

FIG. 5

FIG. 7

INVENTOR.
D. ZIMOV

UNITED STATES PATENT OFFICE

2,661,482

ENFANT'S BATH

Erwin D. Zimov, Cincinnati, Ohio
Application November 14, 1951, Serial No. 256,172

1 Claim. (Cl. 4-1\% ${ }^{1 \%}$)

1

This invention relates to an infant's bath, and more particularly to an adjustable width infant's bath.

An object of the invention is to provide an adjustable width infant's bath fabricated from a single sheet of flexible waterproof material having side and end edges provided with novel rod receptive means.
Another object of the invention is to provide a bathing receptacle which includes simple, yet highly effective means for enabling the user to vary the overall width thereof.
A further object of the invention is to prom vide a bath having the hereinabove described characteristics which is provided with legs for enabling the bath to be supported over and in spanning relationship with the opposite edges of a conventional bathtub or the like, or which may be utilized, with equal facility, for suppori-ing the bath upon a continuous surface such as a floor, or the like.

Still another object of the invention is to provide a bath structure having opposed side and end portions wherein the outer edge of the end portions is provided with an integrally formed, inturned, substantially horizontal strip which projects forwardly from its end portion for defining a reinforced lip which determines the effective width of the bath.

Still another object of the invention is to provide a bath supporting structure which includes means for enabling the structure to be placed upon a flat supporting surface or to be mounted between and in spanning relationship with a pair of laterally spaced elements such as, by way of example, the opposite edges of a bathtub or similar receptacle.
These and other objects are attained by the means described herein and as disclosed in the accompanying drawings, in which
Fig. I is a perspective view of an infant's bath, adjusted to its maximum width, embodying the teachings of the present invention.
Fig. 2 is a sectional view taken on line 2-2 of Fig. 1.
Fig. 3 is a sectional view taken on line $3-3$ of Fig. 1.

Fig. 4 is an end elevation of the assembly of Fig. 1 in a fully collapsed or folded condition.
Fig. 5 is a plan view of a partially fabricated blank of flexible material from which the tub of Fig. 1 is constructed.
Fig. 6 is a plan view of the upper left corner of the blank of Fig. 5 wherein the end panel has been folded for illustrating a step in the fabrication of the tub.
Fig. 7 is a plan view of the blank of Fig. 6 illustrating the next step in the fabrication of a tub.

With reference now to Fig. 5, the numeral 10 denotes generally a sheet of flexible waterproof material which includes a bottom panel or area 12, a pair of duplicate side portions 14 and a pair of duplicate end portions 16 .

For clarity of detail and understanding, I have indicated a series of fold or reference lines in Figs. 5 and 6, however it should be clearly understood that such lines have been indicated solely for the purpose of explaining the various steps followed in constructing a tub from the blank of Fig. 5 and do not necessarily represent fixed fold lines or areas in the final product, as will hereinafter become apparent.
The numerals 18 cenote a reference line interconnecting edges 20 of the end portions 18 at a location beyond end edges 22 of the side portions 14. The intersection of reference lines 18 with reference lines 20 define points 26 which comprise the apices of pairs of adjacent triangular panels 28 and 36 having a common side 32.

Triangular panels 28 are defined by edges 18 , 20 and 32 , whereas panels 30 are defined by edges 32, $3 \sqrt{3}$ and 36.
In the preferred embodiment of the invention, each end portion is provided with an end strip 38 the length of which is equal to the overail width of sheet 10, as illustrated in the lower portion of Fig. 5. This strip may be folded lengthwise along reference lines 60 and 82 for providing three plies 44, 49 and 48, wherein ply 48 is defined by reference lines 48 and 50 . As clearly illustrated in Fig. 5, reference line 50 passes through the point of intersection of sides 38 and 36 of triangular panels 30. Those portions of strip 33 which project outwardly beyond reference line 53 , at the point of intersection of sides 24 and 36 of panels 30 are folded upwardly about reference lines 52 and thence downwardly over onto the multi-ply strip, after which rows of stitching 54 and 56 may be applied for securing the resultant composite strip in ixed relationship with and across the free outer ends of the end panels 16.
A series of side-by-side loops 5 are provided $a t$ or in the opposite ends of and along the outer edges of composite strip 5? by means of rows of stitching 60. It will be noted that the axes of each of loops 56 are in substantial parallelism with the longitudinal axis of reference lines 24 .

After the opposite edges of the blank of Fig .5 have been fabricated as illustrated in the upper half of said figure, triangular panels 30 are folded downwardly onto and over triangular panels 28 about their common edge 32 whereby their respective edges 34 and 28 are disposed in substantial olignment, as illustrated in Fig. 6. It will be understood that those portions of trian-
gular panel 38 and end portion 16 illustrated in Fig. 6 are the bottom or underside of the sheet of Fig. 5 , it being further noted that a pocket is thereby defned between the adjacent portions of triangular panels 83 and 30.
After an edge has been folded as illustrated in Fig. 6, the pocket formed by triansular panels 28 and 30 is then folded downwardly about reference lines 18 and 36 for thereby disposing outer edges 20 and 34 of these triangular panels in contacting relationship with the rear or under surface of the outer edige of a respective side portion 14.

The outer edges 01 of the side portions 14 may now be folded outwardly and under their respective side portions along reference lines 92 whereby to overlappingly engage portions of triangulai panel 30, as illustrated in Fig. 7. Edges 61 may then be permanently secured to their side portions by means of stitching 64, which stitching provides elongated, open-ended pockets 60 along the outer edge of each side portion. It will be noted that stitching of effectively secures panels 23 and 20 in folded relationship and for clisposing the axis of pocket 66 in alignment with the outermost loop 58.
Each of pockets 66 is dimensioned to receive a arod 78 wherein the length of the rod is sufficient to project beyond the opposite ends of a pocket loy an amount to enabie opposite eads of the rod to be received in, project through, and extend beyond an axially aligned loop 58 provided in the opposed duplicate end portions 16.

When the ends of a rod are thus inserted into and through a loop 58 an inturned strip or lip indicated by the letter A, Figs. I and 2, is thereby provided in substantial parallelism with the rod, that is, in a substantially horizontal plane. As clearly evident from Figs. 1 and 3 , the overall width of the inturned strip A is equal to the length of loops 58, wherein the length of a loop is an axial dimension.

It will be noted that the effective width of the upper portion of a tub is a function of the effective length of a composite end strip $3 i$ as determined by the spacing between rods 70 , it being understood that the lateral spacing between rods 70 is determined by and is therefore a function of the lateral distance belween the particular loops 58 engaged by the rods.

In Fig. 1 the rods are illustrated as engaging the outermost loops of each series of loops for thereby providing a bath of maximum width. In Fig. 2 I have illustrated rods 70 as being engaged with the centermost of the loops for thereby providing a tub of intermediate widich. It will, of course, be understood that the width of the bath may be varied between a maximum and a minimum dimension by associating the ends of rods 78 with various combinations of loops 58.
With particular reference now to Figs. 1 and 3, it will be noted that the ends of rods 79 project beyond strips A and are engaged by the upper ends of leg elements 30 and 82 which intersect and are pivotally interconnected as at 88.

The lower ends 86 of the legs are provided with a z-shaped member denoted generally by the numeral 88 and which comprises legs 71, 12 and 74, wherein legs 71 and 12 are disposed in the planes of under surface 76 and outer edge 78 of the leg bottoms, respectively. Leg 14 is $10-$ cated in a plane at approximately right angles with leg 72 for thereby providing a hook-like effect 77. When it is desired to associate the device with a standard bathtub, members 88 are
adapted to overhangingly engage the upper edges of the front and rear walls of a bath, said edges being indicated generally by the letters C and D in Fig. 2. When in this position the bath is suspended over the tub, and legs 80 and 82 spanningly engage the tub walls. Legs 12 and 74 will thus engage the upper side edges of the standard bathtub in a manner whereby to preclude their accidental or unintentional displacement therefrom.

If desired, my device may be supported upon a flat surface such as the ground or a floor, in which event contact with the supporting surface will be made as at 90, see Fig. 2, with a supporting surface denoted generally by the numeral 32. When the device is set up as illustrated in Fig. 2, it may be used as a dressing table for an infant or it may be set up as a bath at a location remote from a bathtub.
The device may be coliapsed when not in use to the folded position illustrated in Fig. 4 for storage or transportation.
From the foregoing, it will be noted that I have thus provided a simple yet highly effective bath which is fabricated from a single sheet of flexible waterproof material the end portions of which are provided with loops arranged in such a manner as to not only reinforce the end edges but to effectively establish the overall width of the tub. In passing it will be noted that the substantially horizontal strips A, besides effectively reinforcing the end portions of the bath. likewise serve to preclude the accidental or unintentional discharge of water upwardly over the top of the end portions of the tub.

What is claimed is:
An adjustable width infant's bath fabricated from a sheet of flexible waterproof material including a bottom and duplicate side and end por-tions, an open-ended pocket provided along the outer edge of each side portion, a reinforcing strip extending along the outer edge of each end portion, a series of side-by-side loops provided at opposite ends of said reinforcing strips wherein the axes of said loops are substantially parallel with one another and with the axes of said open-ended pockets, a pair of rods housed one within each pocket and with their opposite ends projecting beyond the opposite ends of their respective pockets, the opposite ends of said rods dimensioned to be received in and project through selected axially aligned loops in opposite end portions for providing an inturned strip of a width equal to the length of a loop, two sets of legs wherein each set comprises a pair of legs pivotally interconnected intermediate their length, the upper ends of the legs of a set engasing the ends of the rods beyond the loops at opposite ends of the bath, said strips spanning said rods for determining the spacing between the upper ends of the legs of a set and for simultaneously maintaining the free upper edges of the end portions in the plane of the upper edges of the side portions.

ERWIN D. ZIMOV.
References Cited in the file of this patent UNITED STATES PATENTS

[^0]
[^0]: Number
 1,473,413
 1,750,698
 1,833,178
 2,514,767

 Name
 Young
 Abbott
 Rice
 Kennedy

 Date Nov. 6, 1923 - Mar. 18, 1930 Nov. 24, 1931 July 11, 1950

