wo 20107129159 A2 [0K OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2010/129159 A2

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
al
(43) International Publication Date \'{_5___,/
11 November 2010 (11.11.2010) PCT
(51) International Patent Classification:
GO6F 9/22 (2006.01) GO6F 3/06 (2006.01)
GO6F 9/06 (2006.01)
(21) International Application Number:
PCT/US2010/031457
(22) International Filing Date:
16 April 2010 (16.04.2010)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/435,737 5 May 2009 (05.05.2009) US
(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).
(72) Inventors: ABZARIAN, David; c/o Microsoft Corpora-

tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). CARPEN-
TER, Todd L.; c¢/o Microsoft Corporation, LCA - Inter-
national Patents, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). KULKARNI, Harish S.; c/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: CAPTURING AND LOADING OPERATING SYSTEM STATES

Hibernation
Module

‘,, N \110

File System
Module

\100

N

Memory Volume
Management Management
Module Module
AN |
A .
104
108 Disk
Management
Module
<> <>
Disk |...| Disk
1 n
\ 106

(57) Abstract: Operating system states

capture and loading technique embodi-
ments are presented that involve the cap-
ture and loading of baseline system states.

State
Management File
System Filter

This is accomplished, in one embodiment,
by storing the states of a computer's oper-
ating system memory that it is desired to
restore at a future time. No changes are
permitted to the persisted storage associat-
ed with the computer. Instead, changes
that would have been made to the persist-
ed storage during an ensuing computing
session, had they not been prevented, are
stored in a separate computing session
file. Whenever it is desired to return the
operating system to its baseline condition,
the stored baseline system memory states
are loaded into the operating system mem-
ory, in lieu of the operating system memo-
ry's current states.

\114

WO 20107129159 A2 I 0000)00 0T A 0 A AU A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

CAPTURING AND LOADING OPERATING SYSTEM STATES
BACKGROUND
[001] Internet cafes and other shared access hosts desire restoration of a
baseline system condition to shared computers after every computing session to
ensure a consistent and reliable user experience. Typically, this requires that the
host system be rebooted after each session to restore the baseline state.
[002] Hibernation allows for the contents of system memory and registers (e.g.,
device hardware registers states, page file/application and driver states, and so
on) to be saved to persistent storage such as a hard disk for the purposes of a
quicker restoration of the conditions associated with the last computing session.
This feature is primarily used to allow the operating system of a computer to be
shutdown, such that on the following startup, the operating system is restored
from the hibernation file and resumes from the point where it was shutdown.
[003] This hibernation feature typically utilizes a single file (e.g., hiberfil.sys),
which is written to upon initiation of the feature. Subsequently, the hibernation file
is used to restore the operating system to its previous condition as part of the boot
process.
SUMMARY
[004] This Summary is provided to introduce a selection of concepts, in a
simplified form, that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.
[005] Operating system states capture and loading technique embodiments
described herein generally involving at least the capture and loading of baseline
system states outside the boot process. This is accomplished, in one
embodiment, by first storing the states of a computer’s operating system memory
that it is desired to restore as the baseline condition at a future time. Once the
baseline system memory states are stored, no changes are permitted to the
persisted storage associated with the computer. Instead, changes that would
have been made to the persisted storage during an ensuing computing session,
had they not been prevented, are stored in a separate computing session file.
The change data stored in the computing session file, in combination with the data

stored in the persisted storage, are employed during a computing session.

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

[006] Whenever it is desired to return the operating system to its baseline
condition, such as at the termination of a computing session, the stored baseline
system memory states are loaded into the operating system memory, in lieu of the
operating system memory’s current states. Since there have been no changes
allowed to the persisted storage associated with the computer, the operating
system is now restored to its baseline condition.

[007] If the sole purpose of capturing the operating system states is to return the
operating system to a baseline system state, then in one embodiment the
computing session file is discarded. However, in another embodiment the
computing session file can be retained and loaded at a future time to resume the
corresponding computing session where it left off.

[008] This latter embodiment generally entails capturing and restoring the
baseline conditions as described above at the end of each computing session.
However, whenever it is determined a current computing session has been
terminated, additional actions also take place. Namely, a session state file
representing the state of the operating system memory of the computer existing at
the time the computing session was terminated is stored. The captured changes
that would have been made to the persisted storage are also stored in a
computing session file. To resume a previous computing session, the stored
computing session states are loaded. This first entails accessing the stored
session state file corresponding to the computing session it is desired to resume
in @ new session. The accessed session states are then loaded into the
computer’s operating system memory, in lieu of the operating system memory’s
current (i.e., baseline) states. In addition, the computing session file
corresponding to the computing session it is desired to resume in the new session
is accessed. Further, changes that would have been made to the persisted
storage during the current computing session are again captured. The captured
changes are stored in the computing session file. As before, the captured
changes, as well as other data from the persisted storage, are used during the
current computing session.

DESCRIPTION OF THE DRAWINGS

[009] The specific features, aspects, and advantages of the disclosure will
become better understood with regard to the following description, appended

claims, and accompanying drawings where:

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

[0010] FIG. 1 is a simplified diagram of an operating system state management
architecture in which portions of the operating system states capture and loading
technique embodiments described herein may be implemented.

[0011] FIG. 2 is a flow diagram generally outlining one embodiment of a process
for capturing and loading baseline system states.

[0012] FIG. 3 is a flow diagram generally outlining one embodiment of a process
for capturing computing session system states.

[0013] FIG. 4 is a flow diagram generally outlining one embodiment of a process
for loading captured computing session states to resume a previous computing
session where it left off in a new computing session.

[0014] FIGS. 5A-B depict a flow diagram generally outlining one embodiment of a
process for incrementally loading computing session states for debugging
purposes.

[0015] FIG. 6 is a diagram depicting a computing device constituting an
exemplary system for implementing operating system states capture and loading
techniqgue embodiments described herein.

DETAILED DESCRIPTION

[0016] In the following description of operating system states capture and loading
technique embodiments reference is made to the accompanying drawings which
form a part hereof, and in which are shown, by way of illustration, specific
embodiments in which the technique may be practiced. It is understood that
other embodiments may be utilized and structural changes may be made without
departing from the scope of the technique.

1.0 Operating System State Management Architecture

[0017] Before the operating system states capture and loading technique
embodiments are described, a general description of a suitable operating system
state management architecture in which portions thereof may be implemented will
be described. In general, the technique embodiments are operational with
numerous general purpose or special purpose computing system environments or
configurations, which will be described in greater detail in a later section of this
description.

[0018] These general purpose or special purpose computers employ an
operating system. One of the purposes of the operating system is to manage both
the operating system memory and the persisted storage associated with the

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

computer. The heart of this management scheme is a file system module 100, as
shown in Fig. 1. The file system module 100 is in communication with and works
through a volume management module 102 to control the persisted storage
associated with the computer. The persisted storage can be any non-volatile
storage device or devices, such as the hard disks 106 shown in Fig. 1. Typically,
the persisted storage is managed via a device management module. In the
example of Fig. 1, this takes the form of a disk management module 104, which is
in communication with the volume management module 102 and ultimately
controlled by the file system module 100.

[0019] The current operating system states of the computer are stored in an
operating system memory, and change as a computing session being conducted
on the computer progresses. Typically, the operating system memory takes the
form of a volatile storage device. For instance, in the example architecture of Fig.
1, the operating system memory is a Random Access Memory (RAM) 108. The
current operating system memory states can be captured in a file called a
hibernation image file. This hibernation mechanism allows for the states of the
system memory and registers to be saved to the persisted storage for the purpose
of a quick restoration. This is primarily used to allow the operating system to be
shut down on the computer and then upon restarting the operating system, using
the hibernation image file to restore the previous states. Thus, the operating
system can resume operations from the point where it was shutdown. In current
operating systems, the hibernation image file is created during shutdown based
on a user command to do so. The aforementioned state restoration process
typically occurs as part of the boot path when the operating system is restarted.

In the context of the example architecture of Fig. 1, the file management module
100 is in communication with a hibernation module 110. When instructed to do
so, the hibernation module 110 generates the hibernation image file and employs
the help of the file system module 100 to store the file in the persisted storage. An
operating system memory management module 112 is used to capture the current
states of the operating system memory (e.g., the RAM 108 as shown in Fig. 1)
and deliver them to the hibernation module 110.

[0020] While not part of a conventional operating system management
architecture, the operating system states capture and loading technique
embodiments described herein employ a state management file system filter 114

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

to “filter out” and capture changes that would ordinarily be made to the persisted
storage. In the exemplary architecture of Fig. 1, the state management file
system filter 114 is in communication with the file system 100 and employs its help
in storing the captured changes in the persisted storage in a file referred to herein
as the computing session file. The operation of the filter 114 and role of the
computing session file will be described in more detail in the sections to follow.
[0021] It is noted that the foregoing operating system state management
architecture is only one example of a suitable architecture and is not intended to
suggest any limitation as to the scope of use or functionality of the operating
system states capture and loading technique embodiments described herein.
Neither should the operating system state management architecture be
interpreted as having any dependency or requirement relating to any one or
combination of components illustrated in Fig. 1.

2.0 Operating System States Capture And Loading

[0022] A typical operating system computing session includes changes to both
the aforementioned system memory and persisted storage. In general, the
operating system states capture and loading technique embodiments described
herein allow for capturing the states of both the persisted storage and system
memory at a moment in time, and subsequently loading the captured system
states. This is accomplished in one implementation using a hibernation image file
to capture the state of system memory. It is noted that even though a hibernation
image file is used, this does not mean the operating system must be restored
using a reboot procedure as would typical be the case. Rather, as will be
described in more detail in the sections to follow, the operating system states
capture and loading technique embodiments described herein operate outside the
standard hibernation shutdown and boot path restart procedures.

[0023] As for capturing changes, the aforementioned state management file
system filter is used in one embodiment to capture changes that would ordinarily
be made to the persisted storage. Thus, no changes are allowed to the persisted
storage. Loading the captured system states puts the operating system back into
the condition it was when the system states were captured. This is true, even if
the state of the system memory was changed during a computing session. ltis
also noted that since the persisted storage was prevented from being changed, it

is maintained in the condition it was in when the system states were captured.

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

[0024] In one embodiment, the captured system state represents a baseline
state, which can be returned to at the termination of a computing session. This
allows for a fresh start at the beginning of each computing session with a known
baseline condition. Thus, in the case of an Internet café or other shared access
host computing situation, the baseline system state is restored after every
computing session to ensure a consistent and reliable user experience.

[0025] In another embodiment, more than one state system is captured. The
baseline states are captured as before, but in addition, computing session system
states are captured. This allows a user to load the captured computing session
system states at a future time and continue where the user left off in the previous
computing session. The operating system is still returned to its baseline state
after each computing session. Thus, it doesn’t matter if the user loads a captured
computing session system state for the very next computing session or for a
computing session that occurs after one or more intervening sessions have taken
place. This also has advantages in the case of an Internet café or other shared
access host computing situation. Not only is the baseline system state restored
after each computing session (which would typically involve multiple users), but an
individual user can capture his or her computing session, and then return to the
system states associated with that computing session at a future time.

[0026] In yet another embodiment, the operating system states capture and
loading technique allows for rapid debugging through the use of an incremental
loading of session states into a known good baseline condition. For example, in
the event of an operating system crash, a crash dump file can be used as the
session state file, and incrementally loaded until the problem is found.

[0027] The foregoing embodiments, as well as other will be discussed in more
detail in the sections to follow.

2.1 Capturing And Loading Baseline System States

[0028] The operating system states capture and loading technique embodiments
involving the capture of baseline system states can be accomplished in one
implementation as depicted in Fig. 2. First, the states of a computer’s operating
system memory that it is desired to load at a future time, are stored (200). The
stored states can be referred to as the baseline system states. In one version, the
operating system memory states are stored as a hibernation image file. However,

other file types can also be employed as desired.

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

[0029] From this point on no changes are permitted to the persisted storage
associated with the computer (202). Instead, changes that would have been
made to the persisted storage during an ensuing computing session, had they not
been prevented, are stored in a separate computing session file (204). In one
version this is accomplished using the aforementioned state management file
system filter, which redirects persisted storage changes to the computing session
file. Any file type can be used for the computing session file. For example, an
appropriated choice would be a virtual hard disk (VHD) file type. The change data
stored in the computing session file, in combination with the data stored in the
persisted storage, are employed during the computing session in a normal
manner, just as if the changes were actually made to the persisted storage.
[0030] Leaving the persisted storage associated with the computer untampered
with during a computing session allows the baseline system states to be restored
by simply loading the stored baseline system states into the system memory. No
reconfiguration of the persisted storage is required. In other words, referring to
Fig. 2 once again, it is determined if it is desired to return the computer operating
system to its condition when the operating system memory states were stored
(206). For example, the trigger for this determination could be a user command to
restore the operating system to a baseline state, or some other cause for the
termination of the current computing session. If it is determined the operating
system is not to be restored yet, process action 206 is repeated. However, if it is
determined the operating system is to be restored to a previous stored state, then
the stored states are loaded into the operating system memory, in lieu of the
operating system memory’s current states (208).

[0031] It is noted that if the sole purpose of capturing the operating system states
is to return the operating system to a baseline system state, then the computing
session file is simply discarded at the end of the computing session. As will be
described in later sections, other embodiments will employ the computing session
files. In these embodiments, the session files are retained rather than discarded.
[0032] It is further noted that at any time after the baseline system states are
captured, they can be replaced with the current system states to generate new
baseline states. To accomplish this task, the state management file system filter
is temporarily disabled and the changes that were captured in the computing
session file are implemented in the persistent storage associated with the

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

computer. This brings the persisted storage in synch with the current operating
system memory states. The new baseline system states can then be captured as
described previously, with the new operating system memory states being stored
in place of the previously stored states.

2.2 Capturing And Loading Computing Session States

[0033] As described previously, a user’'s computing session states can be
captured as well. This allows a user to load the captured computing session
system states at a future time and continue where he or she left off in the previous
computing session. The baseline state is still captured as described above, but in
addition, a separate computing session system state is captured.

[0034] In one implementation, the foregoing is accomplished as illustrated in Fig.
3. First, the computer’s operating system memory states as they exist at a time
specified by the computer user, are stored and designated as the baseline states
(300). The persisted storage of the computer is then protected so that changes
normally occurring during a computing session are prevented (302). Thus, as
described previously, the computer’s persistent storage stays in the same
condition as when the operating system’s baseline memory states were captured.
Instead, changes that would have been made to the persisted storage during an
ensuing computing session, had they not been prevented, are stored in the
previously described computing session file (304). The change data stored in the
computing session file, in combination with the data stored in the persisted
storage, are employed during the computing session in a normal manner, as
described previously.

[0035] It is next determined if the current computing session has been terminated
(306). If it is determined the session has not been terminated yet, process action
306 is repeated. However, if it is determined the computing session has been
terminated, several actions take place. First, a session state file representing the
states of the operating system memory of the computer existing at the time the
computing session was terminated is stored (308). As with the baseline states
file, in one version, the file is stored as a hibernation image file. However, other
file types can also be employed as desired. In addition, the captured changes that
would have been made to the persisted storage are stored in a computing session
file (310). Here again, any file type can be used for the computing session file,
such as VHD file. It is noted that the session state file and computing session file

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

are associated with indicators identifying the user and the terminated computing
session. The capture of changes that would have been made to the persisted
storage during the computing session is also discontinued at this point (312). The
computer operating system is then returned to its baseline condition. This entails
loading the stored baseline states in the operating system memory, in lieu of the
operating system memory’s current states (314).

[0036] The result of the foregoing procedure is that the computer’s operating
system is in its baseline condition, and the user’'s computing session states have
been captured in the form of the session state file and computing session file.
Given this it will now be described how the user’'s computing session states are
loaded so that the user can continue from where he or she left off in the last
session. It is noted that it does not matter if the user loads the stored session as
the next-occurring session on the computer, or after several other sessions have
been completed. The intervening sessions need not even have been conducted
by the user. This is because the computer’'s operating system is returned to the
same baseline condition after each session no matter who the user was, or in
what order the sessions occurred.

[0037] Referring now to Fig. 4, a user’s stored computing session states are
loaded as follows. First, the stored session state file corresponding to the
computing session it is desired to resume in a new session is accessed (400).
The accessed session state file is then loaded into the computer’s operating
system memory, in lieu of the operating system memory’s current (i.e., baseline)
states (402). In addition, the computing session file corresponding to the
computing session it is desired to resume in the new session is accessed (404).
Methods of accessing the foregoing files will be described in more detail later in
this description. Next, the state management file system filter is activated and
changes that would have been made to the persisted storage during the current
computing session are captured in the manner described previously (406). The
captured changes are stored in the computing session file. As before, the
captured changes, as well as other data from the persisted storage, are used
during the current computing session.

[0038] The actions described in connection with Fig. 3 pertaining to storing the
session state file and computing session file associated with a computing session

upon its termination, and returning the computer’s operating system to its baseline

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

condition, would be implemented once again when the current session is
terminated. In this way, the user can chose to resume the just terminated session
in a future session. It is noted that the computing sessions file is stored under a
new name so that it can be distinguished from the previous session files. This
new computing session file represents the last, previously saved session file
updated by the addition of the changes captured during the just-terminated
computing session. Further, since session state files are saved at the end of each
computing session, the user could select from multiple saved sessions that are
accessible by the computer. To this end, in one implementation, the
aforementioned accessing of a session state file and computing session file,
includes providing a list of accessible session state files and corresponding
computing session files to a user who is beginning a computing session. The
session state file and computing session file associated with a previous computing
session that is selected by the user form the list is then accessed and input.
Since the session state files and computing session files are also associated with
a particular user, the user can be identified first via conventional methods, and
then only those files associated with that user would be provided in the list.

[0039] In the foregoing implementation, the computer stores the session state
files and computing session files in a memory accessible to the computer, such as
its hard drive. However, in an alternate implementation, the computer does not
retain copies of these files. For instance, in the example of an Internet cafe or
other shared access hosts, it may not be desirable to store a customer’s session
state files and computing session files on a shared computer. In the alternate
implementation, at the end of a computing session, the stored session state file
and computing session file for that session are made available to the user for
download. The user then has the option of storing these files in a portable
memory device (e.g., a flash drive, and the like), or possibly transmitting the files
via a network connection to another computer (e.g., via an email attachment, and
so on). Regardless of whether the user downloads the files or not, they are made
inaccessible to the computer.

[0040] In implementations where the session state files and computing session
files are not retained by the computer, the files need to be provided in order for a
user to resume a previous computing session. To this end, accessing these files
entails the computer requesting the user input the session state file and

10

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

computing session file corresponding to the computing session the user wishes to
resume. The user would then input the requested files via an appropriate method,
depending on how they were stored.

[0041] It is further noted that in implementations where the session state files
and computing session files are not retained by the computer, a question arises
as to whether the files are still compatible with the computer at the time a user
wishes to resume a previous computing session. For example, if the computer’s
baseline system states have been changed since the session state file and
computing session file being inputted were captured, they may no longer be
compatible. One way to ensure compatibility is to associate the baseline system
states file with a version indicator that changes with each new baseline condition.
Thus, each baseline is uniquely identified. The session state file and computing
session file corresponding to a terminated computing session are then associated
with validation information at the time they are stored. The validating information
includes the aforementioned baseline version indicator corresponding to the
version of the baseline system states from which the files were derived. This
indicator would be compared to the baseline version indicator of the baseline
system states currently being used by the computer. If they match, the inputted
files are compatible (since the computer would have been restored to its baseline
condition at the end of the last computing session). If they do not match, the user
would be informed that the computing session associated with the inputted files
cannot be resumed.

[0042] Another reason that the session state file and computing session file input
to a computer by a user may not be compatible is that the computer is not the
same computer that was used to generate the files. Typically different computers
would have different baseline system states. However, it is possible to configure
more than one computer to be compatible with the same session state file and
computing session file set. This can be accomplished in one implementation by
creating common baseline system states with the same the baseline version
indicator between all the computers involved. In this way, a session state file and
computing session file set generated on one computer would be compatible with
another computer since the baseline system states from which the files were

derived are the same on both computers.

11

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

[0043] In a version-controlled baseline system states scheme as described
above, an opportunity exists to reduce the size of the session state file. To this
end, in one implementation, the differences between the operating system
memory baseline states and the states of the operating system memory existing
at the time a computing session is terminated are identified. These differences
are then stored as the session state file instead of the current states of the entire
operating system memory. This variation of the session state file can be referred
to as the session states difference file. Because the difference file is missing
some of the states that are needed to populate the operating system memory, it is
integrated into the baseline operating system memory states file to reconstitute
the full computing session states configuration before being loaded into the
operating system memory to resume a previous computing session. To this end,
a restored session state file is generated from an input session states difference
file. This can be done after successfully validating the compatibility of the input
files in implementations where validity is checked. The restored session state file
is generated by applying the differences in the sessions states difference file to
the operating system memory baseline states. In other words those states found
in the difference file are used to replace the corresponding states in the baseline
states file to produce the restored session state file. Once the session state file is
restored it is loaded as described previously to resume the associated computing
session.

2.3 Capturing And Incrementally Loading Computing Session States For

Debugging Purposes

[0044] As stated previously, the operating system states capture and loading
technique embodiments described herein also allow for rapid debugging through
the use of an incremental loading of session states. In general, by injecting
incremental portions of the operating system memory states into a known good
baseline condition, an application or operating system can be debugged. A user
can choose to debug an application or the system, or the debugging process
could be initiated by a system crash due to error. In this later scenario, a crash
dump file generated at the time of a crash, would be used as the session state file.
Conventional debugging techniques are employed with each iteration of this

embodiment.

12

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

[0045] In one implementation, the incremental debugging scheme is achieved as
follows. Referring to Figs. 5A-B, the process begins by establishing a known good
baseline condition. To this end, states of the operating system memory of the
computer are stored as they exist at a time specified by a user of the computer
(500). These states are stored in a baseline states file. As in other
implementations, changes are prevented to the persisted storage associated with
the computer during the computing session (502), and instead the changes that
would have been made to the persisted storage are captured (504). As before,
the captured changes as well as other data from the persisted storage, are used
during the computing session.

[0046] It is next determined if the current computing session has been terminated
(506), such as when the user terminates the session to initiate debugging or the
system crashes. If it is determined the session has not been terminated yet,
process action 506 is repeated. However, when the computing session is
terminated, a session state file representing the states of the operating system
memory of the computer existing at the time the computing session is terminated
is stored (508). In the system crash scenario, this session state file would be the
crash dump file. Additionally, the capturing of changes that would have been
made to the persisted storage is discontinued, and the changes saved (510). The
computer operating system is then returned to its condition when the operating
system memory baseline states were stored by loading the stored baseline states
in the operating system memory, in lieu of the operating system memory’s current
states (512).

[0047] Once the baseline condition is restored, the incremental debugging
process can begin. This entails first accessing and loading a prescribed portion of
the states from the stored session state file into the computer’s operating system
memory, in lieu of the corresponding current states of the computer’s operating
system memory (514). The capturing of changes that would have been made to
the persisted storage is then reinitiated (516). These captured changes, as well
as other data from the persisted storage and the previously saved changes, are
then employed during a current debugging iteration to debug the computer
operating system or a particular application (518). At the end of the debugging
procedure, it is determined if the computer’s operating system has been
debugged (520). If so, the process ends. However, when it is determined that the

13

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

computer’s operating system has not been debugged, the current debugging
iteration is terminated (522). The capturing of changes that would have been
made to the persisted storage during the current debugging iteration is
discontinued and the captured changes saved (524). The computer operating
system is again returned to its baseline condition by loading the stored states from
the baseline states file in the operating system memory, in lieu of the operating
system memory’s current states (526). Next, a portion of the states from the
stored session state file, which is increased by a prescribed increment from the
last-terminated debugging iteration is accessing and loading into the computer’s
operating system memory, in lieu of the corresponding current states of the
computer’s operating system memory (528). Process actions (516) through (528)
are then repeated as appropriate until the computer’s operating system has been
debugged.

3.0 The Computing Environment

[0048] A brief, general description of a suitable computing environment in which
portions of the operating system states capture and loading technique
embodiments described herein may be implemented will now be described. As
stated previously, the technique embodiments are operational with numerous
general purpose or special purpose computing system environments or
configurations. Examples of well known computing systems, environments,
and/or configurations that may be suitable include, but are not limited to, personal
computers, server computers, hand-held or laptop devices, multiprocessor
systems, microprocessor-based systems, set top boxes, programmable consumer
electronics, network PCs, minicomputers, mainframe computers, distributed
computing environments that include any of the above systems or devices, and
the like.

[0049] Fig. 6 illustrates an example of a suitable computing system environment.
The computing system environment is only one example of a suitable computing
environment and is not intended to suggest any limitation as to the scope of use
or functionality of the operating system states capture and loading technique
embodiments described herein. Neither should the computing environment be
interpreted as having any dependency or requirement relating to any one or
combination of components illustrated in the exemplary operating environment.

With reference to Fig. 6, an exemplary system for implementing the embodiments

14

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

described herein includes a computing device, such as computing device 10. In
its most basic configuration, computing device 10 typically includes at least one
processing unit 12 and memory 14. Memory 14 is a combination of volatile (such
as RAM) and non-volatile (such as ROM, flash memory, etc.) storage. This most
basic configuration is illustrated in Fig. 6 by dashed line 16. Additionally, device
10 may also have additional features/functionality. For example, device 10 may
also include additional storage (removable and/or non-removable) including, but
not limited to, magnetic or optical disks or tape. Such additional storage is
illustrated in Fig. 6 by removable storage 18 and non-removable storage 20.
Computer storage media includes volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program
modules or other data. Memory 14, removable storage 18 and non-removable
storage 20 are all examples of computer storage media. Computer storage media
includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the
desired information and which can accessed by device 10. Any such computer
storage media may be part of device 10.

[0050] Device 10 may also contain communications connection(s) 22 that allow
the device to communicate with other devices. Device 10 may also have input
device(s) 24 such as keyboard, mouse, pen, voice input device, touch input
device, camera, etc. Output device(s) 26 such as a display, speakers, printer, etc.
may also be included. All these devices are well know in the art and need not be
discussed at length here.

[0051] The operating system states capture and loading technique embodiments
described herein may be further described in the general context of computer-
executable instructions, such as program modules, being executed by a
computing device. Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types. The embodiments described herein may
also be practiced in distributed computing environments where tasks are
performed by remote processing devices that are linked through a

15

10

WO 2010/129159 PCT/US2010/031457

communications network. In a distributed computing environment, program
modules may be located in both local and remote computer storage media
including memory storage devices.

3.0 Other Embodiments

[0052] It is noted that any or all of the aforementioned embodiments throughout

the description may be used in any combination desired to form additional hybrid
embodiments. In addition, although the subject matter has been described in
language specific to structural features and/or methodological acts, it is to be
understood that the subject matter defined in the appended claims is not
necessarily limited to the specific features or acts described above. Rather, the
specific features and acts described above are disclosed as example forms of

implementing the claims.

16

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

CLAIMS
1. A computer-implemented process for capturing and loading
operating system states, comprising:
using a computer to perform the following process actions:
storing states of an operating system memory of the computer that it
is desired to load at a future time (200);
preventing changes to a persisted storage associated with the
computer during a computing session (202);
storing changes that would have been made to the persisted storage
during the computing session, had they not been prevented, in a separate session
file (204), and employing data stored in the sessions file and in the persisted
storage, during the computing session; and
whenever it is desired to return the computer operating system to its
condition when the operating system memory states were stored, loading the
stored states in the operating system memory, in lieu of the operating system
memory’s current states (208).
2. A computer-implemented process for capturing and loading
operating system states, comprising:
using a computer to perform the following process actions:
storing states of an operating system memory of the computer as
they exist at a time specified by a user of the computer, said states being
designated as the baseline states of the operating system memory (300);
preventing changes to a persisted storage associated with the
computer during a computing session (302);
capturing changes that would have been made to the persisted
storage during the computing session, had they not been prevented (304), and
employing the captured changes as well as other data from the persisted storage,
during the computing session; and
whenever the computing session is terminated,
storing a session state file representing the states of the
operating system memory of the computer existing at the time the computing
session is terminated (308) and associating the session state file with the user

and the computing session being terminated,

17

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

storing the captured changes in a separate computing
session file (310) and associating the computing session file with the user and the
computing session being terminated,
discontinuing the capture of changes that would have been
made to the persisted storage during the computing session (312), and
returning the computer operating system to its condition when
the operating system memory baseline states were stored, said returning
comprising loading the stored baseline states in the operating system memory, in
lieu of the operating system memory’s current states (314).
3. The process of Claim 2, further comprising process actions of:
whenever it is desired to return the computer to its condition when
said computing session was terminated and begin a current computing session,
accessing and loading the stored session state file
corresponding to a computing session into the computer’s operating system
memory, in lieu of the operating system memory’s current states,
accessing the computing session file corresponding to the
computing session,
reinitiating the capture of changes that would have been
made to the persisted storage during the computing session and storing the
captured changes in the computing session file, and
employing the captured changes as well as other data from
the persisted storage, during the current computing session.
4. The process of Claim 3, further comprising process actions of:
whenever the current computing session is terminated,
storing a session state file representing the states of the
operating system memory of the computer existing at the time the current
computing session is terminated and associating the session state file with the
user and the current computing session being terminated,
generating and storing a new computing session file which
updates the last, previously stored session file by the addition of the prevented
persisted storage changes captured during the current computing session and
associating the new computing session file with the user and the current

computing session being terminated,

18

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

discontinuing the capture of changes that would have been
made to the persisted storage during the current computing session, and

returning the computer operating system to its condition when
the operating system memory baseline states were stored, said returning
comprising loading the stored baseline states in the operating system memory, in
lieu of the operating system memory’s current states.

5. The process of Claim 4, wherein session state files and computing
session files associated with multiple computing sessions are accessible by the
computer, and wherein the process actions of accessing and loading the stored
session state file corresponding to a computing session into the computer’s
operating system memory, in lieu of the operating system memory’s current
states, and accessing the computing session file corresponding to the computing
session, comprises actions of:

providing a list of accessible session state files and computing
session files to a user who is beginning a current computing session;

inputting a user-selection of the session state file and computing
session file from the provided list which corresponds to a previous computing
session the user wishes to re-open as the current session; and

using the user-selected session state file and computing session file
to return the computer to its condition when the previous computing session was
terminated and begin a current computing session.

6. The process of Claim 5, wherein the process actions of storing
session state files and computing session files comprises an action of storing the
files in a non-volatile memory accessible to the computer.

7. The process of Claim 4, wherein the process action of returning the
computer operating system to its condition when the operating system memory
baseline states were stored, further comprises the actions of:

making the stored session state file and computing session file
corresponding to the last-terminated computing session available to the user for
download; and

deleting the stored session state file and computing session file
corresponding to the last-terminated computing session from memories

accessible to the computer.

19

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

8. The process of Claim 7, wherein the process actions of accessing a
session state file and computing session file, comprises the actions of:
requesting the user input the session state file and computing
session file; and
inputting the session state file and computing session file when
received from the user.

9. The process of Claim 8, wherein the process actions of storing a
session state file and storing a computing session file comprise an action of
associating the files with validation information which comprises a baseline
version indicator identifying the version of the operating system memory baseline
states from which the files were derived.

10. The process of Claim 9, wherein the process actions of accessing a
session state file and computing session file, further comprise the actions of:

determining if the a session state file and computing session file
were derived from the operating system memory baseline states of the operating
system employed by the computer based on the validation information associated
with the files;

accessing a session state file and computing session file, whenever
it is determined the session state file and computing session file were derived
from the operating system memory baseline states of the operating system
employed by the computer; and

informing the user that the session state file and computing session
file cannot be accessed, whenever it is determined the session state file and
computing session file were not derived from the operating system memory
baseline states of the operating system employed by the computer.

11. The process of Claim 4, wherein the process action of storing a
session state file, comprises the actions of:

identifying the differences between the operating system memory
baseline states and the states of the operating system memory existing at the time
the last-conducted computing session is terminated; and

storing the identified differences as a session states difference file.

12. The process of Claim 11, wherein the process action of accessing
the stored session state file corresponding to the computing session, comprises

an actions of:

20

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

generating and storing a restored session state file by applying the
differences in the sessions states difference file to the operating system memory
baseline states; and

designating the restored session state file as the stored session
state file to be accessed.

13. A computer-implemented process for capturing and loading
operating system states, comprising:

using a computer to perform the following process actions:

(a) storing states of an operating system memory of the
computer as they exist at a time specified by a user of the computer, said states
being stored in a baseline states file (500);

(b) preventing changes to a persisted storage associated with the
computer during a computing session (502);

(c) capturing changes that would have been made to the
persisted storage during the computing session had they not been prevented
(504);

(d) employing the captured changes as well as other data from
the persisted storage, during the current computing session,

(e) whenever the computing session is terminated,

storing a session state file representing the states of the
operating system memory of the computer existing at the time the computing
session is terminated (500),

discontinuing the capture of changes that would have been
made to the persisted storage during the current computing session and saving
the captured changes (508), and

returning the computer operating system to its condition when
the operating system memory baseline states were stored, said returning
comprising loading the stored baseline states in the operating system memory, in
lieu of the operating system memory’s current states (510);

(f) accessing and loading a prescribed portion of the states from
the stored session state file into the computer’s operating system memory, in lieu
of the corresponding current states of the computer’s operating system memory
(512);

21

10

15

20

25

30

WO 2010/129159 PCT/US2010/031457

(g) reinitiating the capture of changes that would have been
made to the persisted storage (514);

(h) employing the captured changes as well as other data from
the persisted storage and the saved changes, during a current debugging iteration
to debug the computer operating system (516);

(i) determining if the computer’s operating system has been
debugged (518);

0 whenever it is determined the computer’'s operating system
has not been debugged,

terminating the current debugging iteration (520),

discontinuing the capture of changes that would have been
made to the persisted storage during the current debugging iteration and saving
the captured changes (522),

returning the computer operating system to its condition when
the operating system memory baseline states were stored, said returning
comprising loading the stored states from the baseline states file in the operating
system memory, in lieu of the operating system memory’s current states (524),

accessing and loading a increased portion of the states from
the stored session state file corresponding to the last-terminated debugging
iteration into the computer’s operating system memory, in lieu of the
corresponding current states of the computer’s operating system memory,
wherein the increased portion of the states from the stored session state file
comprises the states from the stored session state file loaded in the last-
terminated debugging iteration plus a prescribed additional portion of the states
from the stored session state file (526), and

(k) repeating actions (g) through (j) until the computer’s operating
system has been debugged.

14. The process of Claim 13, wherein the computing session is
automatically terminated by the computer’s operating system due to an error, and
wherein the session state file is a crash dump file.

15. The process of Claim 13, wherein the computing session is terminated by

the user for the purpose of debugging the computer’s operating system.

22

WO 2010/129159

1/6
Hibernation File System
Module Module
\110 \100
112
Memory / Volume
Management Management
Module Module
\102
RI|A|IM
108 104\ Disk
Management
Module

PCT/US2010/031457

State
Management File
System Filter

\114

System Memory

Volatile

Non

-Volitile

Processing Unit

Input Device(s) H

Communication
Connection(s)

Removable 18
Storage T
Non-Removable | 1-20
Storage |
I
26
Output Device(s) “:/

24

22

WO 2010/129159 PCT/US2010/031457

2/6

200 TN Store The States Of The Operating System
Memory

:

Prevent Changes To The Persisted Storage

:

204
\ Store Changes That Would Have Been Made To
The Persisted Storage In A Separate Computing
Session File

Restore Operating
System To Its Stored

Condition
?

Yes

v

/ 208
Load The Stored States Into The Operating
System Memory In Lieu Of The Current States

FIG. 2

WO 2010/129159 PCT/US2010/031457

3/6

300
"\ Store The Current States Of The Operating

System Memory As The Baseline States

302 ¢

Prevent Changes To The Persisted Storage

v

304
\ Store Changes That Would Have Been Made To
The Persisted Storage In A Computing Session
File

Has The
Current Computing Session Been

Terminated
?

Yes
A 4

Store A Session State File Representing The 308
Operating System Memory States Existing At /
The Time The Computing Session Was
Terminated

v

310
\ Store The Captured Changes That Would Have
Been Made To The Persisted Storage In A
Computing Session File

312 ¢
Discontinue The Capture Of Changes That

Would Have Been Made To The Persisted
Storage

!

314 \ Load The Stored Baseline States In The
Operating System Memory, In Lieu Of The
Operating System Memory’s Current States

FIG. 3

WO 2010/129159 PCT/US2010/031457

4/6

400
\ Access The Stored Session State File
Corresponding To The Computing Session It Is
Desired To Continue In A New Session

l

\ Load The Session State File Into The Operating
System Memory, In Lieu Of The Operating System
Memory’s Current States

l

404 : S :
\Access The Computing Session File Corresponding
To The Computing Session It Is Desired To
Resume In The New Session

l

406 \ Activate The State Management File System Filter
And Store Changes That Would Have Been Made
To The Persisted Storage During The Current
Computing Session

402

FIG. 4

WO 2010/129159 PCT/US2010/031457

5/6

500
N Store The Current States Of The Operating
System Memory As The Baseline States

v

502
\ Prevent Changes To The Persisted Storage

v

504\ Store Changes That Would Have Been Made To
The Persisted Storage In A Computing Session
File

No

Has The
Current Computing Session Been

Terminated
?

Yes

v

508
Store A Session State File Representing The /
Operating System Memory States Existing At The
Time The Computing Session Was Terminated

v

510 —~ Discontinue The Capture Of Changes That Would
Have Been Made To The Persisted Storage, And
Save The Previously Captured Changes

v

512 Load The Stored Baseline States In The
) Operating System Memory, In Lieu Of The
Operating System Memory’s Current States

v

Access And Load A Prescribed Portion Of The
514 — States From The Stored Session State File Into
The Operating System Memory, In Lieu Of The
Corresponding Current States Of The Memory

FIG. 5A

WO 2010/129159 PCT/US2010/031457

6/6

516
\ Reinitiate The Capture Of Changes That Would
Have Been Made To The Persisted Storage

v

518
Employ The The Captured & Saved Changes And
Other Data From The Persisted Storage During
The Current Debugging Iteration
520
Has The
End Yes Operating System Been

Debugged
?

No

v

Terminate The Current Debugging lteration

v

524 \ Discontinue The Capturing Of Changes That Would
Have Been Made To The Persisted Storage And
Save The Captured Changes

v

526\ Load The Stored States From The Baseline States
File In The Operating System Memory, In Lieu Of
The Operating System Memory’s Current States

v

Access And Load A Portion Of The States From
528 The Stored Session State File, Which Is Increased
\ By A Prescribed Increment From The Last-
Terminated Debugging lteration Into The Operating
System Memory, In Lieu Of The Corresponding
Current Memory States

FIG. 5B

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings

