quantize the
coefficient block. In some examples, video encoder 20 does not quantize the coefficient
block. In examples where video encoder 20 does not apply the transform to the

transform block, video encoder 20 may or may not quantize residual samples of the
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transform block. Quantization generally refers to a process in which transform
coefticients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. After video encoder 20 quantizes
a coefficient block, video encoder 20 may entropy encode syntax elements indicating
the quantized transform coefficients or residual samples. For example, video encoder
20 may perform Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax
elements indicating the quantized transform coefficients or residual samples. In some
examples, video encoder 20 uses palette-based coding to encode CUs. Thus, an
encoded block (e.g., an encoded CU) may include the entropy encoded syntax elements
indicating the quantized transform coefficients.

[0102] Video encoder 20 may output a bitstream that includes a sequence of bits that
forms a representation of encoded pictures of the video data and associated data (i.e.,
data associated with the encoded pictures). Thus, the bitstream comprises an encoded
representation of the video data. The bitstream may comprise a sequence of network
abstraction layer (NAL) units. A NAL unit is a syntax structure containing an
indication of the type of data in the NAL unit and bytes containing that data in the form
of a raw byte sequence payload (RBSP) interspersed as necessary with emulation
prevention bits. Each of the NAL units may include a NAL unit header and
encapsulates a RBSP. The NAL unit header may include a syntax element indicating a
NAL unit type code. The NAL unit type code specified by the NAL unit header of a
NAL unit indicates the type of the NAL unit. A RBSP may be a syntax structure
containing an integer number of bytes that are encapsulated within a NAL unit. In some
instances, an RBSP includes zero bits.

[0103] Video decoder 30 may receive a bitstream generated by video encoder 20. In
addition, video decoder 30 may parse the bitstream to obtain syntax elements from the
bitstream. Video decoder 30 may reconstruct pictures of the video data based at least in
part on the syntax elements obtained from the bitstream. The process to reconstruct
pictures of the video data may be generally reciprocal to the process performed by video
encoder 20 to encode the pictures. For instance, to reconstruct a picture of the video
data, video decoder 30 may decode blocks, such as CUs, of the picture based on syntax
elements obtained from the bitstream and/or data from external sources.

[0104] In some examples, as part of decoding a current CU of the picture, video
decoder 30 may use inter prediction or intra prediction to generate one or more

predictive blocks for each PU of the current CU. When using inter prediction, video
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decoder 30 may use motion vectors of PUs to determine predictive blocks for the PUs
of a current CU. In addition, video decoder 30 may, in some examples, inverse quantize
coefficient blocks of TUs of the current CU. Video decoder 30 may, in some examples,
perform inverse transforms on the coefticient blocks to reconstruct transform blocks of
the TUs of the current CU. Video decoder 30 may reconstruct the coding blocks of the
current CU by adding the samples of the predictive blocks for PUs of the current CU to
corresponding decoded samples (e.g., residual samples) of the transform blocks of the
TUs of the current CU. By reconstructing the coding blocks for each CU of a picture,
video decoder 30 may reconstruct the picture.

[0105] Moreover, in HEVC, the option to partition a picture into rectangular regions
called tiles has been specified. The main purpose of tiles is to increase the capability for
parallel processing rather than provide error resilience. Tiles are independently
decodable regions of a picture that are encoded with some shared header information.
Tiles can additionally be used for the purpose of spatial random access to local regions
of video pictures. A typical tile configuration of a picture consists of segmenting the
picture into rectangular regions with approximately equal numbers of CTUs in each tile.
Tiles provide parallelism at a more coarse level of granularity (picture/subpicture), and
no sophisticated synchronization of threads is necessary for their use.

[0106] To adapt the various characteristics of the residual blocks, a transform coding
structure using the residual quadtree (RQT) is applied in HEVC, which is briefly
described in Marpe et al., “Transform Coding Using the Residual Quadtree (RQT),”
Fraunhofer Heinrich Hertz Institute, available at http://www hhi.fraunhofer.de/fields-of-
competence/image-processing/researchgroups/ image-video-coding/hevc-high-
efficiency-video-coding/transform-coding-using-the-residual-quadtree-rqt.html. After
the CTU is split recursively into CUs, each CU is further divided into PUs and TUs.
The partitioning of a CU into TUs is carried out recursively based on a quadtree
approach, therefore the residual signal of each CU is coded by a tree structure, namely,
the residual quadtree (RQT). The RQT allows TU sizes from 4x4 up to 32x32 luma
samples. FIG. 2A and FIG. 2B are conceptual diagrams illustrating an example
transform scheme based on a residual quadtree in HEVC. Particularly, FIG. 2A shows
an example where a CU 40 includes ten TUs, labeled with the letters a to j, and the
corresponding block partitioning. FIG. 2B is a conceptual diagram illustrating an RQT
for the CU of FIG. 2A.
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[0107] A video coder may process the individual TUs in a depth-first tree traversal
order, which is illustrated in FIG. 2A in alphabetical order, which follows a recursive Z-
scan with depth-first traversal. The quadtree approach enables the adaptation of the
transform to the varying space-frequency characteristics of the residual signal.
Typically, larger transform block sizes, which have larger spatial support, provide better
frequency resolution. However, smaller transform block sizes, which have smaller
spatial support, provide better spatial resolution. The trade-off between the two, spatial
and frequency resolutions, is chosen by an encoder mode decision, for example based
on rate-distortion optimization technique. The rate-distortion optimization technique
calculates a weighted sum of coding bits and reconstruction distortion, i.e., the rate-
distortion cost, for each coding mode (e.g., a specific RQT splitting structure), and
selects the coding mode with least rate-distortion cost as the best mode.

[0108] Three parameters are defined in the RQT: the maximum depth of the tree, the
minimum allowed transform size and the maximum allowed transform size. In HEVC,
the minimum and maximum transform sizes can vary within the range from 4x4 to
32x32 samples, which correspond to the supported block transforms mentioned in the
previous paragraph. The maximum allowed depth of the RQT restricts the number of
TUs. A maximum depth equal to zero means that a CTU cannot be split any further if
each included TU reaches the maximum allowed transform size, e.g., 32x32. In HEVC,
larger size transforms, e.g., 64x64 transtform were not adopted mainly due to their
limited benefit considering and relatively high complexity for relatively smaller
resolution videos.

[0109] In HEVC, regardless of the size of a TU, the residual of the TU (e.g., a
coefficient block of the TU) is coded with non-overlapped coefficient groups (CG).
Each of the CGs contains the coefficients of a 4x4 block of the TU. For example, a
32x32 TU has a total of 64 CGs, and a 16x16 TU has a total of 16 CGs. The CGs of a
TU are coded according to a certain pre-defined scan order. When coding each CG, the
coefficients inside the current CG are scanned and coded according to a certain pre-
defined scan order for 4x4 block. FIG. 3 is a conceptual diagram illustrating an
example coefficient scan based on coefficient groups in HEVC. Particularly, FIG. 3
illustrates the coefficient scan for an 8x8 TU containing four 4x4 CGs.

[0110] As noted above, video encoder 20 and video decoder 30 may perform intra
prediction to generate a predictive block. Intra prediction performs image block

prediction using its spatially neighboring reconstructed image samples. FIG. 4isa
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conceptual diagram illustrating an example of intra prediction for a 16x16 block. In
FIG. 4, a block square contains a 16x16 block 50. In FIG. 4, block 50 is predicted by
the above and left neighboring reconstructed samples 52, 54 (i.e., reference samples)
along a selected prediction direction. In FIG. 4, the samples outside the black box are
the reference samples. The white arrow in FIG. 4 indicates the selected prediction
direction.

[0111] FIG. 5 is a conceptual diagram illustrating an example of 35 intra prediction
modes defined in HEVC. As indicated in FIG. 5, HEVC defines 35 modes (including
the Planar mode, DC mode and 33 angular modes) for the intra prediction of a luma
block. The 35 modes of the intra prediction defined in HEVC are indexed as shown in
the table below:

Table 1 — Specification of intra prediction mode and associated names

Intra prediction mode Associated name
0 INTRA PLANAR
1 INTRA _DC
2.34 INTRA_ANGULAR2.INTRA ANGULAR34

[0112] HEVC intra coding supports two types of PU division, 2Nx2N and NxN.
2Nx2N splits a CU into one PU. In other words, the CU has one PU with the same size
as the CU. NxN splits a CU into four equal-size PUs. However, the four regions
specified by the partitioning type PART NxN can be also represented by four smaller
CUs with the partitioning type PART 2Nx2N. Due to this, HEVC allows an intra CU
to be split into four PUs only at the minimum CU size.

[0113] FIG. 6 is a conceptual diagram illustrating a planar mode defined in HEVC.
Planar mode is typically the most frequently used intra prediction mode. To perform
Planar prediction for an NxN block, for each sample pxy located at (x, y), the prediction
value is calculated using four specific neighboring reconstructed samples, i.e., reference
samples, with a bilinear filter. The four reference samples include a top-right
reconstructed sample TR, a bottom-left reconstructed sample BL, and two reconstructed
samples 60, 62 located in the same column (rx-1) and row (r-1y) as the current sample.

The planar mode can be formulated as below:
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py=((N=1-x)L+(x+1)TR+(N-1-y) T+ (y+1)BL+N)>> (Log2(N) + 1
(D
In formula (1) above, L corresponds to reconstructed sample 60 and T corresponds to
reconstructed sample 62. For DC mode, the prediction block is simply filled with the
average value of the neighboring reconstructed samples. Generally, both Planar and DC
modes are applied for modeling smoothly varying and constant image regions.
[0114] FIG. 7 is a conceptual diagram of an example angular mode defined in HEVC.
The intra prediction process for angular intra prediction modes in HEVC is described as
follows. For each given angular intra prediction mode, the intra prediction direction can
be identified accordingly. For example, the given angular intra prediction mode may be
identified according to FIG. 5. As shown in FIG. 5, intra mode 18 corresponds to a pure
horizontal prediction direction, and intra mode 26 corresponds to a pure vertical
prediction direction. Given a specific intra prediction direction, for each respective
sample of a prediction block, coordinates (x, y) of the respective sample are first
projected to a row or column of neighboring reconstructed samples along the prediction
direction. For instance, as shown in the example of FIG. 7, coordinates (x,y) of a
sample 70 of a prediction block 72 are projected along a specific intra prediction
direction 74. Suppose (x,y) is projected to the fractional position a between two
neighboring reconstructed samples L and R. Then, a prediction value for (x, y) is
calculated using a two-tap bi-linear interpolation filter, formulated as follows:
pxy = (l-a)L+aR
In HEVC, to avoid floating point operations, the above calculation is approximated
using integer arithmetic as:
pwy=((32-a)yL+aR+16)>>5
where a is an integer equal to 32*a.
[0115] FIG. 8 is a conceptual diagram of partition modes for splitting a CU for inter
prediction in HEVC. As shown in FIG. 8, in HEVC, an inter-coded CU can be split into
one, two, or four partitions and various types of this splitting are possible. The
partitioning possibilities for inter-predicted coding blocks are depicted in FIG. 8. The
upper four partition types illustrate the cases of not splitting the CU of size NxN, of
splitting the CU into two partitions of size NxN/2 or N/2xN, and of splitting the CU
into four partitions of size N/2 x N/2, respectively. The lower four partition types in
FIG. 8 are referred to as asymmetric motion partitioning (AMP). One partition of the
AMP mode has the height or width N/4 and width or height N, respectively, and the
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other partition fills the rest of the CU by having a height or width of 3N/4 and width or
height N. Each inter-coded partition is assigned one or two motion vectors and
reference picture indices.

[0116] For intra slices, only intra prediction mode is allowed. Therefore, there is no
need to signal the prediction mode. However, for inter slices (P or B slice), both intra
and inter prediction mode are allowed. Thus, in HEVC, for each CU, one flag

pred mode flag is signaled for non-skip mode. A partial listing of the syntax and

semantics defined in HEVC for a CU are presented below:

7.3.8.5 Coding unit syntax

coding_unit( x0, y0, 1og2CbSize ) { Descriptor

if( transquant_bypass_enabled flag)

cu_transquant_bypass flag ae(v)

if( slice_type != 1)

cu_skip flag[ x0 ][ yO ] ae(v)

nCbS = (1 << log2CbSize)

if( cu_skip flag[ x0 ][ y0])

prediction_unit( x0, y0, nCbS, nCbS )

else {

if( slice_type != 1)

pred_mode_flag ae(v)
if( CuPredMode[ x0 [[y0O] '= MODE INTRA || 1log2CbSize ==
MinCbLog2SizeY )
part_mode ae(v)

[0117] cu_skip flag[ xO ][ yO ] equal to 1 specifies that for the current coding unit,
when decoding a P or B slice, no more syntax elements except the merging candidate
index merge i1dx[ x0 ][ yO ] are parsed after cu_skip flag[ x0 ][ yO ].

cu_skip flag[ x0 ][ yO ] equal to O specifies that the coding unit is not skipped. The
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array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the
considered coding block relative to the top-left luma sample of the picture. When
cu_skip flag[ x0 ][ yO ] is not present, cu_skip flag[ x0 ][ yO] is inferred to be equal to
0.
[0118] pred_mode flag equal to O specifies that the current coding unit is coded in
inter prediction mode. pred mode flag equal to 1 specifies that the current coding unit
is coded in intra prediction mode. The variable CuPredMode[ x ][ y ] is derived as
follows for x =x0..x0 + nCbS — 1 and y =y0..y0 + nCbS — 1:
- Ifpred mode flag is equal to 0, CuPredMode[ x ][ y ] is set equal to
MODE INTER.
- Otherwise (pred_mode flag is equal to 1), CuPredMode[ x ][ y ] is set equal to
MODE INTRA.
[0119] When pred mode flag is not present, the variable CuPredMode[ x ][ y ] is
derived as follows for x =x0..x0 + nCbS — 1 and y =y0..y0 + nCbS — 1:
- Ifslice_type is equal to I, CuPredMode[ x ][ y ] is inferred to be equal to
MODE INTRA.
- Otherwise (slice type is equal to P or B), when cu_skip flag[ x0 ][ yO ] is equal
to 1, CuPredMode[ x ][ y ] is inferred to be equal to MODE_SKIP.
[0120] Various proposals have been made to enhance HEVC during and after the
process of developing HEVC. For example, Jianle Chen et al., “Further improvements
to HMKTA-1.0”, Document: VCEG-AZ07_v2, 52 Meeting: 19-26 June 2015,
Warsaw, Poland, (hereinafter, “VCEG-AZ07”), describes a short distance intra coding
scheme. Unlike traditional block partition methods which always produce square
blocks for intra prediction, the short distance intra prediction (SDIP) scheme of VCEG-
AZ07 employs non-square block splitting under the quadtree based block structure of
HEVC. As described in VCEG-AZ07, a block 1s split into four non-square blocks with
quarter width or height, and each non-square block is treated as a basic unit for
prediction. The non-square blocks are coded and reconstructed in order, and can
provide reference pixels for intra prediction for the next neighboring block. Therefore,
the distance between reference pixels and local pixels can be reduced, and the precision
of intra prediction can be much improved.
[0121] FIG. 9 is a conceptual diagram of SDIP unit partitions. In the SDIP scheme, a
CU that is smaller than 6464 can be split into four vertical or horizontal rectangular

PUs with sizes N/2x2N or 2NxN/2 (these partition modes may be referred to in this
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disclosure as hNx2N and 2NxhN, where h means half). The four PUs are coded and
reconstructed in order, from left to right in the hNx2N mode, and top to bottom in the
2NxhN mode. In FIG. 9, dotted lines represent PU/TU splitting, and the shaded region
78 denotes a 32x8 TU to be split into 4 32x2 TUs in the RQT structure. The upper right
32x32 CU with partition mode 2N xhN is split into four 32x8 PUs, the lower left 16x16
CU with mode hNx2N is split into four 4x16 PUs, the lower right 8x8 CU is split into
8x2 PUs, and so on. The square splitting of CUs in HEVC may also exist, such as the
lower left 16x16 CU in the 2Nx2N mode and the lower right 8x8 CU in the NxN mode.
[0122] Furthermore, in an SDIP scheme, a MxN (M > N) TU can be split into four TUs
with size MxN/4, or M/4xN when M < N. In other words, a split in the SDIP scheme
should always be carried out along the same direction (vertical or horizontal) in a CU.
Table 2, below, lists all the non-square units existing in the SDIP scheme and the

corresponding RQT depth.

Table 2 - List of units in SDIP scheme and the corresponding RQT depth

CU Size | Unit Size when depth = 1 (equal to PU size) | Unit Size when depth =2
32x32 | 32x8 32x2
8x32 2x32
16x16 | 16x4 -
4x16 -
8x8 8x2 -
2x8 -

[0123] In Xiaoran Cao et al “CE6.b1 Report on Short Distance Intra Prediction
Method,” Doc. JCTVC-E0278, Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGT11, 5th Meeting: Geneva, 16-23
March, 2011 (hereinafter, “Cao 17), partitions like 1xN and Nx1 are further included

and the corresponding RQT depth and transform sizes are listed in Table 3, below:
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Table 3 - List of transform sizes in SDIP in Cao 1

CU Size | Unit Size when depth = 1 (equal to PU size) | Unit Size when depth =2

32%32 | 32x8 32x2
8x32 2x32

16x16 | 16x4 16x1
4x16 1x16

8x8 8x2 -

(2ZN*2N) 21%8

8x8 4x4 4x1

(NxN) 1x4

[0124] Furthermore, some SDIP schemes use non-square transform and entropy coding.
For example, an n x m transform is used for a non-square block. For an n x m (n> m)
block, the forward transform is described as follows:

Crxm = T * Braem * Tt (1.
In the equation above, Bnxm denotes a block with n rows and m columns, Tn and Tm are
the transform matrices of size n x n and m x m respectively, and Cnxm denotes the
transformed block. Tn and Tm are the same as the transform matrices in HEVC. Thus,
for a hardware implementation, the transform part can be reused for non-square blocks.
For an n x m (n < m) block, the block is transposed into an m x n (m > n) block first and
then transformed as in equation (1). For entropy coding, to avoid duplicate
implementations, the coefficient coding of a square block is also reused. For example,
FIG. 10 is a conceptual diagram of a 16x4 coefficient matrix 80 scanned and
reorganized into an 8x8 matrix 82. In this example, the coefficients of coefficient
matrix 80 are first scanned from high frequency to low frequency into a 1D buffer 84, as
shown in FIG. 10, and then reorganized into an 8x8 matrix 82 in zigzag order, which is
coded using the existing method in HEVC.
[0125] In another example of a proposed enhancement to HEVC, Liu et al ,
“Rectangular (2NN, Nx2N) Intra Prediction,” Doc. JCTVC-G135, Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/W@G11, 7th Meeting: Geneva, 21-30 Nov, 2011, (hereinafter, “JCTVC-
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G1357), describes extending the use of the 2NxN and Nx2N partition sizes for inter
coding to intra coding. The additional PU sizes and corresponding TUs are given in
Table 2, below. In JCTVC-G135, the conventional transform quadtree structure is

employed.

Table 2- List of transform sizes in JCTVC-G135

CU Size | PU size | Unit Size when depth = 1 | Unit Size when depth = 2
32x32 | 32x16 32x8 32x2
16x32 8x32 2x32
16x16 16x8 16x4 -
8x16 4x16 -
8x8 8x4 8x2 -
4x8 2x8 -

[0126] The following techniques were described in VCEG-AZO07. To capture finer
edge directions presented in natural videos, VCEG-AZO07 proposed extending the
directional intra modes from 33, as defined in HEVC, to 65. FIG. 11 is a conceptual
diagram illustrating proposed 67 intra prediction modes. The directional modes
described in VCEG-AZO07 are indicated as dotted arrows in FIG. 11, and the Planar and
DC modes remain the same. The denser directional intra prediction modes proposed in
VCEG-AZO07 apply for all PU sizes and both luma and chroma intra predictions.

[0127] To accommodate the increased number of directional intra modes, VCEG-AZ07
proposed an improved Intra mode coding method, using 6 Most Probable Modes
(MPMs). Two major technical aspects are involved: 1) the derivation of 6 MPMs, and
2) entropy coding of 6 MPMs. When deriving the set of 6 MPMs, VCEG-AZ06
changed the definition of the left and above neighboring intra modes. Instead of using
the intra modes from top and left neighboring blocks directly as in HEVC, the most
frequently used intra mode along the top neighboring row and along the left neighboring
column are computed, and then used as the left and above neighboring modes,
respectively.

[0128] Furthermore, as described in VCEG-AZO07, four-tap intra interpolation filters are

utilized to improve the accuracy of directional intra prediction. For instance, as
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described above with respect to FIG. 7, HEVC uses a two-tap linear interpolation filter
to generate an intra prediction block in the directional prediction modes (i.e., intra
prediction modes excluding Planar and DC predictors). Particularly, in the example of
FIG. 7, a video coder applies a two-tap filter to samples L and R to determine a
predictive value for sample 50. In contrast to the approach of HEVC, which applies a
filter to two reference samples to determine a predictive value for a sample of a
prediction block, VCEG-AZO07 applies a filter to four reference samples to determine a
predictive value for a sample of a prediction block. In VCEG-AZ07, two types of four-
tap interpolation filters are used: Cubic interpolation filters for 4x4 and 8x8 blocks, and
Gaussian interpolation filters for 16x16 and larger blocks. In VCEG-AZ07, the
parameters of the filters are fixed according to block size, and the same filter is used for
all predicted pixels, in all directional modes.

[0129] In HEVC, after an intra prediction block has been generated for vertical and
horizontal intra modes, a left-most column and a top-most row of prediction samples
(i.e., samples of a predictive block) are further adjusted, respectively. Boundary
samples up to four columns or rows are further adjusted using a two-tap (for intra
modes 2 and 34) or a three-tap filter (for intra modes 3-6 and 30-33).

[0130] FIG. 12A and FIG. 12B is a conceptual diagram of boundary filters for intra
modes 30-34. Particularly, FIG. 12A is a conceptual diagram of boundary filters for
intra mode 34. FIG. 12B is a conceptual diagram of boundary filters for intra mode 30-
33. In FIG. 12A and FIG. 12B, the leftmost column of blocks is a set of reference
samples and the rest of the blocks are samples of an intra predicted block. A video
coder may generate the samples of the intra predictive block in the conventional
manner. However, for intra prediction modes 30-34, the video encoder may apply one
or more additional filters to the shaded pixels. Thus, examples of the boundary
prediction filters for intra mode 34 and 30-33 are shown in FIG. 12A and FIG. 12B, and
the boundary prediction filters for intra modes 2 and 3-6 are similar.

[0131] Particularly, in FIG. 12A, for intra mode 34, the video coder generates each
respective sample of the intra predictive block based on reference samples above and
right of the respective sample. However, this may ignore information available from the
left reference samples. Accordingly, the video coder may apply four different filters to
the four leftmost columns. For each respective sample in lines 1-4 of the intra
predictive block, the video coder applies a filter based on the respective sample and a

reference sample in the opposite direction of intra mode 34 (i.e., left and down). For
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line 1, the resulting sample may be calculated as (8*a + 8*b) / 16, where a is the
respective sample and b is the reference sample. For line 2, the resulting sample may be
calculated as (12*a + 4*b) / 16, where a is the respective sample and b is the reference
sample. In the example of FIG. 12B, the directions for intra prediction modes 30-33 do
not align with full integer position pixels. Rather, for each sample of the predictive
block, the directions for intra prediction modes 30-33 intersect with the reference
samples at fractional positions between two of the reference samples. Hence, when
applying the boundary filter for intra prediction modes 30-33, there are two reference
samples for each sample of the leftmost column of the predictive block. In the example
of FIG. 12B, for each respective sample of the leftmost column of the predictive block,
when the intra prediction mode is 33, a video coder may calculate the value of the
respective sample as (8*a + 8*b + 2*¢), where a is the respective sample, b is one of the
reference samples and c is the other of the reference samples.

[0132] Video coding may be performed based on color space and color format. For
example, color video plays an essential role in multimedia systems, where various color
spaces are used to efficiently represent color. A color space specifies color with
numerical values using multiple components. A popular color space is the RGB color
space, where color is represented as a combination of three primary color component
values (i.e., red, green and blue). For color video compression, the YCbCr color space
has been widely used, as described in A. Ford and A. Roberts, “Colour space
conversions,” University of Westminster, London, Tech. Rep., Aug. 1998.

[0133] YCbCr can be easily converted from RGB color space via a linear
transformation and the redundancy between different components, namely the cross-
component redundancy, is significantly reduced in the YCbCr color space. One
advantage of YCbCr is the backward compatibility with black and white TV as Y signal
conveys the luminance information. In addition, chrominance bandwidth can be
reduced by sub-sampling the Cb and Cr components in 4:2:0 chroma sampling format
with significantly less subjective impact than sub-sampling in RGB. Because of these
advantages, YCbCr has been the major color space in video compression. There are
also other color spaces, such as YCoCg, used in video compression. In this disclosure,
regardless of the actual color space used, the YCbCr color space is used to represent the
three color components in the video compression scheme.

[0134] Although the cross-complement redundancy is significantly reduced in the

YCbCr color space, correlation between the three-color components still exists. Various
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techniques have been studied to improve video coding performance by further reducing
the correlation between the three color components.

[0135] For example, Xiaoran Cao et al., “Short distance intra coding scheme for
HEVC”, 2012 Picture Coding Symposium (PCS), pp. 501-504, May 7-9, 2012, Krakow,
Poland, (hereinafier, “Cao 27) describes a short distance intra coding scheme. Cao 2
describes a method in 4:2:0 chroma video coding named Linear Model (LM) prediction
mode, which was studied during development of the HEVC standard. See e.g., J. Chen
et al., “CE6.a.4: Chroma intra prediction by reconstructed luma samples”, Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, JCTVC-E266, Sth Meeting: Geneva, 16-23 March, 2011, and
referred as JCTVC-E266 hereafter. In 4:2:0 sampling, each of the two chroma arrays
has half the height and half the width of the luma array. With the LM prediction mode,
chroma samples are predicted based on reconstructed luma samples of the same block

by using a linear model as follows:

predc(i,j) = a*recr(ij) + p (2)

where predc(i, j) represents a prediction of chroma samples in a current block and
reci(i, j) represents a down-sampled reconstructed luma samples of the current block.
Parameters o and S are derived from causal reconstructed samples around the current
block. Causal samples of a block are samples that occur prior to the block in a decoding
order. If the chroma block size is denoted by NxN, then both 7 and j are within the
range [0, N).

[0136] Parameters o and f in equation (2) are derived by minimizing regression error
between the neighboring reconstructed luma and chroma samples around the current

block.
e, )= Z(yi -(a-x, + ) 3)

The parameters a and f are solved as follows

a:Ile-yl—le-Zy, (4)
IZX,‘X,_ZX,‘ZX,

A=y -a-Sx)1 (5)

In the equations above, x; is a down-sampled reconstructed luma reference sample

where the color format is not 4:4:4 (i.e., the color format is one in which one chroma
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sample corresponds to multiple luma samples), yi is reconstructed chroma reference
samples without down-sampling, and / is the number of reference samples. In other
words, the video coder may down-sample the reconstructed luma reference samples
based on the color format not being 4:4:4, but refrain from down-sampling the
reconstructed luma reference samples based on the color format being 4:4:4. For a
target NxN chroma block, when both left and above causal samples are available, the
total number of involved samples / is equal to 2NV. When only left or above causal
samples are available, the total number of involved samples 7 is equal to N. Here, N is
always equal to 2 (wherein m may be different for different CU sizes). Therefore, to
reduce the complexity, shifting operations can be used to implement the division
operations in equations (4) and (5).

[0137] FIG. 13 is a conceptual diagram illustrating example locations of samples used
for derivation of @ and f. Particularly, FIG. 13 illustrates a chroma predictive block 90
of a PU and a luma predictive block 92 of the same PU. Because chroma samples are
down-sampled relative to luma samples, the width and height of chroma predictive
block 90 (i.e., N) is half the width and height of luma predictive block 92 (i.e., 2N). In
the example of FIG. 13, the small squares outside the large dark square are reference
samples. In the example of FIG. 13, the small circles indicate sample values used for
determining the LM parameters a and . As shown in the example of FIG. 13, the
chroma sample values used for determining the LM parameters a and f are the same as
the reference samples for chroma predictive block 90. However, the luma sample
values used for determining the LM parameters o and f are interpolated from luma
reference samples. The total number of the resulting set of luma samples used for
determining the LM parameters a and £ is the same as the number of chroma samples
used for determining the LM parameters a and f.

[0138] In general, when the LM prediction mode is applied for a current PU, a video
coder may perform the following steps. First, the video coder may reconstruct a luma
block for the current PU. As part of reconstructing the luma block for the current PU,
the video coder may perform intra prediction to determine a luma predictive block of
the current PU. Furthermore, as part of reconstructing the luma block for the current
PU, the video coder may add residual data to the luma predictive block of the current
PU to reconstruct the luma block for the current PU. Second, the video coder may
down-sample reference luma samples that neighbor the top and left sides of the current

PU. Third, the video coder may use equations (4) and (5) above to derive linear
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parameters (i.e., « and £) based on chroma reference samples that neighbor the top and
left sides of the current PU and the down-sampled luma reference samples. This
disclosure may also refer to the linear parameter as “scaling factors.” Fourth, the video
coder may down-sample the reconstructed luma block for the current PU. Fifth, the
video coder may use equation (2) above to predict chroma samples (e.g., derive a
predictive chroma block) from the down-sampled luma block for the current PU and the
linear parameters.

[0139] As noted above, a video coder may down-sample a reconstructed luma block of
a current PU. The video coder may down-sample the reconstructed luma block of the
current PU in various ways. For example, since the typical sampling ratio of chroma
components is half of that of luma components and has 0.5 sample phase difference in
vertical direction in 4:2:0 sampling, reconstructed luma samples of the current PU are
down-sampled in the vertical direction and sub-sampled in the horizontal direction to
match the size and phase of the chroma signal. For instance, for each value 7 from O to
the width of the predictive chroma block of the current PU minus 1 and each value j
from O to the height of the predictive chroma block of the current PU minus 1, a video

coder may calculate:

reci(i, j) = (Recrorg [ 27, 2j ] + RecLovig [ 27, 2j + 1] ) >> 1 (6)

In the equation above, reci(i, j) is a luma sample corresponding to position (7, j) relative
to a top-left corner of the down-sampled reconstructed luma block of the current PU.
Recrorig[21, 2j] and Recrorig[2i, 2j+1] are reconstructed luma samples at positions (27, 2j)
and (2i, 2j+1) relative to a top-left corner of the original reconstructed luma block of the
current PU. Thus, in equation (6), a luma sample at position (i, j) of the down-sampled
reconstructed luma block of the current PU is the mean of a luma sample at position (27,
2j) of the original reconstructed luma block of the current PU and a luma sample at
position (27, 2j + 1) of the original reconstructed luma block of the current PU.

[0140] FIG. 14 is a conceptual diagram illustrating an example of luma positions and
chroma positions for down-sampling samples of a reconstructed luma block of a current
PU. FIG. 14 depicts chroma samples as triangles and luma samples as circles. A video
coder predicts the value of a current chroma sample (represented in FIG. 14 by the
filled-in triangle) from two luma samples (represented in FIG. 14 by the two filled-in
circles), by applying a [1, 1] filter. The [1, 1] filter is one example of a 2-tap filter. Ina
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[1, 1] filter the two taps are equally weighted. For each respective triangle in FIG. 14, a
video coder may apply equation (6) to samples represented by the circles above and
below the respective triangle to determine a respective luma value for the sample
represented by respective triangle.

[0141] Furthermore, as noted above, a video coder may down-sample luma reference
samples. The video coder may down-sample the luma reference samples in various
ways. As shown in FIG. 14, the columns of a predictive chroma block of a current PU
are aligned with columns of the predictive luma block of the current PU. In one
example using the 4:2:0 color format, the down-sampled luma reference samples that
neighbor a top side of the current luma block may consist of each luma reference sample
at an even indexed position in the set of luma reference samples. Thus, for each
respective value of 7 ranging from O to the width of the predictive chroma block of the

current PU minus 1, the down-sampling process may be defined as:

reci(i, -1) = Recrorig[21, -1] (7

In the equation above, reci(i, -1) is a down-sampled luma reference sample at position
(7, -1) relative to a top-left corner of the chroma predictive block of the current PU.
Recrorig[2i, -1] 1s a luma reference sample at position (27, -1) relative to a top-left corner
of the original predictive luma block of the current PU.

[0142] As shown in FIG. 14, the rows of a predictive chroma block of a current PU are
not aligned with rows of a predictive luma block of the current PU in the 4:2:0 color
format. However, equations (4) and (5) for calculating the parameters o and f for LM-
based prediction are predicated on there being one luma reference sample for each
chroma reference sample. Accordingly, for a respective row of the predictive chroma
block for the current PU, the video coder may calculate an average of the luma
reference sample in a row of the predictive luma block of the current PU above and the
luma reference sample in a row of the predictive luma block of the current PU below the
row of the predictive chroma block. For instance, for each value j ranging from O to the
number of rows in the predictive chroma block minus 1, the video coder may calculate

the value of a left-neighboring luma reference sample as:

recr(-1, j) = (Recrorig[-2, 2j] + Recrorig[-2, 2] + 1]) >> 1 (8)
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In the equation above, recr(-1, j) is a down-sampled luma reference sample at position
(-1, j) relative to a top-left corner of the predictive chroma block of the current PU.
Recrorig[-2, 2j] and Recrorig[-2, 2j+1] are original luma samples at positions (-2, 2j) and
(-2, 2j+1) relative to a top-left corner of the original predictive luma block of the current
PU.

[0143] Other down-sampling techniques have also been proposed. For instance, in Yi-
Jen Chiu et al., “Cross-channel techniques to improve intra chroma prediction”, Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, JCTVC-F502, 6th Meeting: Torino, IT, 14-22 July, 2011 (referred
to herein as “JCTVC-F502”), instead of using a two-tap filter, a video coder applies 2-
dimensional 6-tap filtering to both a current luma block and a neighboring luma block.

The 2-dimensional filter coefficient set is:

121/8 o
1 21 ©)

The down-sampled luma samples are derived by equation (10):
rec, (1,j)) =(Rec [ 21, 27]*2+Rec o[ 20, 21+1]+Rec o [ 21,2)—-1] (10)
+Rec o, [21+1, 2]%2+ Rec o, [21+1, 2)+1]+ Rec o, [21+1, 2)—1]) >>3
In the equation above, reci(i, j) is a reconstructed luma sample at position (7, j) relative
to a top-left corner of the down-sampled reconstructed luma block of the current PU and
Recrorig[..] are reconstructed luma samples of the original reconstructed luma block of
the current PU at positions relative to a top-left corner of the original reconstructed luma
block of the current PU.
[0144] For instance, a video coder may perform the operations of equation (10) to
determine the down-sampled luma block. Equation (10) includes a built in 6-tap filter,
as represented by [1, 2, 1; 1, 2, 1] with Recrorig[ 2, 2j], Recrorig[2i, 2j+ 1], Recrorig[2i,
2j-1], Recrorig[2i+ 1, 2j], Recrorg[2i+ 1, 2j+ 1], and Recrorig[2i+ 1, 2j-1] as 6 input
samples. A tap number of a filter indicates how many input samples are used for
applying the filter. For instance, in equation (10), the video coder uses six values from
the reconstructed luma block to generate the down-sampled luma block.
[0145] FIG. 15 is a conceptual diagram illustrating an example of luma positions and
chroma positions for down-sampling samples of a luma block for generating a
predictive block. As depicted in FIG. 15, a video coder predicts a chroma sample,

represented by the filled-in triangle, from six luma samples, represented by the six
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filled-in circles, by applying a 6-tap filter. Since a predictor of a chroma sample is
derived using a linear function, as defined in equation (2), it could be seen that when the
6-tap filter is applied, the predictor of one chroma sample relies on the six neighboring
luma samples. When combining equations (2) and (10), the result is the following

equation (11):

predC(i:j):a'(RecLOrlg[ 21: 2]]*2+RCCLOrlg[ 21: 2j+1]+RecLOrlg[ 21: 2]_1]
+RECLoo[20 +1, 2J1¥ 24 Re €0, [20 +1, 27 + 1]+ Re ¢y, [20 11,2~ 1]) >> 3)

+8
(11)

[0146] The following text refers to the down-sampled reconstructed luma sample rec.(i,
j) as the corresponding down-sampled luma sample for the chroma sample located at (i,
j). For example, because of 4:2:0 sampling, a 2N*2N luma block corresponds to an
NxN chroma block. With down-sampling, the 2N*2N luma blocks becomes an NxN
down-sampled luma block. This NxN down-sampled luma block is referred to as reci(i,
) and corresponds to the NxN chroma block.

[0147] Furthermore, although the above examples are described with respect to 4:2:0
sampling, the techniques described in this disclosure are not so limited. For instance,
the techniques described in this disclosure may also be applicable to 4:2:2 sampling.
Accordingly, the examples with respect to 4:2:0 are provided merely to assist with
understanding.

[0148] Furthermore, in some examples, the techniques described in this disclosure may
be applicable to 4:4:4 sampling as well. For example, in 4:4:4 sampling, the chroma
block is not sub-sampled relative to the luma block. However, it may be possible to
determine a predictive block for the chroma block in such examples as well. For
example, the luma block may be filtered and the filtered block may be used as a
predictive block for the chroma block. In these examples, down-sampling of the luma
block may not be needed. As explained in more detail, the example techniques describe
selection of a filter applied to samples of the luma block based on a location of the
chroma block. The techniques for selecting a filter applied to samples of the luma block
may be extended to examples where down-sampling is not needed for LM prediction,

such as for 4:4:4 sampling. In such examples, the filter may not include any down-
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sampling so that the 4:4:4 sampling is preserved. Accordingly, the description for 4:2:0
sampling is an example, and the techniques are applicable to 4:4:4 sampling as well.
[0149] For example, rather than being limited to using only a two-tap filter or a six-tap
filter to down-sample the luma block, a video coder (e.g., video encoder 20 or video
decoder 30) may determine a filter from a set of filters that is used for down-sampling
the luma block. As an example, there may be a number X of different filters that the
video coder can use for down-sampling. For instance, there may be a one-tap filter, a
two-tap filter, a three-tap filter, and so forth. Moreover, for each filter the specific taps
might be different (e.g., the luma samples used for a first two-tap filter are different than
the luma samples used for a second two-tap filter). In some of the examples described
in this disclosure, the set of filters includes two filters; however, more than two filters
from which the video coder determines which filter to apply for down-sampling the
luma block are possible.

[0150] The video coder may use various criteria to determine which filter to apply. As
one example, the video coder determines which filter from the set of filters to apply
based on a location of the chroma block. If the chroma block borders a left boundary of
the picture, CU, PU, or TU (e.g., the left boundary of the picture, CU, PU, or TU is the
same as chroma block edge), the video coder may use a first filter for down-sampling
luma samples of the luma block that correspond to the chroma samples of the chroma
block that are on the left boundary. Samples of the chroma block that are on the left
boundary refer to the samples of the chroma block that are closest to the left boundary
including samples that are directly on the boundary. The first filter may be applied to
the N samples closest to the boundary (e.g., sample closest to the boundary, one next to
that sample, and N such samples).

[0151] In some cases, the video coder may apply the first filter for all luma samples of
the luma block, rather than just those samples that correspond to chroma samples that
neighbor the left boundary. However, the techniques described in this disclosure are not
so limited. For all other cases, the video coder may use a second, different filter for
down-sampling the luma block.

[0152] For instance, in 4:2:0 sampling, four luma samples correspond to one chroma
sample. Accordingly, the video coder may determine which chroma sample
corresponds to which luma samples. When filters with larger tap numbers are used, one
chroma sample may correspond to more than four luma samples. For the luma samples

that correspond to a chroma sample on a left boundary (immediately adjacent or within
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a number of samples), the video coder may apply a first filter to the corresponding luma
samples to down-sample the luma block, and for the luma samples that correspond to a
chroma sample that is not on a left boundary (not immediately adjacent or not within a
number of samples), the video coder may apply a second filter to corresponding luma
samples to down-sample the luma block.

[0153] In some examples, the first filter may include fewer taps (e.g., number of
samples that the filter extends over) than the second filter. As one example, the first
filter is the two-tap filter and the second filter is the six-tap filter. In this example, the
video coder may perform the operations of equation (6) to determine the down-sampled
luma samples of a luma block in the case that the corresponding chroma samples of the
chroma block are on the left boundary, and may perform the operations of equation (10)
to determine the down-sampled luma samples of the luma block in the case that the
corresponding chroma samples of the chroma block are not on the left boundary.
Accordingly, during the derivation process of corresponding down-sampled luma
samples of chroma samples, the video coder may apply a different filter to the luma
samples of a luma block that correspond to chroma samples of a chroma block located
at the left picture boundary, or left boundary (i.e., side) of CU/PU/TU, compared to the
filter applied to other samples of the luma block that correspond to chroma samples that
are not at the left picture boundary or left boundary of CU, PU, or TU. Chroma samples
that are at the left boundary refer to chroma samples immediately adjacent to the left
boundary or within a certain number of samples from the left boundary.

[0154] Using different filters allows the video coder to properly use available sample
values. For instance, using a six-tap filter for luma samples that correspond to chroma
samples at the left boundary of picture, CU, PU, or TU may result in requiring the video
coder to use luma sample values that are not part of the luma block for down-sampling
and may result in the video coder having to perform some additional processing to
address the lack of luma samples (e.g., padding luma sample values to generate values
for samples that are not part of a luma block). However, using a two-tap filter at the left
boundary may not require the video coder to use luma sample values that are not part of
the luma block for down-sampling. Accordingly, although two-tap and six-tap filters
are described, other sized filters for down-sampling may be possible with consideration
to avoid needing to require luma samples that are not part of the luma block (e.g., to

avoid the need to pad luma samples on the left boundary).
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[0155] As one example, during the derivation process of corresponding down-sampled
luma samples of chroma samples, the video coder applies a different filter to luma
samples that correspond to chroma samples located at the left picture boundary
compared to the filter applied to other luma samples that correspond to chroma samples
not located at the left picture boundary. In one example, the length (e.g., tap) of the
filter (i.e., the number of samples that the filter extends over) for deriving the
corresponding down-sampled luma samples of chroma samples at the left picture
boundary is smaller than the length of the filter for deriving the corresponding down-
sampled luma samples of chroma samples not at the left picture boundary (e.g., two-tap
for the left boundary and six-tap for all others).

[0156] As one example, during the derivation process of corresponding down-sampled
luma samples of chroma samples, the video coder applies a different filter for luma
samples of chroma samples located at the left CU boundary compared to the filter
applied to other luma samples within current CU. In one example, the length (e.g., taps)
of the filter (i.e., number of samples that the filter extends over) for deriving the
corresponding down-sampled luma samples of chroma samples at the left CU boundary
is smaller than the length of the filter for deriving the corresponding down-sampled
luma samples of chroma samples not at the left CU boundary (e.g., two-tap for the left
boundary and six-tap for all others).

[0157] As one example, during the derivation process of corresponding down-sampled
luma samples of chroma samples, the video coder applies a different filter for chroma
samples located at the left PU boundary compared to the filter applied to other samples
within current PU. In one example, the length (e.g., taps) of the filter (i.e., the number
of samples that the filter extends over) for deriving the corresponding down-sampled
luma samples of chroma samples at the left PU boundary is smaller than the length of
the filter for deriving the corresponding down-sampled luma samples of chroma
samples not at the left PU boundary (e.g., two-tap for the left boundary and six-tap for
all others).

[0158] As one example, during the derivation process of corresponding down-sampled
luma samples of chroma samples, the video coder may apply a different filter for
chroma samples located at the left TU boundary compared to the filter applied to other
samples within current TU. In one example, the length (e.g., taps) of the filter (i.e., the
number of samples that the filter extends over) for deriving the corresponding down-

sampled luma samples of chroma samples at the left TU boundary is smaller than the
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length of the filter for deriving the corresponding down-sampled luma samples of
chroma samples not at the left TU boundary (e.g., two-tap for the left boundary and six-
tap for all others).

[0159] In some cases, there may not be corresponding luma samples in the same
picture. The following describes some example techniques to address such situations.
For instance, although avoiding padding may be beneficial in some cases, in some
instances, it may not be possible to avoid padding. For example, because some luma
samples are unavailable (e.g., because off picture), the video coder may substitute
padding sample values for these unavailable samples and perform down-sampling with
these padding sample values (e.g., down-sample using the actual luma sample values for
the available luma samples and padding sample values for the unavailable luma
samples). The padding sample values may be default values (e.g., 2°"4Pth wherein
bitdepth indicates the bit depth of luma component), values determined by video
encoder 20 and signaled to video decoder 30, or values determined based on some
implicit technique that does not require signaling of information. Adding padding
sample values may reduce complexity because there may not be a need for separate
filters.

[0160] During the derivation process of corresponding down-sampled luma samples of
chroma samples, when the luma samples are outside of a picture, or a CU/PU/TU needs
to be involved in the down-sampling process, the video coder may first apply a padding
operation, followed by a down-sampling process. In the padding of samples, the video
coder may substitute those samples that are off screen with padding sample values.
[0161] As one example, during the derivation process of corresponding down-sampled
luma samples of chroma samples, the video coder may pad the luma samples (e.g., only
the luma samples) which are located outside of the current picture. For all other
positions, the reconstructed samples are used. As one example, during the derivation
process of corresponding down-sampled luma samples of chroma samples, the video
coder may pad the luma samples which are located outside of the current CU. For all
other positions, the reconstructed samples are used. As one example, during the
derivation process of corresponding down-sampled luma samples of chroma samples,
the video coder may pad the luma samples which are located outside of the current PU.
For all other positions, the reconstructed samples are used. As one example, during the
derivation process of corresponding down-sampled luma samples of chroma samples,

the video coder may pad the luma samples which are located outside of the current TU.
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For all other positions, the reconstructed samples are used. In above examples for
padding, the same down-sampling process is applied to all positions.

[0162] When the position of luma reconstructed samples used in LM prediction mode is
located outside the current slice or current tile, the video coder may mark such samples
as unavailable (e.g., the video coder may determine such samples as unavailable).
When the sample is marked as unavailable, the video coder may perform one or more of
the following.

[0163] The unavailable samples, if used in a down-sampling process for a neighboring
luma block, are not used in the down-sampling process for a neighboring luma block.
Alternatively or additionally, the filter may be different from the filter used for other
samples. The unavailable samples, if used in a down-sampling process for a current
luma block, are not used in the down-sampling process for a current luma block.
Alternatively or additionally, the filter may be different from the filter used for other
samples. The unavailable samples are re-marked as available; however, the sample
value is modified to be the padded sample value or a default value. Alternatively or
additionally, the filter is kept the same as the filter used for other samples. In one
example, the default value is dependent on the bit-depth. In another example, the
padding could be from the left/right/above/below sample which is marked as available.
[0164] In general, for luma samples that are in another tile, the video coder may mark
pixels outside the tile boundary as unavailable and not include them in the down-
sampling process. In some examples, the video coder may mark the luma samples in
another tile as available but use padded pixels for such luma samples in another tile. As
another example, the video coder may use padded “extended” values (e.g., one half
possible value based on bit depth, so 8 bit, use 128) for luma samples in another tile,
rather than marking the samples as unavailable.

[0165] In some examples, the video coder may apply different filters to different
chroma color components (Cb or Cr). In some examples, when LM prediction mode is
enabled, one or more sets of the down-sampling filter may be further signaled in either a
sequence parameter set (SPS), picture parameter set (PPS), or slice header.
Alternatively or additionally, a Supplemental Enhancement Information (SEI) message
syntax is introduced to describe the down-sampling filter. Alternatively or additionally,
furthermore, a default down-sampling filter is defined, e.g., the 6-tap filter [1, 2, 1; 1, 2,
1] without signaling. Alternative or additionally, one PU/CU/largest CU may signal an
index of the filter that is used in LM prediction mode. Alternatively or additionally, the
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usage of the filter tap may be derived on-the-fly by video decoder 30 without signaling.
There may be other ways to provide filter support as well.
[0166] In one example, furthermore, a constraint is applied that o is equal to ag+3). In
one example, furthermore, a constraint is applied that o; is equal to o+2) with 1 being
equal to 0 or 3. In one example, this example technique may only be enabled for larger
coded CUs, e.g., CU size larger than 16x16. In one example, one or more of the
parameters is restricted to be 0.
[0167] Moreover, the video coder may apply one or more of the above techniques also
for cross component residual prediction, in which the down-sampled luma residual is
used to predict the chroma residual. In this case, the down-sampling process is applied
to reconstructed luma residual, as one example.
[0168] The following is an example manner in which techniques described in this
disclosure may be implemented by a video coder. The example implementation
technique should not be considered limiting.
[0169] Below is an example for applying different down-sampling processes for
samples at the left picture boundary. The down-sampling process for a current luma
block is defined as follows:

- if the chroma sample is not located at the left boundary of picture, 6-tap filter,

e.g [121;12 1]is applied to derive the corresponding down-sampled luma

sample:

rec,(i,j)=Recy | 20,2/1¥2+Rec,y, [ 20,2j+11+Recy,, [ 2i,2j-1]
+Re ¢ [20 +1,2/1¥2 + Re ¢y [2i + 1,2/ + 1]+ Recyp, [2i +1, 2 — 1] + offser 0) >> 3

(13)
- Otherwise, if the chroma sample is located at the left boundary of the picture, 2-

tap filter, e.g., [1; 1] is applied to derive the corresponding down-sampled luma

sample:

reci(i, j) = (Recrorig[2i, 2j] + Recrorig [21, 2j+1] + offset]) >> 1 (14)

[0170] In one example, offsetO and offset] are both set equal to 0. In another example,
offsetO is set equal to 4 and offset] is set equal to 1.

[0171] In HEVC, a square transform is always applied, even for rectangular PUs. For
example, FIG. 16 is a conceptual diagram illustrating nRx2N prediction mode with

NxN transform. In the example of FIG. 16, the nRx2N prediction mode partitions a
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coding block 100 with a 2N*2N block size into two prediction blocks with sizes of
0.5Nx2N and 1.5Nx2N, respectively. However, in the example of FIG. 16, the
transform block size is NxN.

[0172] FIG. 17 is a conceptual diagram illustrating a non-square quadtree (NSQT) for
2NxN, 2NxnD and 2NxnU prediction modes. In FIG. 17, a 2N*2N block at level O is
split into four 2Nx0.5N blocks located at level 1; the block at level 1 is further split into
four Nx0.25N blocks locate at level 2. FIG. 18 is a conceptual diagram illustrating a
NSQT for Nx2N, nRx2N and nLx2N prediction modes. In FIG. 18, a 2Nx2N block at
level 0 is split into four 0.5Nx2N blocks located at level 1; the block at level 1 is further
split into four 0.25N*N blocks locate at level 2.

[0173] Considering that residuals might be discontinuous at the boundaries of two
connective prediction blocks, high frequency transform coefficients will likely be
produced and the coding performance will be affected. In this disclosure, connective
predictive blocks are predictive blocks that share at least one of the four boundaries.
Therefore, in Yuan et al., “Non-Square Quadtree Transform Structure for HEVC,” 2012
Picture Coding Symposium (PCS), pp. 505-508, May 7-9, 2012, Krakéw, Poland
(hereinafter, “Yuan”), a non-square quadtree transform (NSQT) structure is described.
[0174] In NSQT, two additional transform block sizes are added: 2Nx0.5N and
0.5Nx2N. In this structure, a transform block is split into 2N>0.5N and 0.5Nx2N and
transform matrix can be obtained by reusing 0.5Nx0.5N and 2N*2N transform
matrixes. In this disclosure, a transform matrix may also be referred to as a transform
core. In Yuan, the NxN quantization table of HEVC is reused to quantize the transform
coefficients of 2Nx0.5N and 0.5Nx2N transform blocks.

[0175] As mentioned above, a video coder may apply a transform to convert samples to
a frequency domain, or vice versa. The specific types of transforms applied in HEVC
are two types of discrete cosine transforms, namely DCT-II and 4x4 DST-VIL. Xin
Zhao et al., U.S. Patent Publication 2016/0219290 A1 proposed an Enhanced Multiple
Transform (EMT) scheme in addition to DCT-II and 4x4 DST-VII for both inter and
intra coded blocks. The EMT scheme utilizes multiple selected transforms from the
DCT/discrete sine transform (DST) families other than the current transforms in HEVC.
The newly introduced transform matrices in U.S. Patent Publication 2016/0219290 are
DST-VII, DCT-VIII, DST-I and DCT-V.

[0176] The proposed EMT in U.S. Patent Publication 2016/0219290 A1 applies to CUs
smaller than 64x64, and whether EMT applies or not is controlled at the CU level using



WO 2017/091773 PCT/US2016/063677
52

a flag, namely an EMT flag, for all TUs within a CU. For each TU within an EMT-
enabled CU, the horizontal or vertical transform to be used is signaled by an index to a
selected transform set, namely an EMT index. Each transform set is formed by
selecting two transforms from the aforementioned transform matrices.

[0177] For intra prediction residual, the transform sets are pre-defined based on the intra
prediction mode, as described in X. Zhao et al., “Video coding with rate-distortion
optimized transform,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 1, pp.
138-151, Jan. 2012; thus each intra prediction mode has its own transform set. For
example, one transform set can be {DCT-VIIL, DST-VII}. Note that the transform set
for the horizontal transform may be different from the transform set for the vertical
transform, even for a same intra prediction mode. However, the total number of
different transform sets for all intra prediction modes as well as the number of newly
introduced transforms is limited. However, for inter prediction residual, only one
transform set is used for all inter modes and for both horizontal and vertical transforms.
[0178] Illumination compensation (IC) in the multi-view video coding is used for
compensating illumination discrepancies between different views because each camera
may have different exposure to a light source. Typically, a weight factor and/or an
offset are used to compensate the differences between a coded block and a prediction
block in a different view. Illumination compensation was introduced to improve the
coding efficiency for blocks predicted from inter-view reference pictures. Therefore,
illumination compensation may only apply to blocks predicted by an inter-view
reference picture.

[0179] Liu et al., “3D-CE1 h related: Illumination Compensation for Inter-View
Prediction,” Joint Collaborative Team on 3D Video Coding Extension Development of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 1 Meeting, Stockholm, SE, 16-
20 July 2012, document JCT3V-A0086 (hereinafter, JCT3V-A0086), describes
illumination compensation (IC). In JCT3V-A0086, IC is enabled for inter-view
prediction. Furthermore, as described in JCT3V-A0086, a IC process derives IC
parameters based on neighboring samples of a current CU and neighboring samples of a
reference block. In JCT3V-A0086, IC only applies to a 2N*2N partition mode.
Furthermore, in JCT3V-A0086, for AMVP mode, one IC flag is signaled for each CU
that is predicted from an inter-view reference picture. For merge mode, to save bits, an

IC flag is signaled only when a merge index of the PU is not equal to 0. The IC flag
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indicates whether IC is used for a CU. IC does not apply to CUs that are only predicted
from temporal reference pictures.

[0180] As described in JCT3V-A0086, a linear IC model used in inter-view prediction
is shown in Eq. (6):

p(i,j) =ax r(i + dvy, j + dv, + b), where (i,j) € PU, (15)
Here, PU:1s a current PU, (i, j) are the coordinates of pixels in PUk, (dvx, dvy) 1s a
disparity vector of PUk, p(i, j) is the prediction of PU., and r is the current PU’s
reference picture from a neighboring view. a and b are parameters of the linear IC
model.

[0181] In JCT3V-A0086, two sets of pixels as shown in FIG. 19 are used to estimate
parameters a and b for a current PU. The first set of pixels includes available
reconstructed neighboring pixels in a left column and an above row of a current CU
(i.e., a CU that contains the current PU). The second set of pixels includes
corresponding neighboring pixels of a reference block of the current CU. The disparity
vector of the current PU is used to find the reference block of the current CU.

[0182] FIG. 19 illustrates neighboring pixels used to estimate parameters in the IC
model. Particularly, FIG. 19 includes a current CU 110 and reference block 112. Each
respective square of FIG. 19 corresponds to a respective sample. Thus, current CU 110
and reference block 112 each include 64 samples. The squares enclosing circles
adjacent to current CU 110 correspond to the neighboring samples of current CU 110
(i.e., Recneign). The squares enclosing circles adjacent to reference block CU 112
correspond to the neighboring samples of neighboring block 112 (i.e., Recrefneigh). As
described elsewhere in this disclosure, a video coder may use Recneigh and Refrefneigh to
estimate parameters for IC.

[0183] Furthermore, as described in JCT3V-A0086, let Recneig denote a neighboring
pixel set used by the current CU. Let Recremeigh denote a neighboring pixel set used by
the reference block of the current CU. Let the size of the current CU and the size of the
reference block of the current CU both be equal to NxN. Let 2N denote the number of

pixels in Recneig and Recrefeig. Then, a and b can be calculated as:

2N-1 2N-1 2N-1

2N- Z Rec,,, (l')-Recr(Zﬁwg (i)- Z Rec,, (i)- Z Rec,, ;.. ()
i=0 i=0

i=0
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2N Y Rec,,, (i) Rec,q, (1) _£ 2 Rec,;, (i )]
i=0 i=0

ad=

(16)



WO 2017/091773 PCT/US2016/063677

54
2N-1 2N -1 )
Z(; Recmg (i)— a- Z(; Recmﬁmg (1)

b= (17)

2N
In some cases, only a is used in linear model and b is always set equal to 0, or only b is
used and a is always set equal to 1.
[0184] In VCEG-AZ06, Local Illumination Compensation (LIC) is enabled or disabled
adaptively for each inter-mode coded CU. In VCEG-AZ06, LIC is based on a linear
model for illumination changes, using a scaling factor @ and an offset . FIG. 20 is a
conceptual diagram illustrating example neighboring samples used for deriving IC
parameters as described in VCEG-AZ06.
[0185] In VCEG-AZ06, when LIC applies for a CU, for each PU/sub-PU belonging to
the CU, a video coder derives LIC parameters in a way that using sub-sampled (2:1 sub-
sampling) neighboring samples of the CU and the corresponding pixels (identified by
motion information of the current PU/sub-PU) in the reference picture. For a CU with
size equal to NxN, the total number of boundary pixels used in equations (16) and (17)
is N instead of 2N. An example is illustrated in FIG. 20. Thus, FIG. 20 is a conceptual
diagram illustrating example neighboring pixels used to estimate parameters in an
illumination compensation model, in which a reference block 114 of a current CU 116 is
found by using a disparity vector of a current PU. In VCEG-AZO06, the IC parameters
are derived and applied for each prediction direction separately. A video coder may
employ a least square error method to derive the parameters a and b based on the
abovementioned neighboring samples.
[0186] The current RQT design in HEVC, and other techniques such as NSQT and IC,
may have the following shortcomings. For instance, regardless of whether the NSQT or
the transform tree of HEVC is used, a quad-tree structure is always employed which
may be sub-optimal without considering PU information. However, HEVC only
supports square PUs for intra prediction modes.
[0187] Introducing 2NxN and Nx2N partitions to intra modes, as is done in JCTVC-
G135, may have the following problems. First, AMP is not allowed. Second, how to
define the transform tree structure to achieve high coding efficiency has not been
studied. Third, the LM prediction mode has only been used with square PUs and it is
unknown how to derive the parameters o and f used in the LM prediction mode with
non-square PUs. Fourth, in prior techniques, the coefficients must be reorganized to be

in a square form, which may reduce the correlation among neighboring coefficients.
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Furthermore, the current EMT design has a problem in that EMT is controlled at the CU
level. However, controlling EMT at the CU level is not efficient if the residual
characteristics (e.g., distributions) of each PU in a CU are different.

[0188] To resolve the problems mentioned above, this disclosure proposes the
following techniques. The following itemized techniques may be applied individually.
Alternatively, any combination of them may be applied. In the following description,
the CU size is denoted by MxM and PU size is denoted by KxL, wherein both K and L
are no larger than M.

[0189] In accordance with a first example technique of this disclosure, it is proposed
that a transform tree is not restricted to be a quarter tree. For example, a transform
quad-tree and a transform binary tree may be combined. That is, for at least a certain
transform depth, one TU may be split into two smaller TUs or four smaller TUs. In this
disclosure, for each respective node of a transform tree, the respective transform depth
of the respective node refers to the number of nodes in the transform tree between the
respective node and the root node of the transform tree. The flexibility to split a TU
into two TUs or four TUs may enhance the ability of video encoder 20 to structure the
transform tree in a way that aligns TU boundaries with PU boundaries. Aligning TU
boundaries with PU boundaries may increase compression performance.

[0190] Thus, in this example, video encoder 20 may partition a CU of video data into
TUs of the CU based on a tree structure. In this example, a root node of the tree
structure corresponds to a coding block of the CU. Furthermore, in this example, each
respective non-root node of the tree structure corresponds to a respective block that is a
partition of a block that corresponds to a parent node of the respective non-root node. In
this example, leaf nodes of the tree structure correspond to the TUs of the CU. In this
example, at least one node in the tree structure has exactly two child nodes in the tree
structure. In some instances, at least one node in the tree structure may have exactly
four child nodes in the tree structure. In this example, video encoder 20 may include, in
a bitstream that comprises an encoded representation of the video data, data representing
one or more of the TUs of the CU.

[0191] In a corresponding example, video decoder 30 may determine a CU is
partitioned into TUs of the CU based on a tree structure. In this example, a root node of
the tree structure corresponds to a coding block of the CU. Furthermore, in this
example, each respective non-root node of the tree structure corresponds to a respective

block that is a partition of a block that corresponds to a parent node of the respective
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non-root node. In this example, leaf nodes of the tree structure correspond to the TUs of
the CU. In this example, at least one node in the tree structure has exactly two child
nodes in the tree structure, and at least one node in the tree structure has exactly four
child nodes in the tree structure. In this example, video decoder 30 may reconstruct,
based on data for at least one of the TUs of the CU, the coding block of the CU.

[0192] Furthermore, in an example where a transform tree is not restricted to be a
quarter tree (i.e., not required to be a tree in which all non-leaf nodes have 4 child
nodes), for transform depth equal to 0, the square transform with size equal to MxM is
applied. For transform depth equal to 1, the transform is split into two or four
(depending on the number of PUs) and transform size is equal to KxL. For remaining
transform depths, the quad-tree structure is still applied wherein one TU is split into
four smaller ones, i.e., for transform depth equal to 2, the transform size is set to K/2 x
L/2. An example is given in FIG. 21. One reason for limiting splitting of transform into
two or four at transform depth 1 is to align transform sizes with PU sizes, e.g., if a PU
size is 2NxN or Nx2N, splitting into 2 may be preferred. If a PU is an NxN partition, 4-
way transform splitting may yield better results. In another reason, if the corresponding
transform matrix was unknown, e.g., if AMP is used, one 16x16 CU may be split into
4x16 and 12x16 PUs, while 12x12 transform is not defined, therefore, splitting to 4 may
be used for this case.

[0193] FIG. 21 is a conceptual diagram illustrating an example transform structure for
partition size equal to 2NxN. In FIG. 21 and the following figures, the dash lines
indicate the splitting information for the next transform depth. Particularly, in FIG. 21,
a transform block 130 has the same size as a coding block of a CU. Transform block
130 is partitioned into transform blocks 132 and 134. Furthermore, in the example of
FIG. 21, transform block 132 is partitioned into transform blocks 136, 137, 138, and
139. Transform block 134 is partitioned into transform blocks 140, 141, 142 and 143.
Thus, as shown in FIG. 21, a root node may have 2 child nodes, but nodes at other
transform depths may be required to have 0 or 4 child nodes.

[0194] In some examples where a transform tree of a CU is not restricted to being a
quarter tree, either a binary tree or a quarter tree is applied. A video coder may
determine whether a binary tree or a quarter tree is applied based on the number of PUs
in the CU. For example, when there are two PUs, the video coder utilizes a binary

transform tree. If the CU has four PUs, the video coder may use a quarter tree structure
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to partition the CU into TUs. In one example, the method of selecting either binary tree
or quarter tree is only applied to certain transform depths, such as 1.

[0195] Thus, in this example, video encoder 20 may partition a CU of the video data
into TUs of the CU based on a tree structure. In this example, a root node of the tree
structure corresponds to a coding block of the CU, each respective non-root node of the
tree structure corresponds to a respective block that is a partition of a block that
corresponds to a parent node of the respective non-root node, leaf nodes of the tree
structure correspond to the TUs of the CUs, and the CU has one or more PUs.
Furthermore, in this example, depending on the number of PUs of the CU, exactly one
of the following applies: each node in the tree structure has exactly two child nodes in
the tree structure, or each node in the tree structure has exactly four child nodes in the
tree structure. In this example, video encoder 20 may include, in a bitstream that
comprises an encoded representation of the video data, data representing one or more of
the TUs of the CU.

[0196] In a corresponding example, video decoder 30 may determine a CU of the video
data is partitioned into TUs of the CU based on a tree structure. In this example, a root
node of the tree structure corresponds to a coding block of the CU, each respective non-
root node of the tree structure corresponds to a respective block that is a partition of a
block that corresponds to a parent node of the respective non-root node, leaf nodes of
the tree structure correspond to the TUs of the CUs, and the CU has one or more PUs.
In this example, depending on the number of PUs of the CU, exactly one of the
following applies: each node in the tree structure has exactly two child nodes in the tree
structure, or each node in the tree structure has exactly four child nodes in the tree
structure. Furthermore, in this example, video decoder 30 may reconstruct, based on
data for at least one of the TUs of the CU, the coding block of the CU.

[0197] In some examples where the transform tree is not restricted to be a quarter tree,
the splitting method of either binary or quarter tree is signaled. For example, video
encoder 20 may include, in the bitstream data representing a syntax element that
indicates whether a CU is partitioned into TUs according to a binary tree or according to
quarter tree. In this example, video decoder 30 may determine, based on data in the
bitstream, a value of the syntax element. Furthermore, in this example, video decoder
30 may determine, based on the value of the syntax element, whether the CU is

partitioned into TUs according to a binary tree or according to a quarter tree.
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[0198] Alternatively, furthermore, the signaling may be skipped for certain PU
partitions. In other words, video encoder 20 may skip signaling of transform tree
splitting for a block based on how the block is split into PUs. For instance, in one
example, for PU partitions equal to 2NxN, a binary tree is always used and therefore,
there is no need to signal that binary or quarter tree splitting is used in the corresponding
transform tree.

[0199] In accordance with a second technique of this disclosure, it is proposed that at a
certain transform depth, the transform size is equal to the PU size for the rectangular
PUs. In this disclosure, transform size refers to a size of a transform block of a TU.
Thus, in this example, the transform blocks corresponding to nodes at a particular depth
of a transform tree of a CU have the same sizes as prediction blocks of PUs of the CU.
As previously discussed, aligning TU boundaries with PU boundaries may improve
compression performance.

[0200] In one example of the second technique, the above method is only applied to
inter coded CUs. In other words, a video coding standard may require video encoder 20
to ensure that transform sizes are equal to PUs for inter coded CUs, but this requirement
does not apply to intra coded CUs.

[0201] Furthermore, in some examples, video encoder 20 may signal one flag for each
PU to indicate whether there exists at least one non-zero coefficient for the three color
components (e.g., Y, Cb, and Cr). As mentioned above, the second technique of this
disclosure requires the sizes of TUs of a CU to be equal to the sizes of PUs of the CU at
a particular depth in the transform tree. Hence, at the particular depth, the transform
tree includes a respective transform tree node for each respective PU of the CU. For
each respective transform tree node of the transform tree at the particular depth, the
respective transform tree node corresponds to a luma transform block and chroma
transform blocks having the same sizes and shapes as a luma prediction block and
chroma prediction blocks of the corresponding PU. Hence, encoder 20 may signal
information about a transform tree node at the particular depth (and descendant
transform tree nodes of the transform tree node at the particular depth) by signaling
information in the corresponding PU. For example, video encoder 20 may signal, in a
bitstream, a first syntax element for a PU, a second syntax element for the PU, and a
third syntax element for the PU. In this example, the first syntax element for the PU
indicates whether there exists a non-zero transform coefficient in a luma coefficient

block of the corresponding transform tree node or descendant transform tree node
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thereof, the second syntax element for the PU indicates whether there exists a non-zero
transform coefficient in a Cb coefficient block of the corresponding transform tree node
or descendant transform tree node thereof, and the third syntax element for the PU
indicates whether there exists a non-zero transform coefficient in a Cr coefficient block
of the corresponding transform tree node or descendant transform tree node thereof.
[0202] In prior techniques, rectangular PUs were only permitted for inter predicted
CUs. However, in some examples of the second technique of this disclosure, when the
rectangular PUs (such as 2NxN, Nx2N) are introduced to the intra coded CUs, the
above method (i.e., requiring the transform size to be equal to the PU size at a particular
transform depth) is also applied.

[0203] In accordance with a third technique, one TU may be split into multiple smaller
TUs while the sizes of the smaller TUs may be different. In other words, a video coder
may split a TU into two differently-sized child TUs. In some instances, splitting a TU
into two or more differently-sized child TUs may improve video coding performance
instances where AMP is enabled because splitting a TU into two or more differently-
sized child TUs may better align the boundaries of the child TUs with PU boundaries.
As discussed elsewhere in this disclosure, aligning boundaries of TUs with boundaries
of PUs may reduce the occurrence of high frequency transform coefficients associated
with discontinuities at boundaries between predictive blocks and therefore increase
compression efficiency. For example, if a block (e.g., a CU) has a 12x16 PU, a portion
of the block corresponding to the 12x16 PU may be split into two 8x8 TUs plus two
4x4 TUs, or two 8x8 TUs plus one 4x16 TU.

[0204] In one example of the third technique, when AMP mode is enabled for one CU,
the transform tree for the larger PU may be split to two parts with one equal to the
smaller PU and the rest as another TU. An example is given in FIG. 22. FIG. 22 isa
conceptual diagram illustrating a transform structure for partition size equal to
NxN/4(U), in accordance with a technique of this disclosure. In the example of FIG.
22, a transform block 150 is partitioned into transtorm blocks 152 and 154.
Furthermore, in the example of FIG. 22, transform block 152 is partitioned into
transform blocks 156, 158, 160, and 162. Transform block 154 is partitioned into
transform blocks 164 and 166. The right branch at transform depth 2 shows that the two
split transform sizes are different. That is, transform block 164 and transform block 166

have different sizes.
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[0205] In some examples of the third technique, asymmetric splitting of a TU is only
applicable to the AMP case wherein the two PU sizes are different or one CU contains
multiple PUs with at least two of the PUs having different sizes. In other words, a video
coder may only split a TU into child TUs of different sizes if a CU containing the TU is
split into PUs of different sizes.

[0206] Thus, in an example where a TU may be split into multiple differently-sized
TUs, video encoder 20 may partition a CU into TUs of the CU based on a tree structure.
In this example, a root node of the tree structure corresponds to a coding block of the
CU. Furthermore, in this example, each respective non-root node of the tree structure
corresponds to a respective block that is a partition of a block that corresponds to a
parent node of the respective non-root node. In this example, leaf nodes of the tree
structure correspond to the TUs of the CUs. In this example, child nodes of at least one
node of the tree structure correspond to blocks of different sizes. Furthermore, in this
example, video encoder 20 may include, in a bitstream that comprises an encoded
representation of video data, data representing one or more of the TUs of the CU.
[0207] In a corresponding example, video decoder 30 may determine a CU is
partitioned into TUs of the CU based on a tree structure. In this example, a root node of
the tree structure corresponds to a coding block of the CU. Furthermore, in this
example, each respective non-root node of the tree structure corresponds to a respective
block that is a partition of a block that corresponds to a parent node of the respective
non-root node. In this example, leaf nodes of the tree structure correspond to the TUs of
the CUs. In this example, child nodes of at least one node of the tree structure
correspond to blocks of different sizes. Furthermore, in this example, video decoder 30
may reconstruct, based on data for at least one of the TUs of the CU, the coding block
of the CU.

[0208] In accordance with a fourth technique of this disclosure, it is allowed that the
split of transform is carried out not along the same direction (vertical or horizontal) in a
CU. In other words, a transform tree for a CU may include transform blocks that are
split horizontally and transform blocks that are split vertically. Allowing both
horizontal and vertical splitting of transform blocks may better align the boundaries of
the TUs of the CU with boundaries of the PUs of the CU. As discussed elsewhere in
this disclosure, aligning the boundaries of the TUs of a CU with boundaries of the PUs
of the CU may reduce the occurrence of high frequency transform coefficients

associated with discontinuities at boundaries between predictive blocks and therefore
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increase compression efficiency. In one example of the fourth technique, the use of
both horizontal and vertical splitting of TUs of a CU is only applicable to certain
partition modes, e.g., AMP.

[0209] FIG. 23 is a conceptual diagram illustrating a transform structure for a partition
size equal to NxN/4(U), in accordance with a technique of this disclosure. In the
example of FIG. 23, the CU partition is along the horizontal direction and TU partition
could be from either horizontal and/or vertical directions. Particularly, a TU 180 is split
horizontally into a TU 182 and a TU 184. TU 182 is split into TUs 186, 188, 190, and
192. TU 184 is split horizontally and vertically into TUs 194, 196, and 198.

[0210] In an example in which splitting of transform blocks along different directions in
a CU is allowed, video encoder 20 may partition a CU into TUs of the CU based on a
tree structure. In this example, a root node of the tree structure corresponds to a coding
block of the CU. Furthermore, in this example, each respective non-root node of the
tree structure corresponds to a respective block that is a partition of a block that
corresponds to a parent node of the respective non-root node. In this example, leaf
nodes of the tree structure correspond to the TUs of the CUs. In this example, a first
node in the tree structure has exactly two child nodes and a boundary between blocks
corresponding to the child nodes of the first node is vertical. Additionally, in this
example, a second node in the tree structure has exactly two child nodes and a boundary
between blocks corresponding to the child nodes of the second node is horizontal. In
this example, video encoder 20 may include, in a bitstream that comprises an encoded
representation of the video data, data representing one or more of the TUs of the CU.
[0211] Similarly, video decoder 30 may determine a CU is partitioned into TUs of the
CU based on a tree structure. In this example, a root node of the tree structure
corresponds to a coding block of the CU, each respective non-root node of the tree
structure corresponds to a respective block that is a partition of a block that corresponds
to a parent node of the respective non-root node, and leaf nodes of the tree structure
correspond to the TUs of the CUs. Furthermore, in this example, a first node in the tree
structure has exactly two child nodes and a boundary between blocks corresponding to
the child nodes of the first node is vertical. In this example, a second node in the tree
structure has exactly two child nodes and a boundary between blocks corresponding to
the child nodes of the second node is horizontal. In this example, video decoder 30 may
reconstruct, based on data for at least one of the TUs of the CU, the coding block of the
CU.
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[0212] In accordance with a fifth technique of this disclosure, one CU may contain both
intra and inter PUs which is referred to comb mode in the following descriptions. In
some instances, use of comb mode may increase the accuracy of predictive blocks of a
CU and therefore may ultimately lead to increased compression performance. The
accuracy of a predictive block of a PU of a CU is a measure of differences between
corresponding samples of the predictive block of the PU and samples of a coding block
of the CU.

[0213] Thus, in accordance with the fifth technique, video encoder 20 may perform
intra prediction to obtain a first predictive block for a first PU of a CU. Additionally, in
this example, video encoder 20 may perform inter prediction to obtain a second
predictive block for a second PU of the same CU. In this example, video encoder 20
may obtain, based on the first predictive block and the second predictive block, residual
data for the CU. Furthermore, in this example, video encoder 20 may include, in a
bitstream comprising an encoded representation of the video data, data representing the
residual data for the CU.

[0214] Similarly, in accordance with the fifth technique, video decoder 30 may perform
intra prediction to obtain a first predictive block for a first PU of a CU. In this example,
video decoder 30 may perform inter prediction to obtain a second predictive block for a
second PU of the same CU. Furthermore, in this example, video decoder 30 may
reconstruct, based on the first predictive block and the second predictive block, a coding
block of the CU.

[0215] When one CU is coded with comb mode, and the CU is split into two PUs in the
vertical direction, such as in an Nx2N partitioning mode, a video coder may determine
the transform depth of a transform tree of the CU as follows: If the left PU is an intra-
coded PU, transform depth can be from 0. In other words, based on the left PU being
intra-coded, the depth of the transform tree of the CU is allowed to be O or greater.
Therefore, in instances where the depth of the transform tree of the CU is equal to O, the
TU size could be equal to the CU size and one TU may cover two PUs, i.e., cross PU
boundaries. Otherwise (the left PU is an inter-coded PU), the transform depth is
restricted to be from 1. In other words, the depth of the transform tree of the CU may be
1 or greater, but not equal to 0. In this example, when the left PU is an inter-coded PU,
the TU size should be no larger than the PU size.

[0216] Thus, in this example, video encoder 20 may generate a bitstream that conforms

to a video coding standard. In this example, based on the CU being split into the first
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PU and the second PU along a vertical boundary and the left PU of the CU being an
intra-coded PU, the video coding standard allows a TU of the CU to cover both the first
and second PUs. In a similar example, video decoder 30 may obtain a bitstream
comprising an encoded representation of the video data. In this example, the bitstream
may conform to a video coding standard that, based on the CU being split into the first
PU and the second PU along a vertical boundary and the left PU of the CU being an
intra-coded PU, allows a TU of the CU to cover both the first and second PUs. In both
the example of video encoder 20 and video decoder 30, the video coding standard may
provide a restriction requiring that, based on the CU being split into the first PU and the
second PU along a vertical boundary and the left PU of the CU being an inter-coded
PU, a TU size of a TU of the CU is no larger than a size of the first PU or the second
PU.

[0217] Furthermore, when one CU is split into two PUs in the horizontal direction, such
as when the 2NxN partition mode is used, a video coder may determine the transform
depth used when a CU contains both intra and inter PUs as follows: If the above PU is
an intra-coded PU, transform depth can be from 0. In other words, the depth of
transform tree of the CU is 0 or more. In this example, the above PU is the upper PU of
the horizontally divided CU. In instances where the transform depth is 0, the TU size is
equal to the CU size and one TU covers two PUs. Otherwise (i.e., the above PU is an
inter-coded PU), transform depth is restricted to be from 1. In other words, the depth of
the transform tree of the CU is 1 or more, but cannot be 0. In this example, when the
above PU is an inter-coded PU, the TU size should be no larger than the PU size.
[0218] Thus, in this example, video encoder 20 may generate a bitstream that conforms
to a video coding standard. In this example, based on the CU being split into the first
PU and the second PU along a horizontal boundary and the above PU of the CU being
an intra-coded PU, the video coding standard allows a TU of the CU to cover both the
first and second PUs. Moreover, in some examples, the bitstream conforms to a video
coding standard that provides a restriction requiring that, based on the CU being split
into the first PU and the second PU along a horizontal boundary and the above PU of
the CU being an inter-coded PU, a TU size of a TU of the CU is no larger than a size of
the first PU or the second PU.

[0219] In a similar example, video decoder 30 may obtain a bitstream comprising an
encoded representation of the video data. In this example, the bitstream conforms to a

video coding standard that, when the CU is split into the first PU and the second PU
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along a horizontal boundary and the above PU of the CU is an intra-coded PU, allows a
TU of the CU to cover both the first and second PUs. Moreover, in some examples,
video decoder 30 obtains a bitstream conforming to a video coding standard that
provides a restriction requiring that, when the CU is split into the first PU and the
second PU along a horizontal boundary and the above PU of the CU is an inter-coded
PU, a TU size of a TU of the CU is no larger than a size of the first PU or the second
PU.

[0220] In some examples, when one CU is coded with comb mode, a restriction is
added such that a TU should not cross PU boundaries. This restriction may reduce the
encoder complexity since there is no need to check the rate-distortion cost of the case
wherein TUs could cross PU boundaries. Thus, in this example, video encoder 20 may
generate a bitstream that conforms to a video coding standard that provides a restriction
requiring that based on the CU having an intra-coded PU and an inter-coded PU, no TU
of the CU crosses PU boundaries of the CU. In a similar example, video decoder 30
may obtain a bitstream comprising an encoded representation of the video data. In this
example, the bitstream conforms to a video coding standard that provides a restriction
requiring that based on the CU having an intra-coded PU and an inter-coded PU, no TU
of the CU crosses PU boundaries of the CU.

[0221] Furthermore, in some examples involving the comb mode, it is restricted that
the comb _mode is only applied for a CU larger than (not including) a certain size such
as 8x8. It is noted that for smaller blocks, increasing the bits of signaling whether
comb_mode 1s applied to a CU may not compensate the saved rate-distortion cost
introduced by the comb mode. Therefore, for certain small sizes, comb _mode may be
always disabled without additional signaling. In this disclosure, a restriction may
prevent a video encoder from performing some action or generating a bitstream in some
way. For example, video encoder 20 may generate a bitstream that conforms to a video
coding standard that provides a restriction requiring that no CU smaller than a particular
size is allowed to have both an intra-coded PU and an inter-coded PU. In a similar
example, video decoder 30 may obtain a bitstream comprising an encoded
representation of the video data. In this example, the bitstream conforms to a video
coding standard that provides a restriction requiring that no CU smaller than a particular
size is allowed to have both an intra-coded PU and an inter-coded PU.

[0222] In some examples involving the comb mode, one 8x8 CU can be coded with

comb_mode with one 8x4 intra and one 8x4 inter PU, or one 4x8 Intra and one 4x8
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Inter PU. In this example, the corresponding 4x4 chroma block of this 8x8 CU (in 4:2:0
color format) can be coded using only the inter prediction mode of the inter coded luma
PU, or using only the intra prediction mode of the intra coded luma PU, or the 4x4
chroma block is further partitioned correspondingly as two 4x2 or 2x4 blocks based on
the luma PU partition, and each of the two 4x2 or 2x4 is predicted by the corresponding
luma prediction mode, and a 4x4 residual block is generated and a 4x4 transform is
performed on the generated 44 residual block to avoid the introduction of a 2x2
transform. Introduction of a 2x2 transform may unnecessarily increase complexity.
[0223] Thus, in the example above, video encoder 20 may perform intra prediction to
obtain a first predictive block for a first PU of a CU of the video data. Additionally, in
this example, video encoder 20 may perform inter prediction to obtain a second
predictive block for a second PU of the same CU. In this example, the size of the CU is
2Nx*2N; the size of the first PU is 2NN and the size of the second PU is Nx2N or the
size of the first PU is Nx2N and the size of the second PU is 2NxN. Furthermore, in
this example, the CU is coded using a 4:2:0 color format. In this example, the first
predictive block for the first PU is a luma predictive block for the first PU. In this
example, the second predictive block for the second PU is a luma predictive block for
the second PU. In this example, video encoder 20 uses only inter prediction to obtain a
third predictive block, the third predictive block being a chroma predictive block of size
NxN. In this example, video encoder 20 obtains residual data for the CU based on the
first, second, and third predictive blocks. A similar example substitutes, instead of
video encoder 20 that obtains residual data for the CU based on the first, second, and
third predictive blocks, a video encoder 20 that uses only intra prediction to obtain the
third predictive block instead of intra prediction.

[0224] Moreover, in a corresponding example, video decoder 30 may perform intra
prediction to obtain a first predictive block for a first PU of a CU of the video data. In
this example, video decoder 30 may perform inter prediction to obtain a second
predictive block for a second PU of the same CU. In this example, the size of the CU is
2Nx*2N; the size of the first PU is 2NN and the size of the second PU is Nx2N or the
size of the first PU is Nx2N and the size of the second PU is 2NxN, and the CU is
coded using a 4:2:0 color format. Furthermore, in this example, the first predictive
block for the first PU is a luma predictive block for the first PU and the second
predictive block for the second PU is a luma predictive block for the second PU. In this

example, video decoder 30 uses only inter prediction to obtain a third predictive block,
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the third predictive block being a chroma predictive block of size NxN. Furthermore, in
this example, video decoder 30 may reconstruct, based on the first, second, and third
predictive blocks, the coding block of the CU. A similar example substitutes a different
configuration of video decoder 30 that uses only intra prediction to obtain the third
predictive block instead of intra prediction.

[0225] As mentioned above, in some examples, one 8<8 CU can be coded with
comb_mode with one 8x4 intra and one 8x4 inter PU, or one 4x8 intra and one 4x8
inter PU, and the corresponding 4x4 chroma block of this 8x8 CU, can be coded using
only the inter prediction mode of the inter coded luma PU, a video coder may partition
the 4x4 chroma block correspondingly as two 4x2 or 2x4 blocks based on the luma PU
partition, the video coder predicts each of the two 4x2 or 2x4 by the corresponding
luma prediction mode, and the video coder generates a 4x4 residual block and performs
a 4x4 transform on the generated 4x4 residual block.

[0226] Thus, in such examples, video encoder 20 may perform intra prediction to obtain
a first predictive block for a first PU of a CU of the video data. Additionally, in this
example, video encoder 20 may perform inter prediction to obtain a second predictive
block for a second PU of the same CU. In this example, the size of the CU is 2N*2N,
the size of the first PU is 2NxN and the size of the second PU is Nx2N or the size of the
first PU 1s Nx2N and the size of the second PU is 2NxN, and the CU is coded using a
4:2:0 color format. Furthermore, the first predictive block for the first PU is a luma
predictive block for the first PU and the second predictive block for the second PU is a
luma predictive block for the second PU. In this example, video encoder 20 may use an
intra prediction mode of the first PU to generate a chroma predictive block for the first
PU. Furthermore, in this example, video encoder 20 may use inter prediction to
generate a chroma predictive block for the second PU. In this example, video encoder
20 may obtain residual data for the CU based on the first predictive block, the second
predictive blocks, the chroma predictive block for the first PU and the chroma
predictive block for the second PU.

[0227] In a similar example, video decoder 30 may perform intra prediction to obtain a
first predictive block for a first PU of a CU of the video data. In this example, video
decoder 30 may perform inter prediction to obtain a second predictive block for a
second PU of the same CU. In this example, the size of the CU is 2Nx2N, the size of
the first PU is 2NxN and the size of the second PU is Nx2N or the size of the first PU is
Nx2N and the size of the second PU is 2NxN, and the CU is coded using a 4:2:0 color
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format. Furthermore, in this example, the first predictive block for the first PU is a
luma predictive block for the first PU and the second predictive block for the second PU
is a luma predictive block for the second PU. In this example, video decoder 30 may
use an intra prediction mode of the first PU to generate a chroma predictive block for
the first PU. Video decoder 30 may use inter prediction to generate a chroma predictive
block for the second PU. Furthermore, video decoder 30 may reconstruct, based on the
first predictive block, the second predictive blocks, the chroma predictive block for the
first PU and the chroma predictive block for the second PU, the coding block of the CU.
[0228] Additionally, in some examples involving the comb mode, when one CU is
coded using two or more PUs and both Inter and Intra prediction modes are used, for
inter-coded PUs, the CU is treated in the same way as the current HEVC design. That
is, the reconstruction is defined as the sum of decoded residual after possible inverse
quantization/transform and the motion-compensated prediction block using its motion
information. In addition, for intra-coded PUs, a video coder uses a process involving
two predictors, i.e., the reconstruction is defined as the sum of decoded residual after
possible inverse quantization/transform and the motion-compensated prediction block
using the motion information from its neighbor inter-coded PU and the intra prediction
block using the intra prediction modes associated with the current PU.

[0229] Thus, in this example, video encoder 20 may perform intra prediction to obtain a
first predictive block for a first PU of a CU of the video data. In this example, video
encoder 20 may perform inter prediction to obtain a second predictive block for a
second PU of the same CU. Furthermore, in this example, as part of obtaining residual
data for the CU, video encoder 20 may, for each respective sample of the residual data
corresponding to the first PU, obtain the respective sample such that the respective
sample is equal to a respective sample of a coding block of the CU minus a predictive
sample obtained using motion information of the second PU and minus a sample of the
first predictive block. The predictive sample obtained using motion information may be
a sample of a predictive block of an inter-predictive PU.

[0230] In a corresponding example, video decoder 30 may perform intra prediction to
obtain a first predictive block for a first PU of a CU of the video data. In this example,
video decoder 30 may perform inter prediction to obtain a second predictive block for a
second PU of the same CU. Furthermore, in this example, as part of reconstructing a
coding block of the CU, video decoder 30 may, for each respective sample of the coding

block corresponding to the first PU, obtain the respective sample such that the
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respective sample is equal to a sum of a respective decoded residual sample, a predictive
sample obtained using motion information of the second PU, and a sample of the first
predictive block.

[0231] Alternatively, in some examples involving comb mode, when one CU is coded
using two or more PUs and both Inter and Intra prediction modes are used, for intra-
coded PUs, the process for reconstructing coding blocks of the CU is the same as the
current HEVC design, i.e., the reconstruction is defined as the sum of decoded residual
after possible inverse quantization/transform and the intra prediction block using its
intra prediction mode. In addition, for an inter-coded PU of a CU, the process for
reconstructing portions of the coding blocks corresponding to the inter-coded PU is
different from the reconstruction process in HEVC in that two predictors are defined for
the inter-coded PU. Furthermore, for each sample of a coding block of the CU that
corresponds to a sample of the inter-coded PU, the sample is defined as a sum of a
decoded residual sample (e.g., after possible inverse quantization/transform) and a
sample of the motion-compensated prediction block of the inter-coded PU generated
using motion information of the inter-coded PU and a sample of an intra prediction
block generated using an intra prediction mode associated with an intra-coded PU that
neighbors the inter-coded PU.

[0232] Thus, in this example, video encoder 20 may perform intra prediction to obtain a
first predictive block for a first PU of a CU of the video data. In this example, video
encoder 20 may perform inter prediction to obtain a second predictive block for a
second PU of the same CU. Furthermore, in this example, as part of obtaining residual
data for the CU, video encoder 20 may, for each respective sample of the residual data
corresponding to the second PU, obtain the respective sample such that the respective
sample is equal to a respective sample of a coding block of the CU minus a predictive
sample obtained using an intra prediction mode of the first PU and minus a sample of
the second predictive block.

[0233] In a corresponding example, video decoder 30 may perform intra prediction to
obtain a first predictive block for a first PU of a CU of the video data. In this example,
video decoder 30 may perform inter prediction to obtain a second predictive block for a
second PU of the same CU. Furthermore, in this example, as part of reconstructing a
coding block of the CU, video decoder 30 may, for each respective sample of the coding
block corresponding to the second PU, obtain the respective sample such that the

respective sample is equal to a sum of a respective decoded residual sample, a predictive
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sample obtained using an intra prediction mode of the first PU, and a sample of the
second predictive block.

[0234] In one example, when allowing the two predictors, the two prediction blocks are
combined with a linear weighting function, e.g., an average of the two. For example, a
video coder such as video encoder 20 or video decoder 30 may use intra prediction to
generate a first predictive block of a PU and may use inter prediction to generate a
second predictive block for the PU. In this example, the video coder may determine a
final predictive block for the PU by determining, for each respective sample of the final
predictive block, a weighted average of the samples of the first and second predictive
blocks that correspond to the respective sample of the final predictive block. In this
example, weights used in the weighted average may favor the intra predicted predictive
block over the inter predicted predictive block, or vice versa. In some instances, using
such a linear weighting function may lead to a more accurate final predictive block,
which may ultimately increase compression performance. The linear weighting factors
may be signaled as side information or derived from certain coded information.

[0235] For example, for each respective sample of a coding block of the CU that
corresponds to a PU of the CU, video encoder 20 may obtain a first predictive sample
for the respective sample and a second predictive sample for the respective sample. For
instance, the first predictive sample for the respective sample may be generated using
inter prediction and the second predictive sample for the respective sample may be
generated using intra prediction. In this example, video encoder 20 may determine a
weighted predictive sample for the respective sample by applying the linear weighting
function to the first predictive sample for the respective sample and the second
predictive sample for the respective sample. Additionally, in this example, video
encoder 20 may determine a residual sample for the respective sample equal to a
difference between an original value of the respective sample and the weighted
predictive sample for the respective sample.

[0236] Similarly, for each respective sample of a coding block that video decoder 30
may obtain a residual sample for the respective sample. For instance, video decoder 30
may obtain, from a bitstream, syntax elements indicating transform coefficients, apply
inverse quantization to the transform coefficients, and apply an inverse transform to the
transform coefficients to obtain residual samples. Furthermore, in this example, video
decoder 30 may determine a first predictive sample for the respective sample and a

second predictive sample for the respective sample. For instance, the first predictive
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sample for the respective sample may be generated using inter prediction and the second
predictive sample for the respective sample may be generated using intra prediction. In
this example, video decoder 30 may determine a weighted predictive sample for the
respective sample by applying a linear weighting function to the first predictive sample
for the respective sample and the second predictive sample for the respective sample.
Additionally, in this example, video decoder 30 may reconstruct the respective sample
as a sum of the residual sample for the respective sample and the weighted predictive
sample for the respective sample.

[0237] The following examples indicate the usage of comb mode when the comb mode
is enabled for one slice, picture, or sequence (i.e., coded video sequence). In HEVC, a
CU includes a 1-bit pred mode flag syntax element. The pred mode flag syntax
element of a CU equal to O specifies that the CU is coded in the inter prediction mode.
The pred mode flag syntax element of a CU equal to 1 specifies that the CU is coded in
the intra prediction mode. In accordance with one example of this disclosure, the 1-bit
pred_mode flag of a CU is replaced by a syntax element with three possible values. In
this example, the three values correspond to the conventional intra mode, the
conventional inter mode, and comb mode, respectively. In this example, the
conventional intra mode refers to instances where all PUs of the CU are coded using
intra prediction mode. Furthermore, in this example, the conventional inter prediction
mode refers to instances where all PUs of the CU are coded using inter prediction mode.
In some examples, when comb mode is enabled for a CU, for only one PU of the CU,
video encoder 20 signals a 1-bit value to indicate whether the PU is coded in intra
prediction mode or inter prediction mode. Because the CU is coded in the comb mode,
the other PU is a different prediction mode from the PU for which the 1-bit value was
signaled. In another example, comb mode is treated as the conventional inter mode. In
this example, for each PU of a CU, an additional flag is added to indicate the usage of
intra or inter prediction mode.

[0238] In a seventh technique of this disclosure, one PU can be predicted from both
intra prediction and inter prediction and the two predictive blocks from intra prediction
and inter prediction are used to derive the final predictive block for the PU. Deriving a
final predictive block in this way may result in a more accurate predictive block for the
PU, which may increase compression performance.

[0239] Thus, in accordance with the seventh technique, video encoder 20 may perform

intra prediction to obtain a first predictive block for a PU of a CU. Additionally, in this
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example, video encoder 20 may perform inter prediction to obtain a second predictive
block for the same PU of the same CU. In this example, video encoder 20 may derive,
based on the first predictive block and the second predictive block, a final predictive
block for the PU. Furthermore, video encoder 20 may obtain, based on the final
predictive block for the PU, residual data for the CU. For instance, video encoder 20
may generate at least a portion of the residual data for CU by calculating differences
between samples of the final predictive block for the PU and corresponding samples of
a coding block of the CU. In this example, video encoder 20 may include, in a
bitstream comprising an encoded representation of the video data, data representing the
residual data for the CU.

[0240] In a corresponding example, video decoder 30 may perform intra prediction to
obtain a first predictive block for a PU of a CU. Additionally, in this example, video
decoder 30 may perform inter prediction to obtain a second predictive block for the
same PU of the same CU. In this example, video decoder 30 may derive, based on the
first predictive block and the second predictive block, a final predictive block for the
PU. Furthermore, in this example, video decoder 30 may reconstruct, based on the final
predictive block for the PU, a coding block of the CU. For instance, video decoder 30
may add the final predictive block for the PU to residual data for the CU to reconstruct
at least a portion of a coding block of the CU.

[0241] Furthermore, in some examples of the seventh technique, a video coder applies a
linear weighting function to the two prediction blocks, e.g., the weighting factors of the
pixels located in the same relative positions of the two prediction blocks are fixed. In
some examples, the weighting factors for different positions may be variable.
Furthermore, in some examples, the weighting factors are dependent on the intra
prediction mode. In one example, for the top-left position within a block, if the intra
prediction mode is a DC mode, the weights of the top-left samples in inter and intra
predictive blocks are equal, i.e., (0.5, 0.5) while if the intra prediction is a vertical
prediction mode, the weight of the top-left sample in intra predictive block may be
larger than that of the top-left sample in the inter predictive block.

[0242] In some examples of the seventh technique, the final prediction value of one
pixel at one or more positions, but not all positions, may be copied from either the intra
predicted block or the inter predicted block, i.e., one of the two weighting factors is O

and the other oneis 1.
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[0243] In some examples, the seventh technique is applied to specific partition sizes
(e.g., 2Nx2N), and/or specific prediction modes (MERGE/SKIP mode). Furthermore,
in some examples, when the seventh technique is applied, the intra prediction modes are
restricted to be a subset of intra prediction modes used for conventional intra prediction.
In one example, the subset is defined to only include the MPMs (most probable modes).
[0244] As discussed above, a video coder may use a Linear Model (LM) prediction
mode to predict chroma samples of a block based on reconstructed luma samples of the
same block. Furthermore, as described above, the LM prediction mode has not been
used with non-square PUs. In accordance with an eighth technique of this disclosure, a
video coder may use the LM prediction mode with non-square PUs. More generally,
the same techniques for applying the LM prediction mode work with non-square luma
and chroma blocks. Hence, discussion in this disclosure regarding the eighth technique
with respect to non-square PUs may apply more generally to non-square luma and
chroma blocks, such as the luma prediction blocks and chroma prediction blocks of
PUs. Furthermore, examples of the eighth technique may derive the parameters used in
the LM prediction mode in several ways.

[0245] For instance, in some examples of the eighth technique, a boundary at the longer
side of a non-square PU is down-sampled or sub-sampled such that the number of pixels
in the down-sampled or sub-sampled boundary is equal to the number of pixels in the
shorter boundary. The process can be a decimation or an interpolated sampling. In
examples where video decoder 30 performs the sub-sampling using decimation, video
decoder 30 may remove samples at regular intervals (e.g., every other sample) to reduce
the number of samples without changing the values of the remaining samples. In
another example, video decoder 30 may perform the sub-sampling using interpolation.
In examples where video decoder 30 performs the sub-sampling using interpolation, for
respective pairs of adjacent samples, video decoder 30 may interpolate a value between
the samples of a respective pair and may include the interpolated value in the sub-
sampled set of samples.

[0246] Thus, in an example of the eighth technique of this disclosure, video encoder 20
may perform a linear model prediction operation to predict a predictive chroma block
for a non-square PU of a CU from down-sampled or sub-sampled reconstructed luma
samples of the PU. Furthermore, in this example, video encoder 20 may obtain, based
on the predictive chroma block, residual data for the CU. In this example, video

encoder 20 may include, in a bitstream comprising an encoded representation of the
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video data, data representing the residual data for the CU. In a corresponding example,
video decoder 30 may perform a linear model prediction operation to predict a
predictive chroma block for a non-square PU of a CU of a current picture of the video
data from down-sampled reconstructed luma samples of the PU. In this example, video
decoder 30 may reconstruct, based in part on the predictive chroma block, a coding
block of the CU. In either of the examples of the paragraph, video encoder 20 or video
decoder 30 may down-sample or sub-sample luma samples of a longer side of the non-
square PU such that the number of down-sampled or sub-sampled luma samples on the
longer side of the non-square PU is the same as the luma samples on the shorter side of
the non-square PU.
[0247] In one example, when using equation (4) and equation (5) to calculate linear
model parameters, for both luma and chroma components, the pixels of the boundary at
the longer side of a non-square PU are sub-sampled such that the number of pixels in
the down-sampled or sub-sampled boundary are equal to the number of pixels in the
shorter boundary (i.e., min(K, L)). The sub-sampling process can be a decimation or an
interpolated sampling.
[0248] Thus, in this example, as part of performing an LM prediction operation, a video
coder may obtain a predictive chroma sample such that the predictive chroma sample is
equal to a first parameter multiplied by a collocated luma sample, plus a second
parameter, wherein the first parameter is equal to:

ORI

Ile - X, —le -le

and the second parameter is equal to:

ﬂ:(ZyI—a-ZxI)/],

where / is the number of reference samples in a left and top boundary of the non-square

PU, x; is a down-sampled or sub-sampled reconstructed luma reference sample, yiis a
reconstructed chroma reference sample.

[0249] Alternatively, in some examples, pixels located at both longer and short sides of
the PU may be sub-sampled and the sub-sampling ratios may be different. A sub-
sampling ratio is a ratio of samples prior to sub-sampling to samples after sub-sampling.
However, it may be required that the total number of pixels at two sides after sub-
sampling should be equal to 2™ (wherein m is an integer, m may be different for luma

and chroma components). The value of m can be dependent on the block size K and L.



WO 2017/091773 PCT/US2016/063677
74

[0250] Thus, in this example, as part of performing an LM prediction operation, a video
coder may obtain a predictive chroma sample such that the predictive chroma sample is
equal to a first parameter multiplied by a collocated luma sample, plus a second
parameter, wherein the first parameter is equal to:
RO DRI
IZx, - X, —Zx, -le

and the second parameter is equal to:

ﬂ:(ZyI—a-ZxI)/],

where [ is the number of reference samples in a set of reference samples, x; is a

reconstructed luma reference sample, and yiis a reconstructed chroma reference sample.
In this example, the set of reference samples is a sub-sampled set of left reference
samples and above reference samples, the left reference samples being immediately left
of a left boundary of the current PU and the above reference samples being immediately
above a top boundary of the current PU.

[0251] In another example of the eighth technique, the number of pixels / in equations
(4) and (5) are adjusted based on the actual number of pixels in the boundary. For
instance, for 2NxN PU, /=3N. When only left or above causal samples are available,
the total involved samples number / is equal to the length of left or above boundary.

Thus, a video coder may calculate « as:

a:3Nle -V, —Zx, -Zy,
3N2xl - X, —Zx, -le

Additionally, the video coder may calculate f as:

ﬂ:(Zy,—a-Zx,)BN.

[0252] When LM is enabled for one non-square chroma PU (with size equal to KxL,
where K is unequal to L), the parameters (i.e., a and b) can be derived in various ways.
For example, when using equation (4) and equation (5) to calculate linear model
parameters, for both luma and chroma components, the pixels of the boundary at the
shorter side of the non-square PU is up-sampled such that the number of pixel in the up-

sampled boundary is equal to the number of pixels in the longer boundary (i.e., max(K,



WO 2017/091773 PCT/US2016/063677
75

L)). The up-sampling process can be a duplicator or an interpolated sampling. A
duplicator up-sampling process is an up-sampling process in which existing samples are
duplicated to generate new samples. An interpolated up-sampling process increases the
number of samples by interpolating a value of a new sample based on two or more
existing samples.

[0253] Thus, in this example, as part of performing an LM prediction operation, a video
coder may obtain a predictive chroma sample such that the predictive chroma sample is
equal to a first parameter multiplied by a collocated luma sample, plus a second
parameter, wherein the first parameter and second parameter are defined in equations
(4) and (5). In this example, the set of reference samples is an up-sampled set of left
reference samples and above reference samples, the left reference samples being
immediately left of a left boundary of the current PU and the above reference samples
being immediately above a top boundary of the current PU. In this example, the video
coder may determine the set of reference samples by applying an up-sampling method
to the left references samples and/or the above reference samples. For instance, the up-
sampling method may up-sample whichever of the left reference samples or the above
reference samples corresponds to the shorter of the left boundary of the current PU and
the top boundary of the current PU, but not whichever is longer of the left reference
samples of the current PU and the above reference samples of the current PU.

[0254] In some examples, pixels located at both longer and shorter sides of the PU may
be up-sampled and the up-sampling ratios may be different. However, it may be
required that the total number of pixels at two sides after up-sampling should be equal
to 2™ (wherein m is an integer, m may be different for luma and chroma components).
The value of m may be dependent on the block size K and L. In other words, m is
dependent on a height and/or width of the PU. For example, a PU may be 8x16 and a
video coder may up-sample reference samples such that there are 32 reference samples
along a left side of the PU and 32 reference samples along a top side of the PU. In this
example, m is equal to 6. In another example, a PU may be 4x8 and a video coder may
up-sample reference samples such that there are 16 reference samples along a left side
of PU and 16 reference samples along a top side of the PU. In this example, m is equal
to 4.

[0255] Furthermore, in some examples of the eighth technique, when using equation (4)
and equation (5) to calculate LM parameters, for both luma and chroma components, the

pixels of the boundary at the shorter side of the non-square PU is up-sampled and the



WO 2017/091773 PCT/US2016/063677
76

pixels of the longer boundary (i.e., max (K, L)) is sub-sampled such that the number of
pixel in the up-sampled shorter boundary is equal to the number of pixels in the sub-
sampled longer boundary. The up-sampling process can be a duplicator or an
interpolated sampling. The sub-sampling process can be a decimation or an interpolated
sampling.

[0256] Thus, in this example, as part of performing the LM prediction operation, a
video coder may obtain a predictive chroma sample such that the predictive chroma
sample is equal to a first parameter multiplied by a collocated luma sample, plus a
second parameter, wherein the first parameter and the second parameter are defined as
in equations (4) and (5). In this example, the set of reference samples is a union of an
up-sampled set of reference samples and a sub-sampled set of reference samples, the up-
sampled set of reference samples being an up-sampled version of whichever contains
fewer samples of left reference samples and above reference samples. In this example,
the sub-sampled set of reference samples is a sub-sampled version of whichever
contains more samples of the left reference samples and the above reference samples.
In this example, the left reference samples are immediately left of a left boundary of the
current PU and the above reference samples are immediately above a top boundary of
the current PU.

[0257] In some examples, for the examples of the eighth technique mentioned above,
after the sub-sampling or up-sampling process, a down-sampling process (e.g., as
described elsewhere in this disclosure) only for the luma component may be further
applied to cover the case that the color format is not 4:4:4. Thus, based on a color
format of the current picture being other than 4:4:4, a video coder may sub-sample or
down-sample luma samples of the predictive block. In some examples, the two down-
sampling processes of luma samples could be merged into one.

[0258] Furthermore, in some examples of the eighth technique, different ways of sub-
sampling/up-sampling for boundary pixels may be applied. In one example, the sub-
sampling/up-sampling method is dependent on the PU size (i.e., on the values of K and
L). In another example, the methods for sub-sampling/up-sampling may be signaled in
a sequence parameter set, a picture parameter set, a slice header, or in another syntax
structure.

[0259] In some examples of the eighth technique, the up-sampling/down-sampling (or
sub-sampling) is implemented in an implicit manner. In other words, the up-sampling

or sub-sampling technique is determined implicitly. That is, the sum value, such as
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Z X Y, Z x, and Z ¥, in equation (4) and equation (5) of the left side boundary

or/and upper side boundary, is multiplied or divided by a factor S. The value of S can
be dependent on the ratio of the pixel number in the left side boundary or/and upper side
boundary.

[0260] Thus, in this example, as part of performing the LM prediction operation to
predict the predictive chroma block, a video coder may obtain a predictive chroma
sample such that the predictive chroma sample is equal to a first parameter multiplied
by a collocated luma sample, plus a second parameter, wherein the first LM parameter
is equal to:

LS XXy =S XXt S Xy
_ISlexl_SzxLSle’

0.6

where § is dependent on a ratio of a pixel number in a left boundary or/and an upper
boundary of the non-square PU, / is the number of reference samples in a subset of
samples in a left and top boundary of the current PU determined according to a sub-
sampling method, x; is a sub-sampled reconstructed luma reference sample, and y; is a
reconstructed chroma reference sample. In some examples, S = max(K, L)/min(K, L)
for a K<L chroma block.

[0261] As described above, an enhancement multiple transform (EMT) scheme has
been proposed that uses DST-VII, DCT-VIII, DST-I and DCT-V. Furthermore, as
discussed above, whether EMT applies or not is controlled at the CU level using a flag,
namely an EMT flag, for all TUs within a CU. For each TU within an EMT-enabled
CU, the horizontal or vertical transform to be used is signaled by an index to a selected
transform set, namely an EMT index.

[0262] However, controlling the EMT scheme as previously-proposed may not be
efficient if the residual characteristics of each PU in a CU are different. For example,
controlling the EMT scheme as previously-proposed may not be efficient for an intra-
coded PU and an inter-coded PU within a CU. Hence, in accordance with a ninth
technique of this disclosure, when EMT is enabled for one slice, picture, or sequence
and one CU is split into two PUs in vertical direction (e.g., Nx2N partition), the
signaling of an EMT flag is modified in the following way: If the left PU is an intra-
coded PU, the transform depth could be 0. In other words, the transform tree of the CU
may have a depth of 0 or more. In this case, an EMT flag may be signaled at the CU
level. If the transform depth is not 0, the EMT flag may be signaled at the PU level.
Hence, EMT may or may not be enabled for each PU.
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[0263] Furthermore, in accordance with the ninth technique of this disclosure, when
EMT is enabled for one slice, picture, or sequence and when one CU is split into two
PUs in a horizontal direction (e.g., 2NN partition), the signaling of the EMT flag is
modified in the following way: If the above PU is an intra-coded PU, the transform
depth may be 0. In other words, the transform tree of the CU may have a depth of 0 or
more. In this case, an EMT flag may be signaled at CU level. If the transform depth is
not 0, the EMT flag may be signaled at the PU level. That is, each PU may have EMT
enabled or not.

[0264] Thus, in accordance with the ninth technique, video encoder 20 may include, in
a bitstream that comprises an encoded representation of video data, a first syntax
element. The first syntax element indicates whether EMT is enabled for a particular CU
that is partitioned into exactly two PUs along a boundary. In this example, whether the
first syntax element is in the particular CU or a particular PU of the two PUs is
dependent on a splitting direction of the PUs of the CU. Furthermore, in this example,
based on EMT being enabled for a particular CU, for each respective TU of the
particular CU, video encoder 20 may include, in the bitstream, a respective syntax
element indicating a respective selected transform set for the respective TU. In this
example, based on EMT being enabled for the particular CU, video encoder 20 may
apply one or more transforms of the respective selected transform set to transform
coefficients of the respective TU to obtain a respective transform block for the
respective TU in the sample domain. In this example, video encoder 20 may include, in
a bitstream that comprises an encoded representation of the video data, data representing
one or more of the TUs of the CU. In this example, the boundary may be a horizontal
boundary or the boundary may be a vertical boundary.

[0265] In a corresponding example, video decoder 30 may obtain a first syntax element.
The first syntax element indicates whether EMT is enabled for a particular CU that is
partitioned into exactly two PUs along a boundary. In this example, whether the first
syntax element is in the particular CU or a particular PU of the two PUs is dependent on
a splitting direction of the PUs of the CU. In this example, in response to determining
that EMT is enabled for a particular CU, for each respective TU of the particular CU,
video decoder 30 may obtain a respective syntax element indicating a respective
selected transform set for the respective TU. Additionally, in response to determining
that EMT is enabled for a particular CU, for each respective TU of the particular CU,

video decoder 30 may apply an inverse of one or more transforms of the respective
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selected transform set to transform coefficients of the respective TU to obtain a
respective transform block for the respective TU in the sample domain. In this example,
video decoder 30 may reconstruct, based at least in part on the transform blocks for the
TUs of the CU, a coding block of the CU. In this example, the boundary may be a
horizontal boundary or the boundary may be a vertical boundary.

[0266] In accordance with a tenth technique of this disclosure, several transform tree
structures may be applied for coding one slice, picture, or sequence. For example, in
one example, transform tree structures are pre-defined. In some examples, for each
picture, slice, largest coding unit, CU, or PU, video encoder 20 may signal the selected
transform tree structure. Alternatively, in some examples, video decoder 30 may derive
the selected transform tree from the coded information, such as prediction
modes/partition sizes.

[0267] Thus, in accordance with the tenth technique, video encoder 20 may partition a
CU of the video data into TUs of the CU based on a particular tree structure from
among a plurality of predefined tree structures. In this example, a root node of the tree
structure corresponds to a coding block of the CU. Furthermore, in this example, each
respective non-root node of the tree structure corresponds to a respective block that is a
partition of a block that corresponding to a parent node of the respective non-root node.
In this example, leaf nodes of the tree structure correspond to the TUs of the CUs.
Additionally, in this example, video encoder 20 includes, in a bitstream that comprises
an encoded representation of the video data, data representing one or more of the TUs of
the CU. In some examples, video encoder 20 may further include, in the bitstream, one
or more syntax elements identifying the particular tree structure. In some examples, the
one or more syntax elements that indicate the particular tree structure applicable to CUs
is in one of a picture, slice, LCU, CU, and PU. Furthermore, in some examples, as part
of determining the CU is partitioned into the TUs, video encoder 20 determines the
particular tree structure from coded information without explicitly signaling of the
particular tree structure. In such examples, the coded information may comprise at least
one of: prediction modes and partition sizes.

[0268] In a corresponding example, video decoder 30 may determine a CU of the video
data is partitioned into TUs of the CU based on a particular tree structure from among a
plurality of predefined tree structures. In this example, a root node of the tree structure
corresponds to a coding block of the CU. Each respective non-root node of the tree

structure corresponds to a respective block that is a partition of a block that
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corresponding to a parent node of the respective non-root node. In this example, leaf
nodes of the tree structure correspond to the TUs of the CUs. Additionally, in this
example, video decoder 30 may reconstruct, based on data for at least one of the TUs of
the CU, the coding block of the CU. In some examples, video decoder 30 may obtain,
from a bitstream that comprises encoded video data, one or more syntax elements
identifying the particular tree structure. The one or more syntax elements that indicate
the particular tree structure applicable to CUs in one of: a picture, slice, LCU, CU, and
prediction unit. Furthermore, in some examples, as part of determining the CU is
partitioned into the TUs, video decoder 30 may determine the particular tree structure
from coded information without explicit signaling of the particular tree structure. The
coded information may comprise at least one of: prediction modes and partition sizes.
[0269] In an eleventh example of this disclosure, transforms with size equal to 1xN and
Nx1 may be also applied to inter coded blocks. For instance, in one example, such TUs
are only allowed for a specific transform depth, e.g., the highest transform depth. In
some examples, such TUs are only allowed for specific coding blocks, such as CU size
equal to 8x8. Furthermore, in some examples, the eleventh technique is only applicable
for specific color component, such as luma.

[0270] Thus, in accordance with the eleventh technique, video encoder 20 may
determine transform-domain data (e.g., transform coefficients) by applying a 1xN or
Nx1 transform to residual data of an inter coded block. In this example, video encoder
20 may include, in a bitstream that comprises an encoded representation of the video
data, data representing the transform-domain data. In a corresponding example, video
decoder 30 may determine sample-domain data by applying a 1xN or Nx1 transform to
transform coefficients of an inter coded block. In this example, video decoder 30 may
reconstruct, based in part on the sample-domain data, a coding block of a CU of the
video data. For example, video decoder 30 may add samples of the sample-domain data
to corresponding samples of residual data to reconstruct the coding block of the CU. In
some instances, for the above examples of the eleventh technique involving video
encoder 20 and video decoder 30, 1xN and Nx1 transforms are only allowed for a
specific transform depth. Additionally, in some instances, for the above examples of the
eleventh technique involving video encoder 20 and video decoder 30, 1xN and Nx1
transforms are only allowed for a CUs of particular sizes.

[0271] In accordance with a twelfth technique of this disclosure, the asymmetric motion

partitioning defined in HEVC for inter coded CUs is also applied to intra coded CUs.
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Partitioning intra predicted CUs into PUs asymmetrically may enable video encoder 20
to more accurately divide the CU into regions corresponding to different objects, which
may increase compression performance. Thus, in accordance with an example of the
twelfth technique, video encoder 20 may partition an intra predicted CU of the video
data into PUs asymmetrically. In this example, video encoder 20 may determine a
respective predictive block for each respective PU of the intra predicted CU.
Furthermore, in this example, video encoder 20 may obtain residual data based on the
predictive blocks for the PUs of the intra predicted CU and a coding block of the intra
predicted CU. Additionally, in this example, video encoder 20 may include, in a
bitstream that comprises an encoded representation of the video data, data representing
the residual data.

[0272] In a corresponding example of the twelfth technique, video decoder 30 may
determine an intra predicted CU of the video data is partitioned into PUs
asymmetrically. In this example, video decoder 30 may determine a respective
predictive block for each respective PU of the intra predicted CU. Additionally, in this
example, video decoder 30 may reconstruct, based on the predictive blocks for the PUs
of the intra predicted CU, a coding block of the intra predicted CU.

[0273] In accordance with a thirteenth technique of this disclosure, when one intra
coded CU contains multiple PUs, each PU may have its own chroma prediction mode.
In other words, a PU may have a first intra prediction mode (i.e., a luma prediction
mode) and a second intra prediction mode (i.e., a chroma prediction mode). A video
coder may use the luma prediction mode to determine the luma predictive block of the
PU and may use the chroma prediction mode to determine the chroma predictive blocks
of the PU. Thus, in accordance with the 13® technique, video encoder 20 may
determine an intra predicted CU of the video data has at least a first PU and a second
PU. In this example, the first PU and the second PU have different chroma prediction
modes. Furthermore, in this example, video encoder 20 may include, in a bitstream that
comprises an encoded representation of the video data, data representing residual data
based at least on predictive blocks of the first PU and the second PU and a coding block
of the CU.

[0274] In a corresponding example of the 13" technique, video decoder 30 may
determine an intra predicted CU of the video data has at least a first PU and a second

PU. In this example, the first PU and the second PU have different chroma prediction
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modes. Furthermore, in this example, video decoder 30 may reconstruct, based at least
on predictive blocks of the first PU and the second PU, a coding block of the CU.
[0275] Furthermore, in accordance with an example of the 13" technique, the chroma
intra prediction modes of the previously coded PU may be considered for coding the
following PU. This, a video coder may determine, based at least in part on a chroma
prediction mode of a PU prior to a current PU in coding order, a chroma prediction
mode of the current PU. For instance, a video coder may use the chroma intra
prediction modes of the previously coded PU in context modeling for chroma intra
prediction mode of a current PU. Context modeling may comprise identification of a
coding context for context-adaptive entropy coding. A coding context may indicate
probabilities of a value In another example, a video coder may add the chroma intra
prediction modes of the previously coded PU as one new candidate for the chroma intra
prediction mode list.

[0276] In some examples of the 13" technique, one flag may be firstly coded at a CU
level to indicate whether all PUs share the same chroma intra prediction modes. Thus,
in this example, video encoder 20 may include, in the bitstream, a syntax element
indicating whether all PUs of the intra predicted CU share the same chroma intra
prediction modes. Similarly, video encoder 20 may obtain, from a bitstream comprising
an encoded representation of the video data, a syntax element indicating whether all
PUs of the intra predicted CU share the same chroma intra prediction modes.

[0277] Furthermore, in some examples of the thirteenth technique, all the chroma PUs
within one CU are restricted to follow the same transform tree. By restricting all of the
chroma PUs within one CU to follow the same transform tree, it may be unnecessary for
video encoder 20 to include data in the bitstream indicating the structures of the
different transform trees for different chroma PUs. Thus, video encoder 20 may
generate a bitstream that conforms to a video coding standard that restricts a video
encoder from generating bitstreams in which chroma PUs of the CU have differently
structured transform trees. Similarly, video decoder 30 may obtain a bitstream
comprising an encoded representation of the video data. In this example, the bitstream
conforms to a video coding standard that restricts a video encoder from generating
bitstreams in which chroma PUs of the CU have differently structured transform trees.
[0278] In a fourteenth example of this disclosure, when one intra coded CU contains
multiple rectangular PUs, a video coder may apply a mode-dependent scan. A mode-

dependent scan is a scanning order used to scan transform coefficients in a 2-
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dimensional coefficient block for a TU into a 1-dimensional coefficient vector for
entropy encoding. Video encoder 20 may select, based on which intra prediction mode
is used for a PU corresponding to the TU, a mode-dependent scan to use for scanning
transform coefficients of the TU from among a plurality of available scanning orders.
The PU corresponding to the TU may be coextensive with the TU or contain the area
associated with the TU. Using a mode-dependent scan may better arrange the transform
coefficients for CABAC. In HEVC, mode-dependent scans are only allowed for 8x8
and 4x4 TUs.

[0279] Thus, in accordance with an example of the fourteenth technique, video encoder
20 may obtain residual data based on 2-dimensional transform coefficient blocks. In
this example, video encoder 20 may obtain predictive blocks for each of a plurality of
rectangular PUs of an intra predicted CU of the video data. Furthermore, in this
example, video encoder 20 may apply a mode-dependent scan to arrange the 2-
dimensional blocks of transform coefficients into 1-dimensional arrays of transform
coefficients corresponding to TUs of the CU. In this example, video encoder 20 may
include, in a bitstream that comprises an encoded representation of the video data, data
representing the 1-dimensional arrays of transform coefficients.

[0280] In a similar example, video decoder 30 may apply a mode-dependent scan to
arrange a 1-dimensional array of transform coefficients into 2-dimensional transform
coefficient blocks corresponding to TUs of an intra predicted CU of the video data. In
this example, the intra predicted CU has multiple rectangular PUs. Furthermore, in this
example, video decoder 30 may obtain residual data based on the transform coefficient
blocks. Additionally, video decoder 30 may obtain predictive blocks for each of the
PUs. In this example, video decoder 30 may reconstruct, based on the residual data and
the predictive blocks, a coding block of the CU.

[0281] In one example of the fourteenth technique, application of the mode-dependent
scan is restricted to certain TU sizes, such as 8x4 or 4x8. In some examples, the mode-
dependent scan is restricted to certain CU sizes, such as only 8x8, or 8x8 and 16x16.
Furthermore, in some examples, the rule of the mapping between intra prediction mode
and scan pattern used for TU sizes equal to 8x8 and 4x4 in HEVC may be reused. In
some examples, different mapping functions may be applied which is dependent on the
rectangular TU sizes.

[0282] As described elsewhere in this disclosure, VCEG-AZO07 proposed using a 4-tap

intra interpolation filter to improve accuracy of directional intra prediction relative to
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the 2-tap intra interpolation filter used in HEVC. However, VCEG-AZ07 does not
indicate how a video coder selects a 4-tap intra interpolation filter for a non-square intra
coded PU. Rather, VCEG-AZO07 specifies that a video coder uses cubic interpolation
filters for 4x4 and 8x8 blocks, and uses Gaussian interpolation filters for 16x16 and
larger blocks. In a fifteenth technique of this disclosure, for a non-square intra coded
PU with size equal to KxL, when determining a 4-tap filter type or a scan pattern as
described elsewhere in this disclosure with respect to four-tap intra interpolation filters,
the non-square intra coded PU is treated as a transform size equal to NxN, wherein
log2(N*N) = ((log2(K) + log2(L)) >> 1) << 1), wherein log2 is the binary logarithm,
and >> and << are the logic right and left shift, respectively.

[0283] Thus, in an example of the fifteenth technique, video encoder 20 may determine
a 4-tap interpolation filter for a non-square intra coded PU of a CU of the video data.
Furthermore, in this example, video encoder 20 may apply the determined 4-tap
interpolation filter as part of obtaining a predictive block for the non-square intra coded
PU. For instance, video encoder 20 may apply the 4-tap filter when determining a value
of a reference sample that lies between two integer-position reference samples (i.e.,
reference samples at integer coordinates relative to a top-left sample of a picture).
Additionally, in this example, video encoder 20 may include, in a bitstream that
comprises an encoded representation of the video data, data representing residual data
based at least in part on a predictive block for the non-square PU and a coding block of
the CU. In this example, as part of determining the 4-tap interpolation filter, video
encoder 20 may determine the 4-tap interpolation filter based on a size of a square PU,
wherein the size of the square PU is based on the height and width of the non-square
intra coded PU.

[0284] In a corresponding example of the fifteenth technique, video decoder 30 may
determine a 4-tap interpolation filter for a non-square intra coded PU of a CU of the
video data. Additionally, in this example, video decoder 30 may apply the determined
4-tap interpolation filter as part of obtaining a predictive block for the non-square intra
coded PU. Furthermore, video decoder 30 may reconstruct, based at least in part on a
predictive block for the non-square PU, a coding block of the CU. In this example, as
part of determining the 4-tap interpolation filter, video decoder 30 may determine the 4-
tap interpolation filter based on a size of a square PU, wherein the size of the square PU

is based on the height and width of the non-square intra coded PU.
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[0285] In some examples of the fifteenth technique, a new 4-tap filter may be applied
for non-square intra coded PUs. That is, even for non-square intra coded PUs, a 4-tap
filter may be applied and this filter may be different from what is defined for square
PUs. Furthermore, in some examples of the fifteenth technique, a different mapping
table between the intra prediction mode and scan pattern index may be applied for non-
square intra coded PUs.

[0286] A KxL transform block is treated as a transform size equal to NxN wherein
log2(N*N) = (log2(K) + log2(L) + 1). Thus, the selection of a scan pattern for the KxL
transform block may be the same as the NxN block.

[0287] As discussed above, transform blocks in HEVC are of size NxN, where N = 2™
and m is an integer. Furthermore, in HEVC, a video encoder applies a 2-dimensional
NxN transform to a transform block to generate transform coefficients. More
specifically, the video encoder applies the 2-dimensional NxN transform by applying an
N-point 1-dimensional transform to each row of the transform block and each column of
the transform block separately. Applying the transform in this way results in an NxN
block of transform coefficients.

[0288] In HEVC, the video encoder may apply an N-point 1-dimensional DCT

transform to an i-th row or column of samples of the transform block w; by calculating:

w; = X uiey; (18)
In the equation above, i =0, ..., N— 1. Elements ¢;; of the DCT transform matrix C are
defined as:
A cos[%(j +E)i]
Cj=—— % (19)
In the equation above, 7, j =0, ..., N — 1 and where 4 is equal to 1 and 2" for i = 0 and i

> 0 respectively.

[0289] In equation (19), let A - cos [% (j + %) i] be denoted by Xj;. Therefore, equation

eT . .
—u\’/N” . Because the video encoder applies the 1-

dimensional DCT transform in both the horizontal and vertical directions, the transform

(18) can be rewritten as w; = X3¢

coefficient w; can ultimately be rewritten as:
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N— N—1WiXij\ Xi
This can further be rewritten as:

21;3';3((2?:31 ujX; j) X ik)
e @1

[0290] Thus, the transform can ultimately be considered as having a “normalization

factor” of VN - VN. Because N =2™ +/N - v/N is also a power of 2. Hence, the value of
a transform coefficient can be implemented by a right-shift operation instead of a
division operation. As discussed elsewhere in this disclosure, using right-shift
operations instead of division operations may reduce complexity and improve coding
speed.

[0291] However, problems may arise when reusing equation (19) with a non-square

transform block of a TU. For a 2-D transform (including both horizontal and vertical

transforms), considering a K*L transform, the normalization factor would be (VK * VL).

If N is defined as the value satisfying the equation log2(N*N) = ((log2(K) + log2(L)) >>
1) << 1), the ratio of utilized normalization factor (VN * v/N) and the real normalization

factor (VK *+/L) would be 1/+/2. In other words, when reusing the same normalization

factor derived from an NxN transform block in the quantization process, the energy (i.e.,

the sum of squares of quantized transform coefficients) is changed by V2.

[0292] A sixteenth technique of this disclosure may address this issue. For instance, in
the sixteenth technique of this disclosure, for a non-square transform block with size
equal to KxL, when (log2(K) + log2(L)) is odd, the transform and quantization process
in HEVC is kept unchanged and the non-square transform block is treated as a
transform block with size equal to NxN, wherein log2(N*N) = ((log2(K) + log2(L)) >>
1) << 1). In other words, based on (log2(K) + log2(L)) being odd, video encoder 20
may determine a value N such that log2(N*N) = ((log2(K) + log2(L)) >> 1) << 1).
Video encoder 20 may then use elements of a DCT transform matrix C that are defined
according to equation (19) using the determined value of N in the “normalization
factor.” Thus, video encoder 20 may continue to use a right-shift operation for the

division by the “normalization factor” in equation (21).
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[0293] Furthermore, in accordance with the sixteenth technique of this disclosure,
after the transform process and before the quantization process, the transform
coefficients are modified, multiplied by a factor of V2. In other words, after applying
the transform to the non-square transform block to generate a coefficient block, video

encoder 20 multiplies each transform coefficient of the coefficient block by a factor of

V2. This is because the ratio of the used normalization factor (i.e., (\/N * VN )) to the

real normalization factor (i.e., (\/? * \/Z)) is equal to iz

\/—
[0294] For example, let K =8 and L = 4. In this example, log2(4*4) = ((log2(8) +
log2(4)) >> 1) <<1),so N=4. ﬁzﬁ is equal to \/%, which is equal to %, which is

equal to V2. Note that for values of K and L where (log2(K) + log2(L)) is even, the
ratio of the used normalization factor (i.e., (\/— x VN )) to the real normalization factor
(ie, (\/? * \/Z)) is equal to 1. Therefore, when (log2(K) + log2(L)) is even, there may
be no need for video encoder 20 to multiply the transform coefficients by the factor of
V2.

[0295] After the de-quantization process, the de-quantized coefficients are further
modified, divided by a factor of V2. Multiplying the transform coefficients by V2
before quantization and dividing the transform coefficients by V2 may preserve
information that would otherwise be lost in the quantization process. Preserving this
information may ensure more accurate reconstruction of the original transform block.
[0296] In another example of the sixteenth technique, the transform and quantization
process in HEVC is kept unchanged and it is treated as a transform size equal to NxN
wherein log2(N*N) = (log2(K) + log2(L) + 1). After transform and before the
quantization process, the transform coefficients are modified, divided by a factor of V2.
After the de-quantization process, the de-quantized coefficients are further modified,
multiplied by a factor of V2.

[0297] In the examples of the sixteenth technique above, the factor of V2 may be
represented by its approximation. For example, the process of (x*v2) can be
approximated by (x*181) >> 7, wherein >> represents a right shift operation. The
process of (x/v'2) can be approximated by (x*V2)/2, i.e., (x*181) >> 8, wherein >>

represents a right shift operation.
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[0298] Thus, in the example of the sixteenth technique presented above, video encoder
20 may apply a transform to a transform block of a non-square TU of a CU to generate a
block of transform coefficients. Additionally, video encoder 20 may modify the
transform coefficients such that each respective transform coefficient of a block of

transform coefficients is based on the respective dequantized transform coefficient

multiplied by an approximation of v2. In this example, after modifying the transform
coefficients, video encoder 20 may apply a quantization process to the modified
transform coefficients of the non-square PU of the CU. Furthermore, in this example,
video encoder 20 may include, in a bitstream comprising an encoded representation of
the video data, data based on the quantized transform coefficients. In some examples,
as part of applying the transform to the transform block of the non-square TU, video
encoder 20 may apply, to the dequantized transform coefficients, a transform having
size NxN, where log2(N*N) = ((log2(K) + log2(L)) >> 1) << 1).

[0299] In a corresponding example, video decoder 30 may apply a dequantization
process to transform coefficients of a non-square PU of a CU of the video data. In this
example, after applying the dequantization process to the transform coefficients, video
decoder 30 may modify the dequantized transform coefficients such that each respective
dequantized transform coefficient of the dequantized transform coefficients based on the
respective dequantized transform coefficient divided by an approximation of V2. In
some examples, as part of applying the inverse transform to the modified dequantized
transform coefficients comprises, video decoder 30 may apply, to the modified
dequantized transform coefficients, a transform having size NxN, where log2(N*N) =
((log2(K) +1og2(L)) >> 1) << 1).

[0300] In HEVC, video encoder 20 may calculate a quantized transform coefficient

(i.e., alevel) using the following equation:

level = <(coeff>< fopos + 0f fsety) %) > shift2 22)

where coeffis the transform coefficient, offset, is an offset value, QP is a quantization

parameter, shift 2 =29 — M — B, B is the bit depth, M =loga( N ), and

f = [for - fs]T = [26214, 23302,20560, 18396, 16384, 14564]7 (23)
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[0301] Furthermore, in HEVC, video decoder 30 may inverse quantize a quantized

transform coefficient using the following equation:

coeffo = ((levelx (ng%s 1G¢ %)) + offset,Q> > shiftl (24)

In equation (24), coeffo is the inverse quantized transform coefficient, level is the
quantized transform coefficient, offsefio is an offset value = 1 << (M — 10 + B), shiftl =

(M -9 +B), and g is defined as shown in equation (25), below:
g = fo - fs]T =[40,45,51,57,64,72]7 (25)

[0302] In accordance with a technique of this disclosure, video encoder 20 may use
different quantization matrixes (i.e., versions of f), depending on whether
(log2(W)+loga(H)) is odd or even. Similarly, video decoder 30 may use different
inverse quantization matrixes (i.e., versions of g), depending on whether

(log2(W)+loga(H)) is odd or even. An example of g is defined as follows:

[ 40,45,51,57,64,72 ], // when the sum is even
[ 7240,8145,9231,10317,11584,13032] // when the sum is odd

Note that each corresponding value of g for the case that it is even is multiplied by 181.

In this example, there is no need to perform the multiplication or division processes

before or after quantization stages since the compensation of v2 has already been
considered in g.

[0303] Furthermore, in equations (22) and (24), the value selected in quantization
matrixes fand g is selected based on the quantization parameter QP. The selected
values in quantization matrixes f and g may be referred to herein as quantization matrix
coefficients. In some examples of this disclosure, video encoder 20 and video decoder
30 may select quantization matrix coefficients based on the quantization parameter and
also based on whether (log2(W)+log2(H)) is odd or even.

[0304] As briefly described above and illustrated in FIG. 2A and FIG. 2B, in HEVC, a
video coder always processes TUs of a CU in a recursive z-scan order. Thus, as shown
in FIG. 2A, data corresponding to transform coefficients of TU “a” appear in the

bitstream before data corresponding to transform coefficients of TU “b”, and so on. A
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seventeenth technique of this disclosure proposes that for CUs coded with inter mode or
comb mode or intra mode but with non-square partitions, the coding order of transform
coefficients is dependent on a PU coding order instead of always using the recursive z-
scan. In some examples of the seventeenth technique, all coefficients within one PU
shall be coded together before coding the coefficients in another PU. Thus, for video
encoder 20, all coefficients within one of the PUs of the CU are encoded together before
encoding coefficients of another one of the PUs of the CU. Similarly, in this example,
for video decoder 30, all coefficients within one PU of a CU are decoded together
before decoding coefficients of another one of the PUs of the CU.

[0305] In this example, the transform coefficients of a PU are transform coefficients of
TUs whose transform blocks are within an area of a prediction block of the PU. For
example, let the coordinates of a top-left corner of a prediction block of a PU of a 16x16
CU be (0,0) relative to a top-left corner of a coding block of the CU and let the
coordinates of the bottom-right corner of the prediction block of the PU be (7, 15).
Furthermore, in this example, let the coordinates of a top-left corner of a transform
block of a TU of the CU be (4, 0) and let the coordinates of a bottom-right corner of the
transform block of the TU be (7,15). In this example, transform coefficients of the TU
are transform coefficients of the PU. However, in this example, if the top-left corner of
the transform block of the TU is (8, 0) and the bottom-right corner of the transform
block of the TU is (15, 7), the transform coefficients of the TU are not transform
coefficients of the PU.

[0306] For example, with respect to FIG. 2A, suppose that CU 40 has two PUs which
partition CU 40 vertically through the center of CU 40. Thus, the transform coefficients
of a first PU of CU 40 include the transform coefficients of TUs “a,” “b,” “c,” “d,” and
“t”. The transform coefficients of a second PU of CU 40 include the transform
coefficients of TUs “e,” “g,” “h,” “1,” and “j”. In this example, video encoder 20 may
include data representing transform coefficients of TU “e” following data representing
transform coefficients of TU “f”. In contrast, in HEVC, the data representing transform
coefficients of TU “f” follows the data representing transform coefficients of TU “¢”,
regardless of the shape and size of the PUs of CU 40. In other words, when one PU
contains multiple TUs, the recursive Z-scan with depth-first traversal is applied for
coding these coefficients within the PU. Taking FIG. 2 as an example, if the partition
size is equal to Nx2N, the coding order may be a, b, ¢, d, f, e, g, h, 1, j.
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[0307] Some examples of the seventeenth technique are only applicable when the
transform depth is unequal to 0, i.e., transform size no larger than PU sizes. Note that
the AMP mentioned above may include other asymmetric partitions, not only the four
cases defined in HEVC.
[0308] As mentioned briefly above, the IC design in HEVC only supports square PUs.
Prior to the present disclosure, how to derive the IC parameters a and b for non-square
PUs was unknown. An eighteenth technique of this disclosure enables IC to be used
with non-square PUs. For instance, video encoder 20 may use IC to generate a non-
square predictive block of a current PU of a picture of the video data. Additionally,
video encoder 20 may generate residual data based on the predictive block. For
example, video encoder 20 may generate the residual data such that each respective
sample of the residual data is equal to a difference between a respective sample of a
coding block of the current CU and a corresponding respective sample of the predictive
block. Furthermore, video encoder 20 may output a bitstream that includes data based
on the residual data. For example, video encoder 20 may apply a transform to the
residual data to generate a coefficient block, quantize coefficients of the coefficient
block, and include in the bitstream one or more syntax elements representing each of the
quantized coefficients. In this example, video encoder 20 may entropy encode one or
more of the syntax elements for each quantized coefficient. In other examples, video
encoder 20 may skip application of the transform and/or quantization.
[0309] Furthermore, in accordance with one or more of the examples related to IC
provided above, video decoder 30 may use IC to generate a non-square predictive block
of a current PU of a current CU of a picture of the video data. Additionally, video
decoder 30 may reconstruct, based on the predictive block, a block (e.g., a coding block)
of the picture. For example, video decoder 30 may reconstruct samples of the block by
adding samples of the predictive block to corresponding residual samples.
[0310] In the examples of the eighteenth technique, as part of using IC to generate a
non-square predictive block, a video coder (e.g., video encoder 20 and/or video decoder
30) may determine a sample of the predictive block as:

p(i,j) = a*r(i +dvyj+ dvy + b), where (i, ) € PU,
where PUcis the current PU, (1, j) is the coordinate of pixels in the predictive block,
(dvx, dvy) 1s a vector (e.g., disparity vector) of PUec. p(i, j) is a prediction of PU, r is an

inter-view reference picture, a is a first IC parameter and b is a second IC parameter.
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Furthermore, as part of using IC to generate the non-square predictive block, the video

coder may calculate the first IC parameter as:

2N-1 2N-1 2N-1

2N- Z Rec,,, (7)-Rec, ., (1) - Z Rec,,, (7)- Z Rec,;,.. (1)
i=0 i=0

i=0

IN-1 IN-1 2
2N- Z Rec, ;... (1) Rec, ;. (7) —( Z Rec, ;... (l)j

i=0 =0

a =

Additionally, the video coder may calculate the second IC parameter as:

2N-1 2N -1

2, Rty (1)~ 3 Ree,p (1)

2N

b

In the equations above, Recneig and Recrefieig denote a neighboring pixel set of the current
CU and a reference block respectively, 2N denotes the pixel number in Recreig and
Recrefieig, and the current CU has a size equal to NxN. Other examples may use
variations on the formulas indicated above.

[0311] Furthermore, in examples of the eighteenth technique, when IC is enabled for
one non-square PU with size equal to KxL (K is unequal to L), the parameters could be
derived in various ways. For example, when using the equation (16) and equation (17)
to calculate linear model parameters, pixels located at both longer and shorter sides of
the PU may be sub-sampled with different ways, such as different sub-sampling ratios.
However, it may be required that the total number of pixels at two sides together should
be equal to 2™ (wherein m is an integer, and its value may be dependent on the block
size). Thus, in this example, Recneign is a subset of pixels immediately above the current
CU and immediately left of the current CU, Recrefneigh 1 @ subset of pixels immediately
above the reference block and immediately left of the reference block, and a total
number of pixels in Recneigh and Recrefneigh 1S equal to 2™, where m is an integer. The
sub-sampling process can be a decimation or an interpolated sampling.

[0312] In another example of deriving the parameters for IC, when using the equation
(16) and equation (17) to calculate linear model parameters, the pixels of the boundary
at the shorter side of the non-square PU is up-sampled such that the number of pixels in
the up-sampled boundary is equal to the number of pixels in the longer boundary (i.e.,
max(K, L)). The up-sampling process can be a duplicator or an interpolated sampling.
Thus, in this example, as part of using IC to generate a predictive block, a video coder
may generate Recreigh such that Recqreigh includes up-sampled pixels in whichever is

shorter of a left side and a top side of the current CU. Additionally, in this example, the
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video coder may generate Recrefieigh SUch that Recrefmeigh includes up-sampled pixels in
whichever is shorter of the left side and the top side of the reference block

[0313] Alternatively, pixels located at both longer and short sides of the PU may be up-
sampled and the up-sampling ratios may be different. Thus, in this example, as part of
using IC to generate a predictive block, a video coder may generate Recreigh such that
Recneigh includes up-sampled pixels in whichever is longer of the left side and the top
side of the current CU. Additionally, the video coder may generate Recrefmeigh such that
Recrefmeign includes up-sampled pixels in whichever is longer of the left side and the top
side of the reference block. However, it may be required that the total number of pixels
at two sides together should be equal to 2™ (wherein m is an integer, m may be different
for luma and chroma components).

[0314] Furthermore, in some examples of deriving the parameters for IC, different ways
of sub-sampling/up-sampling for boundary pixels may be applied. In one example, the
sub-sampling/up-sampling method is dependent on the PU size (i.e., on the values of K
and L). Thus, a video coder may determine, based on a size of the current PU, a sub-
sampling method or up-sampling method to use to generate Recneigh and Recrefieigh. In
another example, the methods for sub-sampling/up-sampling may be signaled in
sequence parameter set, picture parameter set, and/or slice header. Thus, in some
examples, video encoder 20 may include, in a bitstream, and video decoder 30 may
obtain, from the bitstream, a syntax element indicating a sub-sampling method to use to
generate Recneigh and Recremeigh. In some examples, video encoder 20 may include, in a
bitstream, and video decoder 30 may obtain, from the bitstream, a syntax element
indicating an up-sampling method to use to generate the up-sampled pixels.

[0315] In some examples of deriving the parameters for IC, the up-sampling/down-
sampling (or sub-sampling) is implemented in an implicit manner. For instance, the
sum value in equation (16) and equation (17) of the left side boundary or/and upper side
boundary, may be multiplied or divided by a factor §. The value of .S can be dependent
on the ratio of the pixel number in the left side boundary or/and upper side boundary.
[0316] In some examples of the eighteenth technique, the same sub-sampling/up-
sampling method shall also be applied to the boundary pixels of the reference block
(i.e., Recremeign). For example, decimation may be used for sub-sampling both Recneign
and Recrefieigh.

[0317] Furthermore, in accordance with particular techniques of this disclosure, when

LM is enabled for a square PU, the luma and chroma boundary pixels may be firstly
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sub-sampled to derive the parameters e.g. using equations (16) and (17). The sub-
sampling method may be predefined or signaled in a sequence parameter set, a picture
parameter set or a slice header. The sub-sampling method may be dependent on
prediction unit size.
[0318] Thus, a video coder (e.g., video encoder 20 or video decoder 30) may perform a
linear model prediction operation to predict a predictive chroma block for a current PU
from sub-sampled reconstructed luma samples of the PU. Additionally, the video coder
may reconstruct, based in part on the predictive chroma block, the block of the picture.
As part of performing the linear model prediction operation, the video coder may obtain
a predictive chroma sample such that the predictive chroma sample is equal to a first
parameter multiplied by a collocated luma sample, plus a second parameter, wherein the
first parameter is equal to:

ORI

Ile - X, —le -le

and the second parameter is equal to:

ﬂ:(Zy, —a-ZxI)/].

In the equations above, 7 is the number of reference samples in a subset of samples in a

left and top boundary of the current PU determined according to a sub-sampling
method, x; is a sub-sampled reconstructed luma reference sample, yiis a reconstructed
chroma reference sample. In some instances of this example, video encoder 20 may
include, in a bitstream, and video decoder 30 may obtain, from the bitstream, a syntax
element indicating the sub-sampling method. In some instances of this example, video
encoder 20 and video decoder 30 may determine, based on a size of the current PU, the
sub-sampling method.

[0319] Various examples have been described. Particular examples of this disclosure
may be used separately or in combination with one another.

[0320] FIG. 24 is a block diagram illustrating an example video encoder 20 that may
implement techniques of this disclosure. FIG. 24 is provided for purposes of
explanation and should not be considered limiting of the techniques as broadly
exemplified and described in this disclosure. For purposes of explanation, this
disclosure describes video encoder 20 in the context of HEVC coding. However, the

techniques of this disclosure may be applicable to other coding standards or methods.
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[0321] Video encoder 20 includes processing circuitry, and video encoder 20 is
configured to perform one or more of the example techniques described in this
disclosure. Such processing circuitry may include fixed function and/or programmable
circuitry. For instance, video encoder 20 includes integrated circuitry, and the various
units illustrated in FIG. 24 may be formed as hardware circuit blocks that are
interconnected with a circuit bus. These hardware circuit blocks may be separate circuit
blocks or two or more of the units may be combined into a common hardware circuit
block. The hardware circuit blocks may be formed as combinations of electronic
components that form operation blocks such as arithmetic logic units (ALUs),
elementary function units (EFUs), as well as logic blocks such as AND, OR, NAND,
NOR, XOR, XNOR, and other similar logic blocks.

[0322] In the example of FIG. 24, video encoder 20 includes a prediction processing
unit 200, video data memory 201, a residual generation unit 202, a transform processing
unit 204, a quantization unit 206, an inverse quantization unit 208, an inverse transform
processing unit 210, a reconstruction unit 212, a filter unit 214, a decoded picture buffer
216, and an entropy encoding unit 218. Prediction processing unit 200 includes an
inter-prediction processing unit 220 and an intra-prediction processing unit 226. Inter-
prediction processing unit 220 may include a motion estimation unit and a motion
compensation unit (not shown). In some examples, prediction processing unit 200
performs the illumination compensation techniques of this disclosure. In some
examples, prediction processing unit 200 performs the LM techniques of this disclosure
to generate non-square chroma predictive blocks. Furthermore, in some examples,
prediction processing unit 200 performs the IC techniques of this disclosure to generate
non-square predictive blocks.

[0323] Video data memory 201 may be configured to store video data to be encoded by
the components of video encoder 20. The video data stored in video data memory 201
may be obtained, for example, from video source 18 (FIG. 1). Decoded picture buffer
216 may be a reference picture memory that stores reference video data for use in
encoding video data by video encoder 20, e.g., in intra- or inter-coding modes. Video
data memory 201 and decoded picture buffer 216 may be formed by any of a variety of
memory devices, such as dynamic random access memory (DRAM), including
synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM), resistive RAM
(RRAM), or other types of memory devices. Video data memory 201 and decoded

picture buffer 216 may be provided by the same memory device or separate memory
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devices. In various examples, video data memory 201 may be on-chip with other
components of video encoder 20, or off-chip relative to those components.

[0324] Video encoder 20 receives video data. Video encoder 20 may encode each CTU
in a slice of a picture of the video data. Each of the CTUs may be associated with
equally-sized luma coding tree blocks (CTBs) and corresponding CTBs of the picture.
As part of encoding a CTU, prediction processing unit 200 may perform quad-tree
partitioning to divide the CTBs of the CTU into progressively-smaller blocks. The
smaller block may be coding blocks of CUs. For example, prediction processing unit
200 may partition a CTB associated with a CTU into four equally-sized sub-blocks,
partition one or more of the sub-blocks into four equally-sized sub-sub-blocks, and so
on.

[0325] Video encoder 20 may encode CUs of a CTU to generate encoded
representations of the CUs (i.e., coded CUs). As part of encoding a CU, prediction
processing unit 200 may partition the coding blocks associated with the CU among one
or more PUs of the CU. Thus, each PU may be associated with a luma prediction block
and corresponding chroma prediction blocks. Video encoder 20 and video decoder 30
may support PUs having various sizes. As indicated above, the size of a CU may refer
to the size of the luma coding block of the CU and the size of a PU may refer to the size
of a luma prediction block of the PU. Assuming that the size of a particular CU is
2Nx2N, video encoder 20 and video decoder 30 may support PU sizes of 2N*2N or
NxN for intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, NxN, or
similar for inter prediction. Video encoder 20 and video decoder 30 may also support
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N, and nR*2N for inter
prediction.

[0326] Inter-prediction processing unit 220 may generate predictive data for a PU by
performing inter prediction on each PU of a CU. The predictive data for the PU may
include predictive blocks of the PU and motion information for the PU. Inter-prediction
processing unit 220 may perform different operations for a PU of a CU depending on
whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs are intra
predicted. Hence, if the PU is in an I slice, inter-prediction processing unit 220 does not
perform inter prediction on the PU. Thus, for blocks encoded in I-mode, the predicted
block is formed using spatial prediction from previously-encoded neighboring blocks
within the same frame. If a PU is in a P slice, inter-prediction processing unit 220 may

use uni-directional inter prediction to generate a predictive block of the PU. If a PU is
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in a B slice, inter-prediction processing unit 220 may use uni-directional or bi-
directional inter prediction to generate a predictive block of the PU.

[0327] Intra-prediction processing unit 226 may generate predictive data for a PU by
performing intra prediction on the PU. The predictive data for the PU may include
predictive blocks of the PU and various syntax elements. Intra-prediction processing
unit 226 may perform intra prediction on PUs in I slices, P slices, and B slices.

[0328] To perform intra prediction on a PU, intra-prediction processing unit 226 may
use multiple intra prediction modes to generate multiple sets of predictive data for the
PU. Intra-prediction processing unit 226 may use samples from sample blocks of
neighboring PUs to generate a predictive block for a PU. The neighboring PUs may be
above, above and to the right, above and to the left, or to the left of the PU, assuming a
left-to-right, top-to-bottom encoding order for PUs, CUs, and CTUs. Intra-prediction
processing unit 226 may use various numbers of intra prediction modes, e.g., 33
directional intra prediction modes. In some examples, the number of intra prediction
modes may depend on the size of the region associated with the PU.

[0329] Prediction processing unit 200 may select the predictive data for PUs of a CU
from among the predictive data generated by inter-prediction processing unit 220 for the
PUs or the predictive data generated by intra-prediction processing unit 226 for the PUs.
In some examples, prediction processing unit 200 selects the predictive data for the PUs
of the CU based on rate/distortion metrics of the sets of predictive data. The predictive
blocks of the selected predictive data may be referred to herein as the selected predictive
blocks.

[0330] Residual generation unit 202 may generate, based on the coding blocks (e.g.,
luma, Cb and Cr coding blocks) for a CU and the selected predictive blocks (e.g.,
predictive luma, Cb and Cr blocks) for the PUs of the CU, residual blocks (e.g., luma,
Cb and Cr residual blocks) for the CU. For instance, residual generation unit 202 may
generate the residual blocks of the CU such that each sample in the residual blocks has a
value equal to a difference between a sample in a coding block of the CU and a
corresponding sample in a corresponding selected predictive block of a PU of the CU.
[0331] Transform processing unit 204 may perform partitioning (e.g., quad-tree
partitioning) to partition the residual blocks associated with a CU into transform blocks
associated with TUs of the CU. Thus, a TU may be associated with a luma transform
block and two chroma transform blocks. The sizes and positions of the luma and

chroma transform blocks of TUs of a CU may or may not be based on the sizes and
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positions of prediction blocks of the PUs of the CU. A quad-tree structure known as a
“residual quad-tree” (RQT) may include nodes associated with each of the regions. The
TUs of a CU may correspond to leaf nodes of the RQT.

[0332] In some examples, transform processing unit 204 may perform the techniques of
this disclosure for determining a residual tree structure that includes nodes having two
(and/or 4) child nodes. For example, video data memory 201 may receive video data
and transform processing unit 204 may partition a CU of the video data into TUs of the
CU based on a tree structure. In this example, as part of partitioning the CU into TUs of
the CU based on the tree structure, transform processing unit 204 may determine that a
node in the tree structure has exactly two child nodes in the tree structure. In some
instances, transform processing unit 204 may further determine that a second node in
the tree structure has exactly four child nodes in the tree structure. For at least one of
the TUs of the CU, transform processing unit 204 may apply a transform to a residual
block for the TU to generate a block of transform coefficients for the TU.

[0333] Transform processing unit 204 may generate transform coefficient blocks for
each TU of a CU by applying one or more transforms to the transform blocks of the TU.
Transform processing unit 204 may apply various transforms to a transform block
associated with a TU. For example, transform processing unit 204 may apply a discrete
cosine transform (DCT), a directional transform, or a conceptually similar transform to
a transform block. In some examples, transform processing unit 204 does not apply
transforms to a transform block. In such examples, the transform block may be treated
as a transform coefficient block. In some examples, transform processing unit 204
performs the EMT techniques of this disclosure.

[0334] Quantization unit 206 may quantize the transform coefficients in a coefficient
block. The quantization process may reduce the bit depth associated with some or all of
the transform coefficients. For example, an n-bit transform coefficient may be rounded
down to an m-bit transform coefficient during quantization, where 7 is greater than m.
Quantization unit 206 may quantize a coefficient block associated with a TU of a CU
based on a quantization parameter (QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the coefficient blocks associated
with a CU by adjusting the QP value associated with the CU. Quantization may
introduce loss of information; thus quantized transform coefficients may have lower

precision than the original transform coefficients.
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[0335] In some examples, quantization unit 206 modifies the transform coefficients
such that each respective transform coefticient of the block of transform coefticients is
based on the respective dequantized transform coefficient multiplied by an
approximation of v2. In this example, after modifying the transform coefficients,
quantization unit 206 applies a quantization process to the modified transform
coefficients of the non-square PU of the CU.

[0336] Inverse quantization unit 208 and inverse transform processing unit 210 may
apply inverse quantization and inverse transforms to a coefficient block, respectively, to
reconstruct a residual block from the coefficient block. Reconstruction unit 212 may
add the reconstructed residual block to corresponding samples from one or more
predictive blocks generated by prediction processing unit 200 to produce a reconstructed
transform block associated with a TU. By reconstructing transform blocks for each TU
of a CU in this way, video encoder 20 may reconstruct the coding blocks of the CU.
[0337] Filter unit 214 may perform one or more deblocking operations to reduce
blocking artifacts in the coding blocks associated with a CU. Decoded picture buffer
216 may store the reconstructed coding blocks after filter unit 214 performs the one or
more deblocking operations on the reconstructed coding blocks. Inter-prediction
processing unit 220 may use a reference picture that contains the reconstructed coding
blocks to perform inter prediction on PUs of other pictures. In addition, intra-prediction
processing unit 226 may use reconstructed coding blocks in decoded picture buffer 216
to perform intra prediction on other PUs in the same picture as the CU.

[0338] Entropy encoding unit 218 may receive data from other functional components
of video encoder 20. For example, entropy encoding unit 218 may receive coefficient
blocks from quantization unit 206 and may receive syntax elements from prediction
processing unit 200. Entropy encoding unit 218 may perform one or more entropy
encoding operations on the data to generate entropy-encoded data. For example,
entropy encoding unit 218 may perform a CABAC operation, a context-adaptive
variable length coding (CAVLC) operation, a variable-to-variable (V2V) length coding
operation, a syntax-based context-adaptive binary arithmetic coding (SBAC) operation,
a Probability Interval Partitioning Entropy (PIPE) coding operation, an Exponential-
Golomb encoding operation, or another type of entropy encoding operation on the data.
Video encoder 20 may output a bitstream that includes entropy-encoded data generated
by entropy encoding unit 218. For instance, the bitstream may include data that

represents a RQT for a CU.
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[0339] FIG. 25 is a block diagram illustrating an example video decoder 30 that is
configured to implement techniques of this disclosure. FIG. 25 is provided for purposes
of explanation and is not limiting on the techniques as broadly exemplified and
described in this disclosure. For purposes of explanation, this disclosure describes
video decoder 30 in the context of HEVC coding. However, the techniques of this
disclosure may be applicable to other coding standards or methods.

[0340] Video decoder 30 includes processing circuitry, and video decoder 30 is
configured to perform one or more of the example techniques described in this
disclosure. For instance, video decoder 30 includes integrated circuitry, and the various
units illustrated in FIG. 25 may be formed as hardware circuit blocks that are
interconnected with a circuit bus. These hardware circuit blocks may be separate circuit
blocks or two or more of the units may be combined into a common hardware circuit
block. The hardware circuit blocks may be formed as a combination of electronic
components that form operation blocks such as arithmetic logic units (ALUs),
elementary function units (EFUs), as well as logic blocks such as AND, OR, NAND,
NOR, XOR, XNOR, and other similar logic blocks.

[0341] In some examples, one or more of the units illustrated in FIG. 25 may be
provided by software units executing on the processing circuitry. In such examples, the
object code for these software units is stored in memory. An operating system may
cause video decoder 30 to retrieve the object code and execute the object code, which
causes video decoder 30 to perform operations to implement the example techniques. In
some examples, the software units may be firmware that video decoder 30 executes at
startup. Accordingly, video decoder 30 is a structural component having hardware that
performs the example techniques or has software/firmware executing on the hardware to
specialize the hardware to perform the example techniques.

[0342] In the example of FIG. 25, video decoder 30 includes an entropy decoding unit
250, video data memory 251, a prediction processing unit 252, an inverse quantization
unit 254, an inverse transform processing unit 256, a reconstruction unit 258, a filter
unit 260, and a decoded picture buffer 262. Prediction processing unit 252 includes a
motion compensation unit 264 and an intra-prediction processing unit 266. In other
examples, video decoder 30 may include more, fewer, or different functional
components. In some examples, prediction processing unit 266 performs the
illumination compensation techniques of this disclosure. In some examples, prediction

processing unit 266 performs the LM techniques of this disclosure.
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[0343] Video data memory 251 may store encoded video data, such as an encoded
video bitstream, to be decoded by the components of video decoder 30. The video data
stored in video data memory 251 may be obtained, for example, from computer-
readable medium 16, e.g., from a local video source, such as a camera, via wired or
wireless network communication of video data, or by accessing physical data storage
media. Video data memory 251 may form a coded picture buffer (CPB) that stores
encoded video data from an encoded video bitstream. Decoded picture buffer 262 may
be a reference picture memory that stores reference video data for use in decoding video
data by video decoder 30, e.g., in intra- or inter-coding modes, or for output. Video data
memory 251 and decoded picture buffer 262 may be formed by any of a variety of
memory devices, such as dynamic random access memory (DRAM), including
synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM), resistive RAM
(RRAM), or other types of memory devices. Video data memory 251 and decoded
picture buffer 262 may be provided by the same memory device or separate memory
devices. In various examples, video data memory 251 may be on-chip with other
components of video decoder 30, or off-chip relative to those components.

[0344] Video data memory 251 receives and stores encoded video data (e.g., NAL
units) of a bitstream. Entropy decoding unit 250 may receive encoded video data (e.g.,
NAL units) from video data memory 251 and may parse the NAL units to obtain syntax
elements. Entropy decoding unit 250 may entropy decode entropy-encoded syntax
elements in the NAL units. Prediction processing unit 252, inverse quantization unit
254, inverse transform processing unit 256, reconstruction unit 258, and filter unit 260
may generate decoded video data based on the syntax elements extracted from the
bitstream. Entropy decoding unit 250 may perform a process generally reciprocal to
that of entropy encoding unit 218.

[0345] In addition to obtaining syntax elements from the bitstream, video decoder 30
may perform a reconstruction operation on a non-partitioned CU. To perform the
reconstruction operation on a CU, video decoder 30 may perform a reconstruction
operation on each TU of the CU. By performing the reconstruction operation for each
TU of the CU, video decoder 30 may reconstruct residual blocks of the CU.

[0346] As part of performing a reconstruction operation on a TU of a CU, inverse
quantization unit 254 may inverse quantize, i.e., de-quantize, coefficient blocks
associated with the TU. After inverse quantization unit 254 inverse quantizes a

coefficient block, inverse transform processing unit 256 may apply one or more inverse
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transforms to the coefficient block in order to generate a residual block associated with
the TU. For example, inverse transform processing unit 256 may apply an inverse
DCT, an inverse integer transform, an inverse Karhunen-Loeve transform (KLT), an
inverse rotational transform, an inverse directional transform, or another inverse
transform to the coefficient block. In some examples, inverse transform processing unit
256 performs the EMT techniques of this disclosure.

[0347] In accordance with some examples of this disclosure, inverse quantization unit
254 may apply a dequantization process to transform coefficients of a non-square TU of
a CU of the video data. Furthermore, after applying the dequantization process to the
transform coefficients, inverse quantization unit 254 may modify the dequantized
transform coefficients such that each respective dequantized transform coefficient of the

dequantized transform coefficients is based on the respective dequantized transform

coefficient divided by an approximation of v2.

[0348] In some examples, inverse transform processing unit 256 may apply the
techniques of this disclosure for determining a residual tree structure that includes nodes
having two (and/or 4) child nodes. For example, inverse transform processing unit 256
may determine a CU of the video data is partitioned into TUs of the CU based on a tree
structure. In this example, as part of determining the CU is partitioned into the TUs of
the CU based on the tree structure, inverse transform processing unit 256 may determine
that a node in the tree structure has exactly two child nodes in the tree structure. In
some examples, inverse transform processing unit 256 may determine that a second
node in the tree structure has exactly four child nodes in the tree structure. Furthermore,
in this example, for at least one of the TUs of the CU, inverse transform processing unit
256 may apply a transform to a coefticient block for the TU to generate a residual block
for the TU.

[0349] If a PU is encoded using intra prediction, intra-prediction processing unit 266
may perform intra prediction to generate predictive blocks of the PU. Intra-prediction
processing unit 266 may use an intra prediction mode to generate the predictive blocks
of the PU based on samples spatially-neighboring blocks. Intra-prediction processing
unit 266 may determine the intra prediction mode for the PU based on one or more
syntax elements obtained from the bitstream.

[0350] If a PU is encoded using inter prediction, entropy decoding unit 250 may
determine motion information for the PU. Motion compensation unit 264 may

determine, based on the motion information of the PU, one or more reference blocks.
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Motion compensation unit 264 may generate, based on the one or more reference
blocks, predictive blocks (e.g., predictive luma, Cb and Cr blocks) for the PU.

[0351] Reconstruction unit 258 may use transform blocks (e.g., luma, Cb and Cr
transform blocks) for TUs of a CU and the predictive blocks (e.g., luma, Cb and Cr
blocks) of the PUs of the CU, i.e., either intra-prediction data or inter-prediction data, as
applicable, to reconstruct the coding blocks (e.g., luma, Cb and Cr coding blocks) for
the CU. For example, reconstruction unit 258 may add samples of the transform blocks
(e.g., luma, Cb and Cr transform blocks) to corresponding samples of the predictive
blocks (e.g., luma, Cb and Cr predictive blocks) to reconstruct the coding blocks (e.g.,
luma, Cb and Cr coding blocks) of the CU.

[0352] Filter unit 260 may apply one or more filters to coding blocks of the CU. For
example, filter unit 260 may perform a deblocking operation to reduce blocking artifacts
associated with the coding blocks of the CU. Video decoder 30 may store the coding
blocks of the CU in decoded picture bufter 262. Thus, decoded picture buffer 262 may
store decoded blocks of the video data. Decoded picture buffer 262 may provide
reference pictures for subsequent motion compensation, intra prediction, and
presentation on a display device, such as display device 32 of FIG. 1. For instance,
video decoder 30 may perform, based on the blocks in decoded picture buffer 262, intra
prediction or inter prediction operations for PUs of other CUs.

[0353] FIG. 26 is a block diagram illustrating an example video encoder 20 that
supports LM-based encoding in accordance with a technique of this disclosure. In the
example of FIG. 26, component of video encoder 20 operates in the same manner as the
corresponding components of video encoder 20 of FIG. 24. However, video encoder 20
of FIG. 26 also includes an LM-based encoding unit 222.

[0354] LM-based encoding unit 222 may perform the LM prediction encoding
according to the examples described elsewhere in this disclosure. For example, inverse
quantization unit 208, inverse transform processing unit 210, reconstruction unit 212,
and filter unit 214 may reconstruct a set of luma reference samples, a set of chroma
reference samples, and may also reconstruct luma samples of a non-square PU. LM-
based encoding unit 222 may down-sample or sub-sample the set of luma reference
samples such that a total number of luma reference samples in the set of luma reference
samples that neighbor a longer side of the non-square PU is the same as a total number

of luma reference samples of the set of luma reference samples that neighbor a shorter
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side of the non-square PU. Additionally, LM-based decoding unit 222 may determine a

first parameter such that the first parameter is equal to:

(Zyl—a-le)/]

where / is a total number of reference samples in the set of the luma reference samples,
xi 1s an i-th luma reference sample in the set of luma reference samples, and yiis an i-th
chroma reference sample in the set of chroma reference samples. For each respective
chroma sample of a predictive chroma block of the non-square PU, LM-based encoding
unit 222 may determine a value of the respective chroma sample such that the value of
the respective chroma sample is equal to a second parameter multiplied by a respective
reconstructed luma sample corresponding to the respective chroma sample, plus the first
parameter, the reconstructed luma sample corresponding to the respective chroma
sample being one of the reconstructed luma samples of the non-square PU. LM-based
encoding unit 222 may determine the first parameter such that the second parameter is
equal to:

Ile. Y, —le. -Zyl. ‘

Ile. - X, —le. -le.

[0355] LM-based encoding unit 222 may output the predictive block to residual

generation unit 202. Residual generation unit 202 generates a residual block from the
predictive block and the chroma block. The resulting residual block is transformed by
transform processing unit 103, quantized by quantization unit 206, and entropy encoded
by entropy encoding unit 218. The result is then signaled via a bitstream and video
decoder 30 may use information in the bitstream to reconstruct the chroma block.
[0356] FIG. 27 is a block diagram illustrating an example video decoder 30 that
supports LM-based decoding in accordance with a technique of this disclosure. In the
example of FIG. 27, components of video decoder 30 operate in the same manner as the
corresponding components of video decoder 30 of FIG. 27. However, video decoder 30
of FIG. 27 also includes an LM-based decoding unit 265.

[0357] In accordance with various examples of this disclosure, video decoder 30 may be
configured to perform LM-based coding in accordance with examples provided
elsewhere in this disclosure. For example, inverse quantization unit 254, inverse
transform processing unit 256, reconstruction unit 258, and filter unit 260 may
reconstruct a set of luma reference samples, a set of chroma reference samples, and may

also reconstruct luma samples of a non-square PU. LM-based decoding unit 265 may
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down-sample or sub-sample the set of luma reference samples such that a total number
of luma reference samples in the set of luma reference samples that neighbor a longer
side of the non-square PU is the same as a total number of luma reference samples of
the set of luma reference samples that neighbor a shorter side of the non-square PU.
Additionally, LM-based decoding unit 265 may determine a first parameter such that the

first parameter is equal to:

(Zyl—a-le)/]

where / is a total number of reference samples in the set of the luma reference samples,
xi 1s an i-th luma reference sample in the set of luma reference samples, and yiis an i-th
chroma reference sample in the set of chroma reference samples. For each respective
chroma sample of a predictive chroma block of the non-square PU, LM-based decoding
unit 266 may determine a value of the respective chroma sample such that the value of
the respective chroma sample is equal to a second parameter multiplied by a respective
reconstructed luma sample corresponding to the respective chroma sample, plus the first
parameter, the reconstructed luma sample corresponding to the respective chroma
sample being one of the reconstructed luma samples of the non-square PU. LM-based
decoding unit 266 may determine the first parameter such that the second parameter is
equal to:

Ile. Y, —le. -Zyl. ‘

Ile. "X, —le. -le.

[0358] LM-based decoding unit 265 may output the predictive block to reconstruction

unit 258. Reconstruction unit 258 also receives a residual block (e.g., after information
in the bitstream for the residual block is entropy decoded with entropy decoding unit
250, inverse quantized with inverse quantization unit 254, inverse transformed with
inverse transform processing unit 256). Reconstruction unit 258 adds the residual block
with the predictive block to reconstruct the chroma block.

[0359] FIG. 28 is a flowchart illustrating an example operation of video encoder 20 in
accordance with a LM-based coding technique of this disclosure. The flowcharts of this
disclosure are provided as examples. Other examples within the scope of this disclosure
may include more, fewer, or different actions. Other examples within the scope of this

disclosure may include actions in different orders or performed in parallel.
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[0360] In the example of FIG. 28, video encoder 20 may receive video data (300). For
example, video encoder 20 may receive the video data from video source 18 (FIG. 1), or
another source.

[0361] Additionally, in the example of FIG. 28, video encoder 20 may reconstruct a set
of luma reference samples and a set of chroma reference samples (302). The set of luma
reference samples may comprise above luma samples neighboring a top side of a non-
square luma block of a current picture of the video data and left luma samples
neighboring a left side of the non-square luma block. In some examples, the non-square
luma block is a luma prediction block of a non-square PU. The set of chroma reference
samples may comprise chroma samples neighboring the top side of a non-square
chroma block and chroma samples neighboring the left side of the non-square chroma
block. In some examples, the non-square luma block is a luma prediction block of a
non-square PU.

[0362] Furthermore, video encoder 20 may reconstruct luma samples of the non-square
luma block (304). For example, video encoder 20 may generate luma residual samples
for the CU as described elsewhere in this disclosure. In this example, video encoder 20
may add samples of a luma predictive block of the non-square luma block to
corresponding samples of the luma residual samples to reconstruct the luma samples of
the non-square luma block.

[0363] In some examples, video encoder 20 may down-sample or sub-sample the luma
samples of the non-square luma block. By down-sampling or sub-sampling the luma
samples of the non-square luma block, video encoder 20 may obtain a down-sampled or
sub-sampled set of luma samples having one luma sample for each chroma sample of a
chroma predictive block (e.g., a chroma predictive block of the same PU as the luma
block). Video encoder 20 may down-sample or sub-sample the luma samples of the
non-square luma block in response to determining that a color format of the current
picture is not 4:4:4.

[0364] Additionally, video encoder 20 may down-sample or sub-sample the set of luma
reference samples such that a total number of luma reference samples in the set of luma
reference samples that neighbor a longer side of the non-square luma block is the same
as a total number of luma reference samples of the set of luma reference samples that
neighbor a shorter side of the non-square luma block (306). Video encoder 20 may
down-sample or sub-sample the set of luma reference samples in accordance with the

techniques described elsewhere in this disclosure. For instance, video encoder 20 may
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decimate the set of luma reference samples such that the set of luma reference samples
that neighbor the longer side of the non-square luma block is the same as the total
number of luma reference samples of the set of luma reference samples that neighbor
the shorter side of the non-square luma block. In some examples, video encoder 20 may
down-sample or sub-sample whichever of the left reference samples or the above
reference samples corresponds to the longer of the left boundary of the luma and the top
boundary of the luma, but not whichever is shorter of the left boundary of the luma
block and the top boundary of the luma block. In some examples, a total number of
reference samples in the set of luma reference samples is equal to 2™, where m is an
integer dependent on a height and/or width of the non-square luma block.

[0365] In some examples, video encoder 20 may also down-sample or sub-sample the
set of chroma reference samples such that a total number of chroma reference samples
in the set of chroma reference samples that neighbor a longer side of the non-square
chroma block is the same as a total number of chroma reference samples of the set of
chroma reference samples that neighbor a shorter side of the non-square chroma block.
[0366] In action (308) of FIG. 28, video encoder 20 may determine a first parameter ()

such that the first parameter is based on:

(Zyl. —a-le.)/l

In the equation above, / is a total number of reference samples in the set of the luma
reference samples, x; is an i-th luma reference sample in the set of luma reference
samples, and yiis an i-th chroma reference sample in the set of chroma reference
samples. Video encoder 20 may determine the first parameter based on the formula
above in the sense that video encoder 20 uses the formula above directly or a variation
on the formula above, such as one that includes additional constants or coefficients.
[0367] In some examples, video encoder 20 may also determine a second parameter (c)
such that the second parameter is based on:

Ile. -y, —le. -Zyl.

Ile. "X, —le. -le.

Video encoder 20 may determine the second parameter based on the formula above in

the sense that video encoder 20 uses the formula above directly or a variation on the
formula above, such as one that includes additional constants or coefficients.
[0368] Additionally, in example of FIG. 28, for each respective chroma sample of a

predictive chroma block, video encoder 20 may determine a value of the respective



WO 2017/091773 PCT/US2016/063677
108

chroma sample such that the value of the respective chroma sample is equal to a second
parameter multiplied by a respective reconstructed luma sample corresponding to the
respective chroma sample, plus the first parameter (310). The reconstructed luma
sample corresponding to the respective chroma sample is one of the reconstructed luma
samples of the non-square luma block.

[0369] Furthermore, video encoder 20 may obtain, based on the predictive chroma
block, residual data (312). For example, video encoder 20 may determine values of
chroma samples of the residual data equal to differences between samples of the chroma
block of the non-square prediction block and samples of a chroma coding block of a
Cu.

[0370] Additionally, video encoder 20 may include, in a bitstream comprising an
encoded representation of the video data, data representing the residual data (314). For
example, video encoder 20 may apply one or more transforms to the residual data to
generate one or more coefficient blocks; quantize the coefficient blocks; generate syntax
elements indicating whether a transform coefficient is non-zero, whether the transform
coefficient is greater than 1, whether the transform coefficient is greater than 2, a sign of
the transform coefficient, and a remainder for the transform coefficient. In this
example, video encoder 20 may apply CABAC coding to one or more of these syntax
elements and include the resulting values in the bitstream.

[0371] FIG. 29 is a flowchart illustrating an example operation of video decoder 30 in
accordance with a LM-based coding technique of this disclosure. In the example of
FIG. 29, video decoder 30 receives a bitstream that comprises an encoded representation
of the video data (350).

[0372] Furthermore, in the example of FIG. 29, video decoder 30 reconstructs a set of
luma reference samples and a set of chroma reference samples (352). The set of luma
reference samples comprises above luma samples neighboring a top side of a non-
square luma block of a current picture of the video data and left luma samples
neighboring a left side of the non-square luma block. In some examples, the non-square
luma block is a luma prediction block of a non-square PU. The set of chroma reference
samples comprises chroma samples neighboring a top side of a non-square chroma
block and chroma samples neighboring a left side of the non-square chroma block. In
some examples, the non-square luma block is a luma prediction block of a non-square

PU.
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[0373] Video decoder 30 may reconstruct luma samples of the non-square luma block
(354). For example, as part of reconstructing luma samples of the non-square luma
block, video decoder 30 may use intra prediction or inter prediction to generate a luma
predictive block for the non-square luma block. Additionally, in this example, video
decoder 30 may add samples of the luma predictive block for the non-square luma block
to corresponding residual samples to reconstruct luma samples.

[0374] In some examples, video decoder 30 may down-sample or sub-sample the luma
samples of the non-square luma block. By down-sampling or sub-sampling the luma
samples of the non-square luma block, video decoder 30 may obtain a down-sampled or
sub-sampled set of luma samples having one luma sample for each chroma sample of a
chroma predictive block (e.g., a chroma predictive block of the same PU as the luma
block). Video decoder 30 may down-sample or sub-sample the luma samples of the
non-square luma block in response to determining that a color format of the current
picture is not 4:4:4.

[0375] Furthermore, in the example of FIG. 29, video decoder 30 may down-sample or
sub-sample the set of luma reference samples such that a total number of luma reference
samples in the set of luma reference samples that neighbor a longer side of the non-
square luma block is the same as a total number of luma reference samples of the set of
luma reference samples that neighbor a shorter side of the non-square luma block (356).
Video decoder 30 may down-sample or sub-sample the set of luma reference samples in
accordance with the techniques described elsewhere in this disclosure. For instance,
video decoder 30 may decimate the set of luma reference samples such that the set of
luma reference samples that neighbors the longer side of the non-square luma block is
the same as the total number of luma reference samples of the set of luma reference
samples that neighbor the shorter side of the non-square luma block. In some examples,
video decoder 30 may down-sample or sub-sample whichever of the left reference
samples or the above reference samples corresponds to the longer of the left boundary
of the luma block and the top boundary of the luma block, but not whichever is shorter
of the left boundary of the luma block and the top boundary of the luma block. In some
examples, a total number of reference samples in the set of luma reference samples is
equal to 2™, where m is an integer dependent on a height and/or width of the non-square
luma block.

[0376] In some examples, video decoder 30 may also down-sample or sub-sample the

set of chroma reference samples such that a total number of chroma reference samples
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in the set of chroma reference samples that neighbor a longer side of the non-square
chroma block is the same as a total number of chroma reference samples of the set of
chroma reference samples that neighbor a shorter side of the non-square chroma block.
[0377] Additionally, in action (358) of FIG. 29, video decoder 30 may determine a first

parameter (f) such that the first parameter is based on:

(Zyi —“‘in)”

In the equation above, / is a total number of reference samples in the set of the luma
reference samples, x; is an i-th luma reference sample in the set of luma reference
samples, and yiis an i-th chroma reference sample in the set of chroma reference
samples. In this disclosure, video encoder 20 and/or video decoder 30 may determine a
value based on a formula in the sense that video encoder 20 and/or video decoder 30
may uses the formula directly or a variation on the formula, such as one that includes
additional constants or coefficients.
[0378] In some examples, video decoder 30 may also determine a second parameter (c)
such that the second parameter is based on:

Ile. Y, —le. -Zyl.

Ile. "X, —le. -le.

[0379] In the example of FIG. 29, for each respective chroma sample of a predictive

chroma block, video decoder 30 may determine a value of the respective chroma sample
such that the value of the respective chroma sample is equal to a second parameter
multiplied by a respective reconstructed luma sample corresponding to the respective
chroma sample, plus the first parameter (360). In this example, the reconstructed luma
sample corresponding to the respective chroma sample is one of the reconstructed luma
samples of the non-square luma block.

[0380] Furthermore, video decoder 30 may reconstruct, based in part on the predictive
chroma block, a coding block (362). For example, video decoder 30 may add samples
of the predictive chroma block to corresponding residual chroma samples of a CU to
determine samples of a coding block of the CU.FIG. 30 is a flowchart illustrating an
example operation of video encoder 20, in accordance with a quantization technique of
this disclosure. In the example of FIG. 30, video encoder 20 receives the video data
(400). Furthermore, video encoder 20 may generate a residual block for a non-square

TU of a CU such that each residual sample of the residual block indicates a difference
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between corresponding samples of a coding block of the CU and a predictive block of a
PU of the CU (402).

[0381] Video encoder 20 may apply a transform to the residual block to generate a
block of transform coefficients (404). For example, video encoder 20 may apply a DCT
transform to the residual block. In addition, video encoder 20 may modify the
transform coefficients such that each respective transform coefficient of the block of

transform coefficients is based on the respective dequantized transform coefficient

multiplied by an approximation of v2 (406). For example, video encoder 20 may
modify the transform coefficients such that each respective transform coefficient is

equal to an original value of the respective transform coefficient multiplied by the
approximation of v2. In this disclosure, an approximation of V2 may be a

representation of V2 (e.g., a floating point representation of v2). In some examples,
modifying the transform coefficients such that each respective transform coefficient is

equal to an original value of the respective transform coefficient multiplied by the
approximation of v2 may comprise performing one or more mathematical operations to

determine values approximating transform coefficient multiplied by V2.

[0382] In some examples where the non-square TU has the size K<L, as part of
applying the transform to the residual block, video encoder 20 may apply, to the
residual block, a transform having size NxN, where 1og2(N*N) = ((log2(K) + loga(L))
>> 1) << 1) and ((log2(K) + logz2(L)) is odd. For instance, video encoder 20 may apply
N-point 1-dimensional DCT transforms to rows and columns of the residual block as
shown in equation (18), above.

[0383] Furthermore, in the example of FIG. 30, after modifying the transform
coefficients, video encoder 20 may apply a quantization process to the modified
transform coefficients of the non-square prediction block of the CU (408). For instance,
video encoder 20 may quantize the modified transform coefficients as described in
equation (22), above.

[0384] Video encoder 20 may include, in a bitstream comprising an encoded
representation of the video data, data based on the quantized transform coefficients
(410). For example, video encoder 20 may generate syntax elements indicating whether
a quantized transform coefficient is non-zero, whether the quantized transform
coefficient is greater than 1, whether the quantized transform coefficient is greater than

2, a sign of the quantized transform coefficient, and a remainder for the quantized
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transform coefficient. In this example, video encoder 20 may apply CABAC coding to
one or more of these syntax elements and include the resulting values in the bitstream.
[0385] In some examples where the non-square TU has the size K<L, video encoder 20
may modify, based on the ((log2(K) + loga(L)) being odd, the dequantized transform
coefficients such that each respective dequantized transform coefficient of the

dequantized transform coefficients is based on the respective dequantized transform

coefficient multiplied by the approximation of v2. In such examples, when ((log2(K) +
log2(L)) is even, video encoder 20 does not modify the dequantized transform
coefficients such that each respective dequantized transform coefficient of the
dequantized transform coefficients is based on the respective dequantized transform
coefficient multiplied by the approximation of V2.

[0386] FIG. 31 is a flowchart illustrating an example operation of video decoder 30, in
accordance with a quantization technique of this disclosure. In the example of FIG. 31,
video decoder 30 may receive a bitstream that comprises an encoded representation of
the video data (450). Furthermore, video decoder 30 may apply a dequantization
process to transform coefficients of a non-square TU of a CU of the video data (452).
For instance, video decoder 30 may dequantize (i.e., inverse quantize) the transform
coefficients by applying equation (24), above.

[0387] After applying the dequantization process to the transform coefticients, video
decoder 30 may modify the dequantized transform coefficients such that each respective
dequantized transform coefficient of the dequantized transform coefficients is based on
the respective dequantized transform coefficient divided by an approximation of v2
(454). For instance, video decoder 30 may determine each respective modified
transform coefficient is equal to the transform coefficient divided an approximation of
V2. In this disclosure, an approximation of V2 may be a representation of V2 (e.g., a
floating point representation of v2). In some examples, modifying the transform
coefficients such that each respective transform coefficient is equal to an original value
of the respective transform coefficient multiplied by the approximation of v2 may
comprise performing one or more mathematical operations to determine values
approximating transform coefficient divided by v2.

[0388] Furthermore, video decoder 30 may apply an inverse transform to the modified
dequantized transform coefficients to reconstruct a residual block (456). For example,

video decoder 30 may apply equation (18) with a transpose of the transform matrix C
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(or its approximation represented in integer precision) to apply the inverse transform to
the modified dequantized transform coefficients. In some examples where the non-
square TU has the size KxL, as part of applying the transform to the residual block,
video decoder 30 may apply, to the residual block, a transform having size NxN, where
log2(N*N) = ((log2(K) + logz(L)) >> 1) << 1) and ((log2(K) + logz(L)) is odd. Video
decoder 30 may reconstruct samples of a coding block by adding samples of a
predictive block to corresponding samples of the residual block for the TU of the CU
(458).

[0389] In some examples where the non-square TU has the size K<L, video decoder 30
may modify, based on the ((log2(K) + loga(L)) being odd, the dequantized transform
coefficients such that each respective dequantized transform coefficient of the

dequantized transform coefficients is based on the respective dequantized transform

coefficient divided by the approximation of V2. In such examples, when ((log2(K) +
log2(L)) is even, video decoder 30 does not modify the dequantized transform
coefficients such that each respective dequantized transform coefficient of the

dequantized transform coefficients is based on the respective dequantized transform

coefficient divided by the approximation of V2.

[0390] FIG. 32 is a flowchart illustrating an example operation of video encoder 20, in
accordance with a technique of this disclosure that uses IC. In the example of FIG. 32,
video encoder 20 receives the video data (500). For example, video encoder 20 may
receive the video data from video source 18 (FIG. 1), or elsewhere. Furthermore, video
encoder 20 may use IC to generate a non-square predictive block of a current PU of a
current CU of a current picture of the video data (502)

[0391] As part of using IC to generate the non-square predictive block, video encoder
20 may determine, based on a vector of the current PU, a reference block in an reference
picture (504). In some examples, the vector is a disparity vector and the reference
picture is an inter-view reference picture. In some examples, the vector is a motion
vector and the reference picture is a temporal motion vector. The reference block and
the non-square predictive block may be the same size and shape. In some examples, to
determine the reference block based on the vector of the current PU, video encoder 20
may determine a position in the reference picture of a top-left corner of the reference
block by adding a horizontal component of the vector to an x coordinate of a top-left

corner of the non-square predictive block and adding a vertical component of the vector
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to a y coordinate of the top-left corner of the non-square predictive block. In this
example, if the indicated position of the top-left corner of the reference block does not
indicate a position in the reference picture of an integer pixel, video encoder 20 may
interpolate samples of the reference block to determine the reference block.

[0392] Furthermore, in the example of FIG. 32, as part of using IC to generate the non-
square predictive block, video encoder 20 may sub-sample a first set of reference
samples to generate a first sub-sampled set of reference samples with a first sub-
sampling ratio (506). In this example, a total number of reference samples in the first
set of reference samples is not equal to 2™ and a total number of reference samples in
the first sub-sampled set of reference samples is equal to 2™. Furthermore, in this
example, the first set of reference samples comprises samples outside the non-square
predictive block along a left side and a top side of the non-square predictive block, and
m is an integer.

[0393] Additionally, as part of using IC to generate the non-square predictive block,
video encoder 20 may sub-sample a second set of reference samples to generate a
second sub-sampled set of reference samples with a second sub-sampling ratio (508).
The first sub-sampling ratio may be the same or different from the second sub-sampling
ratio. In this example, a total number of reference samples in the second set of
reference samples is not equal to 2™ and a total number of reference samples in the
second sub-sampled set of reference samples is equal to 2™. Furthermore, in this
example, the second set of reference samples comprises samples outside the reference
block along a left side and a top side of the reference block.

[0394] In actions (506) and (508), video encoder 20 may perform the sub-sampling in
various ways. For example, video encoder 20 may perform the sub-sampling using
decimation. In examples where video encoder 20 performs the sub-sampling using
decimation, video encoder 20 may remove samples at regular intervals (e.g., every other
sample) to reduce the number of samples without changing the values of the remaining
samples. Thus, in this example, video encoder 20 may perform at least one of:
decimating the first set of reference samples to generate the first sub-sampled set of
reference samples; and decimating the second set of reference samples to generate the
second sub-sampled set of reference samples.

[0395] In another example, video encoder 20 may perform the sub-sampling using
interpolation. In examples where video encoder 20 performs the sub-sampling using

interpolation, for respective pairs of adjacent samples, video encoder 20 may interpolate



WO 2017/091773 PCT/US2016/063677
115

a value between the samples of a respective pair and may include the interpolated value
in the sub-sampled set of samples. Thus, in this example, video encoder 20 may
perform at least one of: performing interpolated sampling of the first set of reference
samples to generate the first sub-sampled set of reference samples; and performing
interpolated sampling of the second set of reference samples to generate the second sub-
sampled set of reference samples.
[0396] In another example, video encoder 20 may perform the sub-sampling using a
sub-sampling method indicated by a syntax element in the bitstream. Thus, in this
example, video encoder 20 may include, in the bitstream, a syntax element indicating a
sub-sampling method. In this example, video encoder 20 may perform at least one of:
using the indicated sub-sampling method to sub-sample the first set of reference
samples to generate the first sub-sampled set of reference samples; and using the
indicated sub-sampling method to sub-sample the second set of reference samples to
generate the second sub-sampled set of reference samples.
[0397] In another example, video encoder 20 may determine, based on a size of the
current PU, a sub-sampling method. In this example, video encoder 20 may perform at
least one of: using the determined sub-sampling method to sub-sample the first set of
reference samples to generate the first sub-sampled set of reference samples; and using
the determined sub-sampling method to sub-sample the second set of reference samples
to generate the second sub-sampled set of reference samples.
[0398] As part of using IC to generate the non-square predictive block, in action (510)
of FIG. 32, video encoder 20 may determine a first IC parameter based on the total
number of reference samples in the first sub-sampled set of reference samples and the
total number of reference samples in the second sub-sampled set of reference samples,
the first sub-sampled set of reference samples, and the second sub-sampled set of
reference samples. For instance, video encoder 20 may determine the first IC parameter
such that the first IC parameter is based on:

YN Recneign (1) — a* 2! Recrefneigh (i)

2N

In the equation above, 2N denotes the total number of reference samples in the first sub-

sampled set of reference samples and the total number of reference samples in the
second sub-sampled set of reference samples, Recneign(i) denotes an i-th reference
sample in the first sub-sampled set of reference samples, and Recrefieign(i) denotes an i-th

reference sample in the second sub-sampled set of reference samples.
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[0399] In some examples, video encoder 20 may determine a second IC parameter such
that the second IC parameter is based on:

_ . . N— . N— .
ZN'Z%LVO ! Recneigh(l)'Recrefneigh(l)_zlg:o 1Recneigh(l)'2%:o 1Recrefneigh(l)

— . i — 2
ZN'Z%:A{) 1Recrefneigh(l)'Recneigh(l)_(zlgzl\g 1Recrefneigh(l))

[0400] Furthermore, as part of using IC to generate the non-square predictive block, in
action (512) of FIG. 32, video encoder 20 may determine a sample of the non-square
predictive block based on the first IC parameter. For instance, the sample may be at
coordinates (7, j) relative to a top-left corner of the current picture and video encoder 20
may determine the sample such that the sample is based on:

a*r(i+dvwjtdvw+b)
In the equation above, b is the first IC parameter, a is a second IC parameter, 7 is the
reference picture, dvx is a horizontal component of the vector (e.g., disparity vector,
motion vector) of the current PU, and dvy is a vertical component of the vector of the
current PU.
[0401] In the example of FIG. 32, video encoder 20 may generate residual data based
on the non-square predictive block (514). For example, video encoder 20 may generate
the residual data such that samples of the residual data are equal to differences between
samples of the non-square predictive block and samples of a coding block of the current
CU. Additionally, video encoder 20 may output a bitstream that includes data based on
the residual data (516). For example, video encoder 20 may output a bitstream that
includes entropy encoded syntax elements (e.g., syntax elements indicating greater than
1, greater than 2, remainder, etc.) that indicate the residual data.
[0402] FIG. 33 is a flowchart illustrating an example operation of video decoder 30 for
encoding video data, in accordance with a technique of this disclosure that uses IC. In
the example of FIG. 32, video decoder 30 receives a bitstream that comprises an
encoded representation of the video data (550). Furthermore, video decoder 30 uses IC
to generate a non-square predictive block of a current PU of a current CU of a current
picture of the video data (552).
[0403] As part of using IC to generate the non-square predictive block, video decoder
30 may determine, based on a vector of the current PU, a reference block in a reference
picture (554). In some examples, the vector is a disparity vector and the reference
picture is an inter-view reference picture. In some examples, the vector is a motion
vector and the reference picture is a temporal motion vector. The reference block and

the non-square predictive block being the same size and shape. To determine the
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reference block based on the disparity vector of the current PU, video decoder 30 may
determine a position in the reference picture of a top-left corner of the reference block
by adding a horizontal component of the vector to an x coordinate of a top-left corner of
the non-square predictive block and adding a vertical component of the vector to a y
coordinate of the top-left corner of the non-square predictive block. In this example, if
indicated position of the top-left corner of the reference block does not indicate a
position in the reference picture of an integer pixel, video decoder 30 may interpolate
samples of the reference block to determine the reference block.

[0404] Furthermore, as part of using IC to generate the non-square predictive block,
video decoder 30 may sub-sample a first set of reference samples to generate a first sub-
sampled set of reference samples with a first sub-sampling ratio (556). In this example,
a total number of reference samples in the first set of reference samples is not equal to
2™ and a total number of reference samples in the first sub-sampled set of reference
samples is equal to 2™ In this example, the first set of reference samples may comprise
samples outside the non-square predictive block along a left side and a top side of the
non-square predictive block, and m is an integer.

[0405] Additionally, as part of using IC to generate the non-square predictive block,
video decoder 30 may sub-sample a second set of reference samples to generate a
second sub-sampled set of reference samples with a second sub-sampling ratio (558).
The first sub-sampling ratio may be the same or different from the second sub-sampling
ratio. In this example, a total number of reference samples in the second set of is not
equal to 2™ and a total number of reference samples in the second sub-sampled set of
reference samples is equal to 2™. Furthermore, in this example, the second set of
reference samples may comprise samples outside the reference block along a left side
and a top side of the reference block.

[0406] In actions (556) and (558), video decoder 30 may perform the sub-sampling in
various ways. For example, video decoder 30 may perform the sub-sampling using
decimation. In examples where video decoder 30 performs the sub-sampling using
decimation, video decoder 30 may remove samples at regular intervals (e.g., every other
sample) to reduce the number of samples without changing the values of the remaining
samples. Thus, in this example, video decoder 30 may perform at least one of:
decimating the first set of reference samples to generate the first sub-sampled set of
reference samples; and decimating the second set of reference samples to generate the

second sub-sampled set of reference samples.
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[0407] In another example, video decoder 30 may perform the sub-sampling using
interpolation. In examples where video decoder 30 performs the sub-sampling using
interpolation, for respective pairs of adjacent samples, video decoder 30 may interpolate
a value between the samples of a respective pair and may include the interpolated value
in the sub-sampled set of samples. Thus, in this example, video decoder 30 may
perform at least one of: performing interpolated sampling of the first set of reference
samples to generate the first sub-sampled set of reference samples; and performing
interpolated sampling of the second set of reference samples to generate the second sub-
sampled set of reference samples.

[0408] In another example, video decoder 30 may perform the sub-sampling using a
sub-sampling method indicated by a syntax element in the bitstream. Thus, in this
example, video decoder 30 may obtain, from the bitstream, a syntax element indicating
a sub-sampling method. In this example, video decoder 30 may perform at least one of’
using the indicated sub-sampling method to sub-sample the first set of reference
samples to generate the first sub-sampled set of reference samples; and using the
indicated sub-sampling method to sub-sample the second set of reference samples to
generate the second sub-sampled set of reference samples.

[0409] In another example, video decoder 30 may determine, based on a size of the
current PU, a sub-sampling method. In this example, video decoder 30 may perform at
least one of: using the determined sub-sampling method to sub-sample the first set of
reference samples to generate the first sub-sampled set of reference samples; and using
the determined sub-sampling method to sub-sample the second set of reference samples
to generate the second sub-sampled set of reference samples.

[0410] Furthermore, in action (560) of FIG. 33, video decoder 30 may determine a first
IC parameter based on the total number of reference samples in the first sub-sampled set
of reference samples and the total number of reference samples in the second sub-
sampled set of reference samples, the first sub-sampled set of reference samples, and the
second sub-sampled set of reference samples. For instance, video decoder 30 may
determine the first IC parameter such that the first IC parameter is based on:

2N-1 ; 2N-1
i=0 Recneigh(l) —a- Zi:o

2N

In the equation above, 2N denotes the total number of reference samples in the first sub-

ReCrefneigh (1)

sampled set of reference samples and the total number of reference samples in the

second sub-sampled set of reference samples, Recneign(i) denotes an i-th reference
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sample in the first sub-sampled set of reference samples, and Recrefieign(i) denotes an i-th
reference sample in the second sub-sampled set of reference samples.

[0411] In some examples, video decoder 30 may determine a second IC parameter such
that the second IC parameter is based on:

N— , , N— , N— ,
2N-Z%:0 ! Recneigh(l)'Recrefneigh(l)_zlg:o 1Recneigh(l)'2%:o 1Recrefneigh(l)

— , , — N2
ZN'Z%:A{) 1Recrefneigh(l)'Recneigh(l)_(zlgzl\g 1Recrefneigh(l))

[0412] Additionally, in action (562) of FIG. 33, video decoder 30 may determine a
sample of the non-square predictive block based on the first IC parameter. For instance,
the sample may be at coordinates (7, j) relative to a top-left corner of the current picture
and video decoder 30 may determine the sample such that the sample is based on:
a*r(i+dvwjtdvw+b)
In the equation above, b is the first IC parameter, a is a second IC parameter, 7 is the
reference picture, dvx is a horizontal component of a vector of the current PU, and dvy is
a vertical component of the vector of the current PU.
[0413] Video decoder 30 may reconstruct, based on the non-square predictive block, a
coding block of the current CU (564). For example, video decoder 30 may reconstruct
samples of the coding block by adding samples of the non-square predictive block to
corresponding samples of a residual block for a TU of the current CU.
[0414] FIG. 34 is a flowchart illustrating an example operation of video encoder 20 for
encoding video data, in accordance with a technique of this disclosure that uses a
flexible residual tree. In the example of FIG. 34, video encoder 20 may receive video
data (600). Furthermore, video encoder 20 may partition a CU of the video data into
TUs of the CU based on a tree structure (602). In some examples, video encoder 20
may determine, for each respective node of the tree structure, a value of a splitting
indicator for the respective node. The splitting indicator for a respective node may
indicate how many child nodes the respective node has. In some instances, video
encoder 20 may signal, in the bitstream, a syntax element explicitly indicating the value
of the splitting indicator of the respective node. In other instances, video decoder 30
may infer the value of the splitting indicator for the respective node (e.g., based on a
depth of the node in the tree structure, values of splitting nodes of parent nodes, sizes
and/or shapes of predictive blocks corresponding to the respective node, and so on).
[0415] As part of partitioning the CU into TUs of the CU based on the tree structure,

video encoder 20 may determine that a node in the tree structure has exactly two child
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nodes in the tree structure (604). In this example, a root node of the tree structure
corresponds to a coding block of the CU. Each respective non-root node of the tree
structure corresponds to a respective block that is a partition of a block that corresponds
to a parent node of the respective non-root node. Leaf nodes of the tree structure
correspond to the TUs of the CUs.

[0416] For example, video encoder 20 may determine, based on a total number of PUs
of the CU, whether the tree structure is a binary tree or a quarter tree. In this example,
based on the CU having two PUs, the node has exactly two child nodes in the tree
structure. In other words, video encoder 20 may determine, based on the CU having
exactly two PUs, that the node has exactly two child nodes in the tree structure.

[0417] In some examples, video encoder 20 may determine, based on the CU having
exactly two PUs, that the node has exactly two child nodes in the tree structure.

[0418] Furthermore, in the example of FIG. 34, for at least one of the TUs of the CU,
video encoder 20 applies a transform to a residual block for the TU to generate a block
of transform coefficients for the TU (606). For example, video encoder 20 may apply a
discrete cosine transform (DCT), discrete sine transform (DST), or another type of
transform to the residual block for the TU to generate the block of transform
coefficients. Additionally, video encoder 20 may entropy encode syntax elements
indicating the transform coefficients for the TU (608). For example, video encoder 20
may generate syntax elements indicating whether a transform coefficient is non-zero,
whether the transform coefficient is greater than 1, whether the transform coefficient is
greater than 2, a sign of the transform coefficient, and a remainder for the transform
coefficient. In this example, video encoder 20 may apply CABAC coding to one or
more of these syntax elements.

[0419] FIG. 35 is a flowchart illustrating an example operation of video decoder 30 for
decoding video data, in accordance with a technique of this disclosure that uses a
flexible residual tree. In the example of FIG. 35, video decoder 30 may receive a
bitstream that comprises an encoded representation of the video data (650).
Additionally, video decoder 30 may determine a CU of the video data is partitioned into
TUs of the CU based on a tree structure (652). In some examples, video decoder 30
may determine, for each respective node of the tree structure, a value of a splitting
indicator for the respective node. The splitting indicator for a respective node may
indicate how many child nodes the respective node has. In some instances, video

decoder 30 may obtain from the bitstream a syntax element explicitly indicating the
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value of the splitting indicator of the respective node. In other instances, video decoder
30 may infer the value of the splitting indicator for the respective node (e.g., based on a
depth of the node in the tree structure, values of splitting nodes of parent nodes, sizes
and/or shapes of predictive blocks corresponding to the respective node, and so on).
[0420] As part of determining the CU is partitioned into the TUs of the CU based on the
tree structure, video decoder 30 may determine that a node in the tree structure has
exactly two child nodes in the tree structure (654). In this example, a root node of the
tree structure corresponds to a coding block of the CU. Each respective non-root node
of the tree structure corresponds to a respective block that is a partition of a block that
corresponds to a parent node of the respective non-root node. Leaf nodes of the tree
structure correspond to the TUs of the CU. As described elsewhere in this disclosure,
video decoder 30 may determine that a node in the tree structure has exactly two child
nodes based on a number of PUs in the CU, based on a depth of the node in the tree
structure, based on a signaled syntax element, or based on other data.

[0421] For example, video decoder 30 may determine, based on a total number of PUs
of the CU, whether the tree structure is a binary tree or a quarter tree. In this example,
based on the CU having two PUs, the node has exactly two child nodes in the tree
structure. In other words, video decoder 30 may determine, based on the CU having
exactly two PUs, that the node has exactly two child nodes in the tree structure.

[0422] For at least one of the TUs of the CU, video decoder 30 may apply a transform
to a coefficient block for the TU to generate a residual block for the TU (656). For
example, video decoder 30 may apply an inverse DCT, an inverse DST, or another type
of transform to the coefficient block for the TU to generate the residual block for the
TU. Additionally, video decoder 30 may reconstruct samples of a coding block by
adding samples of a predictive block to corresponding samples of the residual block for
the TU of the CU (658).

[0423] Certain aspects of this disclosure have been described with respect to extensions
of the HEVC standard for purposes of illustration. However, the techniques described
in this disclosure may be useful for other video coding processes, including other
standard or proprietary video coding processes not yet developed.

[0424] A video coder, as described in this disclosure, may refer to a video encoder or a
video decoder. Similarly, a video coding unit may refer to a video encoder or a video
decoder. Likewise, video coding may refer to video encoding or video decoding, as

applicable.



WO 2017/091773 PCT/US2016/063677
122

[0425] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially.

[0426] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0427] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transitory
media, but are instead directed to non-transitory, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
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(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0428] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0429] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0430] Various examples have been described. These and other examples are within the

scope of the following claims.
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WHAT IS CLAIMED IS:

1. A method of decoding video data, the method comprising:
receiving, by a video decoder, a bitstream that comprises an encoded
representation of the video data;
using, by the video decoder, illumination compensation (IC) to generate a non-
square predictive block of a current prediction unit (PU) of a current coding unit (CU)
of a current picture of the video data, wherein using IC to generate the non-square
predictive block comprises:
determining, by the video decoder, based on a vector of the current PU, a
reference block in a reference picture, the reference block and the non-square
predictive block being the same size and shape;
sub-sampling, by the video decoder, a first set of reference samples to
generate a first sub-sampled set of reference samples with a first sub-sampling
ratio, a total number of reference samples in the first set of reference samples not
being equal to 2™ and a total number of reference samples in the first sub-
sampled set of reference samples being equal to 2™, wherein the first set of
reference samples comprises samples outside the non-square predictive block
along a left side and a top side of the non-square predictive block, and m is an
integer;
sub-sampling, by the video decoder, a second set of reference samples to
generate a second sub-sampled set of reference samples with a second sub-
sampling ratio, a total number of reference samples in the second set of
reference samples not being equal to 2™ and a total number of reference samples
in the second sub-sampled set of reference samples being equal to 2™, wherein
the second set of reference samples comprises samples outside the reference
block along a left side and a top side of the reference block;
determining, by the video decoder, a first IC parameter based on the total
number of reference samples in the first sub-sampled set of reference samples
and the total number of reference samples in the second sub-sampled set of
reference samples, the first sub-sampled set of reference samples, and the second
sub-sampled set of reference samples; and
determining, by the video decoder, a sample of the non-square predictive

block based on the first IC parameter; and
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reconstructing, by the video decoder, based on the non-square predictive block, a

coding block of the current CU.

2. The method of claim 1, wherein the vector of the current PU is a disparity vector

of the current PU and the reference picture is an inter-view reference picture.

3. The method of claim 1,
wherein determining the first IC parameter comprises determining, by the video

decoder, the first IC parameter such that the first IC parameter is based on:

ZZN ! Recneigh(i) ZZN ! Recrefneigh(i)
2N

wherein 2N denotes the total number of reference samples in the first sub-sampled set of

reference samples and the total number of reference samples in the second sub-sampled
set of reference samples, Recneigh(i) denotes an i-th reference sample in the first sub-
sampled set of reference samples, and Recremeigh(1) denotes an i-th reference sample in
the second sub-sampled set of reference samples; and

wherein the sample of the non-square predictive block is at coordinates (1, j)
relative to a top-left corner of the current picture and determining the sample of the non-
square predictive block comprises determining, by the video decoder, the sample of the
non-square predictive block at such that the sample is based on:

a*r(i+dvwjtdvw+b)

where b is the first IC parameter, a is a second IC parameter, 7 is the reference picture,
dvx 1s a horizontal component of the vector of the current PU, and dvy is a vertical

component of the vector of the current PU.

4. The method of claim 3, wherein the vector of the current PU is a disparity vector

of the current PU and the reference picture is an inter-view reference picture.

5. The method of claim 1, wherein using IC to generate the non-square predictive
block further comprises:
determining, by the video decoder, the second IC parameter such that the second
IC parameter is based on:
2N - YT Recneign (i) - ReCropneign (i) — 225 ReCheign (i) - 272G Recrefnelgh(l)

ZN- leivo ! Recrefnelgh(l) Recnelgh(l) (ZLZNO ! Recrefnelgh(l))
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6. The method of claim 1, wherein at least one of’

sub-sampling the first set of reference samples comprises decimating, by the
video decoder, the first set of reference samples to generate the first sub-sampled set of
reference samples; and

sub-sampling the second set of reference samples comprises decimating, by the
video decoder, the second set of reference samples to generate the second sub-sampled

set of reference samples.

7. The method of claim 1, wherein at least one of’

sub-sampling the first set of reference samples comprises performing, by the
video decoder, interpolated sampling of the first set of reference samples to generate the
first sub-sampled set of reference samples; and

sub-sampling the second set of reference samples comprises performing, by the
video decoder, interpolated sampling of the second set of reference samples to generate

the second sub-sampled set of reference samples.

8. The method of claim 1, wherein:
the method further comprises obtaining, by the video decoder, from the
bitstream, a syntax element indicating a sub-sampling method, and
wherein at least one of’
sub-sampling the first set of reference samples comprises using, by the
video decoder, the indicated sub-sampling method to sub-sample the first set of
reference samples to generate the first sub-sampled set of reference samples; or
sub-sampling the second set of reference samples comprises using, by
the video decoder, the indicated sub-sampling method to sub-sample the second
set of reference samples to generate the second sub-sampled set of reference

samples.

9. The method of claim 1, wherein:
the method further comprises determining, by the video decoder, based on a size
of the current PU, a sub-sampling method, and

wherein at least one of’
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sub-sampling the first set of reference samples comprises using, by the
video decoder, the determined sub-sampling method to sub-sample the first set
of reference samples to generate the first sub-sampled set of reference samples;
or

sub-sampling the second set of reference samples comprises using, by
the video decoder, the determined sub-sampling method to sub-sample the
second set of reference samples to generate the second sub-sampled set of

reference samples.

A method of encoding video data, the method comprising:
receiving, by a video encoder, the video data;

using, by the video encoder, illumination compensation (IC) to generate a non-

square predictive block of a current prediction unit (PU) of a current coding unit (CU)

of a current picture of the video data, wherein using IC to generate the non-square

predictive block comprises:

determining, by the video encoder, based on a vector of the current PU, a
reference block in a reference picture, the reference block and the non-square
predictive block being the same size and shape;

sub-sampling, by the video encoder, a first set of reference samples to
generate a first sub-sampled set of reference samples with a first sub-sampling
ratio, a total number of reference samples in the first set of reference samples not
being equal to 2™ and a total number of reference samples in the first sub-
sampled set of reference samples being equal to 2™, wherein the first set of
reference samples comprises samples outside the non-square predictive block
along a left side and a top side of the non-square predictive block, and m is an
integer;

sub-sampling, by the video encoder, a second set of reference samples to
generate a second sub-sampled set of reference samples with a second sub-
sampling ratio, a total number of reference samples in the second set of
reference samples not being equal to 2™ and a total number of reference samples
in the second sub-sampled set of reference samples being equal to 2™, wherein
the second set of reference samples comprises samples outside the reference

block along a left side and a top side of the reference block;
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determining, by the video encoder, a first IC parameter based on the total
number of reference samples in the first sub-sampled set of reference samples
and the total number of reference samples in the second sub-sampled set of
reference samples, the first sub-sampled set of reference samples, and the second
sub-sampled set of reference samples; and
generating, by the video encoder, residual data based on the non-square

predictive block; and

outputting, by the video encoder, a bitstream that includes data based on the

residual data.

11. The method of claim 10, wherein the vector of the current PU is a disparity

vector of the current PU and the reference picture is an inter-view reference picture.

12. The method of claim 10,
wherein determining the first IC parameter comprises determining, by the video
decoder, the first IC parameter such that the first IC parameter is based on:
Y6 " Recneigh (i) — a* X6 " Recreteign (i)
2N

wherein 2N denotes the total number of reference samples in the first sub-sampled set of

reference samples and the total number of reference samples in the second sub-sampled
set of reference samples, Recneigh(i) denotes an i-th reference sample in the first sub-
sampled set of reference samples, and Recremeigh(1) denotes an i-th reference sample in
the second sub-sampled set of reference samples; and

wherein the sample of the non-square predictive block is at coordinates (1, j)
relative to a top-left corner of the current picture and determining the sample of the non-
square predictive block comprises determining, by the video decoder, the sample of the
non-square predictive block at such that the sample is based on:

a*r(i+dvwjtdvw+b)

where b is the first IC parameter, a is a second IC parameter, 7 is the reference picture,
dvx 1s a horizontal component of the vector of the current PU, and dvy is a vertical

component of the vector of the current PU.

13. The method of claim 12, wherein the vector of the current PU is a disparity

vector of the current PU and the reference picture is an inter-view reference picture.
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14. The method of claim 10, wherein using IC to generate the non-square predictive
block further comprises:
determining, by the video encoder, the second IC parameter such that the second
IC parameter is based on:
2N - YT Recneign (i) - ReCrepneign(D) — X725 ReCheign (i) - 2725 " ReCrepneign (i)

- , , _ )2
ZN- leivo ! Recrefneigh(l) ) Recneigh(l) - (leivo ! Recrefneigh(l))

15. The method of claim 10, wherein at least one of’

sub-sampling the set of reference samples comprises decimating, by the video
encoder, the first set of reference samples to generate the first sub-sampled set of
reference samples; and

sub-sampling the second set of reference samples comprises decimating, by the
video encoder, the second set of reference samples to generate the second sub-sampled

set of reference samples.

16. The method of claim 10, wherein at least one of’

sub-sampling the first set of reference samples comprises performing, by the
video encoder, interpolated sampling of the first set of reference samples to generate the
first sub-sampled set of reference samples; and

sub-sampling the second set of reference samples comprises performing, by the
video encoder, interpolated sampling of the second set of reference samples to generate

the second sub-sampled set of reference samples.

17. The method of claim 10, wherein:
the method further comprises including, by the video encoder, in the bitstream, a
syntax element indicating a sub-sampling method, and
wherein at least one of’
sub-sampling the first set of reference samples comprises using, by the
video encoder, the indicated sub-sampling method to sub-sample the first set of
reference samples to generate the first sub-sampled set of reference samples; or
sub-sampling the second set of reference samples comprises using, by

the video encoder, the indicated sub-sampling method to sub-sample the second
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set of reference samples to generate the second sub-sampled set of reference

samples.

The method of claim 10, wherein:

the method further comprises determining, by the video encoder, based on a size

of the current PU, a sub-sampling method, and

19.

wherein at least one of’

sub-sampling the first set of reference samples comprises using, by the
video encoder, the determined sub-sampling method to sub-sample the first set
of reference samples to generate the first sub-sampled set of reference samples;
and

sub-sampling the second set of reference samples comprises using, by
the video encoder, the determined sub-sampling method to sub-sample the
second set of reference samples to generate the second sub-sampled set of

reference samples.

An apparatus for decoding video data, the apparatus comprising:
one or more storage media configured to store the video data; and
a video decoder configured to:
receive a bitstream that comprises an encoded representation of the video
data;
use illumination compensation (IC) to generate a non-square predictive
block of a current prediction unit (PU) of a current coding unit (CU) of a current
picture of the video data, wherein the video decoder is configured such that, as
part of using IC to generate the non-square predictive block, the video decoder:
determines, based on a vector of the current PU, a reference block
in a reference picture, the reference block and the non-square predictive
block being the same size and shape;
sub-samples a first set of reference samples to generate a first
sub-sampled set of reference samples with a first sub-sampling ratio, a
total number of reference samples in the first set of reference samples not
being equal to 2™ and a total number of reference samples in the first
sub-sampled set of reference samples being equal to 2™, wherein the first

set of reference samples comprises samples outside the non-square
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predictive block along a left side and a top side of the non-square
predictive block, and m is an integer;

sub-samples a second set of reference samples to generate a
second sub-sampled set of reference samples with a second sub-sampling
ratio, a total number of reference samples in the second set of reference
samples not being equal to 2™ and a total number of reference samples in
the second sub-sampled set of reference samples being equal to 2™,
wherein the second set of reference samples comprises samples outside
the reference block along a left side and a top side of the reference block;

determines a first IC parameter based on the total number of
reference samples in the first sub-sampled set of reference samples and
the total number of reference samples in the second sub-sampled set of
reference samples, the first sub-sampled set of reference samples, and the
second sub-sampled set of reference samples; and

determines a sample of the non-square predictive block based on
the first IC parameter; and
reconstruct, based on the non-square predictive block, a coding block of

the current CU.

20.  The apparatus of claim 19, wherein the vector of the current PU is a disparity

vector of the current PU and the reference picture is an inter-view reference picture.

21. The apparatus of claim 19,
wherein the video decoder is configured to determine the first IC parameter such

that the first IC parameter is based on:

2N-1 ; 2N-1
i=0 Recneigh(l) —a- Zi:o

2N

wherein 2N denotes the total number of reference samples in the first sub-sampled set of

ReCrefneigh (1)

reference samples and the total number of reference samples in the second sub-sampled
set of reference samples, Recneigh(i) denotes an i-th reference sample in the first sub-
sampled set of reference samples, and Recremeigh(1) denotes an i-th reference sample in
the second sub-sampled set of reference samples; and

wherein the sample of the non-square predictive block is at coordinates (1, j)

relative to a top-left corner of the current picture and the video decoder is configured to
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determine the sample of the non-square predictive block at such that the sample is based
on:

a*r(i+dvwjtdvw+b)
where b is the first IC parameter, a is a second IC parameter, 7 is the reference picture,
dvx 1s a horizontal component of the vector of the current PU, and dvy is a vertical

component of the vector of the current PU.

22.  The apparatus of claim 21, wherein the vector of the current PU is a disparity

vector of the current PU and the reference picture is an inter-view reference picture.

23.  The apparatus of claim 19, wherein the video decoder is configured such that, as
part of using IC to generate the non-square predictive block, the video decoder:
determines the second IC parameter such that the second IC parameter is based
on:
2N - YT Recrheigh (D) * Recrefneign (i) — X6 ' Recneign (D) - X1 Recrefneign ()

- , , _ )2
ZN- leivo ! Recrefneigh(l) ) Recneigh(l) - (leivo ! Recrefneigh(l))

24.  The apparatus of claim 19, wherein at least one of:

the video decoder is configured such that, as part of sub-sampling the first set of
reference samples, the video decoder decimates the first set of reference samples to
generate the first sub-sampled set of reference samples; and

the video decoder is configured such that, as part of sub-sampling the second set
of reference samples, the video decoder decimates the second set of reference samples

to generate the second sub-sampled set of reference samples.

25.  The apparatus of claim 19, wherein at least one of:

the video decoder is configured such that, as part of sub-sampling the first set of
reference samples, the video decoder performs interpolated sampling of the first set of
reference samples to generate the first sub-sampled set of reference samples; and

the video decoder is configured such that, as part of sub-sampling the second set
of reference samples, the video decoder performs interpolated sampling of the second

set of reference samples to generate the second sub-sampled set of reference samples.

26. The apparatus of claim 19, wherein:
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the video decoder is further configured to obtain, from the bitstream, a syntax

element indicating a sub-sampling method, and

27.

wherein at least one of

the video decoder is configured such that, as part of sub-sampling the
first set of reference samples, the video decoder uses the indicated sub-sampling
method to sub-sample the first set of reference samples to generate the first sub-
sampled set of reference samples; or

the video decoder is configured such that, as part of sub-sampling the
second set of reference samples, the video decoder uses the indicated sub-
sampling method to sub-sample the second set of reference samples to generate

the second sub-sampled set of reference samples.

The apparatus of claim 19, wherein:

the video decoder is further configured to determine, based on a size of the

current PU, a sub-sampling method, and

28.

wherein at least one of’

the video decoder is configured such that, as part of sub-sampling the
first set of reference samples, the video decoder uses the determined sub-
sampling method to sub-sample the first set of reference samples to generate the
first sub-sampled set of reference samples; or

the video decoder is configured such that, as part of sub-sampling the
second set of reference samples, the video decoder uses the determined sub-
sampling method to sub-sample the second set of reference samples to generate

the second sub-sampled set of reference samples.

An apparatus for encoding video data, the apparatus comprising:
one or more storage media configured to store video data; and
a video encoder configured to:

use illumination compensation (IC) to generate a non-square predictive
block of a current prediction unit (PU) of a current coding unit (CU) of a current
picture of the video data, wherein the video encoder is configured such that, as

part of using IC to generate the non-square predictive block, the video encoder:
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determines, based on a vector of the current PU, a reference block
in a reference picture, the reference block and the non-square predictive
block being the same size and shape;

sub-samples a first set of reference samples to generate a first
sub-sampled set of reference samples with a first sub-sampling ratio, a
total number of reference samples in the first set of reference samples not
being equal to 2™ and a total number of reference samples in the first
sub-sampled set of reference samples being equal to 2™, wherein the first
set of reference samples comprises samples outside the non-square
predictive block along a left side and a top side of the non-square
predictive block, and m is an integer;

sub-samples a second set of reference samples to generate a
second sub-sampled set of reference samples with a second sub-sampling
ratio, a total number of reference samples in the second set of reference
samples not being equal to 2™ and a total number of reference samples in
the second sub-sampled set of reference samples being equal to 2™,
wherein the second set of reference samples comprises samples outside
the reference block along a left side and a top side of the reference block;

determines a first IC parameter based on the total number of
reference samples in the first sub-sampled set of reference samples and
the total number of reference samples in the second sub-sampled set of
reference samples, the first sub-sampled set of reference samples, and the
second sub-sampled set of reference samples; and

determines a sample of the non-square predictive block based on
the first IC parameter; and
generate residual data based on the non-square predictive block; and

output a bitstream that includes data based on the residual data.

29.  The apparatus of claim 28, wherein the vector of the current PU is a disparity

vector of the current PU and the reference picture is an inter-view reference picture.

30. The apparatus of claim 28,

wherein the video encoder is configured to determine the first IC parameter such

that the first IC parameter is based on:
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ZZN ! Recneigh(i) ZZN ! Recrefneigh(i)
2N

wherein 2N denotes the total number of reference samples in the first sub-sampled set of

reference samples and the total number of reference samples in the second sub-sampled
set of reference samples, Recneigh(i) denotes an i-th reference sample in the first sub-
sampled set of reference samples, and Recremeigh(1) denotes an i-th reference sample in
the second sub-sampled set of reference samples; and

wherein the sample of the non-square predictive block is at coordinates (1, j)
relative to a top-left corner of the current picture and the video encoder is configured to
determine the sample of the non-square predictive block at such that the sample is based
on:

a*r(i+dvwjtdvw+b)

where b is the first IC parameter, a is a second IC parameter, 7 is the reference picture,
dvx 1s a horizontal component of the vector of the current PU, and dvy is a vertical

component of the vector of the current PU.

31.  The apparatus of claim 30, wherein the vector of the current PU is a disparity

vector of the current PU and the reference picture is an inter-view reference picture.

32.  The apparatus of claim 28, wherein the video encoder is configured such that, as
part of using IC to generate the non-square predictive block, the video encoder:
determines the second IC parameter such that the second IC parameter is based

on:
2N - 320 1Recneigh(i) " Recropneign (i) — Dy 1Recnelgh(l) Iito 1Recrefnelgh(l)

2N - YN Recrepneign (D) * ReCpeign (i) — (Z2ny 1Recrefnelgh(l))

33.  The apparatus of claim 28, wherein at least one of:

the video encoder is configured such that, as part of sub-sampling the first set of
reference samples, the video encoder decimates the first set of reference samples to
generate the first sub-sampled set of reference samples; and

the video encoder is configured such that, as part of sub-sampling the second set
of reference samples, the video encoder decimates the second set of reference samples

to generate the second sub-sampled set of reference samples.



WO 2017/091773 PCT/US2016/063677

34.

136

The apparatus of claim 28, wherein at least one of:

the video encoder is configured such that, as part of sub-sampling the first set of

reference samples, the video encoder performs interpolated sampling of the first set of

reference samples to generate the first sub-sampled set of reference samples; and

the video encoder is configured such that, as part of sub-sampling the second set

of reference samples, the video encoder performs interpolated sampling of the second

set of reference samples to generate the second sub-sampled set of reference samples.

35.

The apparatus of claim 28, wherein:

the video encoder is further configured to obtain, from the bitstream, a syntax

element indicating a sub-sampling method, and

36.

wherein at least one of

the video encoder is configured such that, as part of sub-sampling the
first set of reference samples, the video encoder uses the indicated sub-sampling
method to sub-sample the first set of reference samples to generate the first sub-
sampled set of reference samples; or

the video encoder is configured such that, as part of sub-sampling the
second set of reference samples, the video encoder uses the indicated sub-
sampling method to sub-sample the second set of reference samples to generate

the second sub-sampled set of reference samples.

The apparatus of claim 28, wherein:

the video encoder is further configured to determine, based on a size of the

current PU, a sub-sampling method, and

wherein at least one of’

the video encoder is configured such that, as part of sub-sampling the
first set of reference samples, the video encoder uses the determined sub-
sampling method to sub-sample the first set of reference samples to generate the
first sub-sampled set of reference samples; or

the video encoder is configured such that, as part of sub-sampling the
second set of reference samples, the video encoder uses the determined sub-
sampling method to sub-sample the second set of reference samples to generate

the second sub-sampled set of reference samples.
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37. An apparatus for decoding video data, the apparatus comprising:
means for receiving a bitstream that comprises an encoded representation of the
video data;
means for using illumination compensation (IC) to generate a non-square
predictive block of a current prediction unit (PU) of a current coding unit (CU) of a
current picture of the video data, wherein the means for using IC to generate the non-
square predictive block comprises:
means for determining, based on a vector of the current PU, a reference
block in a reference picture, the reference block and the non-square predictive
block being the same size and shape;
means for sub-sampling a first set of reference samples to generate a first
sub-sampled set of reference samples with a first sub-sampling ratio, a total
number of reference samples in the first set of reference samples not being equal
to 2™ and a total number of reference samples in the first sub-sampled set of
reference samples being equal to 2", wherein the first set of reference samples
comprises samples outside the non-square predictive block along a left side and
a top side of the non-square predictive block, and m is an integer;
means for sub-sampling a second set of reference samples to generate a
second sub-sampled set of reference samples with a second sub-sampling ratio, a
total number of reference samples in the second set of reference samples not
being equal to 2™ and a total number of reference samples in the second sub-
sampled set of reference samples being equal to 2™, wherein the second set of
reference samples comprises samples outside the reference block along a left
side and a top side of the reference block;
means for determining a first IC parameter based on the total number of
reference samples in the first sub-sampled set of reference samples and the total
number of reference samples in the second sub-sampled set of reference
samples, the first sub-sampled set of reference samples, and the second sub-
sampled set of reference samples; and
means for determining a sample of the non-square predictive block based
on the first IC parameter; and
means for reconstructing, by the video decoder, based on the non-square

predictive block, a coding block of the current CU.
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38. An apparatus for encoding video data, the apparatus comprising:
means for receiving the video data;
means for using illumination compensation (IC) to generate a non-square
predictive block of a current prediction unit (PU) of a current coding unit (CU) of a
current picture of the video data, wherein the means for using IC to generate the non-
square predictive block comprises:
means for determining, based on a vector of the current PU, a reference
block in a reference picture, the reference block and the non-square predictive
block being the same size and shape;
means for sub-sampling a first set of reference samples to generate a first
sub-sampled set of reference samples with a first sub-sampling ratio, a total
number of reference samples in the first set of reference samples not being equal
to 2™ and a total number of reference samples in the first sub-sampled set of
reference samples being equal to 2", wherein the first set of reference samples
comprises samples outside the non-square predictive block along a left side and
a top side of the non-square predictive block, and m is an integer;
means for sub-sampling a second set of reference samples to generate a
second sub-sampled set of reference samples with a second sub-sampling ratio, a
total number of reference samples in the second set of reference samples not
being equal to 2™ and a total number of reference samples in the second sub-
sampled set of reference samples being equal to 2™, wherein the second set of
reference samples comprises samples outside the reference block along a left
side and a top side of the reference block;
means for determining a first IC parameter based on the total number of
reference samples in the first sub-sampled set of reference samples and the total
number of reference samples in the second sub-sampled set of reference
samples, the first sub-sampled set of reference samples, and the second sub-
sampled set of reference samples; and
means for determining a sample of the non-square predictive block based
on the first IC parameter; and
means for generating residual data based on the non-square predictive block; and

means for outputting a bitstream that includes data based on the residual data.
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39. A computer-readable medium having instructions stored thereon that, when
executed, configure an apparatus for decoding video data to:
receive a bitstream that comprises an encoded representation of the video data;
use illumination compensation (IC) to generate a non-square predictive block of
a current prediction unit (PU) of a current coding unit (CU) of a current picture of the
video data, wherein the instructions configure the apparatus such that, as part of using
IC to generate the non-square predictive block, the apparatus:
determines, based on a vector of the current PU, a reference block in a
reference picture, the reference block and the non-square predictive block being
the same size and shape;
sub-samples a first set of reference samples to generate a first sub-
sampled set of reference samples with a first sub-sampling ratio, a total number
of reference samples in the first set of reference samples not being equal to 2™
and a total number of reference samples in the first sub-sampled set of reference
samples being equal to 2™, wherein the first set of reference samples comprises
samples outside the non-square predictive block along a left side and a top side
of the non-square predictive block, and m is an integer;
sub-samples a second set of reference samples to generate a second sub-
sampled set of reference samples with a second sub-sampling ratio, a total
number of reference samples in the second set of reference samples not being
equal to 2™ and a total number of reference samples in the second sub-sampled
set of reference samples being equal to 2™, wherein the second set of reference
samples comprises samples outside the reference block along a left side and a
top side of the reference block;
determines a first IC parameter based on the total number of reference
samples in the first sub-sampled set of reference samples and the total number of
reference samples in the second sub-sampled set of reference samples, the first
sub-sampled set of reference samples, and the second sub-sampled set of
reference samples; and
determines a sample of the non-square predictive block based on the first
IC parameter; and
reconstruct, based on the non-square predictive block, a coding block of the

current CU.
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40. A computer-readable medium having instructions stored thereon that, when
executed, configure an apparatus for encoding video data to:
receive the video data;
use illumination compensation (IC) to generate a non-square predictive block of
a current prediction unit (PU) of a current coding unit (CU) of a current picture of the
video data, wherein the instructions, when executed, configure the apparatus such that,
as part of using IC to generate the non-square predictive block, the apparatus:
determines, based on a vector of the current PU, a reference block in a
reference picture, the reference block and the non-square predictive block being
the same size and shape;
sub-samples a first set of reference samples to generate a first sub-
sampled set of reference samples with a first sub-sampling ratio, a total number
of reference samples in the first set of reference samples not being equal to 2™
and a total number of reference samples in the first sub-sampled set of reference
samples being equal to 2™, wherein the first set of reference samples comprises
samples outside the non-square predictive block along a left side and a top side
of the non-square predictive block, and m is an integer;
sub-samples a second set of reference samples to generate a second sub-
sampled set of reference samples with a second sub-sampling ratio, a total
number of reference samples in the second set of reference samples not being
equal to 2™ and a total number of reference samples in the second sub-sampled
set of reference samples being equal to 2™, wherein the second set of reference
samples comprises samples outside the reference block along a left side and a
top side of the reference block;
determines a first IC parameter based on the total number of reference
samples in the first sub-sampled set of reference samples and the total number of
reference samples in the second sub-sampled set of reference samples, the first
sub-sampled set of reference samples, and the second sub-sampled set of
reference samples; and
determines a sample of the non-square predictive block based on the first
IC parameter; and
generates residual data based on the non-square predictive block; and

outputs a bitstream that includes data based on the residual data.
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