(51) International Patent Classification:
G06F 3/01 (2006.01) G02B 27/01 (2006.01)

(21) International Application Number:
PCT/JP2013/007295

(22) International Filing Date:
11 December 2013 (11.12.2013)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
2013-058858 21 March 2013 (21.03.2013) JP

(71) Applicant: SONY CORPORATION [JP/JP]; 1-7-1 Konan, Minato-ku, Tokyo, 1080075 (JP).

Published:
— with international search report (Art. 21(3))

(54) Title: HEAD-MOUNTED DEVICE FOR USER INTERACTIONS IN AN AMPLIFIED REALITY ENVIRONMENT

(57) Abstract: An information processing apparatus includes circuitry that is configured to provide a user interface to control a plurality of controllable objects. The user interface is associated with a gesture recognition area that is defined by a predetermined detection area of a sensor. The gesture recognition area is divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface. The circuitry is further configured to detect a predetermined gesture within the predetermined detection area, determine the gesture recognition sub-area in which the predetermined gesture is detected, and perform an operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.
Description

Title of Invention:

HEAD-MOUNTED DEVICE FOR USER INTERACTIONS IN AN AMPLIFIED REALITY ENVIRONMENT

Technical Field

[0001] <CROSS REFERENCE TO RELATED APPLICATIONS>

This application claims the benefit of Japanese Priority Patent Application JP 2013-058858 filed March 21, 2013, the entire contents of which are incorporated herein by reference.

[0002] The present disclosure related to an information processing apparatus, an operation control method and a program.

Background Art

[0003] In the past, there has been a technology in which a user interface (UI) for operating an apparatus as an operation target is displayed in a screen arranged so as to come into a user's field of vision to enable the apparatus to be operated through the displayed UI. For example, PTL 1 described below discloses that the user, in operating an apparatus made viewed in a head mounted display, gives a user input to the apparatus or a virtual UI associated with the apparatus by a gesture (e.g., a gesture touching the apparatus).

Citation List

Patent Literature

[0004] PTL 1: JP 2012-181809A

Summary

Technical Problem

[0005] However, in the scheme disclosed in PTL 1, a screen area accepting a gesture input is limited to a display area or virtual UI area for the apparatus. This limits a degree of freedom of the gesture input, and accuracy demanded for the gesture (e.g., accurately pointing the apparatus) may be placed as a burden on the user.

[0006] Therefore, a system is desirably provided in which an available screen area can be used more freely for the gesture.

Solution to Problem

[0007] In a first aspect, an information processing apparatus includes circuitry that is configured to provide a user interface to control a plurality of controllable objects. The user interface is associated with a gesture recognition area that is defined by a predetermined detection area of a sensor. The gesture recognition area is divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface. The circuitry is further configured to detect a
predetermined gesture within the predetermined detection area, determine the gesture recognition sub-area in which the predetermined gesture is detected, and perform an operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.

[0008] In another aspect, an information processing system includes circuitry that is configured to provide a user interface to control a plurality of controllable objects. The user interface is associated with a gesture recognition area that is defined by a predetermined detection area of a sensor. The gesture recognition area is divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface. The circuitry is further configured to detect a predetermined gesture within the predetermined detection area, determine the gesture recognition sub-area in which the predetermined gesture is detected, and perform an operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.

[0009] In another aspect, a method of an information processing apparatus for controlling a plurality of controllable objects is provided. The method includes providing, by circuitry of the information processing apparatus, a user interface to control the plurality of controllable objects. The user interface is associated with a gesture recognition area that is defined by a predetermined detection area of a sensor. The gesture recognition area is divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface. A predetermined gesture is detected within the predetermined detection area. The gesture recognition sub-area in which the predetermined gesture is detected is determined. Further, the circuitry of the information processing apparatus performs an operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.

[0010] In a further aspect, a non-transitory computer-readable storage medium storing instructions which, when executed by a computer, cause the computer to perform a method for controlling a plurality of controllable objects is provided. The method includes providing, by the computer, a user interface to control the plurality of controllable objects. The user interface is associated with a gesture recognition area that is defined by a predetermined detection area of a sensor. The gesture recognition area is divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface. A predetermined gesture within the predetermined detection area is detected. The gesture recognition sub-area in which the predetermined gesture is detected is determined. Further, the computer performs an
operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.

Advantageous Effects of Invention

[0011] According to one or more of embodiments of the present disclosure, the available screen area can be more freely used for the gesture.

Brief Description of Drawings

[0012] [fig.1]FIG. 1 is an illustration diagram for illustrating an overview of an apparatus.
[fig.2]FIG. 2 is an illustration diagram for illustrating an example of an operation target and an existing gesture interface.
[fig.3]FIG. 3 is an illustration diagram for illustrating another example of the operation target.
[fig.4]FIG. 4 is an illustration diagram for illustrating other example of the operation target.
[fig.5]FIG.5 is a block diagram showing an example of a hardware configuration of an information processing apparatus according to an embodiment.
[fig.6]FIG. 6 is a block diagram showing an example of a logical configuration of an information processing apparatus according to an embodiment.
[fig.7A]FIG. 7A is an illustration diagram for illustrating a first example of a recognizable gesture.
[fig.7B]FIG. 7B is an illustration diagram for illustrating a second example of a recognizable gesture.
[fig.7C]FIG. 7C is an illustration diagram for illustrating a third example of a recognizable gesture.
[fig.7D]FIG. 7D is an illustration diagram for illustrating a fourth example of a recognizable gesture.
[fig.7E]FIG. 7E is an illustration diagram for illustrating a fifth example of a recognizable gesture.
[fig.7F]FIG. 7F is an illustration diagram for illustrating a sixth example of a recognizable gesture.
[fig.8]FIG. 8 is an illustration diagram for illustrating an example of a reference position in a case where an operation target is a real object.
[fig.9]FIG. 9 is an illustration diagram for illustrating another example of the reference position in the case where the operation target is a real object.
[fig.10]FIG. 10 is an illustration diagram for illustrating an example of the reference position in a case where the operation target is a display object.
[fig.11]FIG. 11 is an illustration diagram for illustrating that the reference position of
the display object follows a motion of an operation body.

[fig.12] FIG. 12 is an illustration diagram for illustrating an example of a gesture area which may be set in a state where only a single operation target exists.

[fig.13A] FIG. 13A is a first illustration diagram for illustrating a first scheme to set the gesture area for a plurality of operation targets.

[fig.13B] FIG. 13B is a second illustration diagram for illustrating a first scheme to set the gesture area for a plurality of operation targets.

[fig.14] FIG. 14 is an illustration diagram for illustrating a second scheme to set the gesture area for a plurality of operation targets.

[fig.15] FIG. 15 is a first illustration diagram for illustrating a third scheme to set the gesture area for a plurality of operation targets.

[fig.16] FIG. 16 is a second illustration diagram for illustrating a fourth scheme to set the gesture area for a plurality of operation targets.

[fig.17] FIG. 17 is an illustration diagram for illustrating a further scheme to set the gesture area for the plurality of operation targets.

[fig.18A] FIG. 18A is a first illustration diagram for illustrating mergence of a gesture area.

[fig.18B] FIG. 18B is a second illustration diagram for illustrating mergence of a gesture area.

[fig.19] FIG. 19 is an illustration diagram for illustrating some examples of an indication for gesture interface.

[fig.20] FIG. 20 is an illustration diagram for illustrating other examples of the indication for gesture interface.

[fig.21] FIG. 21 is an illustration diagram for illustrating an example of the gesture input to a menu.

[fig.22] FIG. 22 is a flowchart showing an example of a general flow of an operation control process according to an embodiment.

[fig.23] FIG. 23 is a flowchart showing an example of a detailed flow of a process at step S180 in FIG. 22.

[fig.24] FIG. 24 is an illustration diagram for illustrating cooperation between a plurality of apparatuses.

Description of Embodiments

[0013] Hereinafter, an explanation will be given in detail of preferred embodiments of the present disclosure with reference to the drawings. In the description and drawings, components having substantially the same functional configuration are denoted by the same symbol to omit the duplicated explanation.

[0014] The explanations are made in the order below.
1. Overview
2. Information processing apparatus according to an embodiment
2-1. Hardware configuration
2-2. Logical configuration
2-3. Example of gesture
2-4. Example of reference position
2-5. Setting example of gesture area
2-6. Mergence of gesture area
2-7. Indication for gesture interface
3. Example of process flow
3-1. General flow
3-2. Performing of operation
4. Cooperation between plurality of apparatuses
5. Conclusion

[0015] <1. Overview>

The technology of the present disclosure is applicable to various forms of apparatuses. FIG. 1 is an illustration diagram for illustrating an overview of an apparatus to which the technology of the present disclosure is applicable. In an example in FIG. 1, an information processing apparatus 100 is a head mounted display (HMD). The HMD is to be worn by a user on his/her head and has a see-through or non-see-through screen arranged so as to be located in front of one or both of user's eyes. The information processing apparatus 100 also includes a camera 101. The camera 101 is arranged such that an optical axis thereof is approximately parallel with a line of sight of the user, and used for imaging an image to be superimposed on a user's field of vision. A chassis of the information processing apparatus 100 includes a flame supporting the screen and a so-called temple positioned on a temporal part of the user. The temple may have various modules stored therein for information processing and communication. The chassis may have an operation mechanism such as a touch sensor, button, switch, or wheel provided on a surface thereof.

[0016] In the example in FIG. 1, the user is positioned in a real space 1. In the real space 1, real objects Rol and Ro2 exist. The real object Rol is a TV apparatus. The real object Ro2 is a map put on a wall. The user can view the real objects Rol and Ro2 on the screen of the information processing apparatus 100. The user can view on the screen display objects which may be displayed by the information processing apparatus 100 other than these real objects.

[0017] While the user views the screen of the information processing apparatus 100, a user's hand is not restrained. Therefore, the user can allow the camera 101 to image various gestures by use of his/her hand or other operation bodies (e.g., the real object gripped
by the hand, a leg or the like). Accordingly, a gesture interface utilizing such a gesture has been proposed in the existing scheme.

[0018] FIG. 2 is an illustration diagram for illustrating an example of an operation target and an existing gesture interface. With reference to FIG. 2, the real object Rol is displayed on the screen of the information processing apparatus 100. In addition, a user interface UIl for operating the real object Rol is superimposed on the screen. The user interface UIl is a virtual menu and includes menu items Ulla, Ullb, Ullc, Ulld, and Ulle. If the user touches any menu item, for example, using an operation body HI, the real object Rol performs a function corresponding to the touched menu (e.g., channel change or sound volume change).

[0019] FIG. 3 is an illustration diagram for illustrating another example of the operation target. With reference to FIG. 3, the real object Ro2 is displayed on the screen of the information processing apparatus 100. Here, assuming that a virtual operation for the real object Ro2 is defined in advance. The virtual operation may be displaying of an enlarged or reduced map, for example. If the user, for example, pinches out the real object Ro2 using the operation body HI, map data for rendering the enlarged map is dynamically acquired and the enlarged map is displayed on the screen on the basis of the acquired map data.

[0020] FIG. 4 is an illustration diagram for illustrating other example of the operation target. With reference to FIG. 4, a display object Vo3 is displayed on the screen of the information processing apparatus 100. The display object Vo3 is an Internet browser having a scroll bar. If the user, for example, scrolls down the scroll bar using the operation body HI, content in the display object Vo3 is also scrolled.

[0021] As described above, in the gesture interface, the screen area accepting the gesture input is limited to a specified object area or a virtual UI area. For this reason, the user has to accurately point those areas and thereafter make a predetermined gesture. In a case where the screen area accepting the gesture input is narrow, a degree of freedom of the gesture input is also limited. Therefore, it is hard to say that the existing scheme sufficiently brings out convenience of the gesture interface. Here, an explanation will be given of a system in which an available screen area can be used more freely for the gesture from the next section.

[0022] Here, the technology of the present disclosure is not limited to the above described example of the HMD, and applicable to various systems for operating any operation target on the basis of the gesture by the user. For example, the technology of the present disclosure may be applied to an operation assist system which has a screen arranged in front of an operator for assisting the operator operating a vehicle or other machines. In this case, various assist functions are performed via the gesture by the operator. The screen may not be necessarily worn by the user or the operator, and, for
example, may be a screen of an information terminal such as a smartphone or a portable navigation device.

[0023] <2. Information processing apparatus according to an embodiment
 <2-1. Hardware configuration>
 FIG. 5 is a block diagrams showing an example of a hardware configuration of the information processing apparatus 100. With reference to FIG. 5, the information processing apparatus 100 includes a camera 101, microphone 102, input device 103, sensor 104, memory 105, communication interface (I/F) 107, display 108, speaker 109, remote operation I/F 110, bus 111, and processor 112.

[0024] (1) Camera
 The camera 101 has an imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) to image an image. Images imaged by the camera 101 (respective frames included in a moving picture) are handled as input images to be processed by the information processing apparatus 100.

[0025] (2) Microphone
 The microphone 102 collects the sound emitted by the user and generates a sound signal. The sound signal generated by the microphone 102 may be handled as an input sound for sound recognition by the information processing apparatus 100. The microphone 102 may be an omnidirectional microphone and may have fixed or variable directional characteristics.

[0026] (3) Input device
 The input device 103 is a device which the user uses in order to directly operate the information processing apparatus 100. The input device 103 may include, for example, the touch sensor, button, switch or wheel provided to the chassis of the information processing apparatus 100. The input device 103 generates, in detecting a user input, an input signal corresponding to the detected user input.

[0027] (4) Sensor
 The sensor 104 may include a sensor module group such as a measurement sensor measuring a position of the information processing apparatus 100, an acceleration sensor measuring an acceleration applied to on the information processing apparatus 100, a gyro sensor measuring an attitude of the information processing apparatus 100, and the like. The sensor data generated by the sensor 104 may be used for various applications such as to support object recognition, acquire data specific to geographical locations, or detect the user input.

[0028] (5) Memory
 The memory 105 is configured to include a storage medium (non-transitory medium) such as a semiconductor memory or hard disk and stores a program and data for processing by the information processing apparatus 100. The data stored in the
memory 105 may include data in various databases described later. Note that a part or whole of the program and data explained in this description may be acquired from an outside data source (e.g., data server, network storage, external memory or the like) without being stored in the memory 105.

(6) Communication interface

The communication I/F 107 relays a communication between the information processing apparatus 100 and other apparatuses. The communication I/F 107 supports an arbitrary wireless communication protocol or wire communication protocol and establishes a communication connection with other apparatuses.

(7) Display

The display 108 includes a screen including an LCD (Liquid Crystal Display), OLED (Organic light-Emitting Diode), CRT (Cathode Ray Tube) or the like and a circuit element. The screen of the display 108 is to be located in front of user's eyes so as to come into the user's field of vision, and an angle of view thereof is the same as or partially overlaps an angle of view of the camera 101. The display 108 displays an output image generated by the information processing apparatus 100.

(8) Speaker

The speaker 109 includes a circuit element such as a diaphragm and an amplifier and outputs a sound on the basis of an output sound signal generated by the information processing apparatus 100.

(9) Remote operation interface

The remote operation I/F 110 is an interface transmitting a remote operation signal (infrared signal, wireless signal or other control signals) to a remotely operable apparatus. The remote operation I/F 110 modulates the remote operation signal received from the processor 112 described later and transmits the modulated signal.

(10) Bus

The bus 111 connects the camera 101, microphone 102, input device 103, sensor 104, memory 105, communication I/F 107, display 108, speaker 109, remote operation I/F 110 and processor 112 with one another.

(11) Processor

The processor 112 may be, for example, a CPU (Central Processing Unit), DSP (Digital Signal Processor) or the like. The processor 112 executes the program stored in the memory 105 or other storage media to cause various functions of the information processing apparatus 100 described later to be performed.

<2-2. Logical configuration>

FIG. 6 is a block diagram showing an example of a logical capability configuration achieved by the memory 105 and processor 112 of the information processing apparatus 100 shown in FIG. 5. With reference to FIG. 6, the information processing
apparatus 100 includes an image acquisition part 120, application part 140, recognition part 150, object database (DB) 160, gesture DB 170, and control part 180. The recognition part 150 includes an object recognition part 152, gesture recognition part 154 and sound recognition part 156. The control part 180 includes an operating control part 182 and display control part 184.

[0036] (1) Image acquisition part

The image acquisition part 120 acquires an image imaged by the camera 101 as the input image. The input image is typically each of a series of frames included in a moving picture. The input image has an angle of view overlapping the user's field of vision. Then, the image acquisition part 120 outputs the acquired input image to the recognition part 150 and the control part 180.

[0037] (2) Sound acquisition part

The sound acquisition part 130 acquires the sound signal generated by the microphone 102 as the input sound. Then, the sound acquisition part 130 outputs the acquired input sound to the recognition part 150.

[0038] (3) Application part

The application part 140 executes various applications contained in the information processing apparatus 100 to generate the display object. For example, a window may be generated including an Internet browser, content player, mailer, SNS (Social Networking Service) client or the like as the display object. Each application executes an application process under the control by the operating control part 182 described later.

[0039] (4) Object recognition part

The object recognition part 152 recognizes the real object and the operation body within the input image received from the image acquisition part 120. The object recognition part 152, for example, identifies the real object appearing in the input image by comparing an image characteristic amount extracted from the input image with an image characteristic amount of a known real object stored in the object DB 160 in advance, and recognizes a position of the identified real object within the image. The object recognition part 152, for example, may recognize the three-dimensional position and attitude of the real object by use of a higher object recognition algorism such as a SIM (Structure from Motion) method, SLAM (Simultaneous Localization And Mapping) method or the like. The object recognition part 152 may similarly recognize the operation body which is the hand and leg of the user or other real objects, for example.

[0040] (5) Gesture recognition part

The gesture recognition part 154 recognizes a gesture made by the user in order to operate the operation target using the operation body. A gesture recognition process
performed by the gesture recognition part 154 may include clipping a partial image in which the operation body is included, scaling the clipped partial image, temporally saving the partial image, calculating a difference between the frames and the like. The gesture recognition part 154 may track an attribute recognized by the object recognition part 152 such as a position, shape, size and the like of operation body, for example and compare temporal changes in those attributes with a known pattern stored in the gesture DB 170 in advance to thereby recognize the gesture expressed by the operation body. Note that in this description the term "gesture" means also a static pose (shape) not accompanied by the temporal change in the attribute of the operation body. An explanation will be given later of some non-limiting examples of the gesture recognizable by the gesture recognition part 154 with reference to the drawings.

(6) Sound recognition part

The sound recognition part 156 recognizes a sound emitted by the user on the basis of the input sound received from the sound acquisition part 130. The sound recognition part 156, for example, in a case where the application in execution or the UI accepts input of a voice command, recognizes the voice command from voice of the user to output an identifier of the recognized voice command to the control part 180.

(7) Object DB

The object DB 160 is a database storing object data which is defined in advance with respect to the real object recognized by the object recognition part 152 and the operation body. The object data may include, for example, the identifier, image characteristic amount, remote operation flag and virtual operation flag of each real object. The remote operation flag is flag indicating whether or not the corresponding real object is the remotely operable apparatus. The virtual operation flag is a flag indicating whether or not the virtual operation is defined for the corresponding real object. Further, the object DB 160 may store in advance sound characteristic data for each voice command which the sound recognition part 156 uses for sound recognition.

(8) Gesture DB

The gesture DB 170 is a database storing gesture data which the operating control part 182 uses in order to control the operation of the operation target. The data stored in the gesture DB 170 may include data for a common gesture interface not depending on the operation target and data for a gesture interface inherent to the individual operation target. The gesture data defines, for example, a static pattern or temporal change pattern for any combination of the attributes of the operation body (position, shape, size and the like). The gesture data for the remotely operable real object maps the individual gesture and a remote control signal to be transmitted. The gesture data for the real object having the virtual operation maps the individual gesture and a content of the virtual operation to be displayed. The gesture data for the display object
maps the individual gesture and the application process to be executed. The operating
control part 174 described later controls, according to the gesture data, the operation of
the operation target depending on the recognized gesture.

[0044] (9) Operating control part

The operating control part 182 sets in the screen the gesture area for recognizing the
gesture, and controls the operation of at least one operation target depending on the
gesture expressed by the operation body in the set gesture area. In this embodiment, the
gesture area may be set larger than a range occupied by the operation target in the input
image. Therefore, the user can operate the operation target even if making the gesture
at a position apart from the operation target on the screen. In a case where only a single
operation target exists, the operating control part 182 may set the gesture area as-
associated with the relevant single operation target across a whole of an available area in
the screen. The available area may be the whole screen or an area except a part thereof.
In addition, in a case where a plurality of operation targets exist, the operating control
part 182 sets in the screen the gesture areas respectively associated with the relevant
plurality of operation targets on the basis of the reference positions of the relevant
plurality of operation targets. An explanation will be further given later of how the
available area in the screen can be allocated to the individual operation target with
reference to the drawings.

[0045] As an example, the operation target controlled by the operating control part 182 may
be the remotely operable apparatus. The remotely operable apparatus may include a
digital household electrical appliance such as a TV apparatus, video recorder, audio
apparatus, and projector, a non-digital household electrical appliance such as a lighting
apparatus and air conditioner, and the information terminal such as a PC (Personal
Computer) and smart phone, for example. In a case where the gesture by the user is
recognized in the gesture area associated with the remotely operable apparatus, the
operating control part 182 acquires the remote operation signal corresponding to the
recognized gesture from the gesture DB 170 to transmit the acquired remote operation
signal to the relevant apparatus.

[0046] As another example, the operation target controlled by the operating control part 182
may be the real object for which the virtual operation is defined as explained by use of
FIG. 3. The virtual operation is not limited to the example in FIG. 3, and may be any
operation. For example, there may be defined an operation such as turning a paper to
display the back side thereof, popping up of a character from a poster, or super-
imposing schedule data on a calendar. In a case where the gesture by the user is
recognized in the gesture area associated with such a real object, the operating control
part 182 instructs the display control part 184 to display the virtual operation corre-
sponding to the relevant recognized gesture.
In addition, as other example, the operation target controlled by the operating control part 182 may be the display object displayed due to the execution of the application by the application part 140. In a case where the gesture by the user is recognized in the gesture area associated with the display object, the operating control part 182 causes the application part 140 to execute the application process corresponding to the recognized gesture.

The operating control part 182 may further control the operation of the operation target via the user interface using the operation mechanism other than the gesture (e.g., the input device 103 or sensor 104).

(10) Display control part

The display control part 184 controls display of the screen by the information processing apparatus 100. The display control part 184 outputs the display object such as a window generated by the application part 140 to the display 108 to display the display object on the screen. Further, the display control part 184 displays some indications supporting the user such that the user can easily use the gesture interface. The indication for gesture interface which may be displayed in this embodiment may include an indication indicating the currently set gesture area and an indication indicating the gesture available for operation, for example. An explanation will be given later of concrete examples of these indications with reference to the drawings. Further, when a predetermined gesture is recognized in the gesture area associated with the real object for which the virtual operation is defined, the display control part 184 displays the virtual operation corresponding to the recognized gesture on the screen. A content of the virtual operation may be defined in the gesture DB 170 in advance.

<2-3. Example of gesture>

FIG. 7A to FIG. 7F each show an example of the gesture recognizable by the gesture recognition part 154. Here, as an example, the operation body is the hand or finger of the user.

In a first example in FIG. 7A, the gesture recognition part 154 recognizes a gesture G1 from a shape of the hand with fingers other than a forefinger being folded and a motion of inclining the finger. The gesture G1 is a gesture (Finger Touch) expressing a touch by the finger.

In a second example in FIG. 7B, the gesture recognition part 154 recognize a gesture G2 from a shape of a palm being opened and a motion of inclining the palm. The gesture G2 is a gesture (Palm Touch) expressing a touch by the palm.

In a third example in FIG. 7C, the gesture recognition part 154 recognizes gestures G3a to G3d from a motion of moving the hand in parallel. The gestures G3a to G3d are a gesture (Swipe) expressing a so-called swipe. The gestures G3a to G3d may be recognized as gestures different from each other depending on directions of the moving...
in parallel (e.g., four directions of left, right, up and down). Similar gesture may be expressed by another word such as "flick." The moving in parallel with the palm being closed may be recognized as another gesture expressing the drug.

In a fourth example in FIG. 7D, the gesture recognition part 154 recognizes a gesture G4a or G4b from a motion of changing a distance between the forefinger and a thumb. The gesture G4a is a gesture (Pinch Out) expressing a so-called pinching-out which corresponds to a motion of spreading the distance between the forefinger and the thumb. The gesture G4b is a gesture (Pinch In) expressing a so-called pinching-in which corresponds to a motion of narrowing the distance between the forefinger and the thumb.

In a fifth example in FIG. 7E, the gesture recognition part 154 recognizes a gesture G5 from a motion of folding and returning the hand right and left. The gesture G5 is a gesture (Wave) expressing a handwaving sign.

In sixth example in FIG. 7F, the gesture recognition part 154 recognizes a gesture G6 from a motion of the finger defined in advance. The motion for recognizing the gesture G6 may be any motion.

<2-4. Example of reference position>

As described above, in the case where a plurality of operation targets exist, the operating control part 182 sets in the screen the gesture areas respectively associated with the relevant plurality of operation targets on the basis of the reference positions of the relevant plurality of operation targets. The reference position of the real object existing in real space may be typically decided based on a position of the relevant real object within the screen. On the other hand, the reference position of the display object which does not existing in the real space and is displayed in the screen may be specified by the user when the relevant display object is displayed.

(1) Reference position of real object

FIG. 8 is an illustration diagram for illustrating an example of the reference position in a case where the operation target is a real object. With reference to FIG. 8, the real object Rol is shown with being made viewed in the input image. The object recognition part 152 recognizes as the result of the object recognition that the real object Rol is made viewed in an area RAI in a two-dimensional coordinate system (U, V) corresponding to the angle of view. In the example in FIG. 8, the operating control part 182 decides the center of the area RAI as a reference position RP1 of the real object Rol on the basis of the result of the object recognition. The reference position RP1 may not be necessarily the center of the area RAI, and may be other position associated with the area RAI such as any apex of the area RAI.

The reference position of the real object may typically vary in response to variation of the angle of view (or movement of the real object). When the real object moves out
of the angle of view, the recognition of the real object is lost and the relevant real object becomes out of the operation target. However, as a modified example, the operating control part 182 may make the reference position of the real object remain in the screen for a certain period of time or until an end time the user explicitly specifies after the real object moves out of the angle of view. In an example in FIG. 9, as a result of the variation of the angle of view (arrow Dla), the real object Rol moves out of the angle of view (arrow Dlb). However, the reference position RPl of the real object Rol is made remained at the position where the real object Rol is successfully recognized most recently.

(2) Reference position of display object

FIG. 10 is an illustration diagram for illustrating an example of the reference position in a case where the operation target is a display object. With reference to an upper figure in FIG. 10, an operation body H2 is shown with being made viewed in the input image. The object recognition part 152 recognizes as the result of the object recognition that a position of the operation body H2 in the two-dimensional coordinate system (U, V). Here, assuming that the user issues a voice command VC1 for activating the Internet browser. The sound recognition part 156 recognizes the voice command VC1. Then, the operating control part 182 controls the application part 140 to activate the Internet browser in response to the recognitions of the operation body H2 and voice command VC1 to arrange a display object Vo3 as a window of the browser at a reference position RP3. With reference to a lower figure in FIG. 10, the display object Vo3 is shown with being displayed at the reference position RP3. The reference position RP3 may be any position decided based on the position of the operation body H2. A three-dimensional attitude of the display object Vo3 may be decided based on an attitude of the operation body H2. In this way, the scheme of activating the application in accordance with a combination of recognizing the operation body and recognizing the voice command can reduce a risk of error that the application is erroneously activated due to an ordinary conversation of the user.

After the display object is once displayed, the reference position of the display object (display position) may or may not follow the motion of the operation body. In the case where the reference position follows the motion of the operation body, an UI is achieved in which as if the user hold the Internet browser in his/her hand, for example. In an example in FIG. 11, under a condition that the operation body has a specific shape (shaped such that the palm is closed to grasp the display object, for example), the reference position RP3 of the display object Vo3 follows the motion of the operation body (arrow D2). In the case where the reference position does not follow the motion of the operation body, the user can freely make a gesture using both hands with respect to the display object once displayed.
<2-5. Setting example of gesture area>

(1) Only single operation target existing

As described above, in the case where only a single operation target exists, the operating control part 182 may set the gesture area associated with the relevant single operation target across a whole of an available area in the screen.

[0063] FIG. 12 is an illustration diagram for illustrating an example of the gesture area which may be set in a state where only a single operation target exists. With reference to FIG. 12, the real object Rol is recognized within the input image. The real object Rol is operable by the user. No operation target operable by the user (real object or display object) exists. Therefore, in the example in FIG. 12, the operating control part 182 sets a gesture area GAl associated with the real object Rol across a whole of an angle of view ANG. The user may make the gesture anywhere in the gesture area GAl in order to operate the real object Rol.

(2) Plurality of operation targets existing

In the case where a plurality of operation targets operable by the user exist, the operating control part 182 sets in the screen the gesture areas respectively associated with the plurality of operation targets on the basis of the reference positions of the plurality of operation targets within the screen. In other words, if two or more operation targets exist, the gesture area for a first operation target may be influenced by the reference positions of other operation targets. Then, the gesture area is allocated to the individual operation target on the basis of the reference positions of two or more operation targets. An explanation will be given below of some schemes for setting respectively the gesture areas to a plurality of operation targets.

[0064] FIG. 13A is a first illustration diagram for illustrating a first scheme to set the gesture area for a plurality of operation targets. Here, two operation targets exist. In the first scheme, the operating control part 182 sets in the screen a first gesture area associated with a first operation target having a first reference position and a second gesture area associated with a second operation target having a second reference position by partitioning the angle of view along a boundary passing between the first reference position and the second reference position. With reference to FIG. 13A, the real object Rol is recognized within the input image. In addition, the display object Vo3 is displayed. Both the real object Rol and the display object Vo3 are operable by the user. The operating control part 182 partitions an angle of view ANG into two areas along a vertical boundary BD1 passing between a reference position RP1 of the real object Rol and a reference position RP3 of the display object Vo3. The reference position RP1 is located on the right side of the boundary BD1 and therefore, the area on the right side of the boundary BD1 after the partition is the gesture area GAl for the real object Rol. For example, in the gesture area GAl, the user can make a prede-
terminated gesture using the operation body to instruct operations such as the channel change and sound volume change of the TV apparatus as the real object Rol. On the other hand, the reference position RP3 is located on the left side of the boundary BD1 and therefore, the area on the left side of the boundary BD1 after the partition is a gesture area GA3 for the display object Vo3. For example, in gesture area GA3, the user can make a predetermined gesture using the operation body to instruct operations such as scroll and page change in the window of the Internet browser as the display object Vo3.

The operating control part 182 may decide a direction of the boundary for partitioning the angle of view depending on a positional relationship between the reference positions. This can allow the flexible area allocation from which it is easy for the user to instinctively understand a correspondence between the operation target and the gesture area. For example, a boundary used for partitioning the angle of view may be a vertical boundary in a case where a vertical distance is shorter than a horizontal distance between two reference positions, or a horizontal boundary in a case where the vertical distance is longer than the horizontal distance between two reference positions. FIG. 13A shows an example of the former and FIG. 13B shows an example of the latter. With reference to FIG. 13B, the real objects Rol and Ro2 are recognized within the input image. Both the real objects Rol and Ro2 are operable by the user. The operating control part 182 partitions the angle of view ANG into two areas along a horizontal boundary BD2 passing between the reference position RPI of the real object Rol and the reference position RP2 of the real object Ro2. The reference position RPI is located on the lower side of the boundary BD2 and therefore, the area on the lower side of the boundary BD2 after the partition is the gesture area GA1 for the real object Rol. On the other hand, the reference position RP2 is located on the upper side of the boundary BD2 and therefore, the area on the upper side of the boundary BD2 after the partition is the gesture area GA2 for the real object Ro2. For example, in the gesture area GA2, the user can make a predetermined gesture using the operation body to call the virtual operation defined for the real object Ro2.

FIG. 14 is an illustration diagram for illustrating a second scheme to set the gesture area for a plurality of operation targets. Here, two operation targets also exist. In the second scheme, the operating control part 182 sets in the screen the first gesture area associated with the first operation target having the first reference position and the second gesture area associated with the second operation target having the second reference position by evenly partitioning the angle of view and allocating the areas after the partition to the first operation target and the second operation target depending on the positional relationship between the first reference position and the second reference position. With reference to FIG. 14, the real object Rol is recognized
within the input image. In addition, the display object Vo3 is displayed. Both the real object Rol and the display object Vo3 are operable by the user. The operating control part 182 partitions the angle of view ANG into two areas along a vertical boundary BD3 passing through the center of the angle of view. The reference position RPI is located to the right of the reference position RP3 and therefore, the area on the right side of the boundary BD3 after the partition is the gesture area GA1 of the real object Rol, and the area on the left side of the boundary BD3 after the partition is the gesture area GA3 of the display object Vo3. The scheme like this can prevent each gesture area from being excessively narrowed and allocate the gesture area to a plurality of operation targets in a manner that the user easily understands.

FIG. 15 is an illustration diagram for illustrating a third scheme to set the gesture area for a plurality of operation targets. Here, two operation targets also exist. In the third scheme, the operating control part 182 sets the first gesture area associated with the first operation target having the first reference position, and thereafter, sets the second gesture area associated with the second operation target having the second reference position on the basis of the first reference position and the second reference position. With reference to the upper figure in FIG. 15, the display object Vo3 is displayed. The gesture area GA3 for the display object Vo3 is set in the screen on the basis of the reference position RP3 of the display object Vo3. After that, with reference to the lower figure in FIG. 15, as a result of moving the angle of view, the real object Rol is recognized within the input image. The reference position RPI of the real object Rol is located to the right of the gesture area GA3 which has been already set. The gesture area GA1 for the real object Rol is influenced by the gesture area GA3 previously set and set to a space area remained on the right side of the gesture area GA3. The scheme like this can allow the user to make an intended gesture even if a new operation target is recognized when the user is going to make the gesture in the gesture area previously set, without being inhibited by occurrence of the new operation target.

FIG. 16 is an illustration diagram for illustrating a fourth scheme to set the gesture area for a plurality of operation targets. Here, two operation targets also exist. In the fourth scheme, the operating control part 182, after setting the first gesture area for the first operation target having the first reference position, changes the first gesture area on the basis of the first reference position and the second reference position of the second operation target which has higher priority. With reference to the upper figure in FIG. 16, the display object Vo3 is displayed. In addition, the real object Rol is recognized within the input image. The display object Vo3 has the gesture area GA3, and the real object Rol has the gesture area GA1. Here, the priority on the real object Rol is higher than that on the display object Vo3. After that, with reference to the
lower figure in FIG. 16, as a result of moving the angle of view, the reference position RP1 of the real object Rol moves leftward within the input image. As a result thereof, the gesture area GA1 for the real object Rol extends leftward, while the gesture area GA3 for the display object Vo3 is influence by the gesture area GA1 to be reduced. The scheme like this can make sure to set the sufficient large gesture area with respect to the operation target the user wishes to operate on a priority basis. The priority may be set for a variety of operation targets in any manner.

[0070] This section mainly explains the case where two operation targets exist, but the number of the operation targets is not limited to such examples. For example, with reference to FIG. 17, the real objects Rol and Ro4 are recognized within the input image. The real object Ro4 is a remotely operable audio apparatus. In addition, the display object Vo3 is displayed. The real objects Rol and Ro4, and the display object Vo3 are operable by the user. Here, the operating control part 182 partitions the angle of view ANG into three areas according to any combination of the above described four schemes. In the example in FIG. 17, there are respectively set the gesture area GA1 on the upper right after the partition for the real object Rol, a gesture area GA4 on the lower right after the partition for a real object Ro4, and the gesture area GA3 on the left side after the partition for the display object Vo3.

[0071] In an embodiment, as explained using FIG. 9, as a result of moving the angle of view, after the real object moves out of the angle of view, the reference position of the real object is made remained within the angle of view. In this case, the operating control part 182 may set the gesture area for operating the real object which has moved out of the angle of view on the basis of the reference position of the relevant real object remained within the angle of view and the reference positions of other operation targets. Accordingly, the operation via the gesture can be prevented from being unexpectedly broken due to the variation of the angle of view or instability of the object recognition.

[0072] <2-6. Mergence of gesture area>

Even in a case where a plurality of operation targets exist, the user may possibly wish to make the gesture using a large screen area for operating a certain operation target. In order to satisfy such a demand, there may be provided an UI for merging the gesture area in accordance with an instruction from the user. For example, in a case where the user specifies one of the first operation target and the second operation target, the operating control part 182 merges the gesture area for the other not specified operation target into the gesture area for the specified operation target.

[0073] FIG. 18A and FIG. 18B each are an illustration diagram for illustrating mergence of the gesture area. With reference to the upper figure in FIG. 18A, the real object Rol is recognized within the input image. In addition, the display object Vo5 is displayed.
The display object Vo5 is a window of the content player. Both the real object Rol and the display object Vo5 are operable by the user. The operating control part 182 sets the gesture area GA1 for the real object Rol and the gesture area GA5 for the display object Vo5 on the basis of the reference position RP1 of the real object Rol and the reference position RP5 of the display object Vo5. Here, as an example, assuming that the gesture G1 is defined in the gesture DB 170 as a gesture for merging the gesture area. For example, the user makes the gesture G1 using the operation body HI in the gesture area GA1. The gesture recognition part 154 recognizes the gesture G1 on the basis of the result of recognizing the operation body. Then, as shown in the lower figure in FIG. 18A, the operating control part 182 merges the gesture area GA5 set for the display object Vo5 into the gesture area GA1 for the real object Rol specified by the user. As a result thereof, the whole available area within the angle of view ANG becomes the gesture area GA1.

Further, as an example, assuming that a gesture G3 is defined as a gesture for switching the operation target in the gesture DB 170. As shown in the upper figure in FIG. 18B, the user makes the gesture G3 using the operation body HI in gesture area GA1, for example. The gesture recognition part 154 recognizes the gesture G3 on the basis of the result of recognizing the operation body. Then, as shown in the lower figure in FIG. 18B, the operating control part 182 switches the gesture area GA1 for the real object Rol to the gesture area GA5 for the display object Vo5.

The use of the above described gesture interface makes it possible for the user to freely make various gestures in the maximum large gesture area to operate the intended operation target.

FIG. 19 is an illustration diagram for illustrating some examples of the indication for gesture interface. With reference to FIG. 19, the display object Vo3 is displayed on the screen of the information processing apparatus 100. In addition, the real object Rol is recognized. An indication IN1 and an indication IN12 which are superimposed on the output image by the display control part 184 are rectangle frames indicating to the user the gesture area for the display object Vo3 and the gesture area for the real object Rol, respectively. In the example in FIG. 19, the operation body HI is positioned on the gesture area for the display object Vo3, a frame border of the indication IN1 is displayed in an intensified manner as compared with the frame border of the indication IN12 (e.g., different color, different thickness of border, or blinking). An indication IN13 indicates a guidance notifying the user of the gesture available for operating the display object Vo3. For example, there can be seen from the indication IN13 that an up and down swipe gesture, leftward swipe gesture, and handwaving gesture respectively correspond to scrolling the window, returning (to previous page), and quitting the ap-
plication of the application processes. In a case where the operation body HI moves to
the gesture area for the real object Rol, the display control part 184 may switch the
content of the guidance in the indication IN13 to the content for the real object Rol.

[0077] FIG. 20 is an illustration diagram for illustrating other examples of the indication for
gesture interface. With reference to FIG. 20, the real object Rol is recognized. An in-
dication IN21 superimposed on the output image by the display control part 184 is a
rectangle frame indicating to the user the gesture area for the real object Rol. An in-
dication IN22 is a mark indicating to the user that the real object Rol is the operation
target as a result of the operation body HI being positioned on the gesture area for real
object Rol. An indication IN23 indicates a guidance notifying the user of the gesture
available for operating the real object Rol. For example, there can be seen from the in-
dication IN23 that a up and down swipe gesture, right and left swipe gesture, and
handwaving gesture respectively correspond to changing the sound volume, changing
the channel, and turning off the power of the remote operations. Further, the indication
IN23 includes a button B1 displaying a detail menu.

[0078] For example, in a case where the user touches the button B1 in FIG. 20, the display
control part 184 may acquire an operation menu for real object Rol to superimpose a
menu MN1 illustrated in FIG. 21 on the output image. The menu MN1 includes a
plurality of menu items hierarchically structured, for example. An indication IN33
indicates a guidance notifying the user of the gesture available for operating the menu
MN1 of the real object Rol. For example, there can be seen from the indication IN33
that an up and down swipe gesture, and touch gesture respectively correspond to
moving a focus of the menu item, and deciding the menu item of the operations. The
user may not directly touch a narrow display area of the menu MN1f or respective
menu items to operate the menu MN1. The user can make the gesture in the large
gesture area set for the real object Rol to operate the menu MN1.

[0079] <3. Example of process flow>

<3-1. General flow>

FIG. 22 is a flowchart showing an example of a general flow of an operation control
process performed by the information processing apparatus 100. The operation control
process described herein is repeated for each of a series of frames included in a moving
picture acquired by the image acquisition part 120.

[0080] With reference to FIG. 22, first, the image acquisition part 120 acquires an image
imaged by the camera 101 as the input image (step S100). Then, the image acquisition
part 120 outputs the acquired input image to the recognition part 150 and the control
part 180.

[0081] The sound acquisition part 130 acquires the sound signal generated by the mi-
crophone 102 as the input sound (step S105). Then, the sound acquisition part 130
outputs the acquired input sound to the recognition part 150.

[0082] Next, the sound recognition part 156 recognizes the voice command issued by the user on the basis of the input sound received from the sound acquisition part 130 (step S110). If any voice command is recognized, the sound recognition part 156 outputs the identifier of the recognized voice command to the control part 180.

[0083] The object recognition part 152 recognizes the operation body made viewed in the input image which is received from the image acquisition part 120 (step S115). Then, the object recognition part 152 outputs the position of the recognized operation body within the screen to the control part 180.

[0084] Next, the operating control part 182 determines whether or not the display object is to be arranged on the basis of the result of recognizing the voice command received from the sound recognition part 156 and the result of recognizing the operation body received from the object recognition part 152 (step S120). Then, if the display object is determined to be arranged, the operating control part 182 controls the application part 140 to generate the display object corresponding to the recognized voice command and arranges the display object at the reference position decided from the position of the operation body (step S125).

[0085] The object recognition part 152 recognizes the real object made viewed in the input image which is received from the image acquisition part 120 (step S130). Then, the object recognition part 152 outputs the position of the recognized real object within the screen to the control part 180.

[0086] Next, the operating control part 182 identifies the operation target operable by the user from the display object arranged in the screen and the recognized real object by referring to the object DB 160 (step S135). The process thereafter is branched depending on the number of operation targets operable by the user (steps S140, S145). If there exists no operation target operable by the user, the process proceeds to step S190. If there exists only one operation target operable, the process proceeds to step S150. If there exist a plurality of operation targets operable, the process proceeds to step S155.

[0087] If there exists only one operation target operable, the operating control part 182 sets the gesture area associated with that operation target to the whole available angle of view (step S150).

[0088] On the other hand, if there exist a plurality of operation targets available, the operating control part 182 sets in the screen the gesture areas respectively associated with the plurality of operation targets on the basis of the reference positions of the relevant plurality of operation targets (step S155). The setting of the gesture area here may be carried out according to any scheme of various schemes explained using FIG. 13A to FIG. 18B.
Next, the display control part 184 arranges the indication for supporting the user using the gesture interface on the screen (step S160). The indication for gesture interface arranged here may include any indication as illustrated in FIG. 19 to FIG. 21.

Further, the gesture recognition part 154 recognizes the gesture made using the operation body on the basis of the result of recognizing the operation body in the gesture area set by the operating control part 182 (step S165). Then, the gesture recognition part 154 outputs the identifier of the recognized gesture to the operating control part 182.

If a predetermined gesture is recognized by the gesture recognition part 154 (step S170), the operating control part 182 determines which operation target to operate on the basis of in which gesture area the gesture is made (step S175). Then, the operating control part 182 controls the determined operation target to perform the operation corresponding to the recognized gesture (step S180).

The display control part 184 displays the output image which may include a feedback about the performed operation on the screen of the display 108 (step S190). The process thereafter returns to step S100.

<3-2. Performing of operation>

FIG. 23 is a flowchart showing an example of a detailed flow of the process at step S180 in FIG. 22. The process in FIG. 23 is branched based on a type of the operation target.

For example, if the operation target is the real object remotely operable (step S181), the operating control part 182 transmits the remote operation signal corresponding to the recognized gesture from the remote operation I/F 110 to the relevant real object (step S182).

If the operation target is the real object for which the virtual operation is defined (step S183), the operating control part 182 control the display control part 184 to generate an augmented reality (AR) object expressing the virtual operation corresponding to the recognized gesture (step S184). The AR object generated here may be displayed on the screen at step S190 in FIG. 22.

If the operation target is the display object such as an application window (step S185), the operating control part 182 controls the application part 140 to execute the application process corresponding to the recognized gesture (step S186). A result of executing the application process may be displayed on the screen at step S190 in FIG. 22.

Here, the process flow explained in this section is merely one example. In other words, some of the above described process steps may be omitted, and other process steps may be added, or the order of the process steps may be altered. For example, in a case where the technology of the present disclosure is applied for only operating the
real object, the process step of arranging and operating the display object may be omitted. In addition, in a case where the technology of the present disclosure is applied for only operating the display object, the process step of recognizing and operating the real object may be omitted.

[0098] **<4. Cooperation between plurality of apparatuses>**

The technology of the present disclosure may be achieved in cooperation between a plurality of operations. For example, a part of the operation control process described in the previous section may be performed by an apparatus different physically from the information processing apparatus 100.

[0099] FIG. 24 is an illustration diagram for illustrating cooperation between a plurality of apparatuses. With reference to FIG. 24, the information processing apparatus 100 as the HMD worn by the user, a server apparatus 200 communicating with the information processing apparatus 100, and the real object Rol are shown. The information processing apparatus 100 transmits the input image and the input sound to the server apparatus 200 (SIG1), for example. The server apparatus 200 is an information processing apparatus having functions of the recognition part 150 and control part 180 shown in FIG. 6. The server apparatus 200 executes the operation control process on the basis of the input image and input sound received from the information processing apparatus 100. A result of the process executed by the server apparatus 200 is provided to the information processing apparatus 100 (SIG2). The information processing apparatus 100 displays the output image on the screen on the basis of the process result received from the server apparatus 200, or transmits the remote control signal to the real object Rol (SIG3). The remote control signal may be transmitted not from the information processing apparatus 100 but from the server apparatus 200 to the real object Rol (SIG4). The server apparatus 200 may be arranged in a personal network or home network established in the vicinity of the user, for example, or arranged in a remote network including the Internet.

[0100] **<5. Conclusion>**

The various embodiments are described above using FIG. 1 to FIG. 24 according to an embodiment of the technology of the present disclosure. According to the above described embodiments, if there exists a single operation target operable by the user, the gesture area associated with the relevant single operation target is set in the large area available within the screen. If there exist a plurality of operation targets, the gesture area associated with at least one operation target is set on the basis of the reference positions of the relevant plurality of operation targets. In other words, the available screen area is allocated as the gesture area to each of a plurality of operation targets depending on the positional relationship between the operation targets. Then, the operation of each operation target is controlled via the gesture interface in the set
gesture area. Therefore, the screen area accepting the gesture input is not limited to a narrow area so that the degree of freedom of the gesture input is improved. Further, multiple operations are allowed such as that a certain operation target is operated by making the gesture in a certain area within the angle of view, and that another operation target is operated by making the gesture in another area. As a result thereof, a special command for switching the operation target is not necessary and the user can freely operate a plurality of operation targets via a variety of gesture interfaces. In addition, since the gesture area is not limited to a narrow area, user is released from the burden of accurately pointing the operation target or the like. This is particularly useful for the gesture interface having difficulty in obtaining pointing accuracy comparable with other operation means including the touch sensor, mouse or the like.

Additionally, according to the above described embodiments, the indication for gesture interface supporting the user is displayed on the screen, such as the indication indicating the set gesture area, or the indication indicating the gesture available for operating the operation target. Therefore, the user can understand what gesture to make in which screen area by looking the indication. This promotes use of the gesture interface.

Further, according to the above described embodiments, in the case where the operation target is the real object, the reference position of the real object is decided based on the position of the real object in the screen. Therefore, with taking into account where in the user’s field of vision the real object of the operation target exists, the gesture area for operating the relevant real object can be set. In the case where the real object is the remotely operable apparatus, the relevant real object can be remotely operated via the gesture interface. If the virtual operation is defined for the real object, the virtual operation can be called via the gesture interface.

Moreover, according to the above described embodiment, in the case where the operation target is the display object displayed on the screen, the reference position of the display object is specified by the user when the relevant display object is displayed. Therefore, with taking into account arrangement of the display object the user wishes, the gesture area for operating the display object can be set. Then, the display object can be operated via the gesture interface in the set gesture area.

Note that a series of control processes by the apparatuses explained in this description may be achieved by any of software, hardware, and combination of software and hardware. A program included in software is stored in advance in, for example, a storage medium provided inside or outside the apparatus. Then, the program is read into a RAM (Random Access Memory) when executed and executed by the processor such as the CPU.

It should be understood by those skilled in the art that various modifications, com-
binations, sub-combinations and alterations may occur depending on design re-
quirements and other factors insofar as they are within the scope of the appended
claims or the equivalents thereof.

[0106] The present technology may also be configured as below.

(1) An information processing apparatus, comprising: circuitry configured to provide
a user interface to control a plurality of controllable objects, the user interface being
associated with a gesture recognition area that is defined by a predetermined detection
area of a sensor, the gesture recognition area being divided into a plurality of gesture
recognition sub-areas based on a number of the controllable objects to be controlled by
the user interface, detect a predetermined gesture within the predetermined detection
area, determine the gesture recognition sub-area in which the predetermined gesture is
detected, and perform an operation on one of the controllable objects based on the
detected predetermined gesture and the determined gesture recognition sub-area in
which the predetermined gesture is detected.

(2) The information processing apparatus of (1), wherein the one of the controllable
objects is a remote controllable device which is assigned to the determined gesture
recognition sub-area, and the circuitry is further configured to perform the operation by
sending a predetermined command from the information processing apparatus to the
remote controllable device.

(3) The information processing apparatus of (1) or (2), wherein the circuitry is further
configured to allocate, for each of the gesture recognition sub-areas, a sub-region of
the gesture recognition area based on a center position of the controllable object corre-
sponding to the respective gesture recognition sub-area.

(4) The information processing apparatus of any one of (1) to (3), wherein the
circuitry is further configured to provide an indication of at least one candidate gesture
and associated candidate operation for one of the controllable objects.

(5) The information processing apparatus of any one of (1) to (4), wherein the
circuitry is further configured to provide a menu that includes a plurality of items to be
selected by a user, the menu is associated with a real controllable object in one of the
gesture recognition sub-areas and displayed on a display, and one of the items is
selected based on the predetermined gesture in the one of the gesture recognition sub-
areas assigned to the real controllable object.

(6) The information processing apparatus of any one of (1) to (5), wherein the
circuitry is further configured to provide a visual indication of the gesture recognition
sub-area in which the predetermined gesture is detected.

(7) The information processing apparatus of (6), wherein the visual indication of the
gesture recognition sub-area is displayed on a display, and the circuitry is further
configured to provide a mark indicating one of the controllable objects as a target of
the operation on the display.

(8) The information processing apparatus of any one of (1) to (7), further comprising: a display implemented in a head-mounted display unit and configured to present the user interface to a user.

(9) The information processing apparatus of any one of (1) to (8), wherein the plurality of controllable objects includes a virtual object assigned to a first one of the gesture recognition sub-areas and a real object assigned to a second one of the gesture recognition sub-areas, and the circuitry is further configured to provide the user interface to control the virtual object displayed on a display and the real object which is recognized based on an image captured by the sensor at the same time.

(10) The information processing apparatus of any one of (1) to (9), wherein the sensor is a camera.

(11) The information processing apparatus of any one of (1) to (10), wherein the plurality of controllable objects includes a real object, and the circuitry is further configured to set one of the gesture recognition sub-areas based on recognition of a location of the real object.

(12) The information processing apparatus of (11), wherein the circuitry is further configured to provide the user interface as an overlay superimposed over a user's view of the real object.

(13) The information processing apparatus of any one of (1) to (12), wherein the circuitry is further configured to set a boundary between two of the gesture recognition sub-areas based on relative locations of the controllable objects associated with the two gesture recognition sub-areas.

(14) The information processing apparatus of any one of (1) to (13), wherein the circuitry is further configured to set one of the gesture recognition sub-areas with priority being given to real objects.

(15) The information processing apparatus of any one of (1) to (14), wherein the plurality of controllable objects are prioritized, each of the controllable objects is assigned to one of the gesture recognition sub-areas, and a size of a gesture recognition sub-area associated with a controllable object with a first priority is set larger than that of another gesture recognition sub-area associated with a controllable object having a second priority that is lower than the first priority.

(16) The information processing apparatus of any one of (1) to (15), wherein the circuitry is further configured to divide the gesture recognition area into the plurality of gesture recognition sub-areas based on a predetermined reference position of each of the controllable objects.

(17) The information processing apparatus of any one of (1) to (16), wherein the circuitry is further configured to merge two of the gesture recognition sub-areas or
remove one of the gesture recognition sub-areas when another predetermined gesture is detected.

(18) The information processing apparatus of any one of (1) to (17), wherein when only one controllable object is associated with the gesture recognition area, the gesture recognition sub-area is equal to the gesture recognition area.

(19) An information processing system, comprising: circuitry configured to provide a user interface to control a plurality of controllable objects, the user interface being associated with a gesture recognition area that is defined by a predetermined detection area of a sensor, the gesture recognition area being divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface, detect a predetermined gesture within the predetermined detection area, determine the gesture recognition sub-area in which the predetermined gesture is detected, and perform an operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.

(20) A method of an information processing apparatus for controlling a plurality of controllable objects, the method comprising: providing, by circuitry of the information processing apparatus, a user interface to control the plurality of controllable objects, the user interface being associated with a gesture recognition area that is defined by a predetermined detection area of a sensor, the gesture recognition area being divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface; detecting a predetermined gesture within the predetermined detection area; determining the gesture recognition sub-area in which the predetermined gesture is detected; and performing, by the circuitry of the information processing apparatus, an operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.

(21) A non-transitory computer-readable storage medium storing instructions which, when executed by a computer, cause the computer to perform a method for controlling a plurality of controllable objects, the method comprising: providing, by the computer, a user interface to control the plurality of controllable objects, the user interface being associated with a gesture recognition area that is defined by a predetermined detection area of a sensor, the gesture recognition area being divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface; detecting a predetermined gesture within the predetermined detection area; determining the gesture recognition sub-area in which the predetermined gesture is detected; and performing, by the computer, an operation on one of the controllable objects based on the detected predetermined gesture and the de-
termined gesture recognition sub-area in which the predetermined gesture is detected.

(22) An information processing apparatus including:
a control part configured to control an operation of at least one operation target using
at least one gesture area, the at least one gesture area being set in a screen based on
reference positions of a plurality of operation targets in the screen, and being associated with the at least one operation target, the plurality of operation targets being operable by a user.

(23) The information processing apparatus according to (22), wherein the control part displays, on the screen, an indication indicating the gesture area.

(24) The information processing apparatus according to (22) or (23), wherein the control part displays, on the screen, an indication indicating a gesture available for operating the at least one operation target.

(25) The information processing apparatus according to any one of (22) to (24),
wherein the plurality of operation targets each include a real object existing in a real space, and
wherein the reference position of the real object is decided based on a position of the real object in the screen.

(26) The information processing apparatus according to any one of (22) to (25),
wherein the plurality of operation targets each include a display object displayed on the screen, and
wherein the reference position of the display object is specified by the user when the display object is displayed.

(27) The information processing apparatus according to (26),
wherein the display object is displayed in response to a voice command issued by the user, and
wherein the reference position of the display object is decided based on a position of an operation body in the screen at a time when the voice command is recognized.

(28) The information processing apparatus according to (25), wherein the gesture area set in association with the real object remains in the screen after the real object moves out of the screen.

(29) The information processing apparatus according to (25),
wherein the real object is a remotely operable apparatus, and
wherein, in a case where a gesture of the user is recognized in the gesture area associated with the remotely operable apparatus, the control part transmits a remote operation signal corresponding to the recognized gesture to the remotely operable apparatus.

(30) The information processing apparatus according to (25),
wherein the real object is an object for which a virtual operation is defined, and
wherein, in a case where a gesture of the user is recognized in the gesture area associated with the object, the control part displays the virtual operation corresponding to the recognized gesture on the screen.

(31) The information processing apparatus according to (26) or (27), wherein the display object is displayed due to execution of an application, and wherein, in a case where a gesture of the user is recognized in the gesture area associated with the display object, the control part causes the application to execute an application process corresponding to the recognized gesture.

(32) The information processing apparatus according to any one of (22) to (31), wherein the control part sets a first gesture area associated with a first operation target having a first reference position and a second gesture area associated with a second operation target having a second reference position by partitioning an angle of view along a boundary passing between the first reference position and the second reference position.

(33) The information processing apparatus according to (32), wherein a direction of the boundary is decided depending on a positional relationship between the first reference position and the second reference position.

(34) The information processing apparatus according to any one of (22) to (31), wherein the control part sets a first gesture area associated with a first operation target having a first reference position and a second gesture area associated with a second operation target having a second reference position by evenly partitioning an angle of view and allocating areas after partition to the first operation target and the second operation target depending on a positional relationship between the first reference position and the second reference position.

(35) The information processing apparatus according to any one of (22) to (31), wherein the control part sets a first gesture area associated with a first operation target having a first reference position, and thereafter, sets a second gesture area associated with a second operation target having a second reference position based on the first reference position and the second reference position.

(36) The information processing apparatus according to any one of (22) to (31), wherein the control part sets a first gesture area associated with a first operation target having a first reference position based on the first reference position and a second reference position of a second operation target which has higher priority.

(37) The information processing apparatus according to any one of (32) to (36), wherein, in a case where the user specifies one of the first operation target and the second operation target, the control part merges a gesture area for the other not specified operation target into a gesture area for the specified operation target.

(38) The information processing apparatus according to any one of (22) to (37),
wherein, in a case where a single operation target exists, the control part sets a gesture area associated with the single operation target across a whole of an available area in the screen, and in a case where the plurality of operation targets exist, the control part sets gesture areas associated with the plurality of operation targets based on the reference positions of the plurality of operation targets.

(39) The information processing apparatus according to any one of (22) to (37), wherein the screen is worn on a head of the user.

(40) An operation control method executed by an information processing apparatus, the operation control method including:
controlling an operation of at least one operation target using at least one gesture area, the at least one gesture area being set in a screen based on reference positions of a plurality of operation targets in the screen and being associated with the at least one operation target, the plurality of operation targets being operable by a user.

(41) A program causing a computer that controls an information processing apparatus to function as:
a control part configured to control an operation of at least one operation target using at least one gesture area, the at least one gesture area being set in a screen based on reference positions of a plurality of operation targets in the screen and being associated with the at least one operation target, the plurality of operation targets being operable by a user.

Reference Signs List

[0107] 100 information processing apparatus
150 recognition part
180 control part
200 server apparatus (information processing apparatus)
RP1, RP2, RP3, RP4, RP5 reference position
GA1, GA2, GA3, GA4, GA5 gesture area
Claims

[Claim 1] An information processing apparatus, comprising:
circuitry configured to
provide a user interface to control a plurality of controllable objects, the
user interface being associated with a gesture recognition area that is
defined by a predetermined detection area of a sensor, the gesture
recognition area being divided into a plurality of gesture recognition
sub-areas based on a number of the controllable objects to be controlled
by the user interface,
detect a predetermined gesture within the predetermined detection area,
determine the gesture recognition sub-area in which the predetermined
gesture is detected, and
perform an operation on one of the controllable objects based on the
detected predetermined gesture and the determined gesture recognition
sub-area in which the predetermined gesture is detected.

[Claim 2] The information processing apparatus according to claim 1, wherein
the one of the controllable objects is a remote controllable device which
is assigned to the determined gesture recognition sub-area, and
the circuitry is further configured to perform the operation by sending a
predetermined command from the information processing apparatus to
the remote controllable device.

[Claim 3] The information processing apparatus according to claim 1, wherein the
circuitry is further configured to allocate, for each of the gesture
recognition sub-areas, a sub-region of the gesture recognition area
based on a center position of the controllable object corresponding to
the respective gesture recognition sub-area.

[Claim 4] The information processing apparatus according to claim 1, wherein the
circuitry is further configured to provide an indication of at least one
candidate gesture and associated candidate operation for one of the
controllable objects.

[Claim 5] The information processing apparatus according to claim 1, wherein the
circuitry is further configured to provide a menu that includes a
plurality of items to be selected by a user,
the menu is associated with a real controllable object in one of the
gesture recognition sub-areas and displayed on a display, and
one of the items is selected based on the predetermined gesture in the
one of the gesture recognition sub-areas assigned to the real con-
tollable object.

[Claim 6] The information processing apparatus according to claim 1, wherein the circuitry is further configured to provide a visual indication of the gesture recognition sub-area in which the predetermined gesture is detected.

[Claim 7] The information processing apparatus according to claim 6, wherein the visual indication of the gesture recognition sub-area is displayed on a display, and the circuitry is further configured to provide a mark indicating one of the controllable objects as a target of the operation on the display.

[Claim 8] The information processing apparatus according to claim 1, further comprising: a display implemented in a head-mounted display unit and configured to present the user interface to a user.

[Claim 9] The information processing apparatus according to claim 1, wherein the plurality of controllable objects includes a virtual object assigned to a first one of the gesture recognition sub-areas and a real object assigned to a second one of the gesture recognition sub-areas, and the circuitry is further configured to provide the user interface to control the virtual object displayed on a display and the real object which is recognized based on an image captured by the sensor at the same time.

[Claim 10] The information processing apparatus according to claim 1, wherein the sensor is a camera.

[Claim 11] The information processing apparatus according to claim 1, wherein the plurality of controllable objects includes a real object, and the circuitry is further configured to set one of the gesture recognition sub-areas based on recognition of a location of the real object.

[Claim 12] The information processing apparatus according to claim 11, wherein the circuitry is further configured to provide the user interface as an overlay superimposed over a user's view of the real object.

[Claim 13] The information processing apparatus according to claim 1, wherein the circuitry is further configured to set a boundary between two of the gesture recognition sub-areas based on relative locations of the controllable objects associated with the two gesture recognition sub-areas.

[Claim 14] The information processing apparatus according to claim 1, wherein the circuitry is further configured to set one of the gesture recognition sub-areas with priority being given to real objects.
[Claim 15] The information processing apparatus according to claim 1, wherein the plurality of controllable objects are prioritized, each of the controllable objects is assigned to one of the gesture recognition sub-areas, and a size of a gesture recognition sub-area associated with a controllable object with a first priority is set larger than that of another gesture recognition sub-area associated with a controllable object having a second priority that is lower than the first priority.

[Claim 16] The information processing apparatus according to claim 1, wherein the circuitry is further configured to divide the gesture recognition area into the plurality of gesture recognition sub-areas based on a predetermined reference position of each of the controllable objects.

[Claim 17] The information processing apparatus according to claim 1, wherein the circuitry is further configured to merge two of the gesture recognition sub-areas or remove one of the gesture recognition sub-areas when another predetermined gesture is detected.

[Claim 18] An information processing system, comprising:
circuitry configured to provide a user interface to control a plurality of controllable objects, the user interface being associated with a gesture recognition area that is defined by a predetermined detection area of a sensor, the gesture recognition area being divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface, detect a predetermined gesture within the predetermined detection area, determine the gesture recognition sub-area in which the predetermined gesture is detected, and perform an operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.

[Claim 19] A method of an information processing apparatus for controlling a plurality of controllable objects, the method comprising: providing, by circuitry of the information processing apparatus, a user interface to control the plurality of controllable objects, the user interface being associated with a gesture recognition area that is defined by a predetermined detection area of a sensor, the gesture recognition area being divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled
by the user interface;
detecting a predetermined gesture within the predetermined detection area;
determining the gesture recognition sub-area in which the predetermined gesture is detected; and
performing, by the circuitry of the information processing apparatus, an operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.

[Claim 20]
A non-transitory computer-readable storage medium storing instructions which, when executed by a computer, cause the computer to perform a method for controlling a plurality of controllable objects, the method comprising:
providing, by the computer, a user interface to control the plurality of controllable objects, the user interface being associated with a gesture recognition area that is defined by a predetermined detection area of a sensor, the gesture recognition area being divided into a plurality of gesture recognition sub-areas based on a number of the controllable objects to be controlled by the user interface;
detecting a predetermined gesture within the predetermined detection area;
determining the gesture recognition sub-area in which the predetermined gesture is detected; and
performing, by the computer, an operation on one of the controllable objects based on the detected predetermined gesture and the determined gesture recognition sub-area in which the predetermined gesture is detected.
Press Release

XXX Computer Entertainment Inc. (XCE) today announced that a new GameStation (GS) computer entertainment system, featuring a new design and a downsized form factor, will become available worldwide at Christmas day.
[Fig. 7A]

G1: FingerTouch

[Fig. 7B]

G2: PalmTouch
[Fig. 7C]

G3a: Swipe (Up)

G3c: Swipe (Left) G3d: Swipe (Right)

G3b: Swipe (Down)

[Fig. 7D]

G4b: PinchIn

G4b: PinchOut
[Fig. 7E]

G5: Wave

[Fig. 7F]

Any

G6: Specific Gesture
Start Browser!

X: REFERENCE POSITION

www.---.com
XXX Computer Entertainment Inc. (XCE) today announced that a new GameStation (GS) computer entertainment system, featuring a new design and a downsized form factor, will become available worldwide at Christmas day.
START

S181
PERFORM REMOTE OPERATION OF REAL OBJECT?

No

Yes

S182
TRANSMIT REMOTE OPERATION SIGNAL TO REAL OBJECT

S183
PERFORM VIRTUAL OPERATION OF REAL OBJECT?

No

S184
GENERATE AR OBJECT EXPRESSING VIRTUAL OPERATION

Yes

S185
PERFORM OPERATION OF DISPLAY OBJECT?

No

S186
PERFORM CORRESPONDING APPLICATION PROCESS

Yes

END
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G06F3/01 G02B27/01

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X wo 2013/033842 AI (TANDEM LAUNCH TECHNOLOGIES INC [CA]; HENNESSEY CRAIG A [CA]; FISE\T JAO)

14 March 2013 (2013-03-14)

the whole document

A Anonymous: "Steve On Java - Flash > Flash Android d Touch Checker”,

19 July 2011 (2011-07-19), XP055102392, Retrieved from the Internet:

page 6

/*

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or one which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search

17 February 2014

Date of mailing of the international search report

27/02/2014

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

De Meyer, Arnaud

Authorized officer

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 2013033842 A I</td>
<td>14-03-2013</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2011138285 A I</td>
<td>09-06-2011</td>
<td>TW 201120685 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011138285 A I</td>
</tr>
<tr>
<td>US 2008150899 A I</td>
<td>26-06-2008</td>
<td>AU 2003291304 A I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004128012 A I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008150899 A I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2004044664 A I</td>
</tr>
</tbody>
</table>