US 20050278283A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2005/0278283 Al

Burckart et al.

(43) Pub. Date:

Dec. 15, 2005

(54

(75)

SEARCH VIA FAST CASE INSENSITIVE
ASCII TREE

Inventors: Erik John Burckart, Raleigh, NC
(US); Madhu K. Chetupararnbil,
Raleigh, NC (US); Rohit Dilip
Kelapure, Durham, NC (US); Jeffrey
A. Lee, Morrisville, NC (US); Aravind
Srinivasan, Raleigh, NC (US); Kevin
Edward Vaughan, Fuquay Varina, NC
(US)

Correspondence Address:
DUKE W. YEE

YEE & ASSOCIATES, P.C.
P.O. BOX 802333
DALLAS, TX 75380 (US)

(73) Assignee: International Business Machines Cor-

CLIENT

poration, Armonk, NY

ey
22

G
2

7

Appl. No.: 10/857,782

Filed: May 27, 2004
Publication Classification

INt. CL7 e seees s GO6F 7/00
US. Clo s 707/1

ABSTRACT

A system and method for searching a bytestream or other

string
ment,

in a case insensitive manner. In a preferred embodi-
the present invention includes an ASCII tree that

associated both upper and lower case letters of an incoming
header key (or other symbols) with nodes. When enough
nodes are gathered, a target word is found.

202 208 204 216
HOST/PCI MAIN AUDIO
PROCESSOR G2 CACHE/BRIDGE [N MEMORY | | ADAPTER
ws] i
<= > ~

r ']\/""“. 206 U U @ l}
| | scsimosT | 1 LAN DFANSION | |arapHICS %:/lﬁgég/

|
| | PUS ADAPTER i ADAPTER INTERFAGE | | ADAPTER | | ApaPTER
0 - N S S

I
| 212 i | 210 ﬁ ﬁ 214 218 219
: . <> < >
I b e @ —i} 1}
I /226 H
: —L DSk 1220~ KEYBOARD AND

' MOUSE ADAPTER| | MODEM | | MEMORY

' —> TAPE I
: ™-228 ! N N

- 22
! \}:> CD-ROM |\ 54, NP 2 224
! I

Patent Application Publication Dec. 15,2005 Sheet 1 of 4 US 2005/0278283 Al
100
\‘ |_~104
oo 108
102~F =y |/
C;'gg” 202 208 204 216
\ \ / /
HOST/PCI MAIN AUDIO
PROCESSOR K= cAGHE/BRIDGEN—>] MEMORY ADAPTER
BUS ﬁ ﬁ
<= >
________ L !
r 1 206
|
L | scsiHosT i LAN Expéﬂg'ON GRAPHICS ‘:}ljgé%/
|| BUS ADAPTER | | ADAPTER INTERFAGE | | ADAPTER | | P00
T /} ! 4 N N N
L 212 , 210 214 218 219
! : < > < >
N I
I | ~226 1
: —L_OSK 1220~ KEYBOARD AND | | e | | yemony
, SN , MOUSE ADAPTER|
| ™-228 ! N N
| CD-ROM 222 224
: \}::> N\.230 :‘\232 FIG. 2

US 2005/0278283 Al

£ DIH
30 i #R LLL 42 L2V T Ge#R® LEL 4G G6 ¢ g9#% 120 48 €9 (Jojesedas pun) SN 260 41 L€
~ 9Zl#% 9.1 3. 92ZL| o ‘ve#W® 9EL IS ¥6 < 29#% 9.0 3 29 (Jojesedos piooas) S 90 31 0€
{ 'czi#® G/+ a4l Szv| [‘'se#% GEL 4S5 €6 = '19#% G/0 Qf 19 (1ojesedas dnoiB) S9 G0 AL 62
| ‘wzi#3 ¥ 0L ¥ZL| \ ‘z6#® V¥EL IS 26 > 09#% .0 J¢ 09 (lojeredas ajy) S4 ¥EOD 91 82
} o‘egl#w €ZL 87 €2L|] ‘ie#% €51 495 16 © '6G#% €0 9¢ 65 (adeosa) 2SI €80 gl /g
Z ZZL#% TLL VL 22L| 7 ‘06#% TEL VS 06 ©gG#R® 7.0 VE 86 (anmsqns) ANS 2€0 VI 92
A hzi#% LLL 62 121 A ‘68#% LEL 65 68 6 JG#R 10 6% /S (wnipaw jopua) W3 LE0 61 G2
X 0Zb#% 041 82 02h| X ‘88#% O0fL 85 88 8 96#% 0.0 8¢ 95 (190ued) NVO 0£0 81 2
MOGLL#ES 490 2L BLE| MO 28#R L2L IS /8 l 'GG#R /90 /£ SS (fo0|q suesjo pua) 913 /20 /L €7
A ogLL#% 991 92 8LL| A ‘9g#® 92 95 98 9 pG#R 990 95 S (aipi snouoJyouks) NAS 920 91 2e
nolzLE#% S9L G2 1| noGg#® G2k GG 68 G £G#R 690 G& €6 (aBpajmouyoe aanebau) MYN G20 Si 12
1 l9LL#% V9L P4 O9LL| 1 v8#% ¥ZL VS b8 v o26#% v90 vE ¢S (¥ jonuod do1M3p) ¥IQ v20 vI 02
S GLI#® €91 €L GLL| S ‘tg#® E£ZL £ &8 € G#% €90 ££ 1§ (¢ 104u00 801A3P) €00 €20 €1 61
I opLi#R 29b 2L vhL| Y ‘ze#® 2gk ¢S 28 T 0S#R® 290 2& 0§ (¢ 10au00 301A9p) 200 220 2l 8L
b eri#% 191 L2 €| o ‘1g#%® gL 1S 18 b Bb#%R 190 LE 6 (1 1onuod admasp) 13d 120 bk /L
d zri#w 09F 0L ZLL| 4 ‘08#% 02L 05 08 0 ‘gy#m3 090 0E 8 (adeossywielep) 310 020 OL 91t
O LLI#% /SL 49 LLL| 0 ‘6i#% LLL dv 6L [ov#% 180 d¢ Ly {urylys) IS 210 4 St
U loLk#% 9SE 39 0L N ‘B/#% 9LL Iv 8! T l9p#R 950 32 9F @Gnoywys) 0SS 910 3 ¥t
W '60L#% SGL 09 60L| W ‘/J#% SLL Q¥ XL - Gy#® S50 Q¢ SY (wnias abewed) YY) G0 4@ €l
| '80L#% ¥GL 09 80| 7 ‘9/#%® VviL 2F 9. " pp#% S0 02 b | (abed mau ‘pasjwiojdN) 44 vI0 O 2L
A L0L#%® ESL 99 Z00L| M ‘GL#R €L ay G2 + ‘gy#% €50 d¢ EF (Qel jeoian) 1A ELO 8 L)
['90L#% 26t Y9 90L| [‘p/#% CLL Vb ¥L « Ty#% 250 ve b (sun mau ‘pagyaullIN) 41 20 VOl
I 'GOL#% IGL B9 SOL| | ‘Ei#% LLL 6% €4 (‘1p#% 150 62 b (gey jeyuoziioy) gvi L0 6 6
U poL#% 0S1 89 POL| H ‘z/#% OLL 8y ¢/) ‘op#% 0S50 82 OF (aoedsyoeq) Sg 010 8 8
0 ‘got#® vl 29 €OL| o ‘Li#% 0L v WL ' BE#R Y0 l¢ BE (Ieq) 73g 00 £ ¢
}O'ZoL#%® 9L 99 2O0L| 4 02#% 904 9% 0L B gE#% 9v0 9z 8¢ (ebpaimowoe) MJY 900 9 9
9 LoL#R® GPL S9 LOL| 3 '69#%® GOL Gv 69| % l/E#%® GKO GZ L€ (Anbusa) DN3 G00 S 6
P 00L#% ¥rL ¥9 00l g ‘89#%® ¥OL ¥r 89 2 lge#R® ¥W0 vz 9 (uoissiwsuen jopus) 103 ¥00O v b
O ge#% E€¥lL €9 66 | O 29#% €0L £¢ /19 # 'Ge#% €v0 €¢ GE (x1j0pus) x13 €00 € €
g 'Be#% <¢¥l ¢9 86 | g ‘99#%® 20l 2v 99 W PE#R W0 22 VE (a1 joue)s) xJS 200 ¢ 2
B OB#R WL 19 26 | v 'S9#% 10l Ly 9 i ‘ge#% Y0 1Z €€ (Buipeay jo pels) HOS 100 + L
. 96#% OvL 09 96 | @ ‘¥9#%R® (00l OF ¥9 |ooeds :zese Ov0 0¢ Z€ (nu) AN 000 0 O
) JWIH 190 XH 99Q [JUD JwiH 190 XH 28Q | D JunH 180 XH 980 YUY 190 XH 923

Patent Application Publication Dec. 15,2005 Sheet 2 of 4

US 2005/0278283 Al

Patent Application Publication Dec. 15,2005 Sheet 3 of 4

HOLYW 0L 3nTiv4 Nenlay |~ 0¢9
4
SIA|
019
STINN
YILNIOd JAON
819 LS
N\
1394Y1
N4SS300NS mmmﬂmﬁm% . SW3LNIOd 300N WOES | -809
NHNL3Y A JON3H3434 JAON 139
:
IONVH T1aVL1dI00V
43LOVHYHD YILOVEYHO
43IHLONY 139 HIHLONY JHIHL JHL NIHLIM 43.19vdvH
> S LS
p19 ¢k 909
300N 04 YALIVEVHO IUVNIVAI Ky 00
A
9 OIA J0ON 100Y 139 L
¢09
90 139HY1 ON ~— JAON r I
SIONIHIAIH/SHILNIOL J 20y
300N 952 OL N e

US 2005/0278283 Al

Patent Application Publication Dec. 15,2005 Sheet 4 of 4

HNENEEENENEEENNEREEE

NNNNEEENNNEEEENENEERNENNERE
X
\m_ 91§

HEREE
1398V1 3000 <—] 3QON?/3 |
[]]

I:________m_u________ H HREINN _______v_/__________
Eemﬁoz% pIg
_______________________ HODEREN ______v_/____:_j
Eomﬁoz% AL
:________________ HENEEEEENERENENEEEN _______v_f__________
139HY1 ON [300N 0/0 | 016
____________H_V_:____ REER :__o_z___ _________v_/________:
1394V ON <—] moozeo 805
+ omm
___________o___m___ _o_ _<_________v_/:________
m%ﬁ%'%/ 906
_____________m_______m____ :<________v_/_________
§ OIA I 205 v0S /o
00§

US 2005/0278283 Al

SEARCH VIA FAST CASE INSENSITIVE ASCIL
TREE

BACKGROUND OF THE INVENTION
[0001] 1. Technical Field

[0002] The present invention relates generally to case
insensitive searches, and more particularly to searching a
byte stream in a case insensitive manner without requiring
normalization of the byte stream.

[0003] 2. Description of Related Art

[0004] Hypertext Transfer Protocol (HTTP) is an applica-
tion-level protocol for distributed, collaborative, hyperme-
dia information systems. It is a generic, stateless protocol
which can be used for many tasks beyond its use for
hypertext, such as name servers and distributed object
management systems, through extension of its request meth-
ods, error codes and headers.

[0005] HTTP/1.1 has defined syntax and semantics for all
header fields. While implementing HTTP/1.1 spec, it is often
necessary to search, (e.g., for “header keys”) while parsing
a byte stream. Such searches must be performed in a case
insensitive manner, so that no matter the case of the text of
the header keys, the header keys may still be identified. In
the current state of the art, characters of the byte stream must
be normalized before searching them. For example, in many
prior art systems, the byte stream is normalized by identi-
fying all characters and transforming them into the same
case, such as into lower case. After the characters have all
been thus modified, the byte stream can then be searched for
relevant targets. Without normalization, changes of case,
whether planned or accidental, can foil search attempts.

[0006] The process of normalization requires an added
computing step beyond the actual searching, and is compu-
tationally expensive. Therefore, it would benefit the art to
have a way to search a byte stream without the need to first
normalize the byte stream.

SUMMARY OF THE INVENTION

[0007] The present invention describes a system and
method for searching a bytestream or other string of symbols
in a case insensitive manner. In one example embodiment,
the present invention comprises a root having a set of
characters, a plurality of nodes, wherein each node is
associated with an upper and lower case version of a
character, a plurality of arrays, wherein each array includes
upper and lower case versions of characters. As a bytestream
is searched, upper and lower case letters are recognized and
associated with an associated node. In this way, normaliza-
tion is not required in order to search the bytestream for
header keys. Further embodiments of the present invention
are described more fully below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood
by reference to the following detailed description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:

Dec. 15, 2005

[0009] FIG. 1 shows an image of a computer system
consistent with implementing a preferred embodiment of the
present invention.

[0010] FIG. 2 shows a diagram of elements of a computer
system consistent with implementing a preferred embodi-
ment of the present invention.

[0011] FIG. 3 shows an ASCII table as is implemented in
preferred embodiments of the present invention.

[0012] FIG. 4 shows an example node and associated
pointers consistent with implementing a preferred embodi-
ment of the present invention.

[0013] FIG. 5 shows an example storage for a particular
header key in a search tree consistent with a preferred
embodiment of the present invention.

[0014] FIG. 6 shows process steps consistent with imple-
menting a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0015] With reference now to the figures and in particular
with reference to FIG. 1, a pictorial representation of a data
processing system in which the present invention may be
implemented is depicted in accordance with a preferred
embodiment of the present invention. A computer 100 is
depicted which includes a system unit 102, a video display
terminal 104, a keyboard 106, storage devices 108, which
may include floppy drives and other types of permanent and
removable storage media, and mouse 110. Additional input
devices may be included with personal computer 100, such
as, for example, a joystick, touchpad, touch screen, track-
ball, microphone, and the like. Computer 100 can be imple-
mented using any suitable computer, such as an IBM
RS/6000 computer or IntelliStation computer, which are
products of International Business Machines Corporation,
located in Armonk, N.Y. Although the depicted representa-
tion shows a computer, other embodiments of the present
invention may be implemented in other types of data pro-
cessing systems, such as a network computer. Computer 100
also preferably includes a graphical user interface that may
be implemented by means of systems software residing in
computer readable media in operation within computer 100.

[0016] With reference now to FIG. 2, a block diagram of
a data processing system is shown in which the present
invention may be implemented. Data processing system 200
is an example of a computer, such as computer 100 in FIG.
1, in which code or instructions implementing the processes
of the present invention may be located. Data processing
system 200 employs a peripheral component interconnect
(PCI) local bus architecture. Although the depicted example
employs a PCI bus, other bus architectures such as Accel-
erated Graphics Port (AGP) and Industry Standard Archi-
tecture (ISA) may be used. Processor 202 and main memory
204 are connected to PCI local bus 206 through PCI bridge
208. PCI bridge 208 also may include an integrated memory
controller and cache memory for processor 202. Additional
connections to PCI local bus 206 may be made through
direct component interconnection or through add-in boards.
In the depicted example, local area network (LAN) adapter
210, small computer system interface SCSI host bus adapter
212, and expansion bus interface 214 are connected to PCI
local bus 206 by direct component connection. In contrast,

US 2005/0278283 Al

audio adapter 216, graphics adapter 218, and audio/video
adapter 219 are connected to PCI local bus 206 by add-in
boards inserted into expansion slots. Expansion bus inter-
face 214 provides a connection for a keyboard and mouse
adapter 220, modem 222, and additional memory 224. SCSI
host bus adapter 212 provides a connection for hard disk
drive 226, tape drive 228, and CD-ROM drive 230. Typical
PCI local bus implementations will support three or four PCI
expansion slots or add-in connectors.

[0017] An operating system runs on processor 202 and is
used to coordinate and provide control of various compo-
nents within data processing system 200 in FIG. 2. The
operating system may be a commercially available operating
system such as Windows 2000, which is available from
Microsoft Corporation. An object oriented programming
system such as Java may run in conjunction with the
operating system and provides calls to the operating system
from Java programs or applications executing on data pro-
cessing system 200. “Java” is a trademark of Sun Micro-
systems, Inc. Instructions for the operating system, the
object-oriented programming system, and applications or
programs are located on storage devices, such as hard disk
drive 226, and may be loaded into main memory 204 for
execution by processor 202.

[0018] Those of ordinary skill in the art will appreciate
that the hardware in FIG. 2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash ROM (or equivalent nonvolatile
memory) or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIG. 2.
Also, the processes of the present invention may be applied
to a multiprocessor data processing system.

[0019] For example, data processing system 200, if
optionally configured as a network computer, may not
include SCSI host bus adapter 212, hard disk drive 226, tape
drive 228, and CD-ROM 230, as noted by dotted line 232 in
FIG. 2 denoting optional inclusion. In that case, the com-
puter, to be properly called a client computer, must include
some type of network communication interface, such as
LAN adapter 210, modem 222, or the like. As another
example, data processing system 200 may be a stand-alone
system configured to be bootable without relying on some
type of network communication interface, whether or not
data processing system 200 comprises some type of network
communication interface. As a further example, data pro-
cessing system 200 may be a personal digital assistant
(PDA), which is configured with ROM and/or flash ROM to
provide non-volatile memory for storing operating system
files and/or user-generated data.

[0020] The depicted example in FIG. 2 and above-de-
scribed examples are not meant to imply architectural limi-
tations. For example, data processing system 200 also may
be a notebook computer or hand held computer in addition
to taking the form of a PDA. Data processing system 200
also may be a kiosk or a Web appliance.

[0021] The processes of the present invention are per-
formed by processor 202 using computer implemented
instructions, which may be located in a memory such as, for
example, main memory 204, memory 224, or in one or more
peripheral devices 226-230.

[0022] The present invention describes a system and
method for searching a bytestream (or more broadly, any

Dec. 15, 2005

text strings) in a case insensitive manner without the need to
first go through a normalization process. In a preferred
embodiment, the present invention uses an ASCII tree
wherein every node has an array of possible other nodes
representing a subset of the allowable ASCII characters at
that node. Every ASCII letter has a reference to the same
node in both its upper case and lower case forms, so that no
matter the case of a character it can be recognized and will
reference the same node. Thus, every character may enter
the tree with unknown case (i.c., not normalized) yet be
recognized.

[0023] Though the ASCII tree is used in the preferred
embodiment, the invention is not limited to that particular
standard for character representation. The ASCII tree is
chosen for preferred embodiments because of the familiar
association of the necessary symbols and characters in both
cases to integers, which are more easily manipulated. FIG.
3 shows the ASCII table.

[0024] Multiple ASCII tables are assembled into an ASCIT
tree that has special nodes throughout. Each node comprises
a target and 128 node pointers (or references in Java). The
node data structure is depicted in FIG. 4.

[0025] FIG. 4 shows a node 402 and an associated target
404. The target refers to the object the lookup process is
working toward. For example, if the header key “cookie”
entered the search tree, the end node of that search process
(ie., the node reached after parsing the “e” in “cookic™)
points to the target, “cookie”.

[0026] Pointers 406 refers to the array of allowable char-
acters of symbols for that branch of that level of the search
tree. In a preferred embodiment, there are 128 possible
pointers in any given branch of a level of the search tree.

[0027] The tree is constructed using multiple ASCII tables
at different levels. In the first level there is only one table,
called the root. This table includes pointers to all possible
first characters (including symbols in some embodiments) of
words or strings that can be found using the tree. For
example, if the tree is designed to find words “Cache-
control,”Cookie,” and “Connection,” then the root would
include only the letter C, in both upper and lower case. If,
however, the tree were designed to find the words “Cache-
control,”“Cookie,”“Accept,” and “Connection,” then the
root would include C, c, A, and a. Thus, in searching the
incoming bytestream, the root would recognize the first
letter of the four terms which the tree is designed to find.

[0028] Though the invention is explained in the context of
finding header keys, it is not limited to that application.
However, the application will refer to header keys when
discussing target words. Further, though the application
refers to searching a bytestream in the examples that follow,
but it should be understood that the innovations herein
described are applicable to any text string.

[0029] The search tree of the present invention is designed
with all possible searched-for words (i.e., target words) built
in. In preferred embodiments, the tree includes all possible
header keys for HT'TP/1.1. A new search word can be added
to existing search trees by adding the letters of the new word
into the appropriate levels of the tree.

[0030] The root, as mentioned above, is an array with all
possible first letters of all possible target words, in both

US 2005/0278283 Al

upper and lower case. Each letter is a pointer that points to
a node. For example, in the above example with “Accept,
7“Cache-control,”*Cookie,” and “Connection,” the root
array contains A, a, C and c. If the incoming letter matches
either C or ¢, then the node “C/c” is reached. If the incoming
letter matches either A or a, then the A/a node is reached. The
node of this description corresponds to node 402 of FIG. 4.

[0031] Once the first node is discovered, the next letter of
the header key in the incoming bytestream is input to the
search tree, but at the second level of the tree. The second
level of the tree includes all possible second letters of target
words, in both cases (upper and lower). When the second
letter of the actual incoming word is input to the table, it
goes to a branch of the tree that corresponds only to second
letters that follow the already-discovered first letter. Hence,
referring again to the four above example header keys, if the
input header key were “Cookie,” then the C/c node was
reached first and the next letter, “o” is input at a branch of
the second level, the branch containing A, a, 0, and o. Only
these letters need be present in this branch of the second
level, because this branch is reached only after having
discovered the first letter as corresponding to the C/c node.

[0032] If, however, the incoming header key were
“Accept,” then the A/a node would have first been reached,
and the branch of the second level for the next letter (“c”, the
second letter of “Accept”) would only include C and c. This
is because in our example search tree, we only included the
four above mentioned header keys, and only one begins with
Aor a.

[0033] In preferred embodiments, all known header keys
are included in the search tree, so that the root includes all
first letters of all potential header keys.

[0034] FIG. 5 shows an example storage for the “Cookie”
header where “Cookie,” Accept,”Connection,” and
“Cache-Control” header keys are the only header keys
included in a simplified search tree.

[0035] Tree 500 includes root 502 and arrays 504-516.
Array 504 includes the first letters of all words which the
search tree is designed to detect in a bytestream. In this
example, “A” and “a”, and “C” and “c” are included in array
504 because the only first letters of incorporated words are
“A” and “C”. When the first letter is identified in array 504,
node 518 is identified as the associated node. Node 518
represents the letter “C” in a case insensitive way, as it is
identified with both upper and lower case versions from
array 504. Note that the tree includes an opportunity to
complete the search, but “no target” is indicated in this
example because the input word has more characters. In
preferred embodiments, the tree will not select a target until
all characters of an input tree have been input. Each node has
a target, in case the user has completed the search at a
specific node and that node is not necessarily the end of the
possible search. For example, if both “Accept” and “Accept-
Encoding” were incorporated into a search tree, parsing to
the end of “Accept” would not produce a target if more
symbols or characters follow. If, however, there were no
more symbols after the “t” in “Accept”, then the search
would end and a target selected. In preferred embodiments
incorporating HTTP/1.1, a colon “:” indicates the end of a
header key and invokes selection of a target. Other means of
deciding when to choose a target can also be implemented.

[0036] The next letter of the incoming word “Cookie”
(from the bytestream) is input to the tree. Since the first letter

Dec. 15, 2005

was “C”, the second array 506 is filled only with upper and
lower case letters of those words having a first letter of upper
or lower case “C”. Therefore, array 506 includes “A”, “a”,
“0”, and “0”. Note that “a” is the second letter of “Cache-
Control,” while “0” is the second letter of both “Cookie” and
“Connection.” The second letter of “Accept,” is not present
in array 506 because “c” does not follow the already-
discovered first letter, “C” in any of the header keys incor-
porated into this example search tree. Hence, as the search
tree progresses and discovers new letters, certain paths
through the tree are eliminated as not having been selected.
Had the header key “Accept” been input into the tree instead
of “Cookie,” then the “A” would have been detected, and a
different array of the tree (not shown) would have been
reached instead of array 506.

[0037] This process continues, with the “0” in cookie
being associated with node 520. Now the process passes to
the next array 508 which only includes characters appearing
in a header key following a “C” and then an “O” of either
upper or lower case. Array 508 therefore includes upper and
lower case versions of “N” and “O” because both “Cookie”
and “Connection” fulfill these requirements. Since the input
word was “Cookie,” array 508 points to node 522, the O/o
node.

[0038] At this point, in this simplified example, the only
possible letter for the next array 510 is K, and this letter is
present in both cases. The process continues through nodes
524-528, and arrays 510-516. Once the end of the header key
is reached (indicated in HTTP/1.1 with a colon symbol), the
“Cookie” target is reached, and the input header key is
discovered. Note that because the arrays each include upper
and lower case versions of the letters, the entire search is
case insensitive and requires no normalization at all. Instead
of first normalizing the bytestream or part thereof and then
searching it for the header key, the innovative search tree of
the present invention allows searching to be performed
without a normalization step. This reduces computational
expense of parsing and searching a bytestream. Instead of
incurring the expense of normalization at runtime, the over-
head expense of making the search case insensitive is
incurred up front, with the creation of the search tree itself.

[0039] FIG. 6 shows a flow chart with process steps for
implementing a preferred embodiment of the present inven-
tion. When parsing using the present invention, the code
begins by obtaining a reference to the root node. A reference,
also called a pointer, is a memory address that points to the
object or structure in the operating system’s managed
memory. Inside each node is an array of references of other
nodes.

[0040] First the process begins with the root node (step
602). The root node points to an array that includes all
potential first letters of all header keys incorporated into the
search tree. The root node’s array is evaluated to see if the
first letter of an incoming header key is present (step 604).
If the character is one of the characters present in the array
(“yes”), the process proceeds to step 608. If not, then the
character is not present in the array and the search tree is not
designed to detect the input word or header key. In this case,
a “no” is returned and a “Failure to Match” is returned (step
620).

[0041] If the character is within the acceptable range, i.e.,
it is recognized in the array, the node reference is obtained

US 2005/0278283 Al

from the node pointers (step 608). The pointer is checked to
see if it is a null pointer (step 610). If so, another failure to
match is returned (step 620). If not, then the process checks
for another character (step 612). If there is another character
in the input header key, then that character is retrieved (step
614) and the process returns to step 604. If there is no other
character, then the process checks to see if the characters
found match a target (step 616). If not, a Failure to Match is
returned (step 620). If so, a successful target is returned (step
618).

[0042] The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will
be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best
explain the principles of the invention, the practical appli-
cation, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with
various modifications as are suited to the particular use
contemplated.

1. A search tree, comprising:
a root having a set of characters;

a plurality of nodes, wherein each node is associated with
an upper and lower case version of a character;

a plurality of arrays, wherein each array includes upper
and lower case versions of characters;

wherein as a string is searched, upper and lower case

letters are recognized and associated with a node.

2. The search tree of claim 1, wherein the search tree is
comprised of a plurality of levels, each level having one or
more of the plurality of arrays.

3. The search tree of claim 1, wherein a first character of
a word input to the search tree is associated with a first node;
and wherein the first node is associated with a first array of
the plurality of arrays, wherein the first array includes upper
and lower case versions of characters appearing immediately
following the first character in the input word.

4. The search tree of claim 1, wherein each array is
associated with one node.

5. The search tree of claim 1, wherein the string is a
bytestream.

6. The search tree of claim 5, wherein the bytestream
includes text of header keys for hypertext transfer protocol.

7. The search tree of claim 1, wherein after a plurality of
nodes are found, a target is returned.

8. A method for searching a bytestream for target words,
comprising the steps of:

inputting a first target word into a search tree, the search
tree having a root node and a plurality of other nodes;

locating a first symbol of the target word in a first array,
wherein the first array includes only first symbols of
target words;

identifying a first node of the plurality of other nodes that
corresponds to the first symbol of the first target word;

locating a second symbol of the target word in a second
array, wherein the second array includes only second
symbols of target words that began with the first
symbol;

Dec. 15, 2005

identifying a second node of the plurality of other nodes
that corresponds to the second symbol of the first target
word.

9. The method of claim 8, further comprising the steps of:

identifying each letter of the target word with an associ-
ated node until the last letter of the target word is
reached; and

returning the target word.

10. The method of claim 8, wherein both upper and lower
case versions of a symbol in an array are associated with the
same node.

11. The method of claim 8, wherein each array is asso-
ciated with one node.

12. The method of claim 8, wherein the target word in put
into the search tree is part of a bytestream.

13. The method of claim 12, wherein the bytestream
includes text of header keys for hypertext transfer protocol.

14. The method of claim 8, wherein the search tree is
comprised of a plurality of levels, each level having one or
more of the plurality of arrays.

15. A computer program product in a computer readable
medium, comprising:

first instructions for inputting a first target word into a
search tree, the search tree having a root node and a
plurality of other nodes;

second instructions for locating a first symbol of the target
word in a first array, wherein the first array includes
only first symbols of target words;

third instructions for identifying a first node of the plu-
rality of other nodes that corresponds to the first symbol
of the first target word;

fourth instructions for locating a second symbol of the
target word in a second array, wherein the second array
includes only second symbols of target words that
began with the first symbol;

fifth instructions for identifying a second node of the
plurality of other nodes that corresponds to the second
symbol of the first target word.
16. The method of claim 15, further comprising the steps
of:

identifying each letter of the target word with an associ-
ated node until the last letter of the target word is
reached; and

returning the target word.

17. The method of claim 15, wherein both upper and
lower case versions of a symbol in an array are associated
with the same node.

18. The method of claim 15, wherein each array is
associated with one node.

19. The method of claim 15, wherein the target word in
put into the search tree is part of a bytestream.

20. The method of claim 19, wherein the bytestream
includes text of header keys for hypertext transfer protocol.

21. The method of claim 15, wherein the search tree is
comprised of a plurality of levels, each level having one or
more of the plurality of arrays.

#* #* #* #* #*

