wo 2011/112467 A2 I 0K OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) Work Ttellctual Propety Orsaniation /22 | NIV NUAE O RO A RO
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
15 September 2011 (15.09.2011) PCT WO 2011/112467 A2
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GOG6F 9/44 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
. .. DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
PCT/US2011/027300 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
4 March 2011 (04.03.2011) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
.) SE, 8@, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
12/719,008 8 March 2010 (08.03.2010) Us GM, KE, LR, LS, MW, MZ, NA, SD, 8L, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(71) Applicant (for all designated States except US). MI- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
CROSOFT CORPORATION [US/US]; One Microsoft EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Way, Redmond, Washington 98052-6399 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,
(72) Inventors: JACOBSON, Neil; c/o Microsoft Corpora- PN ﬁﬁpg(ng’l\?J’TgF’Tg)G’ CL CM, GA, GN, GQ,
tion, LCA - International Patents, One Microsoft Way, ’ ’ R ’
Redmond, Washington 98052-6399 (US). DUNKER, Declarations under Rule 4.17:
Jeremy, E.; c/o Microsoft Corporation, LCA - Interna- . , .
tional Patents, One Microsoft Way, Redmond, Washing- ZS ;Ozeil;p(%?:tzts Ie;iézjement to apply for and be granted
ton 98052-6399 (US). JEWART, Eric, C.; ¢/o Microsoft p '
Corporation, LCA - International Patents, One Microsoft — as to the applicant’s entitlement fo claim the priority of
Way, Redmond, Washington 98052-6399 (US). SHEE- the earlier application (Rule 4.17(iii))
HAN, John, M.; ¢/o Microsoft Corporation, LCA - Inter- Published:
national Patents, One Microsoft Way, Redmond, Wash- ’
ington 98052-6399 (US). — without international search report and to be republished
upon receipt of that report (Rule 48.2(g))
(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

(54) Title: VIRTUAL SOFTWARE APPLICATION DEPLOYMENT CONFIGURATIONS

P

NON-VIRTUAL
APPLICATION
212

ACKAGING ENVIRONMENT
210

, PAGKAGER

v DEPLOYMENT
VIRTUAL APP CONFIGURATION
PACKAGE 230

220 L

CONFIG
ITEMS.
232

PACKAGE
220

DEPLOY CONFIG
230

DEPLOYMENT ENVIRONMENT
240

EDITNG
COMPONENT
242

PACKAGE
220
DEFLOY CONFIG
230
DEPLOYOMENT

COMPONENT
244

PAGKAGE
220

DEPLOY CONFIG
230

VIRIUAL APP
DEPLOYMENT
CONFIG
ENVIRONMENT
20

s
VIRIUAL APP
HOST

FIGURE 2

PACKAGE.
220

DEPLOY
231

TARGET ENVIRONMENT

SANDBOX

CONFIG 266
0

VIRTUAL APP
INSTANCE

252

(57) Abstract: Configuration items for a software application can be automatically and/or manually discovered, and the applica-
tion can be packaged to form a virtual application package. A deployment configuration can include settings for the configuration
items. The deployment configuration can be set after packaging the software application. For example, a selected contiguration
item in the deployment configuration may be changed in response to user input. The virtual application package can be deployed
to instantiate the application one or more times, and the deployment configuration can be applied in the instantiated application.

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

VIRTUAL SOFTWARE APPLICATION DEPLOYMENT CONFIGURATIONS

BACKGROUND
[0001] Virtual applications can be implemented in a series of operations. Initially, an
application can be packaged in a packaging environment to generate a virtual application
package. Packaging is the process of taking the application and defining its data (such as
files and registry entries) and metadata (configuration items such as items in *.ini files and
registry settings), so that the package can include the application data and metadata to run
in a target environment without actually being installed as a native application.
Accordingly, that package can be deployed to a target environment to instantiate a virtual
application instance. The virtual application instance can run in a capsule, which includes
the application as well as virtual resources to run the application. Such a capsule is
referred to herein as a “sandbox”. As used herein, a package includes the information
(files, metadata, etc.) that is taken from the packaging of the application, and the package
can be deployed to instantiate the application. The package may be split into multiple
parts, and some parts may be transmitted in different ways and/or at different times.

SUMMARY

[0002] The tools and techniques described and claimed herein can allow a virtual
application package and a deployment configuration to be deployed to instantiate a
specific instance of an application. The deployment configuration can include one or
more configuration items, such as items that are discovered when packaging the
application. The deployment configuration may be included with or separate from the
virtual application package, and the deployment configuration may be edited after the
application is packaged. The deployment configuration can be applied in the instantiated
virtual application. For example, the deployment configuration may be applied to
configure the application while deploying the application and/or after the application has
been deployed.
[0003] In one embodiment, the tools and techniques can include automatically
discovering configuration items for a software application, and packaging the application
to form a virtual application package. The virtual application package can be deployed to
instantiate the application. A deployment configuration can be applied in the instantiated
application, where the deployment configuration includes settings for the configuration

items.

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

[0004] In another embodiment of the tools and techniques, a software application can be
packaged to form a virtual application package. A deployment configuration for the
application can be set after packaging the application. Setting a deployment configuration
includes confirming and/or changing the configuration. For example, one or more default
settings for configuration items in the deployment configuration can be confirmed
automatically or in response to specific user input. As another example, one or more
settings for configuration items can be added or modified, such as adding or modifying
automatically or in response to specific user input. The virtual application package can
also be deployed to instantiate the application, and the deployment configuration can be
applied in the instantiated application. For example, settings of configuration items in the
deployment configuration may be applied in the application while the application package
is being deployed (e.g., by interleaving deployment and configuration operations), and/or
after the application package has been deployed.
[0005] In yet another embodiment of the tools and techniques, configuration items for a
software application can be discovered. The application can be packaged to form a virtual
application package. After packaging the application, the configuration items can be
presented with a user interface device. A selected configuration item can be changed in
response to user input indicating the change. Additionally, the virtual application package
can be deployed to instantiate the application, and the configuration items can be applied
to the instantiated application.
[0006] This Summary is provided to introduce a selection of concepts in a simplified
form. The concepts are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used to limit the scope of the claimed subject
matter. Similarly, the invention is not limited to implementations that address the
particular techniques, tools, environments, disadvantages, or advantages discussed in the
Background, the Detailed Description, or the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Fig. 11is a block diagram of a suitable computing environment in which one or
more of the described embodiments may be implemented.
[0008] Fig. 2 is a block diagram of a virtual application deployment configuration
computing environment.

[0009] Fig. 3 is a flowchart of a virtual application deployment configuration technique.

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

[0010] Fig. 4 is a flowchart of another virtual application deployment configuration
technique.
[0011] Fig. 5 is a flowchart of yet another virtual application deployment configuration
technique.

DETAILED DESCRIPTION
[0012] Embodiments described herein are directed to techniques and tools for improved
packaging, deployment, and/or instantiation of virtual applications. Such improvements
may result from the use of various techniques and tools separately or in combination.
[0013] Such techniques and tools may include allowing a virtual application package and
a deployment configuration to be deployed to instantiate a specific instance of an
application in a target environment. For example one or more configuration items for a
software application may be automatically discovered. A deployment configuration that
includes the items can be set after an application is packaged as a virtual application
package. For example, the configuration item(s) may be presented to a user with a user
interface device (e.g., by displaying representations of the configuration item(s) on a
computer display) after packaging the application. Also after the packaging, one of the
configuration item(s) may be changed in response to user input indicating the change to be
made. The package can be deployed to instantiate an instance of the application, and the
deployment configuration can be applied in the application instance.
[0014] At packaging time a packaging engineer (user conducting packaging) and/or the
packager (computing component that performs packaging) may know what some
configuration items are, but may not know what the settings for those configuration items
are to be in a specific application instance. For example, some configuration items may be
tied to a particular machine, user or application instance. As one specific example, a user
acceptance testing organization may have the application connect to a database named
“sql_ga”. However, when the application is run in its intended production target
environment, the application may connect to a database named “sql_production”. By
identifying the configuration items at packaging time, but setting and applying those
configuration items when deploying the package to instantiate a specific instance of the
application, an administrator (user conducting deployment) conducting the deployment
can be relieved of having to identify the configuration items. However, the administrator
can still enter appropriate settings for the configuration items. Also, a single package can
be deployed to instantiate different instances with different machines and/or users. This

may be done without having to modify the package itself (except possibly modifying the

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

configuration items if they are included in the package) and without having to repackage
the application. For example, this may be beneficial because one general package can be
packaged and tested, but this tested general package can be deployed to a number of
different instances with different deployment configuration settings. If items in the
package other than the deployment configuration were modified for each deployment or if
the application were entirely repackaged, the original testing may not be valid.

[0015] Accordingly, one or more substantial benefits can be realized from the tools and
techniques described herein. The subject matter defined in the appended claims is not
necessarily limited to the benefits described herein. A particular implementation of the
invention may provide all, some, or none of the benefits described herein. Although
operations for the various techniques are described herein in a particular, sequential order
for the sake of presentation, it should be understood that this manner of description
encompasses rearrangements in the order of operations, unless a particular ordering is
required. For example, operations described sequentially may in some cases be rearranged
or performed concurrently. Techniques described herein with reference to flowcharts may
be used with one or more of the systems described herein and/or with one or more other
systems. For example, the various procedures described herein may be implemented with
hardware or software, or a combination of both. Moreover, for the sake of simplicity,
flowcharts may not show the various ways in which particular techniques can be used in
conjunction with other techniques.

L. Exemplary Computing Environment

[0016] Fig. 1 illustrates a generalized example of a suitable computing environment
(100) in which one or more of the described embodiments may be implemented. For
example, one or more such computing environments can be used as a packaging
environment, deployment environment, and/or target environment. Generally, various
different general purpose or special purpose computing system configurations can be used.
Examples of well-known computing system configurations that may be suitable for use
with the tools and techniques described herein include, but are not limited to, server farms
and server clusters, personal computers, server computers, hand-held or laptop devices,
multiprocessor systems, microprocessor-based systems, programmable consumer
electronics, network PCs, minicomputers, mainframe computers, distributed computing

environments that include any of the above systems or devices, and the like.

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

[0017] The computing environment (100) is not intended to suggest any limitation as to
scope of use or functionality of the invention, as the present invention may be
implemented in diverse general-purpose or special-purpose computing environments.
[0018] With reference to Fig. 1, the computing environment (100) includes at least one
processing unit (110) and memory (120). In Fig. 1, this most basic configuration (130) is
included within a dashed line. The processing unit (110) executes computer-executable
instructions and may be a real or a virtual processor. In a multi-processing system,
multiple processing units execute computer-executable instructions to increase processing
power. The memory (120) may be volatile memory (e.g., registers, cache, RAM), non-
volatile memory (e.g., ROM, EEPROM, flash memory), or some combination of the two.
The memory (120) stores software (180) implementing virtual software application
deployment configurations.

[0019] Although the various blocks of Fig. 1 are shown with lines for the sake of clarity,
in reality, delineating various components is not so clear and, metaphorically, the lines of
Fig. 1 and the other figures discussed below would more accurately be grey and blurred.
For example, one may consider a presentation component such as a display device to be an
I/0 component. Also, processors have memory. The inventors hereof recognize that such
is the nature of the art and reiterate that the diagram of Fig. 1 is merely illustrative of an
exemplary computing device that can be used in connection with one or more
embodiments of the present invention. Distinction is not made between such categories as

2% ¢

“workstation,” “server,” “laptop,” “handheld device,” etc., as all are contemplated within

2% ¢

the scope of Fig. 1 and reference to “computer,” “computing environment,” or “computing
device.”

[0020] A computing environment (100) may have additional features. In Fig. 1, the
computing environment (100) includes storage (140), one or more input devices (150), one
or more output devices (160), and one or more communication connections (170). An
interconnection mechanism (not shown) such as a bus, controller, or network interconnects
the components of the computing environment (100). Typically, operating system
software (not shown) provides an operating environment for other software executing in
the computing environment (100), and coordinates activities of the components of the
computing environment (100).

[0021] The storage (140) may be removable or non-removable, and may include non-

transitory computer-readable storage media such as magnetic disks, magnetic tapes or

cassettes, CD-ROMs, CD-RWs, DVDs, or any other medium which can be used to store

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

information and which can be accessed within the computing environment (100). The
storage (140) stores instructions for the software (180).

[0022] The input device(s) (150) may be a touch input device such as a keyboard,
mouse, pen, or trackball; a voice input device; a scanning device; a network adapter; a
CD/DVD reader; or another device that provides input to the computing environment
(100). The output device(s) (160) may be a display, printer, speaker, CD/DVD-writer,
network adapter, or another device that provides output from the computing environment
(100).

[0023] The communication connection(s) (170) enable communication over a
communication medium to another computing entity. Thus, the computing environment
(100) may operate in a networked environment using logical connections to one or more
remote computing devices, such as a personal computer, a server, a router, a network PC,
a peer device or another common network node. The communication medium conveys
information such as data or computer-executable instructions or requests in a modulated
data signal. A modulated data signal is a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in the signal. By way of
example, and not limitation, communication media include wired or wireless techniques
implemented with an electrical, optical, RF, infrared, acoustic, or other carrier.

[0024] The tools and techniques can be described in the general context of computer-
readable media. Computer-readable media are any available media that can be accessed
within a computing environment. By way of example, and not limitation, with the
computing environment (100), computer-readable media include memory (120), storage
(140), and combinations of the above.

[0025] The tools and techniques can be described in the general context of computer-
executable instructions, such as those included in program modules, being executed in a
computing environment on a target real or virtual processor. Generally, program modules
include routines, programs, libraries, objects, classes, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. The functionality of
the program modules may be combined or split between program modules as desired in
various embodiments. Computer-executable instructions for program modules may be
executed within a local or distributed computing environment. In a distributed computing
environment, program modules may be located in both local and remote computer storage

media.

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

[0026] For the sake of presentation, the detailed description uses terms like “determine,”

2% ¢

“choose,” “adjust,” and “operate” to describe computer operations in a computing
environment. These and other similar terms are high-level abstractions for operations
performed by a computer, and should not be confused with acts performed by a human
being, unless performance of an act by a human being (such as a “user”) is explicitly
noted. The actual computer operations corresponding to these terms vary depending on
the implementation.

IL Virtual Software Application Deployment Configuration System and Environment
[0027] Fig. 2 is a block diagram of a virtual software application deployment
configuration computing environment (200) in conjunction with which one or more of the
described embodiments may be implemented. The computing environment (200) can
include a packaging environment (210). In the packaging environment (210), a non-
virtual application (212) can be packaged by a packager (214) into a virtual application
package (220). For example, the packager (214) may be a packager from application
virtualization software such as Microsoft’s Application Virtualization (App-V) software.
When packaging the application (212), the packager (214) can also identify in the non-
virtual application (212) one or more configurations to be included in a deployment
configuration (230) as configuration items (232). The identification may be done
automatically (i.e., the searching and identification may be automatic, although this
automatic identification may be prompted by user input requesting that the configuration
items be automatically identified). In addition, the packager (214) may suggest whether
one or more of the configuration items (232) are to be mandatory configuration items that
have to be set in response to user input at deployment time, or optional configuration items
that may or may not be set in response to user input at deployment time. The
identification of the configuration items (232), as well as the determination of whether to
suggest that the items be optional or mandatory may be delegated to subsystems of the
packager (214). The deployment configuration (230) may be in the form of a separate file,
such as an XML file with configuration items indexed by location (e.g., file or registry
location). Alternatively, the deployment configuration (230) may be in some other form,
such as in multiple files and/or attributes in one or more files that also include other
application data and/or metadata.

[0028] The configuration items (232) may also be presented to a user on a user interface
device, such as one of the output device(s) (160) discussed above with reference to Fig. 1.

The user may provide user input to edit one or more of the configuration items (232) in the

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

deployment configuration (230), and the configuration items (232) can be edited in
response to the user input. For example, a user may provide user input requesting that one
of the items (232) be deleted from the deployment configuration (230); that a name or
label for one of the items (232) be changed; that a mandatory item (232) be changed to an
optional item (232); that an optional item (232) be changed to a mandatory item (232); that
a default setting for an item (232) be added, changed or deleted; or that some other change
to one or more of the items (232) be made.

[0029] Some specific types of configuration items (232) will now be discussed.
However, these specific types are only provided as examples; other types of configuration
items (232) may be identified and included in the deployment configuration (230) in
addition to or instead of these types of items. As one example, a configuration item may
be a database connection string. For example, the packager (214) may delegate automatic
identification of database-related items to a database subsystem of the packager (214).
The database subsystem may search for database-related items. For example, the database
subsystem may monitor API (application programming interface) calls when the non-
virtual application (212) is being installed, and extract particular strings from those calls.
The database subsystem can then produce configuration items or search for items related
to those extracted strings in the application state, such as in application files (e.g., *.ini and
xml files) and registry entries. When the string is found, the database subsystem can
identify the string as a configuration item (232). The subsystem may also make other
determinations related to the configuration item (232), such as whether the item (232) is
mandatory or optional, what the name of the item is, and what, if any, default setting is to
be included for the configuration item (232). The packager (214) can include the
configuration item (232) in the deployment configuration (230). This inclusion can be
performed by the database subsystem or some other more general component that is
configured for including configuration items (232) in the deployment configuration (230).
For example, if the database connection string “mydb” were found in a registry entry
“‘HKLM\foo\app’ odbcdatabase=mydb”, the packager (214) may store an entry
“HKLM\foo\app, value odbcdatabse=mydb” in the deployment configuration (230).
Similar entries could be used for other items such as xml and *.ini elements. For example,
for a configuration item (232) that is an xml element, the packager (214) may store the file
path and an XPath expression to identify the location, allowing differentiation between

clements with the same name. As another example, the packager (214) may store an entry

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

such as “approot\config\db.xml element ‘db’ = mydb” in the deployment configuration
(230).

[0030] As another example, a configuration item (232) may be an account name for NT
services, and a subsystem of the packager (214) that deals with NT services could identify
the account name. The account name may be listed in the deployment configuration (230)
by an identifier, which an NT services component will recognize when instantiating the
application. For example, the account name may be set by an API call. As other
examples of types of configuration items, configuration items (232) may include user
accounts and passwords that are managed by Microsoft’s Internet Information Services
(IIS). An IIS subsystem of the packager (214) can recognize user accounts and passwords
managed by IIS, and the packager (214) can include configuration items for the accounts
and passwords in the deployment configuration (230), listed by appropriate identifiers.
[0031] The package (220), which can include the deployment configuration (230), can
be sent to a deployment environment (240). In the deployment environment (240), the
deployment configurations (230) can be presented to a user, and the deployment
configurations can be set (such as by confirming default settings, editing the settings, etc.).
For mandatory configuration items (232), the settings may have to be confirmed and/or
edited in response to user input before deployment of the package (220) will be allowed to
proceed. As an example, the deployment configuration (230) may be included in a file
(e.g., an xml file), and the file can be opened and displayed as a document to be edited.
Alternatively, a graphical representation of the deployment configuration can be presented
(e.g., the configuration items (232) can be presented in one or more dialogs). User input
can be received (e.g., from an administrator conducting deployment of the package (220)),
and in response to the user input, an editing component (242) can edit the configuration
items (232) in the deployment configuration (230), as indicated by the user input. A
deployment component (244) can take the package and deploy it to a target environment
(260). The deployment component (244) and the editing component (242) may both be
part of the same software product or part of different software products. For example, the
editing component (242) and a component for presenting the deployment configuration on
a user interface device may be part of a data center manager software product, while the
deployment component (244) may be part of an application virtualization software
product. As another example, where an XML-based deployment configuration file is
used, the editing component (242) can be a simple editor such as a generic XML editor,

which can be used to directly view and edit the deployment configuration file.

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

[0032] As noted above, the package (220) can be deployed to the target environment
(260) to be instantiated. For example, the instantiation in the target environment (260) can
be conducted by a virtual application host (262), which can be a client component of
application virtualization software that also includes the editing component (242) and the
packager (214). Specifically, the application can be instantiated as a virtual application
instance (264) in a sandbox (266) in the target environment (260). The configuration
items (232) in the deployment configuration (230) can be applied in the virtual application
instance (264) (i.c., the instantiated application). For example, the entire application may
be deployed and then configured as the virtual application instance (264). As an
alternative, the deployment of the package (220) and the configuration of the virtual
application instance (264) can be interleaved, with a portion of the package (220) being
deployed and configured, followed by another portion of the package (220) being
deployed and configured, etc. This interleaved deployment and configuration can
continue until the entire application is instantiated as the virtual application instance (264).
[0033] Applying the deployment configuration (230) may be done in various ways, such
as overwriting metadata and/or making API calls to configure the application instance
(264). This configuring may be done in the deployment environment (240) and/or in the
target environment (260). As another example, the virtual application can be left in an
unconfigured state in storage. The deployment configuration information can be merged
with the application information at runtime. For example, when an application opens an

* ini file, the *.ini file can be read from storage and merged with deployment
configuration item(s). The merged result can be given to the application for consumption.
As another example, API calls can be hooked and the behavior of the API calls can be
changed to return the values from the deployment configuration (230) at runtime. For
example, registry API’s can be hooked to detect when the virtual process for the virtual
application instance (264) is reading a registry value that has been overridden by a
deployment configuration item (232). When that occurs, the value from the deployment
configuration item (232) can be returned instead of the value in the registry.

[0034] The identification, editing, and/or application of the deployment configuration
(230) could be done in environments that differ from the computing environment (200)
discussed above. For example, the virtual application package (220) could be deployed
directly from the packaging environment (210) to the target environment (260). Indeed,
packaging, deployment, instantiation, and execution of the virtual application may all be

done in the same environment.

10

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

II. Virtual Software Application Deployment Configuration Techniques

[0035] Several virtual software application deployment configuration techniques will
now be discussed. Each of these techniques can be performed in a computing
environment. For example, each technique may be performed in a computer system that
includes at least one processor and a memory including instructions stored thereon that
when executed by the at least one processor cause the at least one processor to perform the
technique (a memory stores instructions (e.g., object code), and when the processor(s)
execute(s) those instructions, the processor(s) perform(s) the technique). Similarly, one or
more computer-readable storage media may have computer-executable instructions
embodied thereon that, when executed by at least one processor, cause the at least one
processor to perform the technique.

[0036] Referring to Fig. 3, a virtual software application deployment configuration
technique will be discussed. The technique can include automatically discovering (310)
one or more configuration items for a software application. The configuration item(s) may
be presented (312) with a user interface device. User input may be received (314), and in
response to receiving (314) the user input, one of the configuration item(s) can be edited
(316). For example, this changing or editing (316) of the configuration may include
deleting the configuration item, modifying a name or label associated with the
configuration item, or deleting, adding, or modifying a setting for the configuration item.
The application can be packaged (320) to form a virtual application package.

[0037] After packaging (320) the application, the configuration item(s) may again be
presented (322) with a user interface device. Also after packaging (320), user input can be
received (324), and one or more configuration item settings can be edited (326). Other
features of the configuration item(s) may also be edited at that time. Accordingly, the
presentation of configuration item(s), receipt of user input, and responsive editing may be
done before packaging (320) is complete (e.g., at packaging time) and/or after packaging
(320) (e.g., at deployment time) is complete. In addition, the package may be deployed
(330) to instantiate the application. A deployment configuration, which can include one or
more settings for the configuration item(s), can be applied (340) in the instantiated
application. If it is determined (350) that the package is to be deployed again, then
presenting (322) configuration item(s), receiving (324) user input, editing (326)
configuration item setting(s), deploying (330) the package, and applying (340) the

deployment configuration can be performed again.

11

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

[0038] The technique can also include applying a second deployment configuration in
the instantiated application to change setting(s) for the configuration item(s). Applying
the second deployment configuration can be done after the instantiated application has
been configured with the original deployment configuration. This other deployment
configuration can be different from the first deployment configuration, so that the
instantiated application can be reconfigured by applying the second deployment
configuration. Moreover, technique can also include discovering one or more
configuration items for the software application in response to user input that identifies the
item(s), and the deployment configuration can further include one or more settings for
these manually-discovered configuration item(s).

[0039] Accordingly, the same package may be deployed to instantiate the application
multiple times, with different deployment configuration settings being applied to in
different instances of the application. For example, the application may be deployed to be
instantiated in multiple target environments with different deployment configuration
settings for target environments that are configured differently. Accordingly, deploying
(330) the virtual application package to instantiate the application can include deploying
the virtual application package to instantiate the application as a first instance of the
application, and applying (340) the deployment configuration can include applying the
deployment configuration in the first instance of the application. The technique can
further include deploying (330) the virtual application package to instantiate the
application as a second instance of the application, and applying (340) the deployment
configuration in the second instance of the application. Also, applying (340) the
deployment configuration in the first instance of the application and applying (340) the
deployment configuration in the second instance of the application can include applying
different settings for at least one of the configuration item(s) in the first and second
instances of the application.

[0040] Referring now to Fig. 4, another virtual software application deployment
configuration technique will be discussed. The technique can include discovering (410)
one or more configuration items for a deployment configuration, and packaging (420) a
software application to form a virtual application package. The discovering (410) can be
performed before completing the packaging (420). For example, the discovering (410)
may be performed during packaging (420) and/or prior to packaging (420). However,
discovering (410) may be performed after packaging (420) is completed, such as by using

a tool that scans a package to identify and/or produce a deployment configuration

12

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

document. The technique can also include setting (430) a deployment configuration for
the virtual application package after packaging (420). Setting (430) the deployment
configuration can include editing one or more configuration items in the deployment
configuration (e.g., by editing setting(s) for the configuration item(s)) and/or confirming
existing configuration item(s) in the deployment configuration. For example, setting (430)
the deployment configuration can be done in response to receiving user input. At least one
of the configuration item(s) may be marked as optional or mandatory. Setting (430) the
deployment configuration can include determining for each of the configuration item(s)
whether the item is marked as mandatory, and if so then requiring user input for that item
before deploying the virtual application package. For example, such user input may
confirm an existing default setting, modify an existing default setting, or enter a setting
where there is no default setting. In addition, the virtual application package can be
deployed (440) to instantiate the application, and the deployment configuration can be
applied (450) in the instantiated application.

[0041] The package may be deployed multiple times, possibly with different deployment
configurations for different deployments. Accordingly, the deployment configuration can
be a first deployment configuration. Deploying (440) the virtual application package to
instantiate the application can include deploying the virtual application package to
instantiate the application in a first instance of the application. Moreover, applying (450)
the deployment configuration in the instantiated application can include applying the first
deployment configuration in the first instance of the application. Moreover, the technique
can further include setting a second deployment configuration for the virtual application
package after packaging the software application, deploying the virtual application
package to instantiate the application in a second instance of the application; and applying
the second deployment configuration in the second instance of the application. The first
instance of the application can be on a first machine with a first machine configuration and
the second instance of the application can be on a second machine with a second machine
configuration. Alternatively, the first and second instances of the application could be on
the same machine, or on different machines that both have the same configuration.

[0042] Referring now to Fig. 5, yet another virtual software application deployment
configuration technique will be discussed. The technique can include discovering (510)
one or more configuration items for a software application. Some or all of the discovering

(510) can be done automatically. The configuration item(s) can be presented (520) on a

13

10

15

WO 2011/112467 PCT/US2011/027300

user interface device and at least one of the configuration item(s) can be changed (530).
The changing (530) can be done in response to receiving user input indicating a change.
[0043] The application can be packaged (540) to form a virtual application package, but
the presentation (520) and changing (530) can be done before packaging (540) is
complete. Additionally, the configuration item(s) can be presented (550) with a user
interface device after packaging (540) the application. In response to user input indicating
a change to a selected configuration item of the configuration item(s), the selected
configuration item can be changed (560). The virtual application package can be deployed
(570) to instantiate the application, and the configuration item(s) can be applied (580) in
the instantiated application.

[0044] Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the specific features or acts described
above. Rather, the specific features and acts described above are disclosed as example

forms of implementing the claims.

14

WO 2011/112467 PCT/US2011/027300

CLAIMS

1. A computer-implemented method, comprising:

automatically discovering one or more configuration items for a software
application;

packaging the application to form a virtual application package;

deploying the virtual application package to instantiate the application; and

applying a deployment configuration in the instantiated application, the
deployment configuration comprising one or more settings for the one or more
configuration items.

2. The method of claim 1, wherein the one or more configuration items are one or
more automatically-discovered configuration items, and wherein the method further
comprises discovering one or more manually-discovered configuration items for the
software application in response to user input identifying the one or more manually-
discovered configuration items, the deployment configuration further comprising one or
more settings for the one or more manually-discovered configuration items.

3. The method of claim 1, wherein automatically discovering comprises delegating at
least a portion of the discovering to a subsystem relevant to at least one of the one or more
configuration items.
4. The method of claim 1, wherein the deployment configuration is a first deployment
configuration, and wherein the method further comprises applying a second deployment
configuration in the instantiated application to change one or more settings for the one or
more configuration items, the second deployment configuration being different from the
first deployment configuration.
5. The method of claim 1, further comprising presenting the one or more
configuration items with a user interface device.
6. The method of claim 5, further comprising receiving user input, and editing one of
the one or more configuration items in response to the user input.
7. The method of claim 1, wherein:

deploying the virtual application package to instantiate the application comprises
deploying the virtual application package to instantiate the application as a first instance of
the application;

applying the deployment configuration comprises applying the deployment

configuration in the first instance of the application;

15

10

15

20

25

30

WO 2011/112467 PCT/US2011/027300

the method further comprises deploying the virtual application package to
instantiate the application as a second instance of the application; and
the method further comprises applying the deployment configuration in the second
instance of the application.
8. The method of claim 7, wherein applying the deployment configuration in the first
instance of the application and applying the deployment configuration in the second
instance of the application comprise applying different settings for at least one of the one
or more configuration items in the first and second instances of the application.
9. The method of claim 1, wherein:
the method further comprises performing the following after packaging the
application:
presenting the configuration items with a user interface device;
receiving user input;
editing a setting of at least one of the one or more configuration items in
response to the user input; and
deploying the virtual application package to instantiate the application comprises
deploying the virtual application package to instantiate the application as a first instance of
the application;
applying the deployment configuration comprises applying the deployment
configuration in the first instance of the application;
the method further comprises deploying the virtual application package to
instantiate the application as a second instance of the application; and
the method further comprises applying the deployment configuration in the second
instance of the application, wherein different settings are applied for at least one of the one
or more configuration items in the first and second instances of the application.
10. One or more computer-readable storage media having computer-executable
instructions embodied thereon that, when executed by at least one processor, cause the at
least one processor to perform acts comprising:
packaging a software application to form a virtual application package;
setting a deployment configuration for the virtual application package after
packaging the software application;
deploying the virtual application package to instantiate the application; and

applying the deployment configuration in the instantiated application.

16

10

15

20

25

WO 2011/112467 PCT/US2011/027300

11. The one or more computer-readable storage media of claim 10, wherein setting the
deployment configuration comprises editing one or more configuration items in the
deployment configuration.
12. The one or more computer-readable storage media of claim 10, wherein setting the
deployment configuration is done in response to receiving user input.
13. The one or more computer-readable storage media of claim 10, wherein the acts
further comprise discovering one or more configuration items for the deployment
configuration before completing the packaging.
14. The one or more computer-readable storage media of claim 13, wherein the acts
further comprise marking at least one of the one or more configuration items as optional or
mandatory, and wherein setting the deployment configuration comprises determining for
cach of the one or more configuration items whether the item is marked as mandatory, and
if the item is marked as mandatory then requiring user input for that item before deploying
the virtual application package.
15. The one or more computer-readable storage media of claim 10, wherein:
the deployment configuration is a first deployment configuration;
deploying the virtual application package to instantiate the application comprises
deploying the virtual application package to instantiate the application in a first instance of
the application;
applying the deployment configuration in the instantiated application comprises
applying the first deployment configuration in the first instance of the application;
the acts further comprise:
setting a second deployment configuration for the virtual application
package after packaging the software application;
deploying the virtual application package to instantiate the application in a
second instance of the application; and
applying the second deployment configuration in the second instance of the

application.

17

WO 2011/112467 PCT/US2011/027300
1/5

J/

r——— - |
COMMUNICATION)
| COMPUTING
ENVIRONMENT 100 CONNECTION(S)
| 170)
\——— "~~~ 7~ |
I BASIC) : INPUT) |
|| CONFIGURATION DEVICES) 150 J |
” 130 |
I MEMORY | | ST) |
I | proCESSING 120 I[DEVICE(S)160 |
P UNIT 110 (mTTT | 7|
| S P~ N |
| ——\— [L}STORAGE14O |
.
|

SOFTWARE 180 IMPLEMENTING VIRTUAL
APPLICATION DEPLOYMENT CONFIGURATIONS

FIGURE 1

WO 2011/112467

-~

VIRTUAL APP
DEPLOYMENT
CONFIG
ENVIRONMENT
200

FIGURE 2

2/5

PCT/US2011/027300

PACKAGING ENVIRONMENT

210
NON-VIRTUAL
APPLICATION PACZK,SGER
212
|
v
DEPLOYMENT
VIRTUAL APP CONFIGURATION
PACKAGE 230
220 C]
\
PACKAGE CONFIG
220 ITEMS
DEPLOY CONFIG 232
230
v
DEPLOYMENT ENVIRONMENT
240
PACKAGE
220
EDITING
COMPONENT DEPUi;gONHG
242
DEPLOYOMENT
COMPONENT
244
|
PACKAGE
220
DEPLQOY CONFIG
230
TARGET ENVIRONMENT
260
PACKAGE
220 SANDBOX
DEPLOY CONFIG 266
230
L VIRTUAL APP
VIRTUAL APP INSTANCE
HOST 264
262

)

WO 2011/112467

AUTOMATICALLY
DISCOVER
CONFIG ITEMS
310

PRESENT
CONFIG
ITEMS
312

RECEIVE
USER
INPUT

314

EDIT
CONFIG
ITEMS
316

3/5

PCT/US2011/027300

v

PACKAGE
APPLICATION
320

PRESENT
CONFIG

ITEMS
322

RECEIVE
USER
INPUT

324

1

EDIT
CONFIG
ITEM
SETTING
326

FIGURE 3

DEPLOY PACKAGE
TO INSTANTIATE

APP
330

APPLY DEPLOYMENT

CONFIG IN

INSTANTIATED APP

340

DEPLOY
AGAIN?
350

WO 2011/112467 PCT/US2011/027300
4/5

DISCOVER
CONFIG
ITEMS
410

PACKAGE
APPLICATION
420

SET
DEPLOYMENT
CONFIG
430

DEPLOY
PACKAGE TO
INSTANTIATE APP
440

APPLY
DEPLOYMENT
CONFIG IN
INSTANTIATED APP
450

FIGURE 4

WO 2011/112467

DISCOVER
CONFIG
ITEMS
510

PRESENT
CONFIG
ITEMS
520

CHANGE
CONFIG
ITEMS
530

PACKAGE
APP
540

5/5

v

PRESENT
CONFIG
ITEMS
550

CHANGE
CONFIG
ITEMS
560

PCT/US2011/027300

DEPLOY
PACKAGE TO
INSTANTIATE

APP
570

APPLY CONFIG

ITEMS IN

INSTANTIATED APP

580

FIGURE 5

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings

