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(57) Abstract

A method of deriving output data from information relating
to the transmission of messages by an entity over time, using a
predictive model, such as a neural network, uses the steps of:
(i) creating a first signature comprising a plurality of parameters
related to the transmission of the messages over a predetermined
first time period, wherein the signatures are created in one of
a plurality of predetermined possible formats; (ii) dynamicaily
configuring said model at least according to the format of the
signatures; and (iii) deriving the output data from the information
by inputting the signature to the model. Application in fraud
detection using call detail records.
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GENERIC PROCESSING CAPABILITY

FIELD OF THE INVENTION
This invention relates to methods of deriving output data from information

relating to the transmission of messages, to corresponding systems and to
software in computer readable form, for such systems and methods.

BACKGROUND OF THE INVENTION

Anomalies are any irregular or unexpected patterns within a data set. The
detection of anomalies is required in many situations in which large amounts of
time-variant data are available. For example, detection of telecommunications
fraud, detection of credit card fraud, encryption key management systems and
early problem identification.

One problem is that known anomaly detectors and methods of anomaly
detection are designed for used with only one such situation. They cannot
easily be used in other situations. Each anomaly detection situation invoives a
specific type of data and specific sources and formats for that data. An anomaly
detector designed for one situation works specifically for a certain type, source
and format of data and it is difficult to adapt the anomaly detector for use in
another situation. Known methods of adapting an anomaly detector for used in
a new situation have involved carrying out this adaptation manually. This is a
lengthy and expensive task requiring specialist knowledge not only of the
technology involved in the anomaly detector but also of the application domains
involved. The risk of errors being made is also high.

Another problem is that a particular method of anomaly detection is often most
suitable for one particular situation. This means that transfer of a particular
anomaly detector to a new situation may not be appropriate unless core
elements of the anomaly detector method and/or apparatus are adapted. This is
particularly time consuming and expensive particularly as the development of a
new anomaly detector from scratch may often be necessary.

One application for anomaly detection is the detection of telecommunications
fraud. Telecommunications fraud is a multi-billion dollar problem around the
world. Anticipated losses are in excess of $1 billion a year in the mobile market
alone. For example, the Cellular Telecoms Industry Association estimate that in
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1996 the cost to US carriers of mobile phone fraud alone is $1.6 miliion per day,
projected to rise to $2.5 million per day by 1997. This makes telephone fraud an
expensive operating cost for every telephone service provider in the world.
Because the telecommunications market is expanding rapidly the problem of
telephone fraud is set to become larger.

Most telephone operators have some defence against fraud aiready in place.
These are risk limitation tools such as simple aggregation of call-attempts, credit
checking and tools to identify cloning, or tumbling. Cloning occurs where the
fraudster gains access to the network by emulating or copying the identification
code of a genuine telephone. This results in a multiple occurrence of the
telephone unit. Tumbling occurs where the fraudster emulates or copies the
identification codes of several different genuine telephone units.

Methods have been developed to detect each of these particular types of fraud.
However, new types of fraud are continually evolving and it is difficult for service
providers to keep “one-step ahead” of the fraudsters. Also, the known methods
of detecting fraud are often based on simple strategies which can easily be
defeated by clever thieves who realise what fraud-detection techniques are
being used against them.

A number of rule-based systems have been developed, however, they have a
series of limitations. It is now being acknowledged that each corporate and
individual customer will show different behaviour, and thus a simple set of rules
is insufficient to adequately monitor network traffic. To adapt these rule-based
systems to allow each customer to have their own unique thresholds in not
possible due to the sheer volumes of data involved.

There are a number of difficulties with identifying fraud, namely:

¢ Fraud is dynamic by nature; fraudulent behaviour will change over time.

e The size of the problem area is vast, due to the number of users on a
network, and the number of calls made.

¢ Rapid identification of fraud is needed; losses from a given case of fraud tend
to grow exponentially.

e Some forms of fraud are particularly costly and should therefore be the
subject of special attention e.g. international phone calls.

e Customer transparency; a customer should not see the fraud detection
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system in action.

Another method of detecting telecommunications fraud involves using neural
network technology. One problem with the use of neural networks to detect
anomalies in a data set lies in pre-processing the information to input to the
neural network. The input information needs to be represented in a way which
captures the essential features of the information and emphasises these in a
manner suitable for use by the neural network itself. The neural network needs
to detect fraud efficiently without wasting time maintaining and processing
redundant information or simply detecting “noise” in the data. At the same time
the neural network needs enough information to be able to detect many different
types of fraud including types of fraud which may evolve in the future. As well
as this the neural network should be provided with information in a way that it is
able to allow for legitimate changes in behaviour and not identify these as
potential frauds.

A particular problem for any known method of detecting fraud is that both static
classification and temporal prediction are required. That is, anomalous use has
to be classified as such, but only in relation to an emerging temporal pattern.
Over a period of time an individual phone will generate a macroscopic pattern of
use, in which , for example, intercontinental calls may be rare; however within
this overall pattern there will inevitably be violations - on a particular day the
phone may be used for several intercontinental calls. A pattern of behaviour
may only be anomalous relative to the historical pattern of behaviour.

Another problem is that a particular type of information to be analysed by a
neural network is often in a variety of formats. For example, information about
individual telephone calls is typically contained in call detail records. The
content and format of call detail records differs for different telecommunications
systems and this makes it difficult for such information to be input directly to a
neural network based system.

A further problem is that once information has been provided for input to a
neural network based system it is often not suitable for other purposes. For
example, when a neural network system is being used to detect fraudsters much
information about the behaviour of customers is prepared for input to the
system. This information could also be used for marketing purposes to develop
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a much more detailed understanding of customer behaviour. However, this is
often not easy to effect because of the format of the data.

One problem with known methods of fraud detection is that they are often
unable to cope adequately with natural changes in the input data. For example,
a customer's telephone call behaviour may change legitimately over time; the
customer may travel abroad and make more long distance calls. This should
not be detected as an anomaly and be classified as a potential fraud. Because
the telecommunications market size is increasing, this is a particular problem for
fraud detection in telecommunications.

Known methods of anomaly or fraud detection which have used neural networks
involve first training the neural network with a training data set. Once the
training phase is over the neural network is used to process telecoms data in
order to identify fraud candidates. As the behaviour of customers evolves, new
data input to the neural network may be widely different from the original training
data set. In these circumstances the neural network may identify legitimate new
patterns in the data as anomalies.  Similarly, real cases of fraud may go
unidentified. In this situation it is necessary to retrain the neural network using
an updated training data set which is updated to reflect new features of the data.

Several problems arise as a result of this need for retraining. For example, a
decision needs to be made about when to retrain.  Typically this complex
decision is made by the user who requires specialist knowledge not only about
telecoms fraud but also about the neural network system. Because telecoms
fraud is an on-going problem which takes place 24 hours a day, 7 days a week,
it is often not possible for an expert user to be available. This means that the
system may "under perform" for some time before retraining is initiated.

Another problem is that the performance of the neural network system needs to
be monitored in order to determine when the system is "under performing”. This
can be a difficult and lengthy task which takes up valuable time.

Another problem is that the process of retraining is itself a lengthy and
computationally expensive process. Whilst retraining is in progress it is not
possible to use the neural network system to detect anomalies. This means
that telecoms fraud may go undetected during the retraining phase. Also, the
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retraining process may take up valuable processing resources which are
required for other tasks- This is especially important in the field of
telecommunications where it may be required to site the neural network system
at a busy switch or node in the telecommunications network.

A further problem is that intervention and input from the user is typically required
during the retraining process. This can be inconvenient when it is necessary to
retrain quickly and also requires a trained user to be available.

SUMMARY OF INVENTION
It is accordingly an object of the present invention to provide an apparatus and

method which overcomes or at least mitigates one or more of the problems
noted above.

According to a first aspect of the present invention, there is provided a method
of deriving output data from information relating to the transmission of messages
by an entity over time, using a predictive model, comprising the steps of:

(i) creating a first signature comprising a plurality of parameters related to the
transmission of the messages over a predetermined first time period, wherein
the signatures are created in one of a plurality of predetermined possible
formats;

(i) dynamically configuring said model at least according to the format of the
signatures; and

(iii) deriving the output data from the information by inputting the signature to the
model.

This provides the advantage that the method can easily be reused in a variety of
situations. For example, anomaly detection for detecting telecommunications
fraud could be one situation and anomaly detection for detecting credit card
fraud could be another situation. In these two cases the tasks vary in many
respects; the input data is of a different type and will be provided in different
formats and from different sources. The method can be used in different
situations such as these so that development times and costs are reduced and
the likelihood of errors occurring in the method are reduced.

According to another aspect of the invention, there is provided a method for
deriving output data from information relating to the transmission of messages
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by an entity over time, using a neural network, comprising the step of
automatically creating the neural network in one of a plurality of possible
configurations.

Preferably, the said configuration step further comprises adjusting the topology
of the neural network. This provides that advantage that the neural network
topology can easily be adapted to best suit different situations in which the
method is used. Advantageously, the neural network topology is adapted to
provided the best anomaly detection ability.

Preferably, the parameters comprise at least one parameter related to the
transmission of messages over a portion of the period and also related to the
position of the portion in the period, such that in use anomalies may be detected
in the stored information. This provides the advantage that information about
both a macroscopic pattern of behaviour over the whole time period and a
microscopic pattern of behaviour over part of the time period can be stored.
Lengthy processing times for signature creation and storage are avoided and
redundant information is kept to a minimum. Advantageously, anomalies in the
stored data can more easily be detected in relation to an emerging temporal
pattern. A further advantage is that the stored data is available for other
purposes, for example marketing, forecasting and other types of planning.

Preferably, the signature is created in one of a plurality of predetermined
possible formats. This provides the advantage that the stored signatures are
suitable for a variety of purposes. For example, the signature can be provided
as inputs to a number of different neural network instantiations.

Advantageously, the method comprises the steps of:

(i) creating a first signature comprising a plurality of parameters related to the
transmission of messages over a predetermined first time period,

(ii) creating a second signature comprising a plurality of parameters related to
the transmission of messages over a second period shorter than the first and
more recent than the first;

(iii) updating the first signature by a weighted averaging with the second
signature; and

(iv) comparing the second signature with the updated first signature.

This provides the advantage that the stored information can be updated with
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more recent information in order that any emerging temporal patterns in the
information can be allowed for.

Preferably, said step (iii) of updating the first signature by a weighted averaging
with the second signature further comprises the steps of:

(i) determining a third signature comprising a plurality of parameters related to
the transmission of messages over a third period shorter than the second and
more recent than the second; and (ii) updating the second signature by a
weighted averaging with the third signature such that in use an up-to-date
comparison of the second signature with the first signature can be obtained.
This provides an advantage when the first and second signatures are provided
as inputs to a process that requires first and second signatures of a fixed format.
Available information that cannot be incorporated into the first signature can be
incorporated into the second signature.

Advantageously the method comprises the steps of:

(i) inputting a series of inputs to the neural network so as to obtain a series of
corresponding outputs;

(ii) inputting a set of target output values corresponding to a subset of the
outputs;

(iii) generating a set of training data which comprises information about the
target output values;

(iv) determining when a predetermined threshold which relates to the level of
correspondence between the output values and their respective target output
values is reached,;

(v) automatically retraining the neural network using the set of training data.

This provides the advantage that it is not necessary for the user to make a
decision about when to retrain. This removes the need for an expert user to be
available to maintain the system while it is in use. Also, the retraining process
itself is automatic so that valuable operator time is not wasted in performing a
manual retrain. A further advantage, is that by making retraining automatic it is
ensured that the outputs of the neural network are as accurate as possible.

Advantageously the method comprises the steps of:
(i) inputting a series of inputs to the neural network so as to obtain a series of
corresponding outputs;
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(i) inputting a set of target output values corresponding to a subset of the
outputs; and _

(iii) comparing the output values with their respective target output values to
produce a value indicative of the accuracy of the output values. This provides
the advantage that a value is produced which indicates the performance of
the neural network which is easy to interpret by a non-expert user. it is not
necessary for a user who has specialist knowledge about the neural network
system to evaluate the performance of the neural network manually.

Advantageously, the method comprises the steps of:

(i) inputting a series of inputs to the first neural network so as to obtain a series
of corresponding outputs;

(ii) inputting a set of target output values corresponding to a subset of the
outputs;

(iii)generating a set of training data which comprises information about the target

output values;

(iv) determining when a predetermined threshold which relates to the level of
correspondence between the output values and their respective target output
values is reached;

(v) when the predetermined threshold is reached, creating a second neural
network of the same topology as the first;

and retraining the second neural network using said set of training data such
that it is possible to continue processing the input data using the first neural
network whilst the second neural network is being retrained. This provides the
advantage that the first neural network can be used to process the data whilst
the second neural network is being retrained. Also, the second neural network
may be retrained using separate processing resources from those used by the
first neural network. For example, it is possible to train the second neural
network at a quiet node in a communications network whilst the first neural
network processes data at a busy node.

Advantageously, if the neural network is implemented using an object oriented
programming language the objects can be converted into a form that can be
stored, using a persistence mechanism. Once converted into data structure
format the data structure can be moved between processors which may be
nodes in a communications network for example. This provides the advantage
that the neural network can be moved to a quiet node to be trained. Also in the
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event of a system crash or other such event, a stored version of the neural
network can be retained and then recreated into object form when the system is
up and running again.

According to other aspects of the invention, there are provided corresponding
systems.

Preferred features as set out in the dependent claims may be combined with
each other or with any aspect of the invention as appropriate, as would be
apparent to a person skilled in the ant.

BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be further described, by way of example, with reference to the
accompanying drawings in which:

Figure 1 is a general schematic diagram of an arrangement for the detection of
anomalies in data relating to the transmission of messages in a communications
network.

Figure 2 is a general schematic diagram indicating how the anomaly detection
engine is used with other components to create an anomaly detection
application.

Figure 3 shows the main components of an anomaly detection engine (ADE)
and the flow of information between these components.

Figure 4 shows the main components of the engine administrator and the flow of
information between these components.

Figure 5 is a general schematic diagram of an arrangement for the detection of
anomalies in data relating to the transmission of messages in a communications
network.

Figure 6 is a general schematic diagram indicating how signatures are created.
Figure 7 is a general schematic diagram indicating the process of profile decay.
Figure 8 is a general schematic diagram indicating the process of profile decay.
Figure 9 is a general schematic diagram indicating the process whereby each
new type of call detail record inherits from a base class.

Figure 10 shows an example of a call detail record specification.

Figure 11 shows an example of a target call detail record format.

Figure 12 shows an example of a profile/signature.

Figure 13 is a general schematic diagram indicating the different time periods
used in calculating the day/night period.
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Figure 14 is a general schematic diagram of an arrangement for the detection of
anomalies in data relating to the transmission of messages in a communications
network.

Figure 15 is a flow diagram indicating how previously-validated candidates are
retained.

Figure 16 is a flow diagram indicating how automatic retraining using a daughter
neural network takes place.

Figure 17 shows an example display screen provided by the GUI (Graphical
User interface).

Figure 18 shows another example display screen provided by the GUL.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention are described below by way of example
only. These examples represent the best ways of putting the invention into
practice that are currently known to the Applicant although they are not the only
ways in which this could be achieved.

Definitions:

Call detail record (CDR) - this is a set of information about an individual
telephone call. For example, information such as the account number, the date
and time of the call, whether it was long distance or local etc. A CDR is created
whenever a phone call is completed. The content of a CDR may vary for
different telecommunications systems.

CDR interpreter - this examines CDRs and extracts those fields necessary for
anomaly detection.

Detection poll period - this is a time interval during which information is collected
for input to the anomaly detector.

Profile/signature - this is a set of information summarising and describing the
behaviour of an individual customer or account number over a given time period.
Anomaly - this is any irregular or unexpected pattern within a data set.

FCAPS Application Frameworks - systems for fault management, configuration
management, accounting management, performance management and security
management in a communications network.

Topology of a neural network - this is the number of units in the neural network,
how they are arranged and how they are connected.

Kernel - this is the part of the anomaly detector which detects anomalies and
performs many other functions.
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Graphical user interface (GUI) - this provides means for communication between
the user and the anomaly detector using display screens.

Figure 1 shows schematically how an anomaly detector 1 can be used to receive
information 2 about the transmission of messages in a communications network
3 and provide reports 4 about potential anomalies in the input data. The
particular instantiation of the anomaly detector 1 is created using a generic
anomaly detection engine (ADE) as shown in figure 2. This gives the advantage
that the anomaly detection engine 20 is a reusable component which can be
used in different individual applications.

Figure 2 shows the anomaly detection engine 20 which contains neural network
components 21. The neural network components 21 learn patterns in the input
information 2 and detect differences in these patterns - the anomaly candidates.
The ADE 20 also comprises many other components for example, an engine
administrator which is also referred to as an ADE manager.

The ADE 20 is used in conjunction with application specific software 22. This is
software which performs any data transformations that are needed in order to
convert the network data 2 to be analysed into a format that the ADE 20 can
use. The application specific software 20 also includes software to perform a
validation of the anomaly candidates detected and also any software to convert
the ADE'’s results into actions to be performed. If the ADE is embedded in a
network manager 23 then the application specific software 22 includes interface
software to allow the ADE to be embedded in this way.

Before the ADE can be used it must be instantiated and integrated into the
user's environment. By using an ADE component 20 in conjunction with
application specific software 22 a particular instantiation of an anomaly detector
1 is created. This process of creating a particular anomaly detector is referred to
as instantiation. Following instantiation, the ADE is integrated into the user’s
environment. For example, a graphical user interface (GUI) 7 is added to the
ADE to create a stand-alone application such as that shown in Figure 1.
Alternatively, the ADE is integrated into existing software such as a network
manager 23, which communicates directly with the ADE. The instantiated
anomaly detector can be used by only one element in a communications
network 3 or alternatively it may be used by different network elements. For
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example, by embedding an ADE in an FCAPS application framework an
anomaly detector suitable for use by different communications network elements
is obtained.

As previously described the ADE contains neural network components 21 which
learn the data patterns or behaviour and detect the differences in the behaviour -
the anomalies. For a particular anomaly detection situation a particular neural
network topology will be most suitable. Also, the neural network needs to be
trained in order to have a set of weights that enable anomalies in the input data
to be detected. If the ADE is simply reused in a new situation the topology and
weights of the neural network components 21 may not be appropriate for the
new situation. In order to get round this problem when an ADE is instantiated to
form a paricular anomaly detector the topology of the neural network
components 21 can be automatically adjusted. The neural network components
21 can then be trained or retrained to achieve a desired set of weights. This
provides the advantage that the ADE can be used in a variety of situations. The
ADE can be applied “cross-product” and “cross-data layer’. Cross-product
means that the ADE can be applied to more than one type of communications
network product. Cross-data layer means that the ADE can be applied to data
gathered from the various layers of the communications network.

A general overview of how the ADE detects anomalies is now given by way of
example. The ADE receives input information 2 about the transmission of
messages in a communications network 3. This information 2 is in the form of
call detail records (CDR'’s) and is processed by the ADE to form profiles (also
referred to as signatures). A profile is a set of information summarising and
describing the behaviour of an individual customer or account number over a
given time period. Historic and recent profiles are formed where an historic
profile relates to the behaviour of an individual customer over a certain period of
time and a recent profile relates to the behaviour over a shorter and more recent
period of time. The historic profiles are assumed to represent non-anomalous
behaviour. By comparing the historic and recent profiles using the neural
network components 21 anomalies in the recent profile are detected. Many
pairs of historic and recent profiles are created and compared and over time the
historic profiles are updated with non-anomalous information from the recent
profiles.
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Before anomaly detection can take place the neural network components 21
must be trained. The neural network components comprise a multi-layer
perceptron neural network. This neural network is trained using a supervised
training method. This involves inputting a training data set to the neural network
so that the neural network is able to build up an internal representation of any
patterns inherent in the data. The training data set contains profiles and
information about whether these profiles are anomalous or not. This allows that
neural network to learn the typical and exceptional behaviour profiles that occur
in the network data and to classify them accordingly. Once the neural network
has been trained it is validated to check that the training has been successful.
This is done by presenting a new set of profiles, that are known to be anomalous
or not, to the trained neural network. The outputs of the neural network are then
compared with the expected outputs.

The successfully validated neural network can then be used to detect
anomalies. New communications network data is presented to the ADE which
uses the new data to form recent profiles. The neural network then compares
the recent profiles with the historical profiles in order to detect anomalies. If
there is a difference between the recent and historical profiles then the neural
network can indicate whether this is due to anomalous behaviour by the system
or whether it is simply due to an acceptable change in the behaviour profile. If a
pattern of data that has never been encountered before is presented to the
neural network then the neural network produces a best-guess result.

As time passes since the neural network was trained general trends in the data
from the communications network occur. These trends are not taken account of
by the neural network because the neural network was not trained on this data.
In order to get round this problem the neural network can be retrained. This
process can be carried out automatically using suitable application specific
software.

As the ADE is used, further information about whether anomaly candidates
produced by the ADE are real anomalies or not may be obtained by the user.
Provision can be made for this information to be input to the ADE and used to
update the training data set and various other information. This process is
described in more detail below.
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Main ADE components

The main components of the ADE are now described and later the processes of
instantiating an ADE and integrating it ready for use are described in detail with
reference to examples. Figure 3 shows the main components of the ADE and
also the flow of information between these components. The main components
comprise:

¢ a profile generator 31;

¢ a profile decay process 32;

e a data transformer 33;

e an engine administrator 34;

e and a detector 35.

The ADE comprises all components inside the boundary 30 in figure 3. The
area outside the boundary 30 refers to the particular instantiation of the ADE in
application specific software. Data about the transmission of messages in a
communications network that has been pre-processed into a specific format 36
is input to the profile generator 31. The profile generator 31 forms historic and
recent profiles or signatures 37,38 of the input information 36. If necessary the
historic profiles are updated with information from the recent profiles using the
profile decay process 32. Information about whether anomaly candidates
produced by the anomaly detector are really anomalies or not 39 can be input to
the ADE and used to update the profiles and for other purposes. These
processes are described further below.

Once the recent profile 37 and the historic profile 38 have been created and
updated as required, they are input to the data transformer 33 which transforms
them into a format required by the detector 5. For example, a recent profile and
a historic profile pair may be concatenated, or the difference between the two
profiles may be caiculated. Other transformations are also possible. The
transformed data 40 is used by the engine administrator 34 and the detector 35.

engine administrator

The engine administrator, also referred to as an ADE manager, is responsible
for the following tasks:

1. training and/or retraining the neural network;

2. evaluating the performance of the ADE;

3. creating the neural network;
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4. managing and maintaining a training data set and an evaluation or validation
data set.

As shown in figure 4 the engine administrator 34 comprises a data manager 41;
a training /retraining processor 42; an evaluator 43; and a processor for creating
a neural network 44.-

Data manager 41

The data manager 41 maintains two data sets: an evaluation data set 45, and an
example data set 46 which is also referred to as a training data set. The data
manager receives inputs of detection data 40 and validated results 48. The
validated results comprise information about whether anomaly candidates
identified by the neural network 47 are real anomalies or not. These validated
results 48 are also referred to as “profile identification and category” information;
they are used to update the example data 46, the evaluation data 45 and for
other purposes as described below. The evaluation data set 45 is created by
splitting the detection data set 40 into two parts; an evaluation data set 45 and
an example or training set 46. Both these sets of data contain profiles and
information about whether each profile in the set is anomalous or not.

The example or training data set 46 is used to train the neural network 47 using
the training processor 42. Adding new examples of anomalous behaviour 48 to
this data set enables the detection to be updated with new information. This
aids the general performance of the ADE; examples from false positive
identifications can be added to the example data set to reduce the probability
that the false identification recurs. Adding results from positive identifications
reinforces the ability of the neural network 47 to make similar positive
identifications.

Training/retaining process 42

The training process enables the ADE to leamn, or releamn, a particular task. To
obtain the optimum performance from the ADE, a representative data set 46
needs to be presented during training. This training data set 46 should include
examples of anomalous events as well as non-anomalous events and preferably
in a proportion that is representative of the data set to be analysed by the ADE.
The neural network 47 is trained using a learning algorithm. Many different
learning algorithms can be used and in a preferred example a non-
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parameterised learning rule, the known scaled conjugate gradient algorithm, is
used. Condition parameters 49 are input to the training/retraining process 42.
These parameters can be input by the user or may be predefined. They include
information specific to the training/retraining process such as how many training
epochs should be carried out and whether early stopping should be invoked.
Retraining can be carried out automatically without intervention by the user as
described below. This is done by using specially adapted application specific
software. The process of retraining can involve the creation of a second neural
network that has the same topology as the original neural network 47 and
retaining the second network. This is described in detail below.

Performance evaluator 43

Once the ADE has been trained, a validation process 43 is used to determine
the performance that the ADE has for the particular task. The performance of
the ADE is determined by presenting the evaluation data set 45 to the neural
network 47 using the performance evaluator 43. The evaluation data set 45
contains profiles and information about whether these profiles are anomalous or
not. The profiles are presented to the neural network 47 and the anomaly
candidates produced by the neural network 47 are compared with the expected
outputs by the performance evaluator 43. The performance evaluator 43 then
calculates a value 50 which indicates the level of similarity between the actual
and expected outputs of the neural network. This value 50 is then provided to
application specific software 51.

neural network creation process 44

For each instantiation of the ADE a separate neural network 47 is required. The
neural network creation process 44 creates a neural network of a given internal
architecture. The creation process 44 creates a multi-layer perceptron (MLP)
that is either fully connected or not fully connected. The MLP can be created
with different numbers of input, output and hidden units. The number of hidden
layers can also be varied. It is not essential that the creation process create a
multi-layer perceptron type neural network. Other types of neural network such
as a self-organising map could be created and used to detect anomalies.

Detector 35
Once the data from the two profiles has been prepared, the neural network has
been created and evaluated by the administrator 34, the neural network 47 is
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simply presented with the new detection data 40. Referring to figure 3, the
detector 35 receives the detection data 40 and using the trained and validated
neural network 47 carries out the detection process to produce potential
anomaly candidates 41. The neural network classifies each recent profile either
as an anomaly or not and the neural network 47 also gives an associated
confidence value for each classification. Anomaly threshold parameters 52 are
input to the detector 35 from application specific software. These parameters 52
are used to filter the potential anomaly candidates 41 to remove the majority of
false positive identifications. For example, all anomaly candidates with a very
low confidence rating could be filtered out.

Instantiating and integrating the ADE to form a specific anomaly detection
application

The ADE is a library of software components which can be used to detect
anomalies in data about the transmission of messages in a communications
network. The components need to be tailored for each specific application and
once instantiated form an engine which can then be integrated into a software
system. The ADE has an application programming interface (API). The
application specific software 22 communicates with the ADE via this API.

Application programming interface (API)

The API enables 8 different method calls to be made on the ADE from the
application specific software 22. That is 8 different instructions can be given to
the ADE including:

CreateAnomalyDetector

. TrainAD

. PerformDetection

. EvaluatePerformance

. SwitchADs

. AddKnowledge

. UpdateProfiles

. DeleteAD

0N O WD =

These instructions are examples only and other types of instructions could be
used. Each of these 8 instructions are now described:

CreateAnomalyDetector
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This instruction requires that information about the location of an anomaly
detector creation specification and a training data set is supplied when the
instruction is made. This information is supplied by the application specific
software 22, for example, it may be input by the user through a GUl. When this
instruction is given to the ADE an anomaly detector is created which includes a
neural network based on the creation specification and the training data set.
The anomaly detector creation specification contains information about the
minimum size for the training data set as well as other information as described
below. Once the anomaly detector has been created a signal is returned to the
application specific software 22 to indicate that the neural network is ready.

TrainAD

This instruction causes the training/retraining process 42 to train or retrain the
neural network using the training data set and any retraining data that is
available. Once the neural network has been trained or retrained information is
sent back to the application specific software. This includes information about
the location of the trained/retrained neural network and a classification error.
The classification error is a value which indicates the proportion of inputs that
were misclassified by the neural network during an evaluation of the
performance of the neural network.

PerformDetection

This instruction requires that information about the location of a detection data
set 40 is provided to the ADE. When this instruction is given the detector 35 in
the ADE performs a detection using the supplied detection data set. This is the
normal mode of operation for the engine. A series of real presentations are
supplied, which the neural network attempts to classify as being anomalies or
not. When the detection is completed the ADE returns a data set to the
application specific software 22. This is a list showing which category (anomaly
or not) the ADE classified each input into together with a confidence rating for
each classification.

EvaluatePerformance

When this instruction is given to the ADE the performance evaluator 43 carries
out an evaluation using the evaluation data set 45. When the performance
evaluation is completed a classification error is returned to the application
specific software. This gives an indication as to how many mis-classifications
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were made by the neural network. A mis-classification occurs when the neural
network returns a detection result based on a known input-output pair, which
does not match the correct output for that particular input.

SwitchADs

When this instruction is given to the ADE a recently trained second neural
network (that was created during the retaining process and is contained in a
second anomaly detector) is switched with the current active neural network.
That is, the current active neural network is replaced by the newly trained neural
network. If a switch is attempted before a second neural network has been
created an error message is returned to the application specific software 22.

AddKnowledge

This instruction requires that information about the location of a data set
containing validated results 48,39 is provided with the instruction. When the
instruction is given, a retraining data set is created or updated within the ADE
using the new information. When the updating process is completed information
about the location and existence of the retaining data set is returned to the
application specific software.

UpdateProfiles

This instruction requires that information about the location of the presentation
data set to be provided when the instruction is given. When the instruction is
given the historic profiles are updated using information from the recent profiles
using the profile decay process 32. When the updating process is completed
information about the location of the updated presentation data set is returned to
the application specific software 22. It is also possible for the recent profiles to
be updated with current information as described below.

DeleteAD
When this instruction is given the anomaly detector is deleted. Any memory that
was used to store the anomaly detector is released.

Preferably the APl (and the ADE) is created using an object oriented
programming language such as C++. An object referred to as an
ApplicationBridge object is provided which makes available each of the 8
methods or instructions described above. Each of the 8 methods has an
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associated valid “return event” method. In order to add further capabilities
required by a specific application the user must create further software which
inherits from the ApplicationBridge object and overloads the return event
methods. It is not essential however for the API and indeed the ADE software to
be created using an object oriented programming language. Other
programming languages could be used. '

Anomaly detector creation specification

This contains three parameters and information about the location of a neural

network creation specification. Preferably the anomaly detector creation

specification is an object created using an object oriented programming
language. It is used by the ADE to instantiate all the C++ objects. The three
parameters are:

1. an update factor - this specifies the update factor that is to be used in the
algorithm for updating profiles as described below.

2. a retrain factor - this is a threshold which must be met before retaining takes
place. For example, it can be the proportion of retraining data to original
training data required in order to make it worthwhile retraining.

3. a minimum training data parameter - this is a threshold which must be met
before training occurs. It reflects the confidence in the training data and the
neural network’s ability to train on a restricted data set. This value is the
minimum amount of original training data required before the neural network
will be trained.

In order to produce an anomaly detector creation specification it is necessary to
first construct a neural network creation specification.

Neural network creation specification

The neural network creation specification contains information about the location
of two other specifications, the layered network specification and the network
trainer specification. Preferably the neural network creation specification is
formed using an object oriented programming language and is linked to the
anomaly detector creation specification object, a layered network specification
object and a network trainer specification. The layered network specification
and the network trainer specification should be created before the neural
network creation specification.
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Layered network specification

This contains the specification for a particular type of layered neural network. A
list of three values is given which specify:

1. the number of units in the input layer;

2. the number of units in the hidden layer;

3. the number of units in the output layer.

A list of weights can also be given. This is a list of values for each of the
weights between the connections in the neural network. If the specification is for
a trained neural network then a list of weights must be given. If the specification
is for an untrained neural network then no weights are necessary. The number
of input units is determined with reference to the number of attributes of the
input data that are deemed significant. The number of units in the hidden layer
can be determined either empirically or by statistical analysis using known
methods. The number of units in the output layer depends on the number of
classifications the user requires for the particular task. It is also possible to
specify whether the neural network should have a fully-connected architecture or
a partially connected architecture. If a partially connected architecture is
selected the specific connections are specified in the list of weights.

Network trainer specification

This contains information required by the neural network during training. 7

parameters are included:

1. target error - this is a threshold error value which must be achieved before
training stops. If the target error is set to 0 then the threshold is ignored. The
target error is specified as the sum of squared errors over the training set.
That is, the training set is presented to the neural network and the output
values are subtracted from the expected output values to give a set of errors.
The sum of the squares of these errors is then calculated.

2. percentage validation - this specifies the percentage of training data that will
be regarded as validation data and will not be used for training. This
parameter is only significant if early stopping is used.

3. is-early-stopping-required - this is a Boolean value which indicates whether
training should be stopped early in order to achieve generalisation. in most
cases this is set to true. Early stopping means stopping the training process
earlier than usual so that overfitting does not occur. If the neural network is
trained too much it will not be so good at generalising or producing “best
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guess” results when new data is presented. This is because the training data
has been overfitted or learnt too specifically.

4. number_of _training_cycles - this specifies the number of training cycles that
will be performed. If this value is set to zero the neural network is retrained.
That is, the weights are not randomised before training begins.

5. random_seed - this seeds the random number generator that is used to
initialise the weights and choose the validation set. When this value is set to -
1 the random number generator is seeded using a value derived from the
system clock. This maximises the unpredictability of the generated numbers
and is the usual value for this parameter. When this value is set to a positive
number this value is used as the seed. This option is intended for purposes
such as regression testing and debugging where the same sequence of
pseudo-random numbers may be required every time.

6. max_number_of_steps - this parameter specifies the maximum number of
steps that the trainer can take. If this parameter is set to zero then this test is
ignored. This is the usual value for this parameter. A non zero value
indicates the number of steps at which to stop a training cycle if it has not
stopped previously for some other reason.

7. fractional_tolerance - this value indicates a threshold for the amount of
improvement that should occur as a result of one training step. When the
threshold is reached training stops. A zero value indicates that training
should stop when a step produces an effect that is small compared with the
accuracy of the floating-point calculations. A non zero value indicates that
training should stop when the relative improvement as a result of a step is
below the value given. For example, values in the range 10-2 to 10-6 are
suggested.

The ADE is generic in nature and requires an additional layer of instantiation
software (or application specific software 22) to provides further functionality.
For example, the instantiation software may provide a GUI, data pre/post
processing and interfaces to the external world. As a minimum requirement the
application specific software must allow the user to give any of the 8 APl method
instructions or calls to the ADE. The parameters required by each method call
must also be provided in the correct format. For example, historic and recent
profiles must be of a specified format, as must any specifications and data sets.

The process of instantiating an ADE will now be described by way of example.
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In this example the ADE is to be instantiated and used to detect fraudulent
usage on a mobile telephone or fixed telephone network. Also, the data to be
analysed by the ADE is in the form of call detail records which have been pre-
processed into the format required by the ADE.

The steps involved in the instantiation process include:

e arrange for the application specific software to supply the CDRs in the correct
format to the ADE

e create an anomaly detector creation specification (this includes the step of
creating a neural network creation specification);

¢ create the anomaly detector;

e create the training data set, validation data set and presentation data set;

¢ ftrain the neural network;

When these steps have been performed the instantiated ADE is ready to detect
fraudulent telephone accounts. The application specific software should also be
arranged to allow the other instructions or method calls (add knowledge; retrain;
switch; delete) to be sent to the ADE.

create an anomaly detector creation specification

This entails determining the values for the various parameters. In this example
the ADE is formed using an object oriented programming language. In this
cases a call is made on an anomaly detector creation specification object
constructor. This causes the anomaly detector creation specification to be
created. The parameters should be calculated prior to the creation of the
anomaly detector and inserted into the anomaly detector creation specification.
The optimum set of parameter values should be used in order to obtain the best
detection results. For example, the number of output units for the neural
network is determined according to the type of data being analysed. For fraud
detection two output units can be used, one for fraud and one for non-fraud.
The analysis of raw network data is required to help in the definition of the key
attribute/fields and values that are needed for the anomaly detector
specification.

create the anomaly detector
The anomaly detector objects are created by giving an instruction to start the
CreateAnomalyDetector method and supplying information about the location of
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the anomaly detector specification and training data set.

Create the training data set, validation data set and presentation data set

The CDR data must be transformed in order to produce the training, validation

and detection data sets. One approach for doing this involves:

¢ splitting the CDR data into 3 sets, training, validation and detection, whereby
the training set is substantially larger than the validation set

¢ deciding on small arbitrary window sizes for the historical and recent profiles.
The term window size refers to the time period over which the profiles
represent telephone call behaviour. For example, for a 3 month supply of
CDR data, the historical window size could be 5 days and the recent window
size could be 0.5 days.

e Selecting attributes from the CDR data and forming the profiles as well as
labelling each profile as to whether it is fraudulent or not.

e Training the neural network with the new training data set and observing the
detection results.

¢ |f the neural network performance appears relatively low, gradually increase
the window sizes and retrain.

o |f the neural network performance reaches a level required by the user then
the window sizes are deemed correct and are used for profiles in all data
sets.

The creation of a historic profile for a new customer account needs to be done at
the instantiation layer (application specific software). The historic profile should
be a direct copy of the recent profile with a label to indicate that it is a new
customer account. Also, data for a profile needs to be consecutive, i.e. if it is
determined that a recent profile required 5 hours of data, then 5 consecutive
hours need to be used for the recent profile, not just any 5 hours. This means
that gaps in the CDR data may cause problems. However, this depends on the
relative size of the “gap”. For example, if there is a one hour gap in a months
worth of data then there is unlikely to be a problem. Another point is that the
window sizes for the historic and recent profiles must be for consecutive time
periods. For example, the historic time period may be from 1 Jan to 31 Jan
whilst the recent profile window is from 31 Jan to 5 Feb.

train the neural network
This process involves cyclically adjusting the weights stored on the connections
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between units in the neural network, until sufficient training has been performed.
This is done by sending an-instruction to the ADE to start the TrainAD method.

Once the ADE has been instantiated or tailored for a specific application it is
integrated into the system software. To do this integration code is used to
bridge from the tailored ADE to the system software. This integration code is
application specific. Many different possible forms for the integration code are
possible. The integration code should take account of the following issues:

e management issues

¢ architecture issues

o software issues

e data issues

management issues

The integration software must manage the ADE. The functions which must be

performed are:

e Monitoring the performance of the ADE. The application which the ADE will
be used in will need to determine the appropriate performance measurement.
The engine will return a mis-classification value when a performance
evaluation is requested. This mis-classification is obtained by presenting the
training set together with any additional knowledge added to the engine, and
counting how many of these are given an incorrect result.

e Deciding the threshold performance level for retraining.

¢ Deciding when to retrain the neural network.

Architecture issues

Architectural considerations are:

e How to access appropriate data stores in order to provide necessary input
data from which to perform detection and where to locate data stores, either
locally or distributed.

e How to update the persistent store of the neural network creation
specifications, which is part of the anomaly detector specification, when the
ADE is retrained. The specification is passed back through the APl when the
training is complete.

Software issues
The integration code can have the following functionality:
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If the ADE is event based it may easily be converted into call-return form by
writing a small amount of interface code.

Storage of the anomaly detector specification data needs to be considered.
The anomaly detector specification will need to be accessible by the user at
some point after start-up in the following situations: system crash, process
killed and needs to be re-started.

Storage of the historical profiles also needs to be considered. The historical
profiles will be stored externally of the ADE, and accessed when required.
Storage of the original training data set, and the additional knowledge (data)
gathered through use of the ADE is also required. The additional knowledge
is needed by the ADE for re-training, in order to improve its future
performance.

Deletion of any objects output from the ADE - detection results, any data
sets, and the anomaly detector specification.

Any objects which are passed into the ADE will be deleted by the ADE
software - training data set, data input to use in detection mode, any
knowledge added, the profiles, and the anomaly detector specification.

Data Issues

The integration software is responsible for:

Maintaining an appropriate set of data for initially training the ADE. This
process must result in a data set whose data coverage is sufficient to allow
successful training of the ADE.

Maintaining an appropriate data set for retraining the ADE. Additional
knowledge must be obtained by interaction with the user. This knowledge
must be obtained by interaction with the user. This knowledge must be used
to form a retraining data set which is to be utilised when a request is made, by
the user, to add knowledge back into the ADE.

Updating historic profiles over time. This is done by allowing the recent profile
data to migrate into the historical profile. This relies upon the recent profile
being assessed as non-fraudulent, as it would be counter-productive to allow
a non-fraudulent historical profile to be updated using a fraudulent recent
profile.

Some form of feedback loop is therefore needed in order for the fraudulent
profiles output by the instantiation layer to be verified. The resultant fraud
candidates will need to be assessed and the resulits of the assessment will need
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to be fed back into the instantiation layer in order for the correct profile

adjustment to be made. Any non-fraudulent output will be allowed to update the

associated historical profile without the need for a validation step.

e Assessing the raw communications network data. This can either be a
manual or automatic process of obtaining account details from the
appropriate communications network.

A particular example of an instantiated ADE will now be described. In this
example an anomaly detector is formed using an ADE together with application
specific software which makes it possible for automatic retraining of the neural
network components to take place. In this example, the particular instantiation
of the ADE is referred to as a kernel within the anomaly detector. The major
components of the kernel with respect to the fraud detector application domain,
are set out in Appendix A below.

Figure 14 shows schematically how the anomaly detector 201 can be used to
receive information 202 about the transmission of messages in a
communications network 203 and provide reports 204 about potential anomalies
in the input data. Validated results 205 can be provided to the anomaly detector
201 so that the performance of the anomaly detector can be evaluated. For
example, in the case of telecommunications fraud detection the anomaly
detector 201 identifies potential fraud and non-fraud candidates. Further
information 205 about whether these candidates have been correctly identified
as frauds or non-frauds is then obtained for example from the user, and input to
the anomaly detector. This information is used to evaluate the performance of
the anomaly detector. This provides the advantage that a measure of the
detector's performance can be obtained easily. Once the performance falls
below a certain predefined level, action can be taken to improve the
performance as long as certain other criteria are also met. This action involves
retraining a neural network 261 which forms part of an anomaly detector kernel
206. Once the performance drops below a specified limit, retraining can be
initiated automatically without any intervention from the user.

In the situation where the performance of the anomaly detector 201 is
satisfactory, no retaining takes place. This is illustrated in figure 15 at 220. In
this situation validation data has been provided although the neural network 261
has not been updated using the validated data 205; that is, because the neural
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network 261 has not been retrained it is not able to take account of the new
validation data 205. When further results are obtained from the anomaly
detector 201, these will not reflect the new information and the user may be
presented with results that she has already corrected before. In order to avoid
this problem, the anomaly detector 201 is able to store validated results 221
between retraining episodes. This store of validated results is then used, as
shown at 222, to update any further output from the anomaly detector before this
is presented to the user for validation.

The anomaly detector 201 also has the ability to create a daughter neural
network of the same topology as the parent. This daughter can then be
retrained whilst the parent is still in use. Once the daughter is retrained it can
then be used in place of the parent, if the performance of the daughter is
satisfactory. This is illustrated in figure 16.

It is not essential for the validation data 205 to be provided by a user via a user
interface. For example, the validation data could be obtained automatically and
input to the system directly. Also, it is not essential for the neural network to
form part of an anomaly detector. The neural network could be used for
processing data for another purpose.

The process of monitoring the performance of the anomaly detector will now be

described in more detail. This comprises:

e changing configuration information

¢ performing an anomaly detection

e presenting the outputs from the anomaly detector to the user via a user
interface

e accepting validated results or target outputs from the user via the user

~ interface

e evaluating the performance of the anomaly detector

Changing configuration information

The user is able to change the following settings during operation of the

anomaly detector:

(i) the evaluation interval i.e. the number of sets of validated results that must be
supplied to the anomaly detector before retraining can be initiated
automatically;
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(i) the start date and time for performance of an anomaly detection;

(iii) the performance threshold i.e. the threshold below which performance of the
anomaly detector must fall before automatic retraining is initiated.

This step of changing the configuration information is optional.

Performing an anomaly detection

The kernel identifies via the system clock that a detection poll period has been
reached. If the kernel is busy when a poll detection period is reached then when
it becomes available it will get the current time. If this time is less than the clock
interval (plus some overhead time) then the detection is serviced else the poll
detection has been missed and the kernel sends a message back to the
graphical user interface (GUI) to indicate that a poll detection has been missed.

If a detection is to take place then the kernel sends information to the GUI to
indicate that the kernel cannot accept any further commands until the detection
has been completed.

The kernel accepts input information that is input to the anomaly detector. This
input information is initially in the form of call detail records for those customers
who have made calls during the poll period. These call details records are pre-
processed before being input to the kernel. The kernel also performs any further
processing of the input information before this is provided as input to the neural
network within the kernel. The neural network then performs the anomaly
detection and outputs a set of results to the kernel. The kernel then stores these
results in a file and sends information to the GUI indicating that the detection is
complete.

Presenting the outputs from the anomaly detector to the user via a user-
interface

When the GUI receives information from the kernel indicating that a new
detection results file has been created it indicates this to the user. This is done
by highlighting a reload button on a display screen. By activating this button, for
example by clicking it with a mouse, the user can display the results file on the
screen. Figure 17 shows an example of such a display. The user can
manipulate the way in which the results are displayed using the user interface.
The user is also able to generate a graph displaying the results information as
shown in figure 18 and independently to change the viewing criteria for this
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graph without affecting the table of results.

Accepting validated results or target outputs from the user via the user interface
When viewing the detection results on the table view as shown in figure 17, the
user is able to indicate if individual responses were correct or incorrect. For
example, the table 240 shown in figure 17 has one row 241 for each customer
account number. In the various columns of the table 242 the following
information is provided:

the customer account number; whether this account is identified as a potential
fraud or not; the confidence rating of the fraud/non-fraud classification and the
average duration of a telephone call. Other information could also be provided,
for example the average duration of long distance calls or information about
geographical location. The validity column 243 displays information that the
user has input about the account number concerned. This information can be
added to the kernel's knowledge base. The user is able to select individual
accounts and validate the anomaly detector's response. When the user has
added validation information for a number of accounts this can be added to the
engine’'s knowledge base. This is done by activating the “add knowledge”
button 244 on the user interface as shown in figure 17. When the user activates
this button the GUI sends information to the kernel about the set of validated
fraud candidates for all those accounts which have been validated and all other
non-fraudulent accounts. This is called an add knowledge event.

When this information is sent to the kernel the kernel has several actions to

perform as listed below:

(1) store or retain previously validated candidates;

(2) add information about the validated fraud candidates to the anomaly
detector’s knowledge base;

(3) update profiles;

(4) evaluate the performance of the anomaly detector,

(5) retrain the neural network.

Actions 1, 2 and 3 above must be performed whereas actions 4 and 5 are
conditional.

Store or retain previously validated candidates
When an add knowledge event has been initiated, the GUI needs to maintain a
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list of all accounts which have been validated and the condition associated with
that account, for example, whether a fraud was correctly identified as such. |
subsequent detection take place before the kernel initiates automatic retraining
then the GUI can display to the user what that account has been previously
validated to.

Add information about the validated fraud candidates to the anomaly detector's
knowledge base

The kernel adds all the validated fraud candidates to the anomaly detector’s
knowledge base. The kernel also increments the number of add knowledge
events which have been performed.

Update profiles

The kernel updates the historical profile for those accounts which are validated
as correct non-fraud candidates and those which are validated as incorrect fraud
candidates. The kernel also updates the historical profiles for the other non-
fraud candidates. The kernel matches the recent profiles with the customer’s
historical profile and then provides this information to another process which
updates the historical profiles with the corresponding recent profiles. The
updated historical profiles are then stored by the kernel.

Evaluate the performance of the anomaly detector

If the number of add knowledge events is equal to the evaluation interval, the
kernel performs an evaluation of the performance of the anomaly detector. If a
performance evaluation is carried out then the counter for the number of add
knowledge events is reset. The performance evaluation comprises carrying out
a comparison of the candidates and any corresponding validation results.

Retrain the neural network

If the performance evaluation is less than the performance threshold, the kernel
initiates retraining of the neural network. The kernel will not respond to any
events that are sent until retraining is complete. No intervention by the user is
required during retraining. The kemel informs the GUI when retraining is
complete and which of the operations listed as 1-5 above have been performed
so that the GUI can update its representations respectively. If an evaluation has
taken place then the new performance evaluation result is sent to the GUI. If the
neural network has been retrained, information about this is sent back to the
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GUI.

When retraining takes place, a new neural network is created by the kerel.
This daughter neural network has the same topology as its parent. The
daughter neural network is trained instead of retaining the parent.

Once retrained the daughter neural network is evaluated by the kernel. If the
performance of the daughter is better than the parent then the kernel indicates
to the GUI that a new neural network is available. The GUI asks the user if this
new neural network should be used. The user’s response is sent 10 the kernel
and if affirmative, the kemel replaces the parent neural network with the
daughter neural network.

Preferably the anomaly detector and the neural network are implemented using
an object oriented programming language, or a non-introspective programming
language. The anomaly detector is implemented using at least one instantiated
object. In order to store or retain the objects persistence mechanisms are used.
Such mechanisms are described in appendix B below. The objects or groups of
linked objects are converted into data structures using the persistence
mechanisms in order that they can be stored or retained. The data structures
can then be passed between processors. For example, these may be different
nodes on a communications network. This provides various advantages. For
example, a daughter neural network, once created, can be stored as a data
structure and moved to a quiet node in the communications network before
being retrained. Also the neural network part of the anomaly detector can be
moved to a particular node in the communications network whilst the other parts
of the anomaly detector such as the GUI are held on a different (and perhaps
quieter) node.

The anomaly detector discussed in the example above may also contain
application specific software for storage of information relating to the
transmission of messages in a communications network. A particular example
of an anomaly detector which incorporates such application specific software is
discussed below.

Figure 5 shows schematically how the anomaly detector 101 can be used to
receive information 102 about the transmission of messages in a
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communications network 103 and provide reports 104 about potential anomalies
in the input data. For example, in the case of a telecommunications network the
information 102 can be in the form of call detaiil records (CDRs). The format of
CDRs from different telecommunications systems differs and the anomaly
detector is able to cope with this. In a given time period call detail records are
obtained for telephone calls made during that time. The anomaly detector
collects the individual CDR'’s for each customer and generates a signature for
each customer. This is shown in Figure 6. A set of CDR’s for an individual
customer is obtained 110. Each CDR comprises several attributes or fields 112
such as the billing account number; the telephone number associated with the
account, the called telephone number, the date and time of completion of the
call etc. From the set of CDR’s for an individual customer 110 a signature 111 is
created for that customer using information from the fields or attributes 112.
Each signature 111 comprises several parameters 113 that are related to the
fields or attributes 112 from the individual set of CDRs for the customer. For
example, a parameter might be the percentage of local calls made during the
time period. At least one parameter is related to the transmission of messages
over a portion of the period and information relating to the position of the portion
in the period. For example, such a parameter might be the percentage of local
calls made between 8 am and 8 p.m. on the third day of the time period. This
has the advantage that a large number of CDRs have been summarised into
signatures that capture essential features of the pattern of telephone calls made
by individual customers over time. By creating two signatures one for a long
period of time and one for a shorter period of time, it is possible to capture
information both about the macro behaviour relating to a particular account
number and the micro behaviour relating to that account number. For example,
an historic signature and a recent signature can be created with the historic
signature reflecting behaviour over a longer period of time. By comparing the
historic and recent signatures (for example using a neural network) recent
changes in behaviour can be detected.

In the case when the historic and recent signatures are compared using a
particular instantiation of a neural network the time periods for the historic and
recent signatures, once these have been chosen, are fixed. The neural network
is trained using historic and recent signatures with the chosen time periods and
thereafter signatures with the same size of time period must be used.
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As time passes the historic signature needs to be updated because calling
habits can change over time. This updating process enables emerging temporal
patterns in the CDR data to be taken into account. The process of updating a
signature is illustrated in Figures 7 and 8.

The current historic signature 130 is updated with the current recent signature
131 to form an updated historic signature 132. A new recent signature 133 can
then be obtained. As indicated in figure 7 the current historic signature 130 is
combined with the current recent signature 131 using a weighted averaging
procedure to form the updated historic signature 132. The arrow 134 in figure 7
indicates time and the information emanating from the communications network
over time is illustrated by 135.

In the situation where a comparison between an historic and a recent signature
is required to detect anomalies it may be that new information has become
available since the recent signature was created. For example, if the historic
signature must always be updated using a recent signature that represents 7
days’ worth of data then 6 days’ worth of new information may be available
before it is possible to take this into account. The system must wait until the end
of the short recent period before an update is possible.

In order to accommodate new information obtained in-between updates a third
dynamic signature is used. The third signature is dynamic because it can be
taken over a variable time period as long as this is shorter than the time period
for recent signatures. The dynamic third signature can then be used to update
the recent signature before the anomaly detection takes place. This has the
advantage that all available data is used in the anomaly detection process.

A signature which can also be referred to as a profile contains a statistical
representation for each customer over a period of time. In one example, a
profile as shown in figure 12 comprises the following major components:

n items representing the distribution of calls made during a week;

21 items representing the distribution of calls made during particular portions of
a week;

of the 21 items 7 items represent the distribution of calls for each day of the
week;

of the 21 items 14 represent the distribution of calls either for day time use or
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night time, for each day of the week.

The process of generating signatures from CDRs will now be described in more
detail. This process comprises:

e parsing a number of different formats of CDR file

e generating the profile.

Parsing a number of different formats of CDR file

This is done by defining a specification for the CDR type to be parsed. A parser
for each type of CDR type is contained in a library of CDR parsers. A base class
is created from which each new type of CDR is able to inherit as shown in Figure
9.

For each CDR type which is to be parsed to create a profile a specification is
built of the position of the important data and the format in which that data is
stored within the CDR. An example of a CDR specification is shown in Figure
10. The CDRs are then converted into the desired format using information from
the CDR specification. An example of a desired or target call detail record
format is shown in figure 11.

Generating the profile

This involves selecting the appropriate attributes from each CDR (that has
already been parsed into the desired format) to produce the profile. In this
example, the desired CDR format is as shown in Figure 11 and the profile has a
basic structure as shown in Figure 12. As previously described this contains 7
items for the basic structure 181 and 21 additional fields 182 which represent
day-of-week and time-of-day information. Additional items can be added to this
basic structure. Also, the 21 items 182 used within the profile shown in figure 12
can be expanded to model the time of day-of-week more closely. There is no
restriction on the size of the profile which can be generated but the profile size
must remain consistent within a particular instantiation of the system.

The appropriate attributes from each pre-parsed CDR are selected to form the
profile by taking the following steps:

e determining when a call was initiated

« calculating the call distribution over the week
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Determining when a call was initiated

In the example target CDR format shown in figure 11 there is a DayOf Week
field 171. This is used to determine which day the call was made on. Similarly,
the CallTime field 172 is used to determine the time the call was placed on that
particular day.

Calculating the call distribution over the week

This is done by:

« calculating the calls made each day;

« and calculating the calls made in each day/night period.

Once the time when a call was initiated has been determined it is possible to
create the elements of the profile which refer to the call distribution pattern i.e.
the items shown at 182 in figure 12. Calls are analysed to calculate the
percentage of calls made each day (7 items in the profile of figure 12) and also
the percentage of calls made during the day/night periods (14 items in the profile
of figure 12). This gives 21 items relating to the call distribution. In this
example, all the percentages are based on the number of calls made in the
respective period compared with the number of calls made over a whole week.
Also, in this example, all the percentages are scoped between 0 and 1. For
example, 15% would become 0.15.

Calculating the calls made each day

This is done by summing the number of calls made each day during the time
period (in this case one week) and dividing this sum by the total number of calls
made over the week. Information about the number of calls made each day is
obtained using the DayOfWeek field in the CDR, shown as 171 in figure 11.

Calculating the calls made in each day/night period

In this example, a night period is defined to include calls made between 7pm
one evening to 7 am the following day. Because a night period can therefore
include calls made on separate days it is necessary to analyse which hour of the
day the call is made and see which particular period a call should be classified
in. Potentially, calls made over one day can fall into 3 different periods (91, 92
and 93) as shown in figure 13. The day of the week and the hour that the call
was made are obtained. Then the number of calls made in the relevant period is
divided by the number of calls made over the whole week to give the percentage



10

15

20

25

30

35

WO 98/32085 PCT/GBY98/00138

37

of calls made in that period.

It is not essential that profiles of the form shown in figure 12 are used. Many
other items could be included, for example the percentage of calls made to
mobile telephones, the longest call made within the profile period and the
number of call forwards made. Alternatively, the whole profile could be taken up
with information about calls made at different times of the day. Many different
combinations of different types of information are possible.

The process of updating a signature or profile is now described in more detail.
As previously described, an historic signature is updated with the corresponding
recent signature by a process involving a weighted averaging. A particular
example of such an updating algorithm is given in the equation below:

Ti=(Ti-(Tix UpdateFactor)) -+ (Si x UpdateFactor)

WindowSize(S)
WindowSize(T')

UpdateFactor =

In this equation T is the target profile or signature, which in this case is the
historic profile. S is the source profile which in this case is the recent profile.
The term window size refers to the length of the time period to which the
signature relates. For example, the source window size may be 1 hour and the
target window size 10 hours. Once the target and source profiles have been
obtained the update factor is calculated by dividing the source window size by
the target window size. If the source window size is 1 hour and the target
window size 10 hours then the update factor is 0.1. 1f no source or recent profile
exists a new recent profile is created. If the number of attributes in a profile is 4
then example source and target profiles might be: S[1,2,3,4] and T(5,6,7,8]. T1
which is the first attribute for the new target profile can then be calculated as
follows: T'1=(5- (5 x0.1)) + (1 x 0.1) = 4.6. Similarly, the other attributes for the
new target profile are calculated. This updating process can also be used for
updating a recent profile with a dynamic profile. In both cases, once the
updating process has been completed, the more recent profile is removed.

It is not essential to use the exact updating algorithm as described in the
equations above. Modifications of this algorithm are possible; any type of
weighted averaging process can be used.
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A recent profile can be updated with a third signature or poll profile in the same
way as for an historic and recent profile. Alternatively a different updating
algorithm can be used for the poll to recent update. For example, one possible
preferred update rule for poll to recent updating is given below:

R=k(P %) +(1R=R+ k(P—Z— -R)

where p is the window size for the poll profile or third signature;

q is the previous normalising period;

P is the polled actual total (i.e. rate perr) ... or average (i.e. rate per Q); and
R is the recent average (normalised to rate per Q).

For a particular anomaly detector in which the method and apparatus for
creating, storing and updating profiles or signatures is to be used then particular
values for the time window sizes, the profile update rates and day-of-week
dependencies must be chosen. Different values will be most suited to different
applications. Some factors which need to be considered when choosing these
values are given below:

Time window size

Setting the time window size too small may result in insufficient data to expect
any reasonable response from the anomaly detector. Too small a time period
may also result in the propagation of anomalous behaviour into the historical
profile. If the recent time window size is too large the anomalous behaviour may
go undetected for a longer period of time. In order to determine the best window
sizes the effect of different sampling rates and the subsequent statistical
representation of the characteristics of the behaviour being observed needs 1o
be examined.

Profile decay rates
To determine the best profile decay rate an assessment of the importance of the
historical behaviour relative to the recent behaviour need to be made.

Day-of-week dependencies
The process of determining the window sizes and the decay rates should also
take into account the impact of the day-of-week dependencies.
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A wide range of applications are within the scope of the invention. For example,
detecting telecommunications fraud: detecting credit card fraud; early detection
of faults in a communications network and encryption key management. The
invention applies to any situation in which anomalies need to be detected in a
large amount of time variant data.

A wide range of other applications are within the scope of the invention. These
include situations in which information about both a macroscopic pattern of
behaviour and a microscopic pattern of behaviour must be stored. For example,
in the area of banking, the detection of credit card fraud involves the storage of
information about macroscopic and microscopic patterns of credit card use.
Other areas include computer network security, trends analysis and many other
fields.

Applications in which stored information must be updated are also within the
scope of the invention. These applications include situations where an
emerging temporal pattern must be accounted for. For example, the detection
of credit card fraud, computer network security mechanisms, trends analysis and
many other fields.

A wide range of other applications which involve the use of a neural network are
within the scope of the invention. For example, in the area of banking the neural
networks can be used for detecting credit card fraud and in this situation the
ability to automatically retrain and monitor the performance of the neural network
is vital. Also, in the area of computer network security neural networks can play
an important role in detecting anomalous behaviour. Any service which involves
sending messages over a telecommunications network, including entertainment
services such as games or video distribution could also benefit from anomaly
detection or trends analysis. Neural networks are used in many other fields as
well as anomaly detection. For example, speech recognition, pattern recognition
and trends analysis. In any of these applications the ability to retrain the neural
network without intervention from the user can be important and these
applications fall within the scope of the invention.
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Appendix A

Kernel

Major Components
This appendix details the major software components within the fraud detector
application domain including analysis and design details required.

The following is a list of passive objects identified as part of the analysis phase
which will now be described in more detail using the object numbers in
parentheses:

e Fraud Detection Client (27)

« Interpret Call Detail Record (15)

o Add Knowledge Request (23)

« Update Historic Profile Request (24)
e Performance Evaluation Request (29)
e Fraud Detection Request (16)

e Poll To Recent Profile Decay (20)
e CDR To Profile Tranform (13)

e Call Detail Record (12)

e Unvalidated Fraud Candidates (25)
e Fraud Detector Specification (28)

e Validate Request (8)

e Candidate Data Set (18)

« Validated Fraud Candidate (22)

e Fraud Candidate (11)

e Presentation Data Set (17)

« Fraud Candidate Data Set (21)

« Profile Data Presentation (7)

o Poll Profile Vector (4)

« Recent Profile Vector (34)

« Historic Profile Vector (33)

Fraud Detection Client (27)
Description
A representation of a client of a fraud detector. This controls the fraud detection
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and performance evaluation requests of the application.

C++ class name
DFraudDetectionClient

Behaviour Description: CreateFraudKernel

Upon receiving the CreateFraudKemel creation event from the GUI terminator,

this object will:

« link to the specified fraud detector specification, object 28, which was passed
as a parameter associated with the creation event.

e establish a clock polling mechanism.

e Read customer recent and historical profiles via the persistence mechanism
(See Appendix B) creating a profile data presentation, object 7, for each
individual customer and added to the presentation data set, object 17.

e The set of recent profiles is sent to construct poll to recent profile decay,
object 20.

e A handle needs to be kept on both the presentation data set, object 17, and
poll to recent profile decay, object 20.

e When the creation process is complete this object will send a KernelCreated
event back to the GU! terminator.

The fraud detection client is now ready to service other events.

Behaviour Description: UpdateEvaluationinterval

Upon receiving an UpdateEvaluationinterval event from the GUI terminator the
client will modify the no_evaluation_period attribute of the Fraud Detector
Specification object (28) with the new evaluation interval.

Behaviour Description: UpdateDetectionStartDate

Upon receiving an UpdateDetectionStartDate event from the GUI terminator the
client will modify the detection_start attribute of the Fraud Detector Specification
object (28) with the new date. The client will then stop and update the poll clock
mechanism with the new detection time and restart the poll clock mechanism.

Behaviour Description: UpdatePerformanceThreshold
Upon receiving an UpdatePerformanceThreshold event from the GUI terminator
the client will modify the evaluation_performance attribute of the Fraud Detector
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Specification object (28) with the new performance threshold.

Behaviour Description: AddKnowledge

Upon receiving an AddKnowledge event from the GUI terminator which contains
a handie to a set of fraud candidate objects (11), the client will then create an
AddKnowledgeRequest Object (23) with the associated fraud candidate set. On
completion of the request the client will be informed by the
AddKnowledgeRequest Object (23) what operations have been completed.
These operations will be detailed by use of an enumeration parameter with an
associated real value. The enumeration type contains the following:

o AddKnowledge
e PerformanceEvaluation
e Retraining

If the enumeration value is "AddKnowledge" then the associated real value will
be zero, else it will indicate the current performance of the ADE. These values
will then be used to send a AddKnowledgeComplete event to GUI terminator.

Behaviour Description: SwitchEngine

Upon receiving a SwitchEngine event from the GUI terminator the client will
interrogate the event parameter to establish if a switch is required. If a switch is
required then a request will be made to the ADE to switch to a new anomaly
detector. If a switch is not required then no request is made of the ADE. On
completion of the switch process the client will send a SwitchComplete event to
the GUI terminator.

Note: The client is required to control the persistence of the new ADE on
completion.

Behaviour Description: PollTime

Upon receiving a PollTime event from the Process IO (clock poll mechanism)
terminator which indicates that a detection poll period has been reached. The
client will send a DetectionTakingPlace to the GUI terminator to indicate that the
client cannot except any events until the operation has been completed. The
client will create a fraud detection request object (16) which will control the
detection process. On completion the client will send a DectionResultsReady
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event to GUI terminator. This event includes the time stamp used to create the
results file.

Note: If the kernel is busy when a poll detection period is reached then when the
client becomes available it will get the current time. If this time is less than the
clock interval {plus some overhead time) then the detection is serviced else the
poll detection has been missed and the kernel sends a DetectionMissed
message back to the GUI to indicate that a poll detection has been missed.

Methods
FDFraudDetectionClient (FDFraudDetectorSpecification& fraud_spec)
~FDFraudDetectionClient()

static FDFraudDetectionClient” CreateFraudKernel
(FDFraudDetectorSpecification& fraud_spec)

void UpdateEvaluationinterval(int evaluation_interval)

void UpdateDetectionStartDate(date detection_date)

void UpdatePerformanceThreshold(float performance_threshold)
void AddKnowledge(FDFraudCandidateDataSet& data_set)

void SwitchEngine(Bool switch_required)

void PollTime()

Assumptions

e The bridge will create fraud detector specification object on
CreateFraudKernel.

e The bridge will create fraud candidate date set object hierarchy on

¢ AddKnowledge.

e Retraining will always result in an improved performance of the ADE.

e Retraining can follow a retraining without a SwitchEngine event being
received.
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Ownership
FDFraudDetectorSpecification
FDAddKnowledgeRequest
FDFraudDetectionRequest

Read Accessors

RWBoolean IsAnomalyDetectorCreated() const;
FDPresentationDataSet* GetPresentationDataSet() const;
RWBoolean GetADSwitched() const;

Write Accessors
void SetADSwitched(RWBoolean state);

Interpret Call Detail Record (15)

Description

The transformation that is required in order to interpret a comma separated CDR
into a CDR.

Note: Not implemented, absorbed into Validate Request (8).

Add Knowledge Request (23)
Description
A request to add knowledge of fraud candidates.

C++ class name
FDAddKnowledgeRequest

Behaviour Description

Upon creation the add knowledge request object (23) is passed a fraud

detection data set as a parameter. The object will:

e Sends an APP6AddKnowledge event to the ADE terminator including the set
of example detection data presentations, object (9), contained within the
specified data set. These should only include those account which have
been validated (For more information see "Enumeration Types" on page 53.).

e Upon completion the ADE generates an APP14KnowledgeAdded, which
contains a handle to the new knowledge set. This object must persist this
information using the new_knowledge_filename.
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e create a update historic profile request, object 24, attaching the specified
data set. ) ,

e check if a performance update is required by interrogating the performance
evaluation counter attribute of the fraud detection client, object (27), and
determining if it equals the number of evaluations specified contained within
the fraud detector specification, object (28). If a performance update is
required then a performance evaluation request is created and the
performance evaluation counter attribute is reset to zero. If a performance
update is not required then the performance evaluation counter attribute is
incremented.

The operation enumeration is set to "AddKnowledge" as default.

Methods

FDAddKnowledgeRequest(
FDFraudCandidateDataSet& fraud_data_set,
String new_knowledge_filename)
~FDAddKnowledgeRequest()

Assumptions

Update Historic Profile Request (24) will always be actioned after an Add
Knowledge Request (23).

Ownership
FDUpdateHistRequest
FDPerformanceEvaluationRequest

Read Accessors
No public read access methods are required by the object.

Write Accessors
No public write access methods are required by the object

Update Historic Profile Request (24)
Description
A request to update historic profiles.
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C++ class name
FDUpdateHistRequest

Behaviour Description

Upon creation the update historic profile request is passed a fraud detection
data set as a parameter. This object will:

e Sends an APP7UpdateHistoricProfiles event to the ADE terminator including
the set of profile data presentations. Only those validated fraud candidates
with a validation category of either; correct non-fraudulent or incorrect fraud
candidates. In addition all the other non-fraud candidates are passed to the
ADE.

¢ Upon completion the ADE generates an APP15ProfilesUpdated, the event
contains the updated profiles. The update historic profiles request then
needs to persist all the updated historical profiles. This data set can then be
removed.

Methods

FDUpdateHistRequest(
FDFraudCandidateDataSet& fraud_data_set,
String historic_profile_filename)
~FDUpdateHistRequest()

Assumptions
None.

Ownership

Read Accessors
No public read access methods are required by the object.

Write Accessors
No public write access methods are required by the object

Performance Evaluation Request (29)
Description
A request to evaluate the performance of the fraud detector application.
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C++ class name
FDPerformanceEvaluationRequest

Behaviour Description
No parameters are sent on construction of this object. This object will:

e Sends an APP3EvaluatePerformance event to the ADE. Upon completion
the ADE generates an APP11PerformanceResultsObtained event with the
ADE current performance.

¢ |If the resulting performance evaluation is less than the evaluation threshold
attribute of the fraud detector specification then the performance evaluation
request sends an APP4TrainAD event to the ADE. Upon completion the ADE
generates an APP12AnomalyDetectorTrained with the a new performance
from the ADE.

e The operation enumeration type object attribute of the add knowledge
request needs to be set to either "PerformanceEvaluation” or "Retraining” to
indicate which operation has been performed.

e The new performance is returned to the add knowledge request object.

Methods
FDPerformanceEvaluationRequest()
~FDPerformanceEvaluationRequest()

Assumptions
None.

Ownership

Read Accessors
No public read access methods are required by the object.

Write Accessors
No public write access methods are required by the object

Fraud Detection Request (16)
Description
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A request to perform a detection of fraud on a presentation data set. The
resultant fraud candidates are contained in the associated candidate data set.

C++ class name

FDFraudDetectionRequest

Behaviour Description

Upon creation the fraud detection request is passed a presentation data set as a
parameter. This object will:

Creates CDR to profile tranform, object 13, with csv filename and poll
detection period.

CDR to profile tranform, object 13, returns a list of poll detection profiles,
object 4.

Creates fraud candidate, object 11, to be populated with the results from the
ADE.

Sends an APP2PerformDetection event to the ADE terminator, with profile
data presentations, object 7, where the profile modified attribute is true.

Once the ADE has completed the detection event the ADE generates an
APP10DetectionComplete. The fraud candidate, object 11 is populated with
candidate presentations, object 6, matching with the associated recent
profile, object 4.

The profile modified attribute within profile data presentation, object 7, for all
those sent to the ADE terminator need to be set back to false.

The fraud candidate, object 11, persistence mechanism to write the results to
a file. The time stamp at time of creation of this file needs to added to the top
of the file and maintained to be sent back to the client, object 27.

Once the results file has been created the fraud candidate, object 11, can be
removed.

CDR Extraction, Poll Profile Creation and Search Algorithm
while(not end_of_file)

{

Read(next_line_of_file)

cdr = CreateCDR(next_line_of_file)
if(account_no != cdr.account_no)
poll_profile = CreatePoliProfile(cdr)
else
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poll_profile = AccumulatePollProfile(cdr)
account_no = cdr.account_no

DecayRecent(poll_profile)
DeletePollProfile(poll_profile)
} _

Note: Assumption that the CDR file is sorted by account number. Decay profile
will provide a binary search technique to locate the recent profile.

Methods

FDFraudDetectionRequest(
FDPresentationDataSet& presentation_data_set
FDPollToRecentProfileDecay& profile_decay
String results_filename,

String csv_filename

Time poll_detection_period

Time recent_profile_period)
~FDFraudDetectionRequest()

Assumptions
None.

Ownership

Read Accessors
No public read access methods are required by the object.

Write Accessors
No public write access methods are required by the object

Poll To Recent Profile Decay (20)
Description
The decay transform for decaying a poll period profile into a recent profile.

C++ class name
FDPollToRecentProfileDecay
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Behaviour Description
Upon creation this object is given recent profile vectors object (4). This object

will:

e Create relationships to all recent profiles.

e Calculate update factor using poll detection period for source and recent
profile period for target.

e Upon a DecayProfile event search for the corresponding recent profile. If no
recent profile exists create new recent profile.

e Update the target profiles behaviour with the source target behaviour using
the algorithm below.

e Once the recent profile has been updated the poll detection profile can be
removed.

o Modifies the profile modified attribute within the associated profile data
presentation, object 7, to true.

Methods

FDPollToRecentProfileDecay(
RWTPtrDlist<FDRecentProfileVector>& recent_profile,
Time poll_detection_period,

Time recent_profile_period)
~FDPollIToRecentProfileDecay()

void DecayProfile(FDProfileVector& poll_profile)

Assumptions
None.

Updating profiles algorithm

T'= (T, — (T.xUpdateFactor)) + (S, xUpdateF actor)

For all i Where T is the target profile (e.g. recent profile) and § is the source
profile (e.g. poll detection period profile.)

WindowSize(S)
WindowSize(T)

UpdateFactor =
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Read Accessors
No public read access methods are required by the passive object.

Write Accessors
No public write access methods are required by the passive object

CDR To Profile Tranform (13)

Description

A request to perform a detection of fraud on a presentation data set. The
resultant fraud candidates are contained in the associated candidate data set.

C++ class name
FDCDRProfileTranform

Behaviour Description

Upon creation CDR profile transform. This object will:

e For each call detail record, object 12, this object either constructs a poll
profile, object 4, or updates the existing poll profile.

e This object sends the poll detection profile to poll to recent profile decay,
object 20, with poll detection period and recent profile period.

Methods

FDCDRProfileTranform( String csv_filename, int
poll_detection_period)

~FDCDRProfile Tranform()

Assumptions
Operates on an ordered input file.

Ownership
FDProfileVector (Poll detection profiles only).

Read Accessors
No public read access methods are required by the passive object.

Write Accessors
No public write access methods are required by the passive object
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Call Detail Record (12)
Description
A software representation of a telecommunication call detail record.

C++ class name
FDCaliDetailRecord

Methods
FDCallDetailRecord(String csv_filename)
~FDCallDetailRecord()

FDCallDetailRecord ReadCallDetailRecord()

Assumptions
The source CDR file is ordered by account number.

Ownership
Read Accessors
Write Accessors

Unvalidated Fraud Candidates (25)
Description

An unvalidated association of a customers recent profile and the results of a

detection process.

C++ class name
FDUnvalidatedFraudCandidates

Inheritance
FDFraudCandidate

Methods
FDUnvalidatedFraudCandidates(
FDProfileVector& recent_profile,

PCT/GB98/00138
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ADCandidatePresentation& candidate_presentation)
~FDUnvalidatedFraudCandidates()

Assumptions
None.

Ownership
None.

Read Accessors
No public read access methods are required by the passive object.

Write Accessors
No public write access methods are required by the passive object

Fraud Detector Specification (28)
Description
The specification of the fraud detector application.

C++ class name
FDFraudDetectorSpecification

Methods
FDFraudDetectorSpecification(String Default_results_filename
String csv_filename

String recent_profile_filename
String historical_profile_filename
String ade_spec_filename

Date detection_start

int evaluation_interval

int evaluation_counter

int performance_threshold

int recent_window_size

int historical_window_size

int detection_time_interval

int input_size

int recent_size)
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~FDFraudDetectorSpecification()

Assumptions
None.

Ownership
None.

Read Accessors

StringGetDefaultResultsFilename(
default_results_filename)

String GetCSVFilename(csv_filename)

String GetRecentProfileFilename(
recent_profile_filename)

String GetHistoricalProfileFilename(
historical_profile_filename)

String GetADESpecFilename (ade_spec_filename
Date GetDetectionStart(detection_start)

int GetEvaluationinterval(evaluation_interval)

int GetEvaluationCounter(evaluation_counter)

int GetPerformanceThreshold(performance_threshold)
int GetHistoricalWindowSize(historical_window_size)
int GetRecentWindowSize(recent_window_size)

int GetDetectionTimelnterval(detection_time_interval)
int GetinputSize(input_size)

int GetRecentSize(recent_size)

Write Accessors

void SetDefaultResultsFilename(String default_results_filename)
void SetCSVFilename(String csv_filename)

void SetRecentProfileFilename(String recent_profile_filename)
void SetHistoricalProfileFilename(String historical_profile_filename)
void SetADESpecFilename (String ade_spec_filename

void SetDetectionStart(Date detection_start)

void SetEvaluationinterval(int evaluation_interval)

void SetEvaluationCounter(int evaluation_counter)

void SetPerformanceThreshold(int performance_threshold)

PCT/GB98/00138
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void SetHistoricalWindowSize(int historical_window_size)
void SetRecentWindowSize(int recent_window_size)

void SetDetectionTimelnterval(int detection_time_interval)
void SetlnputSize(int input_size)

void SetRecentSize(int recent_size)

Validate Request (8)

Description

A request to create a validated set of fraud candidates.

Note: Not implemented, absorbed into Fraud Detection Request (16).

Candidate Data Set (18)
Description
A set of candidate presentations.

C++ class name
FDCandidateDataSet

Methods

FDCandidateDataSet(
RWTPtrDlist<ADCandidatePresentation>
&candidate_presentation_ids)
~FDCandidateDataSet()

Assumptions
Ownership

Read Accessors
int GetNumberOfPresentations() const;

Write Accessors
void SetNumberOfPresentations(int number_of_presentations),

Validated Fraud Candidate (22)
Description

An association of a customers recent profile and the validated results of a
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detection process.

C++ class nhame
FDValidatedFraudCandidate

Inheritance -
FDFraudCandidate

Methods
FDValidatedFraudCandidate(
FDProfileVector& recent_profile,

NNExampleDataPresentation& example_presentation);

~FDValidatedFraudCandidate()

Enumeration Types

enum ValidationStatus

{

UNVALIDATED,
CORRECT_FRAUD,
INCORRECT_FRAUD,
CORRECT_NONFRAUD,
INCORRECT_NON_FRAUD

L

Assumptions
None.

Ownership

Read Accessors
ValidationStatus GetValidationCategory() const;

Write Accessors
void SetValidationCategory(ValidationStatus
validation_category);

Fraud Candidate (11)

PCT/GB98/00138
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Description
An association of a customers recent profile and the results of a detection
process, (either validated or unvalidated).

C++ class name
FDFraudCandidate

Methods
FDFraudCandidate(FDProfileVector& recent_profile)
~FDFraudCandidate()

Assumptions
Ownership

Read Accessors
No public read access methods are required by the passive object.

Write Accessors
No public write access methods are required by the passive object

Presentation Data Set (17)
Description
A set of profile data presentations.

C++ class hame
FDPresentationDataSet

Methods
FDPresentationDataSet(FDProfileDataPresentation&profile_data_presentation
_id)
FDPresentationDataSet(RWTPtrDlist<FDProfileDataPresentation>&profile_data
_presentation_ids)

~FDPresentationDataSet()

| Assumptions
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Ownership

Read Accessors
int GetNumberOfPresentations() const;

Write Accessors
void SetNumberOfPresentations(int number_of_presentations);

Fraud Candidate Data Set (21)
Description

A container of fraud candidates.

C++ class name
FDFraudCandidateDataSet

Methods
FDFraudCandidateDataSet()
~FDFraudCandidateDataSet()
Assumptions

Ownership

Read Accessors
int GetNumberOfPresentations() const;

Write Accessors
void SetNumberOfPresentations(int number_of_presentations);

Profile Data Presentation (7)
Description

Combination of a historic and a recent profile data vector.

C++ class name
FDProfileDataPresentation

Behaviour Description
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Each recent profile is matched with it respective historical profiles and sent to
the ADE. This representation is used for both detection (object 16) and profile
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decay (object 24).

Methods
FDProfileDataPresentation(
FDProfileVector& recent_profile,
FDProfileVector historical_profile)
FDProfileDataPresentation(
FDProfileVector& recent_profile,

RWTPtrDlist<FDProfileVector>& historical_profile)

~FDProfileDataPresentation()

Assumptions
None.

Ownership

Read Accessors
Bool GetProfileModified() const;

Write Accessors
void SetProfileModified(Bool profile_modified);

Poll Profile Vector (4)
Description
Describes the structure of a profile data vector.

C++ class nhame
FDPollProfileVector

Inheritance
NNVector

Methods
FDPollProfileVector(String account_number,
FDCallDetailRecord& call_detail_record)
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~FDPollProfileVector()
Assumptions
Ownership

Read Accessors
String GetAccountNumber() const;

Write Accessors
void SetAccountNumber(String account_number);

Recent Profile Vector (34)
Description

Describes the structure of a recent profile data vector.

C++ class name
FDRecentProfileVector

Inheritance
ADRecentProfileVector

Behaviour Description

PCT/GB98/00138

After the poll profiles have been used to update the recent profile, the
updated recent profiles then needs to be persisted to the recent profile file

using the persistence mechanism.
Methods
FDRecentProfileVector(String account_number,
NNVector& data_vector)
~FDRecentProfileVector()
Persist(String recent_profile_filename)

Assumptions

Ownership



10

15

20

25

30

WO 98/32085

61

Read Accessors ]
String GetAccountNumber() const;

Write Accessors
void SetAccountNumber(String account_number);

Historic Profile Vector (33)
Description
Describes the structure of a profile data vector.

C++ class name
FDHistoricProfileVector

Inheritance
ADHistoricalProfileVector

Methods

FDHistoricProfileVector(String account_number,
NNVector& data_vector)
~FDHistoricProfileVector()

Assumptions
Ownership

Read Accessors
String GetAccountNumber() const;

Write Accessors
void SetAccountNumber(String account_number);

PCT/GB98/00138
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Appendix B:
Persistence

Overview
Tools.h++ version 7.0 Users Guide, 1996, Rogue Wave Software, defines that a
object can have one of four levels of persistence:

e No persistence. There is no mechanism for storage and retrieval of the
object.

e Simple persistence. A level of persistence that provides storage and retrieval
of individual objects to and from a stream or file. Simple persistence does not
preserve pointer relationships among the persisted objects.

e |somorphic persistence. A level of persistence that preserves the pointer
relationships among the persisted objects.

e Polymorphic persistence. The highest level of persistence. Polymorphic
persistence preserves pointer relationships among the persisted objects and
allows the restoring process to restore an object without prior knowledge of
that object's type.

This appendix provides information about the use of Isomorphic persistence
through descriptions, examples, and procedures for designing persistent
classes. To implement other levels of persistence it is recommended that the
reader consult the relevant Tools.h++ manual pages.

Persistence Mechanism

Isomorphic persistence is the storage and retrieval of objects to and from a
stream such that the pointer relationships between the objects are preserved. If
there are no pointer relationships, isomorphic persistence effectively saves and
restores objects the same way as simple persistence. When a collection is
isomorphically persisted, all objects within that collection are assumed to have
the same type.

The isomorphic persistence mechanism uses a table to keep track of pointers it
has saved. When the isomorphic persistence mechanism encounters a pointer
to an unsaved object, it copies the object data, saves that object data NOT the
pointer to the stream, then keeps track of the pointer in the save table. If the
isomorphic persistence mechanism later encounters a pointer to the same
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object, instead of copying and saving the object data, the mechanism saves the
save table's reference to the pointer.

When the isomorphic persistence mechanism restores pointers to objects from
the stream, the mechanism uses a restore table to reverse the process. When
the isomorphic persistence mechanism encounters a pointer to an unrestored
object, it recreates the object with data from the stream, then changes the
restored pointer to point to the recreated object. The mechanism keeps track of
the pointer in the restore table. If the isomorphic persistence mechanism later
encounters a reference to an already-restored pointer, then the mechanism
looks up the reference in the restore table, and updates the restored pointer to
point to the object referred to in the table.

Class Requirements For Persistence

To create a class that supports isomorphic persistence the class must meet the

following requirements.

e The class must have appropriate default and copy constructors defined or
generated by the compiler:

PClass(); // default constructor
PClass(T& t); // copy constructor

e The class must have an assignment operator defined as a member OR as a
global function:

PClass& operator=(const PClass& pc); // member function
PClass& operator=(PClass& lhs, const PClassé& rhs); // global function

e The class cannot have any non-type template parameters. For example, in
RWTBItVec<size>, "size" is placeholder for a value rather than a type. No
present compiler accepts function templates with non-type template
parameters, and the global functions used to implement isomorphic
persistence (rwRestoreGuts and RWSaveGuts) are function templates when
they are used to persist templatized classes.

e All the data necessary to recreate an instance of the class must be globally
available (have accessor functions).
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Creating a Persistent Class ,
To create an isomorphically persistent class or to add isomorphic persistence to
an existing class, follow these steps:

1. Make all necessary class data available.
2. Add RWDECLARE_PERSISTABLE to your header file.

#include <rw/edefs.h>
RWDECLARE_PERSISTABLE(YourClass)

3. Add RWDEFINE_PERSISTABLE to one source file.

#include <rw/epersist.h>
RWDEFINE_PERSISTABLE(YourClass)

4. Define rwSaveGuts and rwRestoreGuts. Methods rwSaveGuts and
rwRestoreGuts will be used to save and restore the internal state of the class.
These methods are called by the operator<< and operator>> that were
declared and defined by the macros in 2 & 3.

For non-templatized classes , define the following functions:

void rwSaveGuts(RWFile& f, const YourClass& t){/*_*/}

void rwSaveGuts(RWvostream& s, const YourClass& t) {/*_*/}
void rwRestoreGuts(RWFile& f, YourClass& t) {/*_*/}

void rwRestoreGuts(RWvistream& s, YourClass& t) {/*_*/}

For templatized classes with a single template parameter T, define the following
functions:

template<class T> void

rwSaveGuts(RWFile& f, const YourClass<T>& t){/*_*/}
template<class T> void

rwSaveGuts(RWvostream& s, const YourClass<T>& t) {/*_*/}
template<class T> void
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rwRestoreGuts(RWFile& f, YourClass<T>&t) {/*_*/}
template<class T>void
rwRestoreGuts(RWvistream& s, YourClass<T>& 1) {/*_*/}

For templatized classes with more than one template parameter, define
rwRestoreGuts and rwSaveGuts with the appropriate number of template
parameters.

Function rwSaveGuts saves the state of each class member necessary
persistence to an RWvostream or an RWFile. If the members of your class can
be persisted and if the necessary class members are accessible to rwSaveGuts,
you can use operator<< to save the class members.

Function rwRestoreGuts restores the state of each class member necessary for
persistence from an RWuvistream or an RWFile. Provided that the members of
your class are types that can be persisted, and provided that the members of
your class are accessible to rwRestoreGuts, you can use operator>> to restore
the class members.

Example of a Persistent Class
PClass Header File

#include <rw/cstring.h>
#include <rw/edefs.h>

#include <rw/rwfile.h>

#include <rw/epersist.n>

class PClass

{
public:

PClass ();

PClass (const RWCString& string_attribute,
int int_attribute,
float float_attribute,
PClass* ptr_to_attribute);

~PClass();
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// Persistence operations

friend void rwRestoreGuts(RWvistream& is, PClass& obj);
friend void rwRestoreGuts(RWFile& file, PClass& obj);

friend void rwSaveGuts(RWvostream& os, const PClass& obj);
friend void rwSaveGuts(RWFile& file, const PClass& obj);

// Stream operations
friend ostream& operator<<(ostream& 0s, const PClass& obj);

private:
RWCString StringAttribute;
int IntAttribute;

float FloatAttribute;
PClass* PtrToAttribute;

J§
RWDECLARE_PERSISTABLE(PClass)
PClass Implementation File

#include <PClass.H>

PClass::PClass()

{
IntAttribute = 0;
FloatAttribute = O;
PtrToAttribute = 0;
}

PClass::PClass(const RWCString& string_attribute,
int int_attribute,
float float_attribute,
PClass* ptr_to_attribute)

StringAttribute = string_attribute;
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IntAttribute = int_attribute;
FloatAttribute = float_attribute;
PtrToAttribute = ptr_to_attribute;

}

PCIass::~PCI|ass()

{
}

RWDEFINE_PERSISTABLE(PClass)

void rwRestoreGuts(RWvistream& is, PClass& obj)
{
is >> obj.StringAttribute; // Restore String.
is >> obj.IntAttribute; // Restore Int.
is >> obj.FloatAttribute;  // Restore Float.

RWBoolean ptr;
is >> ptr;
if (ptr)
{
is >> obj.PtrToAttribute;

}

void rwRestoreGuts(RWFile& file, PClass& obj)

{
file >> obj.StringAttribute; // Restore String.
file >> obj.IntAttribute; // Restore Int.
file >> obj.FloatAttribute; // Restore Float.

RWBoolean ptr;
file >> ptr;
if (ptr)
{
file >> obj.PtrToAttribute;

PCT/GB98/00138
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void rwSaveGuts(RWvostream& 0s, const PClass& obj)

{

}

0s << obj.StringAttribute; // Save String.
0s << obj.IntAttribute; // Save Int.
o0s << obj.FloatAttribute; /| Save Float.

if (obj.PtrToAttribute == rwnil)

{
os << FALSE; // No pointer.

}

else

{

os << TRUE; /| Save Pointer
0S << *(obj.PtrToAttribute);

}

void rwSaveGuts(RWFile& file, const PClass& obj)

{

}

file << obj.StringAttribute; /| Save String.
file << obj.IntAttribute; // Save Int.
file << obj.FloatAttribute; // Save Float.

if (obj.PtrToAttribute == rwnil)

{

file << FALSE; // No pointer.

}

eise

{

file << TRUE; // Save Pointer
file << *(obj.PtrToAttribute);

}

ostream& operator<<(ostream& os, const PClass& obj)

PCT/GB98/00138
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0s << "\nStringAttribute : "
<< obj.StringAttribute << "\n";

0s <<_"IntAttribute 2t
<< obj.IntAttribute << "\n%;

0s << "FloatAttribute : "
<< obj.FloatAttribute << "\n";

os << "PirToAttribute : *
<< (void*)obj.PtrToAttribute << “\n";

if (obj.PtrToAttribute)
{

os << "Value at Pointer : "
<< *(obj.PtrToAttribute) << "\n";

return os;

Use of PClass
#include <iostream.h>
#include <PClass.H>

void main()

{
// Create object that will be pointed to by

// persistent object.
RWCString s1 (“persist_pointer_object");
PClass persist_pointer_object(s1, 1, 1.0, 0);

RWCString s2("persist_class1");
PClass persist_class1(s2, 2, 2.0, &persist_pointer_object);

cout << "persist_class1 (before save):" << endl
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<< persist_class1 << endl << end|;

// Save object in file "test.dat”.
RWFile file("test.dat");
file << persist_class1;

PClass persist_class2;

// Restore object from file "test.dat".
{

RWFile file("test.dat");

file >> persist_class2;

}

cout << "persist_class?2 (after restore):" << endl
<< persist_class2 << endl << end|;

Special Care with Persistence
The persistence mechanism is a useful quality, but requires care in some areas.
Here are a few things to look out for when using persist classes.

1. Always Save an Object by Value before Saving the ldentical Object by
Pointer.

In the case of both isomorphic and polymorphic persistence of objects, never

stream out an object by pointer before streaming out the identical object by

value. Whenever designing a class that contains a value and a pointer to that

value, the saveGuts and restoreGuts member functions for that class should

always save or restore the value then the pointer.

5 Don't Save Distinct Objects with the Same Address.

Be careful not to isomorphically save distinct objects that may have the same
address. The internal tables that are used in isomorphic and polymorphic
persistence use the address of an object to determine whether or not an object
has already been saved.

3. Don't Use Sorted RWCollections to Store Heterogeneous RWCollectables.
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When you have more than one different type of RWCollectable stored in an
RWCollection, you can't use a sorted RWCollection. For example, this means
that if you plan to store RWCollectableStrings and RWCollectableDates in the
same RWCollection, you can't store them in a sorted RWCollection such as
RWBtree. The sorted RWOCollections are RWBinaryTree, RWBtree,
RWBTreeDictionary, and RWSortedVector. The reason for this restriction is that
the comparison functions for sorted RWCollections expect that the objects to be
compared will have the same type.

4. Define All RWCollectables That Will Be Restored.

These declarations are of particular concern when you save an RWCollectable
in a collection, then attempt to take advantage of polymorphic persistence by
restoring the collection in a different program, without using the RWCollectable
that you saved. If you don't declare the appropriate variables, during the restore
attempt the RWFactory will throw an RW_NOCREATE exception for some
RWColiectable class ID that you know exists. The RWFactory won't throw an
RW_NOCREATE exception when you declare variables of all the
RWCollectables that could be polymorphically restored.

The problem occurs because the compiler's linker only links the code that
RWFactory needs to create the missing RWCollectable when that
RWCollectable is specifically mentioned in your code. Declaring the missing
RWCollectables gives the linker the information it needs to link the appropriate
code needed by RWFactory.
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CLAIMS

1. A method of deriving output data from information relating to the
transmission of messages by an entity over time, using a predictive model,
comprising the steps of:

(i) creating a first signature comprising a plurality of parameters related to the
transmission of the messages over a predetermined first time period, wherein
the signatures are created in one of a plurality of predetermined possible
formats;

(ii) dynamically configuring said model at least according to the format of the
signatures; and

(iii) deriving the output data from the information by inputting the signature to the
model.

2. The method of claim 1 wherein the model comprises a neural network.

3. The method of Claim 1 or Claim 2 wherein the step of deriving information
comprises the step of detecting anomalies in the information.

4, The method of any of Claims 1 to 3 further comprising the steps of:
creating a second signature comprising a plurality of parameters related to the
transmission of messages over a second period shorter than the first and more
recent than the first; and

comparing the first and second signatures using the model.

5. A method as claimed in Claim 2 wherein said step (ii) further comprises
adjusting the topology of the neural network.

6. A method as claimed in Claim 2 or Claim 5 wherein the said step (ii)
further comprises automatically creating the neural network.

7. A method as claimed in any of Claims 2, 5 or 6 wherein the neural
network is a multi-layer perceptron.

8. A method as claimed in any preceding Claim wherein the format
comprises the length of the signature.
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9. A method as claimed in any of Claims 2, 5, 6 or 7 wherein said step (ii)
further comprises adjusting the number of input units in the neural network.

10. A method as claimed in Claim 7 wherein the said step (i) further
comprises adjusting the number of hidden units in the neural network.

11.  The method of any preceding Claim wherein the step of creating the first
signature comprises the step of including in the signature at least one parameter
related to the transmission of messages over a portion of the period and also
related to the position of the portion in the period.

12. The method of any preceding Claim further comprising the steps of:
creating a second signature comprising a pIurali'ty of parameters related to the
transmission of messages over a second period shorter than the first and more
recent than the first;

updating the first signature by a weighted averaging with the second signature,
and

deriving said output data using the signatures.

13.  The method of any preceding Claim further comprising the steps of:
monitoring the performance of the model: and

automatically retraining it when the performance reaches a predetermined
threshold.

14.  The method of any preceding Claim wherein the model is implemented
using at least one instantiated object created using an object oriented
programming language and the method further comprises the steps of:
converting the object into a data structure;

storing the date structure; and

recreating the object from the data structure.

15. A computer system for deriving information relating to the transmission of

messages by an entity over time, using a predictive model, the system

comprising:

(i) a signature creating means for creating a first signature comprising a plurality
of parameters related to the transmission of the messages over a
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predetermined first time period, and for creating said signature in one of a
plurality of predetermined possible formats;

(i) configuration means for dynamically configuring said model at least
according to the format of the signatures; and

(iii) processing means arranged to derive the information from said signature
using the configured model.

16. A method for deriving output data from information relating to the
transmission of messages by an entity over time, using a neural network,
comprising the step of automatically creating the neural network in one of a
plurality of possible configurations.

17. A method as claimed in Claim 16 wherein the configuration of the neural
network comprises the topology of the neural network.

18. The method of Claim 16 or Claim 17 wherein the deriving step comprises
the step of detecting anomalies in the information.

19. A computer system for deriving output data from information relating to
the transmission of messages by an entity over time, comprising:

a neural network;

and a processor arranged to automatically create the neural network in one of a
plurality of possible configurations.



WO 98/32085 PCT/GB98/00138

1/16

NETWORK

CDR-—"?
DATA

NEURAL | /61
NETWORK

CDR
INTERPRETER

OUTPUT

14

REPORTS

Fig.1

SUBSTITUTE SHEET ( rule 26)



WO 98/32085 PCT/GB98/00138

- 2/16

ANOMALY DETECTION APPLICATIONS

NETWORK MANAGEMENT
PRODUCT SOFTWARE

APPLICATION SPECIFIC
SOFTWARE

ANOMALY DETECTION
ENGINE

NEURAL
NETWORK
COMPONENTS

Fig.2

SUBSTITUTE SHEET ( rule 26)



WO 98/32085 PCT/GB98/00138

- 3/16

ENGINE BOUNDARY 3
PROCESSED 36 ~ 7 I\L/)/g-l\ll%lggg %ﬁ
' ' Vv ~
NETWORK DATA *~ PROFILE :

GENERATION

PERFORM
DETECTION
(LOG BASED) /-~ \
\
/ / \
;o RECENT.-37  HISTORICAL—38 \
/ / PROFILE PROFILE \
[ |
o |
N 3 |
I DPETI_;f:_I-‘COT%/lN DATA !
E TRANSFORMATION
APPLICATION L\(EVENT ) . "
\
‘ \_ ENGINE =50 "DETECTION /
\\ PERFORMANCE DATA —40 /
\\\ \ //
RETRAIN >~_ \ /
REQUEST ~“=x /
PROFILE . NEURAL NETWORK /
/D%Ngg%gé%/v ) . ____DEFINITION 7
AN Y : < )
o ENGINE % -7 POTENTIAL ANOMALY
ADMINISTRATION CANDIDATES
52— ANOMALY

THRESHOLD PARAMETERS

Fig.3

SUBSTITUTE SHEET ( rule 26 )




WO 98/32085 PCT/GB98/00138

416

c
PERFORMANCE

51 _
APPLICATION perecTion

50 DATA 48

ENGNE . ENGINE u e )

PERFORMANCE  ADMINISTRATION IDENTIFICATION

EVALUATION .~
v

[ CONDITION
'\ PARAMETERS

// \\~
/ RETRAIN -/
I REQUEST 4 "™+

! TRAIN/RE TRAIN%\

STATEGY  NEURAL NETWORK
APPLICATION DEFINITION ~—_g47

AND CATEGORY

Fig.4

SUBSTITUTE SHEET ( rule 26)




WO 98/32085

103

NETWORK

PCT/GB98/00138

- 5/16

106

INTERPRETER

NEURAL |/ 167
NETWORK

OUTPUT

104

REPORTS

Fig.5

SUBSTITUTE SHEET ( rule 26)



WO 98/32085

TIM}['[

CDR
For

1

Customer

|
!
|
|

TIME r

CDR
For

n.

Customer

NN

1

6/16

—— e

VALUES

————— -

VALUES

110

Fig.6

PCT/GBY8/00138

SIGNATURE FOR
CUSTOMER 1.

111
/

v

PARAMETERS
~—113

SIGNATURE FOR
CUSTOMER n.

\]

PARAMETERS

o

Y A —

130~

134

PROFILE DECAY

TIME

131

133

132—

Fig.7

SUBSTITUTE SHEET ( rule 26 )




PCT/GB98/00138

WO 98/32085

//16

g'bi4

AY030 F140Hd

V1vYad doiH3d 1104 1937109
OIHOLSIH 31v¥ddn

103130 ¥ IN3O3H 31vadn
V.iV¥a aoid3d T110d 1037100
OIHOLSIH 31Yddn

103130 ¥ INFO3H F1vadn

V1va goid3d 110d L931100

SUBSTITUTE SHEET ( rule 26)



WO 98/32085

- 8/16

PCT/GB98/00138

INTERPRET CALL
DETAIL RECORD

RS S S
INTERPRET : l : l
CUTOMER CDR 46 || 1 |
e . o . — — — — L e e — — — ——
Fig.9
ELEMENT NAME POSITION (FROM 0) FORMAT

CALL START_DT

9

YYYY-MM-DD HH:MM:SS.ss

LONG_DUR_CALL_IND

12

1— FIRST 6 HOURS
2— MIDDLE
3— COMPLETED

SERVICE_FEATURE_CODE

15

00— OTHER

10 — THREE WAY CALLING
12— CALL FORWARDING
14— CALL FORWARD BUSY

ORIG_TEL NO 16 CHAR (24)
CALL_DURATION 20 MMMMSS
ORIG_NNG 22 DDDD

DEST_NNG 23 DDDD

DAY _OF _WEEK 24 1-7 (MON=1, SUN=7)

Fig.10

SUBSTITUTE SHEET ( rule 26)




WO 98/32085 PCT/GB98/00138

9/16

ATTRIBUTE NAME TYPE
AccountNumber | STRING
CallForward BOOLEAN
LongCall BOOLEAN
Duration INTEGER
Destination ENUM {LOCAL, NATIONAL, INTERNATIONAL}
| DayOfiWeek ENUM {MONDAY, TUESDAY,...... , SUNDAY]}
| CallTime v TIME
171 \172

Fig.11

FREQUENCY

7 7
N /\\/ \\%%/4

| | { ' % l |

l % | | | i
191 T ?w N 7 7w | zam 7P| 7w 7em |
192" DAY

1 DAY 2 DAY 3 DAY 4

\

193

Fig.13

SUBSTITUTE SHEET ( rule 26 )



1 0/ 1 6 PCT/GBY98/00138

WO 98/32085

ANE

001—000 | 1vOld | 6565€2—00:00:00 AVOHNLYS %
001 —000 | IvOl | 6565€2—00:00:00 AVl % 2l
001 —000 | 1vOl | 6565€2—00:00:00 AVASHNHL % N
001 —000 | IVOH | 656562— 00:00:00 AVOSINGIM % 0l
001 —000 | 1vOl | 656562—00:00:00 AVOSINL % 6
001 —000 | 1vOld | 6565€2—00:00:00 AVANOW % g
VN 1Y0T SOHYMHOA T1¥D 40 ON /
VN 1YOT STIVD ONOT 40 HIGWNN 9
(SANOJ3S 40
VN H3EANN) NOILVHNG JOVHIAY G
Vo1
VN Y07 STIVO 40 438WNN TVLOL p
01—000 | 1vOH TYNOLLYNHLNI % g
001 —000 | 1vOH TYNOLLYN % z
001 —000 | 1v0T 007 % !
JONVY JdAL aole3d JINGIHLLY q@m

JNIL FOVHIAOD

F1404d

J\

SUBSTITUTE SHEET ( rule 26)



PCT/GB98/00138

11/16

WO 98/32085

AR

00°t—000 1Yo 00-00-£0 — 10-00:6} AVAONOW WY.L <- AYONOW WdZ % 8¢
00't—000 1VOTd4 00-00-61 — 10:00:£0 AVANNS WdZ < WYL % 44
00't—000 1YO14 00-00-£0 — 10-00-6} AVANNS WYZ <- AVGNOW WdZ % 9c
00't —000 1O 00-00-6} — L0-00-£0 AVAHNLYS WdZ <= WY.L % Gc
00t —000 1vOi4 00-00-£0 — 10-00:6} AVAENLYS WYZ <- AVAIHd WdZ % ve
00't — 000 1vOo'ld 00:00-6} — 10:00-20 AVAIH4 WdZ <- WYL % &
00°t—000 1vYO4 00-:00-20 — 10-00-61 AYAIHd WY.Z <- AYASHNHL Wd. % cc
00't —000 1Yo 00:00-6} — 10-00:£0 AVASHNHL WdZ < WVZ % Ic
00'L—000 1Yo 00:00-£0 — 1L0-00:6} AVASHNHL WYZ <- AVASINAIM WdL % 0c
00't —000 1vOid 00-:00-61 — 10:00-20 AVASANGIM Wd. <- WY.L % 6/
00't—000 1YOTd 00:00-20 — 10:00:6} AVOSINGIM WYL <- AVAS3NL Wdl % 8l
00't—000 1vYO7d4 00-00-61 — 10-00:£0 AVYAS3INL Wdl < WYZ % Zl
00’1 —000 1vYO1d4 00-00-£0 — 10-00:6} AYAS3INL WYL <- AYANOW Wd. % 9l
00°t—000 1vO'ld 00:00-61 — 10:00-20 AVANOW WdZ <= WYL % Gl
00't—000 1vYO1d4 65-65-6¢ — 00-00-:00 AVANNS % vi

SUBSTITUTE SHEET ( rule 26 )



WO 98/32085 PCT/GB98/00138

12/16

203

205
NETWORK i
VALIDATED

RESULTS

‘DATA

206

| NEURAL | 26T
! NETWORK

OUTPUT

| 204

REPORTS

Fig.14

SUBSTITUTE SHEET ( rule 26)



WO 98/32085

13/16

PCT/GB98/00138

—{ RESULTS

VALIDATED RESULTS AS INPUT

# /222
CHECK IF ANY VALIDATED
5‘2’%‘3’%’; RESULTS HAVE BEEN RETAINED.
IF YES THEN UPDATE RESULTS
/ 221
PRESENT RESULTS TO USER '
VIA GUI : ACCEPT NEW RETA,’?NESVS,f’T%ATED

DECIDE WHETHER

TO RETRAIN

RETRAIN

l

NEW DATA IS ACCOUNTED
FOR IN NEWLY TRAINED
NEURAL NETWORK

l

DELETE RETAINED
VALIDATED RESULTS

;

DO NOT RETRAIN

l

NEW DATA IS NOT
ACCOUNTED FOR

K22 0

Fig.15

SUBSTITUTE SHEET ( rule 26)




WO 98/32085 ' PCT/GB98/00138

14/16

MAKE NEW INSTANTIATION
OF SAME TOPOLOGY AS
ORIGINAL NEURAL NETWORK

l

TRAIN NEW INSTANTIATION
USING UPDATED TRAINING
DATA SET

l

EVALUATE NEWLY TRAINED
INSTANTIATION

l

SEND MESSAGE TO GUI TO
ALET USER TO PRESENCE OF
NEWLY TRAINED INSTANTIATION

l

IF MESSAGE RECEIVED FROM
GUI REQUESTING USE OF NEWLY
TRAINED INSTANTIATION THEN
REPLACE ORIGINAL INSTANTIATION
WITH NEW INSTANTIATION

l

DELETE ORIGINAL
INSTANTIATION

Fig.16

SUBSTITUTE SHEET ( rule 26)



WO 98/32085 PCT/GB98/00138
File Print Windows Help
File: | cdrFile { | | Date: 31-10-96 11:41 AM Reload
Overall Statistics Selection Statistics

Accounts: 599 Accounts: 16

Expected Behaviour:

Fraudulent Behaviour: 46

553

Fraudulent Behaviour: 3
Expected Behaviour: 15

Coverager:@®all

Osubset Cindividual

Display

Selection Criteria

Order

& Fraudulent O All "
. A ® Confidence
& Expected ® Confidence(%) g
= A < Duration
& Both < Limitto 100 T
Number: [ 01279 o Update |
243
=
Account # Behaviour Confidence (%)  Duration (secs) Validity /——-’240
01279402460 Fraudulent 99.99 23027 Correct
01279402012 Expected 99.99 3027 Incorrect
01279403610 Fraudulent 99.99 91513 B ;241
01279403076 Fraudulent 99.99 23027 -
01279402946 Fraudulent 99.99 15859 + Fraud 041
01279403252 Frauduient 99.99 253802 - Expected —
01279402490 Fraudulent 99.99 23027
01279402102 Expected 99.98 3027
01279403210 Fraudulent 99.97 91513
01279403046 Fraudulent 99.97 23027
01279402046 Fraudulent 99.97 15859 ] =242
01279403259 Fraudulent 99.96 253802
— Validation
244
[ Correct || incorrect || Clear | | | Clear Al | | [Add Knowledge |
— Messages

Fig.17

SUBSTITUTE SHEET ( rule 26)




WO 98/32085

PCT/GB98/00138

16/16

File Print Help

Overrall Statistics

Selection Statistics

Accounts: 599
Fraudulent Behaviour: 46
Expected Behaviour: 553

Accounts: 16
Fraudulent Behaviour: 3
Expected Behaviour: 15

Coverager:@®all Osubset Oindividual

Display —— Seiection Criteria
& Fraudulent o\

& Both < Limitto

Order

o=
< Expected ® Confidence (%)

@ Confidence

< Duration

B>

Number: | 01279

| | Update |

100—=— o = T
90

80

70

60

50

40

30 o

POITOPDQAT="3J300

20 ©

S

10 o
o3

h

150 248 336 424 512 600 688 776 864 952 104.0
Duration (secs)

Fig.18

SUBSTITUTE SHEET ( rule 26)




INTERNATIONAL SEARCH REPORT

In ational Application No

PCT/GB 98/00138

CLASSIFICATION OF SUBJECT MATTER

A.
IPC 6 GO6F17/60 GO7F7/08 H04Q7/38 GO6F15/80

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F GO7F HO04Q

Documentation searched other than minimumdocumentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 94 06103 A (HNC INC) 17 March 1994 1-13,
15-19
see abstract; claims 1,10,11,13,14
see page 33, line 26 - page 34, line 9;
figures 18,19
see page 36, line 8 - page 37, line 5
Y WO 95 01707 A (PACTEL CORP) 12 January 1-13,
1995 15-19
see abstract; claim 1
see page 4, line 24 - Tine 37
see page 10, 1ine 30 - page 12, line 30
see page 12, line 31 - page 15, line 24
Y EP 0 631 453 A (TELIA AB) 28 December 1994 1-13,
15-19
see column 3, line 47 - column 4, line 19;
claim 1
-/--

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of patticular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publicationdate of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannhot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"y document of particutar relevance; the claimed invention
cannot be considerad to Involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of theinternational search

8 April 1998

Date of mailing of the international search report

17/04/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. {(+31-70) 340-2040, Tx. 31 651 epo nt,

Fax: (+31-70) 340-3016

Authorized officer

Suendermann, R

Fomn PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2




INTERNATIONAL SEARCH REPORT

im  itlonal Application No

PCT/GB 98/00138

C.{Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

P,X

EP 0 647 903 A (IBM) 12 April 1995

see abstract; claims 1-6
see column 7, line 13 - column 8, Tine 20

WO 96 28948 A (CORAL SYSTEMS INC) 19
September 1996

see abstract

see page 15, Tine 25 - page 18, line 20;
figure 2

WO 97 03533 A (NORTHERN TELECOM LTD
;HOBSON PHILLIP WILLIAM (GB); BARSON PAUL
COL) 30 January 1997

see abstract; claims 1-11

see page 3, Tine 5 - line 35

see page 13, line 14 - page 14, line 16

5-10,13,
15-17,19

1,15

1-13,
15-19

Form PCT/ASA/210 (continuation of second sheet) (July 1992)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Information on patent family members

Int

tional Application No

PCT/GB 98/00138

Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 9406103 A 17-03-94 AU 4850093 A 29-03-94

. CA 2144068 A 17-03-94

DE 69315356 D 02-01-98

EP 0669032 A 30-08-95

JP 8504284 T 07-05-96

WO 9501707 A 12-01-95 US 5420910 A 30-05-95
US 5555551 A 10-09-96

EP 0631453 A 28-12-94 SE 500769 C 29-08-94
SE 9302140 A 29-08-94

US 5564079 A 08-10-96

EP 0647903 A 12-04-95 US 5442730 A 15-08-95
JP 7175669 A 14-07-95

WO 9628948 A 19-09-96 AU 5424396 A 02-10-96
WO 9703533 A 30-01-97 GB 2303275 A 12-02-97

Form PCT/ISA/210 (patent family annex) (July 1992)




	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

