

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2007207055 B2

(54) Title
Thiazoles as 11 beta-HSD1 inhibitors

(51) International Patent Classification(s)
C07D 277/56 (2006.01) **A61P 37/00** (2006.01)
A61K 31/427 (2006.01) **C07D 417/06** (2006.01)
A61P 3/00 (2006.01) **C07D 417/14** (2006.01)

(21) Application No: **2007207055** (22) Date of Filing: **2007.01.08**

(87) WIPO No: **WO07/082808**

(30) Priority Data

(31) Number **60/759,676** (32) Date **2006.01.18** (33) Country **US**

(43) Publication Date: **2007.07.26**
(44) Accepted Journal Date: **2011.06.02**

(71) Applicant(s)
F. Hoffmann-La Roche AG

(72) Inventor(s)
Kowalczyk, Agnieszka;Goodnow Jr., Robert Alan;Gillespie, Paul;Le, Kang;Zhang, Qiang

(74) Agent / Attorney
Spruson & Ferguson, Level 35 St Martins Tower 31 Market Street, Sydney, NSW, 2000

(56) Related Art
HECKMANN, G. et al: "Aufbau des heterocyclischen Grundgersts der GE2270-Antibiotika und Strukturaufklarung eines zentralen Abbauprodukts" ANGEWANDTE CHEMIE (2005), Vol 117, pages 1223-1226.
WO 2006/127587 (VERTEX PHARMACEUTICALS INCORPORATED) 30 NOV 2006.
US 5284821 A (DITRICH et al.) 8 FEB 1994.
WO 2003/027085 A2 (BAYER CORPORATION) 3 APR 2003.
CHEMICAL ABSTRACTS ACCESSION NO. 1964:45678, ABSTRACT.
BAKER, S. R. et al: "High affinity ligands for the a7 nicotinic receptor that show no cross-reactivity with the 5-HT3 receptor" BIOORG. & MED. CHEM. LETT. (2005), Vol. 15, pages 4727-4730.
CAS REGISTRY FILE RN 700815-53-8, STN Entry Date 29 JUN 2004.
WO 1996/022294 A1 (AMERICAN CYANAMID COMPANY) 25 JUL 1996.
KELLY, T. R. et al: "Synthesis of Micrococcinic Acid" TET. LETT (1991), Vol. 32, No. 34, pages 4263-4266.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 July 2007 (26.07.2007)

PCT

(10) International Publication Number
WO 2007/082808 A3

(51) International Patent Classification:

C07D 277/56 (2006.01) A61K 31/427 (2006.01)
C07D 417/06 (2006.01) A61P 3/00 (2006.01)
C07D 417/14 (2006.01) A61P 37/00 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/EP2007/050141

(22) International Filing Date: 8 January 2007 (08.01.2007)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/759,676 18 January 2006 (18.01.2006) US

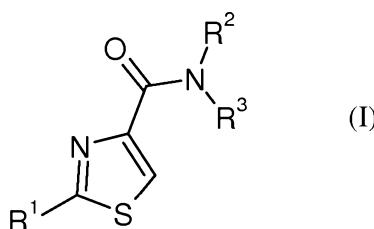
(71) Applicant (for all designated States except US): F. HOFFMANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse 124, CH-4070 Basel (CH).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GILLESPIE, Paul [GB/US]; 739 Tamaques Way, Westfield, New Jersey 07090 (US). GOODNOW JR., Robert Alan [US/US]; 799 Long Hill Road, Morris County, Gillette, New Jersey 07933 (US). KOWALCZYK, Agnieszka [PL/US]; 14 Autumn Drive, Mine Hill, New Jersey 07803 (US). LE, Kang [CN/US]; 802 Tallwood Lane, Green Brook, New Jersey 08812 (US). ZHANG, Qiang [CN/US]; 130 New Road, Apt. H4, Parsippany, New Jersey 07054 (US).

Published:


- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report:

13 September 2007

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: THIAZOLES AS 11 BETA-HSD1 INHIBITORS

(57) Abstract: Provided herein are compounds of the formula (I) as well as pharmaceutically acceptable salts thereof, wherein the substituents are as those disclosed in the specification. These compounds, and the pharmaceutical compositions containing them, are useful for the treatment of diseases such as, for example, type II diabetes mellitus and metabolic syndrome.

A3

WO 2007/082808 A3

THIAZOLES AS 11 BETA-HSD1 INHIBITORS

5

The invention relates to inhibitors of 11 β -hydroxysteroid dehydrogenase. The inhibitors include, for example, thiazoles and derivatives thereof and are useful for the treatment of diseases such as type II diabetes mellitus and metabolic syndrome.

10

All documents cited or relied upon below are expressly incorporated herein by reference.

15 Diabetes mellitus is a serious illness that affects an increasing number of people across the world. Its incidence is escalating parallel to the trend of greater obesity in many countries. The serious consequences of the disease include increased risk of stroke, heart disease, kidney damage, blindness, and amputation. Diabetes is characterized by decreased insulin secretion and/or an impaired ability of peripheral tissues to respond to insulin, resulting in increased plasma glucose levels. There are 20 two forms of diabetes: insulin-dependent and non-insulin-dependent, with the great majority of diabetics suffering from the non-insulin-dependent form of the disease, known as type 2 diabetes or non-insulin-dependent diabetes mellitus (NIDDM). Because of the serious consequences, there is an urgent need to control diabetes.

25 Treatment of NIDDM generally starts with weight loss, a healthy diet and an exercise program. These factors are especially important in addressing the increased cardiovascular risks associated with diabetes, but they are generally ineffective in controlling the disease itself. There are a number of drug treatments available, including insulin, metformin, sulfonylureas, acarbose, and thiazolidinediones. 30 However, each of these treatments has disadvantages, and there is an ongoing need for new drugs to treat diabetes.

14.12.06

Metformin is an effective agent that reduces fasting plasma glucose levels and enhances the insulin sensitivity of peripheral tissue. Metformin has a number of effects in vivo, including an increase in the synthesis of glycogen, the polymeric form 5 in which glucose is stored [De Fronzo, R. A. Drugs 1999, 58 Suppl. 1, 29]. Metformin also has beneficial effects on lipid profile, with favorable results on cardiovascular health—treatment with metformin leads to reductions in the levels of LDL cholesterol and triglycerides [Inzucchi, S. E. JAMA 2002, 287, 360]. However, over a period of years, metformin loses its effectiveness [Turner, R. C. et al. JAMA 1999, 281, 2005] 10 and there is consequently a need for new treatments for diabetes.

Thiazolidinediones are activators of the nuclear receptor peroxisome-proliferator activated receptor-gamma. They are effective in reducing blood glucose levels, and their efficacy has been attributed primarily to decreasing insulin resistance in skeletal 15 muscle [Tadayyon, M. and Smith, S.A. Expert Opin. Investig. Drugs 2003, 12, 307]. One disadvantage associated with the use of thiazolidinediones is weight gain.

Sulfonylureas bind to the sulfonylurea receptor on pancreatic beta cells, stimulate insulin secretion, and consequently reduce blood glucose levels. Weight gain is also 20 associated with the use of sulfonylureas [Inzucchi, S. E. JAMA 2002, 287, 360] and, like metformin, they lose efficacy over time [Turner, R. C. et al. JAMA 1999, 281, 2005]. A further problem often encountered in patients treated with sulfonylureas is hypoglycemia [Salas, M. and Caro, J. J. Adv. Drug React. Tox. Rev. 2002, 21, 205-217].

25 Acarbose is an inhibitor of the enzyme alpha-glucosidase, which breaks down disaccharides and complex carbohydrates in the intestine. It has lower efficacy than metformin or the sulfonylureas, and it causes intestinal discomfort and diarrhea which often lead to the discontinuation of its use [Inzucchi, S. E. JAMA 2002, 287, 360]

30 Because none of these treatments is effective over the long term without serious side effects, there is a need for new drugs for the treatment of type 2 diabetes.

The metabolic syndrome is a condition where patients exhibit more than two of the following symptoms: obesity, hypertriglyceridemia, low levels of HDL-cholesterol, high blood pressure, and elevated fasting glucose levels. This syndrome is often a precursor of type 2 diabetes, and has high prevalence in the United States estimated at 5 24% (E. S. Ford et al. JAMA 2002, 287, 356). A therapeutic agent that ameliorates the metabolic syndrome would be useful in potentially slowing or stopping the progression to type 2 diabetes.

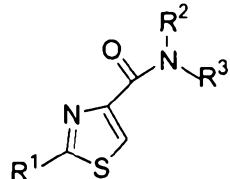
In the liver, glucose is produced by two different processes. The first is 10 gluconeogenesis, where new glucose is generated in a series of enzymatic reactions from pyruvate; and the second is glycolysis, where glucose is generated by the breakdown of the polymer glycogen.

Two of the key enzymes in the process of gluconeogenesis are phosphoenolpyruvate 15 carboxykinase (PEPCK) which catalyzes the conversion of oxalacetate to phosphoenolpyruvate, and glucose-6-phosphatase (G6Pase) which catalyzes the hydrolysis of glucose-6-phosphate to give free glucose. The conversion of oxalacetate to phosphoenolpyruvate, catalyzed by PEPCK, is the rate-limiting step in gluconeogenesis. On fasting, both PEPCK and G6Pase are upregulated, allowing the 20 rate of gluconeogenesis to increase. The levels of these enzymes are controlled in part by the corticosteroid hormones (cortisol in human and corticosterone in mouse). When the corticosteroid binds to the corticosteroid receptor, a signaling cascade is triggered which results in the upregulation of these enzymes.

25 The corticosteroid hormones are found in the body along with their oxidized 11-dehydro counterparts (cortisone and 11-dehydrocorticosterone in human and mouse, respectively), which do not have activity at the glucocorticoid receptor. The actions of the hormone depend on the local concentration in the tissue where the corticosteroid receptors are expressed. This local concentration can differ from the circulating levels 30 of the hormone in plasma, because of the actions of redox enzymes in the tissues. The enzymes that modify the oxidation state of the hormones are 11beta-hydroxysteroid dehydrogenases forms I and II. Form I (11beta-HSD1) is responsible for the reduction of cortisone to cortisol in vivo, while form II (11beta-HSD2) is responsible for the oxidation of cortisol to cortisone. The enzymes have low homology and are expressed

in different tissues. 11 β -HSD1 is highly expressed in a number of tissues including liver, adipose tissue, and brain, while 11 β -HSD2 is highly expressed in mineralocorticoid target tissues, such as kidney and colon. 11 β -HSD2 prevents the binding of cortisol to the mineralocorticoid receptor, and defects in this enzyme have 5 been found to be associated with the syndrome of apparent mineralocorticoid excess (AME).

Since the binding of the 11 β -hydroxysteroids to the corticosteroid receptor leads to upregulation of PEPCK and therefore to increased blood glucose levels, inhibition of 10 11 β -HSD1 is a promising approach for the treatment of diabetes. In addition to the biochemical discussion above, there is evidence from transgenic mice, and also from small clinical studies in humans, that confirm the therapeutic potential of the inhibition of 11 β -HSD1.


15 Experiments with transgenic mice indicate that modulation of the activity of 11 β -HSD1 could have beneficial therapeutic effects in diabetes and in the metabolic syndrome. For example, when the 11 β -HSD1 gene is knocked out in mice, fasting does not lead to the normal increase in levels of G6Pase and PEPCK, and the animals are not susceptible to stress- or obesity-related hyperglycemia. Moreover, knockout 20 animals which are rendered obese on a high-fat diet have significantly lower fasting glucose levels than weight-matched controls (Y. Kotolevtsev et al. Proc. Natl. Acad. Sci. USA 1997, 94, 14924). 11 β -HSD1 knockout mice have also been found to have improved lipid profile, insulin sensitivity, and glucose tolerance (N. M. Morton et al. J. Biol. Chem. 2001, 276, 41293). The effect of overexpressing the 11 β -HSD1 gene in 25 mice has also been studied. These transgenic mice displayed increased 11 β -HSD1 activity in adipose tissue, and they also exhibit visceral obesity which is associated with the metabolic syndrome. Levels of the corticosterone were increased in adipose tissue, but not in serum, and the mice had increased levels of obesity, especially when on a high-fat diet. Mice fed on low-fat diets were hyperglycemic and 30 hyperinsulinemic, and also showed glucose intolerance and insulin resistance (H. Masuzaki et al. Science, 2001, 294, 2166).

The effects of the non-selective 11 β -hydroxysteroid dehydrogenase inhibitor carbenoxolone have been studied in a number of small trials in humans. In one study,

carbenoxolone was found to lead to an increase in whole body insulin sensitivity, and this increase was attributed to a decrease in hepatic glucose production (B. R. Walker et al. J. Clin. Endocrinol. Metab. 1995, 80, 3155). In another study, decreased glucose production and glycogenolysis in response to glucagon challenge were observed in diabetic but not healthy subjects (R. C. Andrews et al. J. Clin. Endocrinol. Metab. 2003, 88, 285). Finally, carbenoxolone was found to improve cognitive function in healthy elderly men and also in type 2 diabetics (T. C. Sandeep et al. Proc. Natl. Acad. Sci USA 2004, 101, 6734). A need exists in the art, therefore, for 1 β -HSD1 inhibitors that have efficacy for the treatment of diseases such as, for example, type II diabetes mellitus and metabolic syndrome. Further, a need exists in the art for 1 β -HSD1 inhibitors having IC50 values less than about 1 μ M.

Accordingly, a first aspect of the present invention provides a compound of the formula (I):

15

wherein:

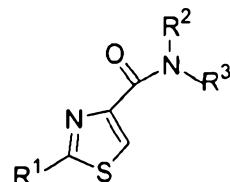
R¹ is benzofuran, cyclopentene, cyclohexene, cycloheptene, benzo[1,3] dioxole, indole or phenyl, wherein said phenyl is unsubstituted or mono-, bi-, or tri-substituted

20 independently with halogen, lower alkyl, halo-lower-alkyl, phenyl, —OCH₃, —O(CH₂)_nCH₃, —(CH₂)_nOH, —OH —NH₂, —OCF₃, —O(CH₂)_n-phenyl, —SCH₃, —NHSO₂CH₃, thiophene, morpholine, —C(O)CH₃, —N(CH₃)₂ or —NO₂; one of R² or R³ is cyclohexane and the other is alkyl or allyl,

25 or

R² and R³, together with the N atom to which they are attached, is decahydroguinoline, azocane, azepane, pipendine, morpholine, adamantane, thiomorpholine, cyclooctane, cyclohepane, pyrrolidine, decahydroisoquinoline, azepane-4-one, hydroxyadaman-ylamine, azabicyclo[3.2.2.]nonane, bicyclic[2.2.1]hept-2-ylamine, hexahydro[3.2-c]quinoline, bicyclic[3.1.1]heptane or azabicyclo[3.2.1]octane; or a pharmaceutically acceptable salt thereof,

30 with the proviso that the following compounds are excluded:


[2-(2,3-Dihydro-benzo[1,4]dioxin-2-yl)-thiazol-4-yl]-pyrrolidin-1-yl-methanone;
[2-(2,3-Dihydro-benzo[1,4]dioxin-2-yl)-thiazol-4-yl]-morpholin-4-yl-methanone;
(4-Phenyl-3,6-dihydro-2H-pyridin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone;
(2-Benzo[1,2,5]oxadiazol-5-yl-thiazol-4-yl)-morpholin-4-yl-methanone;
5 Morpholin-4-yl-(2-pyridin-3-yl-thiazol-4-yl)-methanone
[2-(4-Methyl-pyridin-3-yl)-thiazol-4-yl]-pipedin-1-yl-methanone;
[2-(4-Methyl-pyridin-3-yl)-thiazol-4-yl]-morpholin-4-yl-methanone;
[2-(5-Methyl-isoxazol-3-yl)-thiazol-4-yl]-pipedin-1-yl-methanone; and
[2-(3-Methyl-5-trifluoromethyl-pyrazol-1-yl)-thiazol-4-yl]-morpholin-4-yl-methanone.

10 A second aspect of the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of the first aspect of the present invention or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

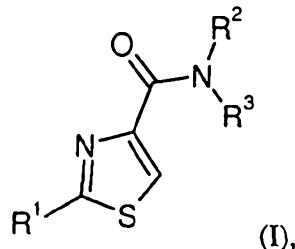
15 A third aspect of the present invention provides a method for treating type II diabetes mellitus or metabolic syndrome, comprising the step of administering to a patient in need thereof a therapeutically effective amount of a compound according to the first aspect of the invention or of a composition according to the second aspect of the present invention described above.

Disclosed herein is a compound of the formula

20 (I):

25 wherein: R¹ is 5- to 8-membered cycloalkyl, phenyl, unsubstituted or mono-, bi-, or tri-substituted independently with halogen, lower alkyl, halo-lower-alkyl, phenyl, -OCH₃, -O(CH₂)_nCH₃, -(CH₂)_nOH, -OH, -NH₂, -OCF₃, -O(CH₂)_n-phenyl, -SCH₃, -NHSO₂CH₃, thiophene, morpholine, -C(O)CH₃, -N(CH₃)₂ or -NO₂, 5- or 6-membered saturated, partially unsaturated, or aryl ring which is connected by a ring carbon atom and which has from 1 to 3 hetero ring atoms selected from the group consisting of sulfur, nitrogen and oxygen, unsubstituted or substituted with halogen, lower alkoxy, or lower alkyl,

9- or 10-membered bicyclic unsaturated or partially unsaturated ring which is connected by a ring carbon and which has from 1 to 3 hetero ring atoms selected from the group consisting of sulfur, nitrogen and oxygen, unsubstituted or mono-, bi- or tri-substituted with halogen or 5 lower alkyl;


one of R² or R³ is H or branched or unbranched lower alkyl, and the other is C₄-C₁₀ alkyl, -CH₂-phenyl, mono-, bi- or tri-cyclic 5- to 10-membered carbocyclic ring unsubstituted or mono- or bi-substituted with lower alkyl, hydroxy, or oxo, or 10 bicyclic partially unsaturated 9- or 10- membered ring,

or
R² and R³, together with the N atom to which they are attached, form a saturated or partially unsaturated 6- to 8-membered monocyclic or 7- to 10-membered 15 bicyclic ring, which contains the N atom to which R₂ and R₃ are attached, and optionally another hetero atom which is selected from O and S, unsubstituted or mono- or bi- substituted with branched or unbranched lower alkyl, halogen, hydroxy, hydroxy-alkyl, pyridine, carboxy, phenyl, oxo, -CH₂-phenyl or 5- to 10-membered cycloalkyl; and

n is zero, 1 or 2,
20 or a pharmaceutically acceptable salt thereof,
with the proviso that the following compounds are excluded:

[2-(2,3-Dihydro-benzo[1,4]dioxin-2-yl)-thiazol-4-yl]-pyrrolidin-1-yl-methanone;
[2-(2,3-Dihydro-benzo[1,4]dioxin-2-yl)-thiazol-4-yl]-morpholin-4-yl-methanone;
25 (4-Phenyl-3,6-dihydro-2H-pyridin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone;
(2-Benzo[1,2,5]oxadiazol-5-yl-thiazol-4-yl)-morpholin-4-yl-methanone;
Morpholin-4-yl-(2-pyridin-3-yl-thiazol-4-yl)-methanone;
[2-(4-Methyl-pyridin-3-yl)-thiazol-4-yl]-piperidin-1-yl-methanone;
[2-(4-Methyl-pyridin-3-yl)-thiazol-4-yl]-morpholin-4-yl-methanone;
30 [2-(5-Methyl-isoxazol-3-yl)-thiazol-4-yl]-piperidin-1-yl-methanone; and
[2-(3-Methyl-5-trifluoromethyl-pyrazol-1-yl)-thiazol-4-yl]-morpholin-4-yl-methanone.

Also disclosed herein is a pharmaceutical composition, comprising a therapeutically effective amount of a compound of the formula (I):

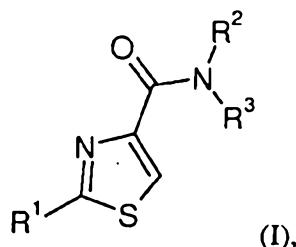
5 wherein:

R¹ is 5- to 8-membered cycloalkyl,

phenyl, unsubstituted or mono-, bi-, or tri-substituted independently with
halogen, lower alkyl, halo-lower-alkyl, phenyl, -OCH₃, -O(CH₂)_nCH₃, -
10 (CH₂)_nOH, -OH, -NH₂, -OCF₃, -O(CH₂)_n-phenyl, -SCH₃, -NHSO₂CH₃,
thiophene, morpholine, -C(O)CH₃, -N(CH₃)₂ or -NO₂,

15 5- or 6-membered saturated, partially unsaturated, or aryl ring which is
connected by a ring carbon atom and which has from 1 to 3 hetero ring
atoms selected from the group consisting of sulfur, nitrogen and oxygen,
unsubstituted or substituted with halogen, lower alkoxy, or lower alkyl,
9- or 10-membered bicyclic unsaturated or partially unsaturated ring which is
20 connected by a ring carbon and which has from 1 to 3 hetero ring atoms
selected from the group consisting of sulfur, nitrogen and oxygen,
unsubstituted or mono-, bi- or tri-substituted with halogen or lower
alkyl;

one of R² or R³ is H or branched or unbranched lower alkyl, and the other is C₄-
25 C₁₀ alkyl, -CH₂-phenyl, mono-, bi- or tri-cyclic 5- to 10-membered
carbocyclic ring unsubstituted or mono- or bi-substituted with lower
alkyl, hydroxy, or oxo, or bicyclic partially unsaturated 9- or 10-
membered ring,


or

30 R² and R³, together with the N atom to which they are attached, form a saturated or
partially unsaturated 6- to 8-membered monocyclic or 7- to 10-membered
bicyclic ring, which contains the N atom to which R₂ and R₃ are attached, and

optionally another hetero atom which is selected from O and S, unsubstituted or mono- or bi- substituted with branched or unbranched lower alkyl, halogen, hydroxy, hydroxy-alkyl, pyridine, carboxy, phenyl, oxo, -CH₂-phenyl or 5- to 10-membered cycloalkyl; and

5 n is zero, 1 or 2,
or a pharmaceutically acceptable salt thereof,
and a pharmaceutically acceptable carrier.

Also disclosed herein is a method for treating a metabolic disease or disorder, comprising the step of administering to a patient in need thereof a therapeutically effective amount of a compound of the formula (I):

wherein:

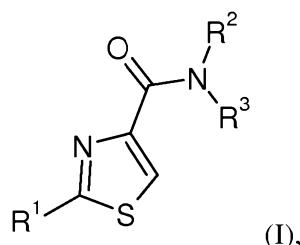
15 R¹ is 5- to 8-membered cycloalkyl,
phenyl, unsubstituted or mono-, bi-, or tri-substituted independently with
halogen, lower alkyl, halo-lower-alkyl, phenyl, -OCH₃, -O(CH₂)_nCH₃,
-(CH₂)_nOH, -OH, -NH₂, -OCF₃, -O(CH₂)_n-phenyl, -SCH₃, -
NHSO₂CH₃, thiophene, morpholine, -C(O)CH₃, -N(CH₃)₂ or -NO₂,

20 5- or 6-membered saturated, partially unsaturated, or aryl ring which is
connected by a ring carbon atom and which has from 1 to 3 hetero
ring atoms selected from the group consisting of sulfur, nitrogen and
oxygen, unsubstituted or substituted with halogen, lower alkoxy, or
lower alkyl,

25 9- or 10-membered bicyclic unsaturated or partially unsaturated ring which is
connected by a ring carbon and which has from 1 to 3 hetero ring
atoms selected from the group consisting of sulfur, nitrogen and
oxygen, unsubstituted or mono-, bi- or tri-substituted with halogen or
lower alkyl;

one of R² or R³ is H or branched or unbranched lower alkyl, and the other is C₄-C₁₀ alkyl, -CH₂-phenyl, mono-, bi- or tri-cyclic 5- to 10-membered carbocyclic ring unsubstituted or mono- or bi-substituted with lower alkyl, hydroxy, or oxo, or bicyclic partially unsaturated 9- or 10- membered ring,

5 or


R² and R³, together with the N atom to which they are attached, form a saturated or partially unsaturated 6- to 8-membered monocyclic or 7- to 10-membered bicyclic ring, which contains the N atom to which R₂ and R₃ are attached, and optionally another hetero atom which is selected from O and S, unsubstituted or 10 mono- or bi- substituted with branched or unbranched lower alkyl, halogen, hydroxy, hydroxy-alkyl, pyridine, carboxy, phenyl, oxo, -CH₂-phenyl or 5- to 10-membered cycloalkyl; and

n is zero, 1 or 2,

or a pharmaceutically acceptable salt thereof.

15

The present invention is directed to inhibitors of 11 β -HSD1. In a preferred embodiment, the invention provides for pharmaceutical compositions comprising thiazoles of the formula (I):

as well as pharmaceutically acceptable salts thereof, that are useful as inhibitors of 11 β -HSD1.

25

Preferred are the following compounds of the invention:

[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone;

Azocan-1-yl-[2-(2,3-dichloro-phenyl)-thiazol-4-yl]-methanone;

Azepan-1-yl-[2-(2,3-dichloro-phenyl)-thiazol-4-yl]-methanone;

30 (Octahydro-quinolin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone;

Azocan-1-yl-(2-phenyl-thiazol-4-yl)-methanone;
Azepan-1-yl-(2-phenyl-thiazol-4-yl)-methanone;
(Octahydro-quinolin-1-yl)-[2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-methanone;
Azocan-1-yl-[2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-methanone;

5 [2-(2-Chloro-phenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;
Azocan-1-yl-[2-(2-chloro-phenyl)-thiazol-4-yl]-methanone;
Azepan-1-yl-[2-(2-chloro-phenyl)-thiazol-4-yl]-methanone;
[2-(2-Chloro-phenyl)-thiazol-4-yl]-[2-methyl-piperidin-1-yl]-methanone;
[2-(4-Chloro-phenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;

10 Azepan-1-yl-[2-(4-chloro-phenyl)-thiazol-4-yl]-methanone;
[2-(4-Chloro-phenyl)-thiazol-4-yl]-[2-methyl-piperidin-1-yl]-methanone;
[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-[2-methyl-piperidin-1-yl]-methanone;
[2-(4-Methoxy-phenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;
[2-(2,3-Dihydro-benzofuran-5-yl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;

15 [2-(2,3-Dihydro-benzofuran-5-yl)-thiazol-4-yl]-[2-methyl-piperidin-1-yl]-methanone;
(Octahydro-quinolin-1-yl)-[2-p-tolyl-thiazol-4-yl]-methanone;
Azepan-1-yl-[2-p-tolyl-thiazol-4-yl]-methanone;
(2-Methyl-piperidin-1-yl)-[2-p-tolyl-thiazol-4-yl]-methanone;
Azocan-1-yl-[2-(2,4-difluoro-phenyl)-thiazol-4-yl]-methanone;

20 Azepan-1-yl-[2-(2,4-difluoro-phenyl)-thiazol-4-yl]-methanone;
[2-(2,4-Difluoro-phenyl)-thiazol-4-yl]-[2-methyl-piperidin-1-yl]-methanone;
[2-(2,4-Difluoro-phenyl)-thiazol-4-yl]-[3,5-dimethyl-piperidin-1-yl]-methanone;
(3,5-Dimethyl-piperidin-1-yl)-[2-phenyl-thiazol-4-yl]-methanone;
[2-(2-Chloro-phenyl)-thiazol-4-yl]-[3,5-dimethyl-piperidin-1-yl]-methanone;

25 [2-(4-Chloro-phenyl)-thiazol-4-yl]-[3,5-dimethyl-piperidin-1-yl]-methanone;
[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-[3,5-dimethyl-piperidin-1-yl]-methanone;
(2,6-Dimethyl-morpholin-4-yl)-[2-(4-methoxy-phenyl)-thiazol-4-yl]-methanone;
(3,5-Dimethyl-piperidin-1-yl)-[2-(4-methoxy-phenyl)-thiazol-4-yl]-methanone;
(3,5-Dimethyl-piperidin-1-yl)-[2-p-tolyl-thiazol-4-yl]-methanone;

30 [2-(2,4-Difluoro-phenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;
[2-(3-Chloro-phenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;
[2-(2,4-Dichloro-phenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;
[2-(2,5-Dichloro-phenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;
[2-(5-Chloro-2-methyl-phenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;

[2-(5-Chloro-2-methoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3-Chloro-4-fluoro-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3-Chloro-4-methyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3-Chloro-2-methyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
5 [2-(4-Chloro-3-methyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(4-Chloro-2-methyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(4-Chloro-2-methoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(4-Chloro-2-ethoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3-Amino-4-chloro-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
10 [2-(3-Isopropyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
(2-Cyclopent-1-enyl-thiazol-4-yl)- (octahydro-quinolin-1-yl)-methanone;
(2-Cyclohex-1-enyl-thiazol-4-yl)- (octahydro-quinolin-1-yl)-methanone;
(2-Cyclohept-1-enyl-thiazol-4-yl)- (octahydro-quinolin-1-yl)-methanone;
(Octahydro-quinolin-1-yl)-(2-o-tolyl-thiazol-4-yl)-methanone;
15 [2-(2-Hydroxymethyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3-Hydroxymethyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(4-Hydroxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(2-Methoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3-Methoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
20 (Octahydro-quinolin-1-yl)-[2-(2-trifluoromethoxy-phenyl)-thiazol-4-yl]-methanone;
(Octahydro-quinolin-1-yl)-[2-(3-trifluoromethoxy-phenyl)-thiazol-4-yl]-methanone;
[2-(2-Benzylxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3-Benzylxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
(Octahydro-quinolin-1-yl)-[2-(2-phenoxy-phenyl)-thiazol-4-yl]-methanone;
25 [2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(2-Fluoro-3-methoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(5-Fluoro-2-methoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3,4-Dimethoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(2,5-Dimethoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
30 (2-Benzo[1,3]dioxol-5-yl-thiazol-4-yl)- (octahydro-quinolin-1-yl)-methanone;
(Octahydro-quinolin-1-yl)-[2-(2,3,4-trimethoxy-phenyl)-thiazol-4-yl]-methanone;
[2-(2-Methylsulfanyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3-Methylsulfanyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;
[2-(3-Amino-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone;

N-[2-[4-(Octahydro-quinoline-1-carbonyl)-thiazol-2-yl]-phenyl]-methanesulfonamide;

[2-(2-Nitro-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone;

(2-Biphenyl-3-yl-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone;

5 (2-Biphenyl-2-yl-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone;

[2-(1H-Indol-5-yl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone;

(Octahydro-quinolin-1-yl)-(2-thiophen-3-yl-thiazol-4-yl)-methanone;

[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(3,4,5,6-tetrahydro-2H-[2,2']bipyridinyl-1-yl)-methanone;

10 2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid adamantan-1-ylamide;

2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid adamantan-2-ylamide;

(3-Aza-bicyclo[3.2.2]non-3-yl)-[2-(2,3-dichloro-phenyl)-thiazol-4-yl]-methanone;

2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid ((1R,4R)-4,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide;

15 [2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(3-pyridin-3-yl-pyrrolidin-1-yl)-methanone;

(2-Phenyl-thiazol-4-yl)-(3,4,5,6-tetrahydro-2H-[2,2']bipyridinyl-1-yl)-methanone;

(4-Chloro-octahydro-quinolin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone;

(Octahydro-isoquinolin-2-yl)-(2-phenyl-thiazol-4-yl)-methanone;

(4aR,8aS)-Octahydro-isoquinolin-2-yl-(2-phenyl-thiazol-4-yl)-methanone;

20 (3-Aza-bicyclo[3.2.2]non-3-yl)-(2-phenyl-thiazol-4-yl)-methanone;

2-Phenyl-thiazole-4-carboxylic acid ((1R,2R,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide;

2-Phenyl-thiazole-4-carboxylic acid ((1R,4R)-4,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide;

25 1-[2-[4-(Octahydro-quinoline-1-carbonyl)-thiazol-2-yl]-phenyl]-ethanone;

[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(2,6-dimethyl-piperidin-1-yl)-methanone;

[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(2-ethyl-piperidin-1-yl)-methanone;

[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(2-propyl-piperidin-1-yl)-methanone;

[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(S)-3,4,5,6-tetrahydro-2H-[2,2']bipyridinyl-1-

30 yl-methanone;

[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(2-isopropyl-pyrrolidin-1-yl)-methanone;

(4-Chloro-octahydro-quinolin-1-yl)-[2-(2,3-dichloro-phenyl)-thiazol-4-yl]-methanone;

1-[2-(2,3-Dichloro-phenyl)-thiazole-4-carbonyl]-2-methyl-octahydro-quinolin-4-one;

2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid cyclohexyl-ethyl-amide;
2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid allyl-cyclohexyl-amide;
[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-[octahydro-isoquinolin-2-yl]-methanone;
1-[2-(2,3-Dichloro-phenyl)-thiazole-4-carbonyl]-azepan-4-one;

5 [2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-methanone;
2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid ((1R,2R,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide;
(7-Aza-bicyclo[2.2.1]hept-7-yl)-[2-(2,3-dichloro-phenyl)-thiazol-4-yl]-methanone;

10 [2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-[2,6-dimethyl-morpholin-4-yl]-methanone;
(2-Ethyl-piperidin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone;
(2-Phenyl-thiazol-4-yl)-(S)-3,4,5,6-tetrahydro-2H-[2,2']bipyridinyl-1-yl-methanone;
2-Phenyl-thiazole-4-carboxylic acid cyclohexyl-ethyl-amide;
2-Phenyl-thiazole-4-carboxylic acid allyl-cyclohexyl-amide;

15 2-Phenyl-thiazole-4-carboxylic acid adamantan-2-ylamide;
(2-Phenyl-thiazol-4-yl)-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-methanone;
2-Phenyl-thiazole-4-carboxylic acid ((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide;

20 [2-(2-Chloro-phenyl)-thiazol-4-yl]-((2S,6R)-2,6-dimethyl-piperidin-1-yl)-methanone;
[2-(2-Chloro-phenyl)-thiazol-4-yl]-[2,6-dimethyl-piperidin-1-yl]-methanone;
[2-(2-Chloro-6-methoxy-phenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone;
(2,6-Dimethyl-piperidin-1-yl)-[2-(2-methoxy-phenyl)-thiazol-4-yl]-methanone;
[2-(2-Methoxy-phenyl)-thiazol-4-yl]-[2-methyl-piperidin-1-yl]-methanone;

25 [2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-[2-methyl-piperidin-1-yl]-methanone;
2-(2-Hydroxymethyl-phenyl)-thiazole-4-carboxylic acid cyclohexyl-methyl-amide;
2-(2-Chloro-phenyl)-thiazole-4-carboxylic acid cyclohexyl-methyl-amide;
2-(2-Chloro-phenyl)-thiazole-4-carboxylic acid cyclohexyl-ethyl-amide;
2-(2-Chloro-phenyl)-thiazole-4-carboxylic acid (4-hydroxy-cyclohexyl)-amide;

30 (2,6-Dimethyl-piperidin-1-yl)-(2-*o*-tolyl-thiazol-4-yl)-methanone;
[2-(2-Chloro-pyridin-3-yl)-thiazol-4-yl]-[2,6-dimethyl-piperidin-1-yl]-methanone;
(2,6-Dimethyl-piperidin-1-yl)-[2-(2-morpholin-4-yl-phenyl)-thiazol-4-yl]-methanone;
[2-(2-Dimethylamino-phenyl)-thiazol-4-yl]-[2,6-dimethyl-piperidin-1-yl]-methanone;
1-{2-[4-(2,6-Dimethyl-piperidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(2-Methyl-piperidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(2-Ethyl-piperidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(2-Propyl-piperidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(3,4,5,6-Tetrahydro-2*H*-[2,2']bipyridinyl-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-((S)-3,4,5,6-Tetrahydro-2*H*-[2,2']bipyridinyl-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(3-Phenyl-morpholine-4-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(3-Phenyl-thiomorpholine-4-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(2-Isobutyl-pyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(2-Isopropyl-pyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(4-Chloro-octahydro-quinoline-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid cyclohexyl-ethyl-amide;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid allyl-cyclohexyl-amide;

1-{2-[4-((*trans*)-Octahydro-isoquinoline-2-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(Azepane-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid cycloheptylamide;

1-{2-[4-(Azocane-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid cyclooctylamide;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid adamantan-1-ylamide;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid adamantan-2-ylamide;

1-{2-[4-((1*R*,5*R*)-3,3,5-Trimethyl-6-aza-bicyclo[3.2.1]octane-6-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(3-Aza-bicyclo[3.2.2]nonane-3-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid ((1*R*,2*R*,3*R*,5*S*)-2,6,6-trimethyl-bicyclo[3.1.1]hept-3-yl)-amide;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid ((1*R*,2*S*,4*R*)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid ((1*R*,2*R*,4*R*)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid benzyl-isopropyl-amide;

1-{2-[4-(3-Phenyl-pyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(3-Pyridin-3-yl-pyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

1-{2-[4-(3-Benzyl-piperidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;

[2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(octahydro-isoquinolin-2-yl)-methanone;

[2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-methanone;

5 [2-(2,3-Dimethoxy-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone;
(4-Chloro-octahydro-quinolin-1-yl)-[2-(2,3-dimethoxy-phenyl)-thiazol-4-yl]-methanone;

2-*o*-Tolyl-thiazole-4-carboxylic acid adamantan-2-ylamide;

2-*o*-Tolyl-thiazole-4-carboxylic acid (1S,2R,4R)-bicyclo[2.2.1]hept-2-ylamide;

10 [2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(S)-3,4,5,6-tetrahydro-2H-[2,2']bipyridinyl-1-yl-methanone;

[2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(octahydro-isoquinolin-2-yl)-methanone;

2-(2-Fluoro-6-methoxy-phenyl)-thiazole-4-carboxylic acid ((1R,4R)-4,7,7-trimethyl-15 bicyclo[2.2.1]hept-2-yl)-amide;

[2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(3-pyridin-3-yl-pyrrolidin-1-yl)-methanone;

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid (5-hydroxy-adamantan-2-yl)-amide;

[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-thiomorpholin-4-yl-methanone;

20 [2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(2,6-dimethyl-morpholin-4-yl)-methanone;
[2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(4aR,8aS)-octahydro-isoquinolin-2-yl-methanone;

2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid ((1R,2R,3R,5S)-2,6,6-trimethyl-bicyclo[3.1.1]hept-3-yl)-amide;

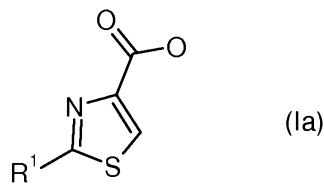
25 [2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(2-methyl-pyrrolidin-1-yl)-methanone;
2-(2-Chloro-phenyl)-thiazole-4-carboxylic acid cyclohexylamide;
(Octahydro-quinolin-1-yl)-(2-pyridin-3-yl-thiazol-4-yl)-methanone;
(2-Methyl-piperidin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone;

[2-(4-tert-Butyl-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone;

30 (3,5-Dimethyl-piperidin-1-yl)-[2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-methanone;
(2,6-Dimethyl-morpholin-4-yl)-[2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-methanone;

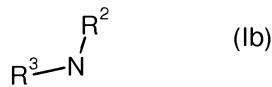
(2-Biphenyl-4-yl-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone;

[2-(2-Amino-phenyl)-thiazol-4-yl]-(2,6-dimethyl-piperidin-1-yl)-methanone;

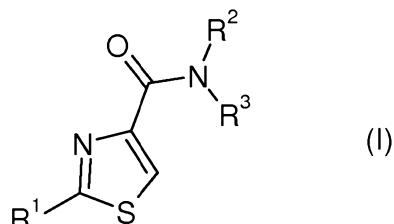

2-(2-Hydroxymethyl-phenyl)-thiazole-4-carboxylic acid adamantan-1-ylamide;
 (2,6-Dimethyl-piperidin-1-yl)-(2-furan-3-yl-thiazol-4-yl)-methanone;
 [2-(2,3-Dimethoxy-phenyl)-thiazol-4-yl]-(octahydro-isoquinolin-2-yl)-methanone and
 1-{2-[4-(3-Cyclohexyl-piperidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone.

5

Particularly preferred compounds of the invention are:


Azocan-1-yl-[2-(2,3-dichloro-phenyl)-thiazol-4-yl]-methanone;
 [2-(3-Chloro-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone;
 [2-(3-Methylsulfanyl-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone;
 10 (2-Phenyl-thiazol-4-yl)-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-methanone;
 1-{2-[4-(2-Isopropyl-pyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;
 2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid cyclooctylamide;
 2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid adamantan-2-ylamide;
 15 1-{2-[4-((1R,5R)-3,3,5-Trimethyl-6-aza-bicyclo[3.2.1]octane-6-carbonyl)-thiazol-2-yl]-phenyl}-ethanone;
 2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid ((1R,2R,3R,5S)-2,6,6-trimethyl-bicyclo[3.1.1]hept-3-yl)-amide;
 [2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-((1R,5R)-3,3,5-trimethyl-6-aza-20 bicyclo[3.2.1]oct-6-yl)-methanone;
 2-*o*-Tolyl-thiazole-4-carboxylic acid adamantan-2-ylamide and
 2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid (5-hydroxy-adamantan-2-yl)-amide.

Further preferred is the process for the preparation of a compound according to
 25 formula (I) comprising the reaction of a compound of formula

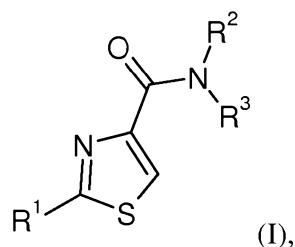


in the presence of a compound of the formula

- 17 -

in order to obtain a compound of formula

5


wherein R^1 , R^2 and R^3 are defined as before.

Also referred is a compound according to formula (I) when manufactured according to the process as mentioned above.

10 Also preferred is a compound according to formula (I) for use as therapeutically active substance.

Another preferred aspect of the present invention is a compounds according to formula (I) for the preparation of medicaments for the prophylaxis and/or therapy of type II diabetes mellitus and/or metabolic syndrome.

15 Further preferred is a pharmaceutical composition comprising a therapeutically effective amount of a compound according to formula (I)

wherein:

20 R^1 is 5- to 8-membered cycloalkyl,
phenyl, unsubstituted or mono-, bi-, or tri-substituted independently
with halogen, lower alkyl, halo-lower-alkyl, phenyl, $-\text{OCH}_3$, $-\text{O}(\text{CH}_2)\text{nCH}_3$, $-(\text{CH}_2)\text{nOH}$, $-\text{OH}$, $-\text{NH}_2$, $-\text{OCF}_3$, $-\text{O}(\text{CH}_2)\text{n-phenyl}$,
 $-\text{SCH}_3$, $-\text{NHSO}_2\text{CH}_3$, thiophene, morpholine, $-\text{C}(\text{O})\text{CH}_3$, $-\text{N}(\text{CH}_3)_2$ or $-\text{NO}_2$,

25

5- or 6-membered saturated, partially unsaturated, or aryl ring which is connected by a ring carbon atom and which has from 1 to 3 hetero ring atoms selected from the group consisting of sulfur, nitrogen and oxygen, unsubstituted or substituted with halogen, lower alkoxy, or lower alkyl,

5

9- or 10-membered bicyclic unsaturated or partially unsaturated ring which is connected by a ring carbon and which has from 1 to 3 hetero ring atoms selected from the group consisting of sulfur, nitrogen and oxygen, unsubstituted or mono-, bi- or tri-substituted with halogen or lower alkyl;

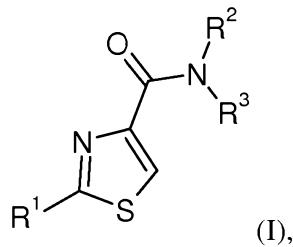
10

one of R^2 or R^3 is H or branched or unbranched lower alkyl, and the other is C_{4-10} alkyl, $-CH_2\text{-phenyl}$, mono-, bi- or tri-cyclic 5- to 10-membered carbocyclic ring unsubstituted or mono- or bi-substituted with lower alkyl, hydroxy, or oxo, or bicyclic partially unsaturated 9- or 10-membered ring.

15

20

25


n is zero, 1 or 2

or a pharmaceutically acceptable salt thereof

and a pharmaceutically acceptable carrier.

Also preferred is a pharmaceutical composition comprising a compound according to formula (I) and a pharmaceutically acceptable carrier.

Further preferred is the use of a compound according to formula (I)

for the preparation of medicaments for the treatment and/or prophylaxis of a metabolic disease or disorder, and particularly wherein said metabolic disease or disorder is type II diabetes mellitus or metabolic syndrome,

5 wherein

R¹ is 5- to 8-membered cycloalkyl,
 phenyl, unsubstituted or mono-, bi-, or tri-substituted independently
 with halogen, lower alkyl, halo-lower-alkyl, phenyl, -OCH₃,
 -O(CH₂)_nCH₃, -(CH₂)_nOH, -OH, -NH₂, -OCF₃, -O(CH₂)_n-phenyl,
 -SCH₃, -NHSO₂CH₃, thiophene, morpholine, -C(O)CH₃, -
 N(CH₃)₂ or -NO₂,
 10 5- or 6-membered saturated, partially unsaturated, or aryl ring which is
 connected by a ring carbon atom and which has from 1 to 3 hetero
 ring atoms selected from the group consisting of sulfur, nitrogen
 and oxygen, unsubstituted or substituted with halogen, lower
 alkoxy, or lower alkyl,
 15 9- or 10-membered bicyclic unsaturated or partially unsaturated ring
 which is connected by a ring carbon and which has from 1 to 3
 hetero ring atoms selected from the group consisting of sulfur,
 nitrogen and oxygen, unsubstituted or mono-, bi- or tri-substituted
 20 with halogen or lower alkyl;

one of R² or R³ is H or branched or unbranched lower alkyl, and the other is C₄-
 C₁₀ alkyl, -CH₂-phenyl, mono-, bi- or tri-cyclic 5- to 10-membered
 25 carbocyclic ring unsubstituted or mono- or bi-substituted with lower
 alkyl, hydroxy, or oxo, or bicyclic partially unsaturated 9- or 10-
 membered ring,

or

R² and R³, together with the N atom to which they are attached, form a
 30 saturated or partially unsaturated 6- to 8-membered monocyclic or 7- to

10-membered bicyclic ring, which contains the N atom to which R₂ and R₃ are attached, and optionally another hetero atom which is selected from O and S, unsubstituted or mono- or bi- substituted with branched or unbranched lower alkyl, halogen, hydroxy, hydroxy-alkyl, pyridine, carboxy, phenyl, oxo, -CH₂-phenyl or 5- to 10-membered cycloalkyl;

5 and

n is zero, 1 or 2,

or a pharmaceutically acceptable salt thereof.

Another preferred aspect of the invention is the use of a compound according to
10 formula (I) for the preparation of medicaments for the treatment and/or prophylaxis of a metabolic disease or disorder and particularly wherein said metabolic disease or disorder is type II diabetes mellitus or metabolic syndrome.

15 Further particularly preferred is the use/method as mentioned before, wherein said metabolic disease or disorder is type II diabetes mellitus or metabolic syndrome.

It is to be understood that the terminology employed herein is for the purpose of describing particular embodiments, and is not intended to be limiting. Further, although any methods, devices and materials similar or equivalent to those described
20 herein can be used in the practice or testing of the invention, the preferred methods, devices and materials are now described.

As used herein, the term "alkyl" means, for example, a branched or unbranched, cyclic ("cycloalkyl") or acyclic, saturated or unsaturated (e.g. alkenyl or alkynyl)
25 hydrocarbyl radical which may be substituted or unsubstituted. Where cyclic, the alkyl group is preferably C₃ to C₁₂, more preferably C₄ to C₁₀, more preferably C₄ to C₇. Where acyclic, the alkyl group is preferably C₁ to C₁₀, more preferably C₁ to C₆, more preferably methyl, ethyl, propyl (n-propyl or isopropyl), butyl (n-butyl, isobutyl or tertiary-butyl) or pentyl (including n-pentyl and isopentyl), more preferably methyl.
30 It will be appreciated therefore that the term "alkyl" as used herein includes alkyl (branched or unbranched), substituted alkyl (branched or unbranched), alkenyl (branched or unbranched), substituted alkenyl (branched or unbranched), alkynyl (branched or unbranched), substituted alkynyl (branched or unbranched), cycloalkyl,

substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, cycloalkynyl and substituted cycloalkynyl. A preferred example of cycloalkyl includes cycloalkenyl.

As used herein, the term "lower alkyl" means, for example, a branched or unbranched, 5 cyclic or acyclic, saturated or unsaturated (e.g. alkenyl or alkynyl) hydrocarbyl radical wherein said cyclic lower alkyl group is C₅, C₆ or C₇, and wherein said acyclic lower alkyl group is C₁, C₂, C₃ or C₄, and is preferably selected from methyl, ethyl, propyl (n-propyl or isopropyl) or butyl (n-butyl, isobutyl or tertiary-butyl). It will be appreciated therefore that the term "lower alkyl" as used herein includes, for example, 10 lower alkyl (branched or unbranched), lower alkenyl (branched or unbranched), lower alkynyl (branched or unbranched), cycloloweralkyl, cycloloweralkenyl and cycloloweralkynyl.

As used herein, the term "aryl" means, for example, a substituted or unsubstituted 15 carbocyclic aromatic group, such as phenyl or naphthyl, or a substituted or unsubstituted heteroaromatic group containing one or more, preferably one, heteroatom, such as pyridyl, pyrrolyl, furanyl, thieryl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl pyrazolyl, imidazolyl, triazolyl, pyrimidinyl pyridazinyl, pyrazinyl, triazinyl, indolyl, indazolyl, quinolyl, quinazolyl, 20 benzimidazolyl, benzothiazolyl, benzoxazolyl and benzisothiazolyl. In a preferred embodiment, the term "heteroaryl", alone or combination with other groups, means a monocyclic or bicyclic radical of 5 to 12 ring atoms having at least one aromatic ring containing one, two, or three ring heteroatoms selected from N, O, and S, the remaining ring atoms being C. One or two ring carbon atoms of the heteroaryl group 25 may be replaced with a carbonyl group. The heteroaryl group may be substituted independently with one, two, or three substituents, preferably one or two substituents. Such substituents include, for example, halogen, hydroxy, C₁₋₆ alkyl, halo C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ alkyl sulfonyl, C₁₋₆ alkyl sulfinyl, C₁₋₆ alkylthio, amino, amino C₁₋₆ alkyl, mono- or di-substituted amino-C₁₋₆ alkyl, nitro, cyano, acyl, carbamoyl, mono- 30 or di-substituted amino, aminocarbonyl, mono- or di-substituted amino-carbonyl, aminocarbonyl C₁₋₆ alkoxy, mono- or di-substituted amino-carbonyl-C₁₋₆ alkoxy, hydroxy- C₁₋₆ alkyl, carboxyl, C₁₋₆ alkoxy carbonyl, aryl C₁₋₆ alkoxy, heteroaryl C₁₋₆ alkoxy, heterocyclyl C₁₋₆ alkoxy, C₁₋₆ alkoxycarbonyl C₁₋₆ alkoxy, carbamoyl C₁₋₆

alkoxy and carboxyl C₁₋₆ alkoxy, preferably selected from the group consisting of halogen, hydroxy, C₁₋₆ alkyl, halo C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ alkyl sulfonyl, C₁₋₆ alkyl sulfinyl, C₁₋₆ alkylthio, amino, mono-C₁₋₆ alkyl substituted amino, di-C₁₋₆ alkyl substituted amino, amino C₁₋₆ alkyl, mono-C₁₋₆ alkyl substituted amino-C₁₋₆ alkyl, di-C₁₋₆ alkyl substituted amino-C₁₋₆ alkyl, nitro, carbamoyl, mono- or di-substituted amino-carbonyl, hydroxy- C₁₋₆ alkyl, carboxyl, C₁₋₆ alkoxy carbonyl and cyano.

The alkyl and aryl groups may be substituted or unsubstituted. Where substituted, 10 there will generally be, for example, 1 to 3 substituents present, preferably 1 substituent. Substituents may include, for example: carbon-containing groups such as alkyl, aryl, arylalkyl (e.g. substituted and unsubstituted phenyl, substituted and unsubstituted benzyl); halogen atoms and halogen-containing groups such as haloalkyl (e.g. trifluoromethyl); oxygen-containing groups such as alcohols (e.g. 15 hydroxyl, hydroxyalkyl, aryl(hydroxyl)alkyl), ethers (e.g. alkoxy, aryloxy, alkoxyalkyl, aryloxyalkyl), aldehydes (e.g. carboxaldehyde), ketones (e.g. alkylcarbonyl, alkylcarbonylalkyl, arylcarbonyl, arylalkylcarbonyl, arycarbonylalkyl), acids (e.g. carboxy, carboxyalkyl), acid derivatives such as esters (e.g. alkoxy carbonyl, alkoxy carbonylalkyl, alkylcarbonyloxy, alkylcarbonyloxyalkyl), amides (e.g. 20 aminocarbonyl, mono- or di-alkylaminocarbonyl, aminocarbonylalkyl, mono- or di-alkylaminocarbonylalkyl, arylaminocarbonyl), carbamates (e.g. alkoxy carbonylamino, arloxy carbonylamino, aminocarbonyloxy, mono- or di-alkylaminocarbonyloxy, arylminocarbonyloxy) and ureas (e.g. mono- or di-alkylaminocarbonylamino or arylaminocarbonylamino); nitrogen-containing groups such as amines (e.g. amino, 25 mono- or di-alkylamino, aminoalkyl, mono- or di-alkylaminoalkyl), azides, nitriles (e.g. cyano, cyanoalkyl), nitro; sulfur-containing groups such as thiols, thioethers, sulfoxides and sulfones (e.g. alkylthio, alkylsulfinyl, alkylsulfonyl, alkylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, arylthio, arylsulfinyl, arylsulfonyl, arylthioalkyl, arylsulfinylalkyl, arylsulfonylalkyl); and heterocyclic groups containing one or more, 30 preferably one, heteroatom, (e.g. thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, thiadiazolyl, aziridinyl, azetidinyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, tetrahydrofuranyl, pyranyl, pyronyl, pyridyl, pyrazinyl, pyridazinyl, piperidyl, hexahydroazepinyl, piperazinyl, morpholinyl, thianaphthyl, benzofuranyl, isobenzofuranyl, indolyl,

oxyindolyl, isoindolyl, indazolyl, indolinyl, 7-azaindolyl, benzopyranyl, coumarinyl, isocoumarinyl, quinolinyl, isoquinolinyl, naphthridinyl, cinnolinyl, quinazolinyl, pyridopyridyl, benzoxazinyl, quinoxalinyl, chromenyl, chromanyl, isochromanyl, phthalazinyl and carbolinyl).

5

The lower alkyl groups may be substituted or unsubstituted. Where substituted, there will generally be, for example, 1 to 3 substituents present, preferably 1 substituent.

As used herein, the term “alkoxy” means, for example, alkyl-O- and “alkoyl” means,
10 for example, alkyl-CO-. Alkoxy substituent groups or alkoxy-containing substituent groups may be substituted by, for example, one or more alkyl groups.

As used herein, the term “halogen” means, for example, a fluorine, chlorine, bromine or iodine radical, preferably a fluorine, chlorine or bromine radical, and more
15 preferably a fluorine or chlorine radical.

“Pharmaceutically acceptable salt” refers to conventional acid-addition salts or base-addition salts that retain the biological effectiveness and properties of the compounds of formula I and are formed from suitable organic or inorganic acids or organic or
20 inorganic bases. Sample acid-addition salts include those derived from inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid and nitric acid, and those derived from organic acids such as *p*-toluenesulfonic acid, salicylic acid, methanesulfonic acid, oxalic acid, succinic acid, citric acid, malic acid, lactic acid, fumaric acid, and the like. Sample
25 base-addition salts include those derived from ammonium, potassium, sodium and, quaternary ammonium hydroxides, such as for example, tetramethylammonium hydroxide. The chemical modification of a pharmaceutical compound (i.e. drug) into a salt is a well known technique which is used in attempting to improve properties involving physical or chemical stability, e.g., hygroscopicity, flowability or solubility
30 of compounds. *See, e.g.*, H. Ansel et. al., *Pharmaceutical Dosage Forms and Drug Delivery Systems* (6th Ed. 1995) at pp. 196 and 1456-1457.

“Pharmaceutically acceptable ester” refers to a conventionally esterified compound of formula I having a carboxyl group, which esters retain the biological effectiveness

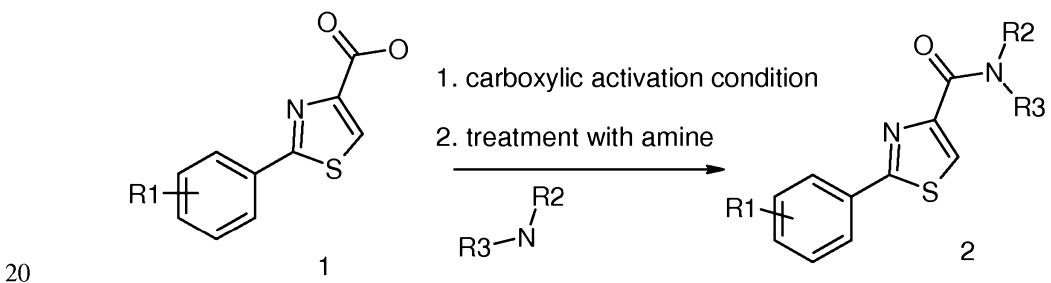
and properties of the compounds of formula I and are cleaved *in vivo* (in the organism) to the corresponding active carboxylic acid. Examples of ester groups which are cleaved (in this case hydrolyzed) *in vivo* to the corresponding carboxylic acids are those in which the hydrogen is replaced with lower alkyl which is optionally substituted, e.g., with heterocycle, cycloalkyl, etc. Examples of substituted lower alkyl esters are those in which lower alkyl is substituted with pyrrolidine, piperidine, morpholine, N-methylpiperazine, etc. The group which is cleaved *in vivo* may be, for example, ethyl, morpholino ethyl, and diethylamino ethyl. In connection with the present invention, -CONH₂ is also considered an ester, as the -NH₂ may be cleaved *in vivo* and replaced with a hydroxy group, to form the corresponding carboxylic acid.

Further information concerning examples of and the use of esters for the delivery of pharmaceutical compounds is available in Design of Prodrugs. Bundgaard H. ed. (Elsevier, 1985). *See also*, H. Ansel et. al., Pharmaceutical Dosage Forms and Drug Delivery Systems (6th Ed. 1995) at pp. 108-109; Krosgaard-Larsen, et. al., Textbook of Drug Design and Development (2d Ed. 1996) at pp. 152-191.

In the practice of the method of the present invention, an effective amount of any one of the compounds of this invention or a combination of any of the compounds of this invention or a pharmaceutically acceptable salt or ester thereof, is administered via any of the usual and acceptable methods known in the art, either singly or in combination. The compounds or compositions can thus be administered orally (e.g., buccal cavity), sublingually, parenterally (e.g., intramuscularly, intravenously, or subcutaneously), rectally (e.g., by suppositories or washings), transdermally (e.g., skin electroporation) or by inhalation (e.g., by aerosol), and in the form of solid, liquid or gaseous dosages, including tablets and suspensions. The administration can be conducted in a single unit dosage form with continuous therapy or in a single dose therapy ad libitum. The therapeutic composition can also be in the form of an oil emulsion or dispersion in conjunction with a lipophilic salt such as pamoic acid, or in the form of a biodegradable sustained-release composition for subcutaneous or intramuscular administration.

Useful pharmaceutical carriers for the preparation of the compositions hereof, can be solids, liquids or gases; thus, the compositions can take the form of tablets, pills,

capsules, suppositories, powders, enterically coated or other protected formulations (e.g. binding on ion-exchange resins or packaging in lipid-protein vesicles), sustained release formulations, solutions, suspensions, elixirs, aerosols, and the like. The carrier can be selected from the various oils including those of petroleum, animal, vegetable 5 or synthetic origin, e.g., peanut oil, soybean oil, mineral oil, sesame oil, and the like. Water, saline, aqueous dextrose, and glycols are preferred liquid carriers, particularly (when isotonic with the blood) for injectable solutions. For example, formulations for intravenous administration comprise sterile aqueous solutions of the active ingredient(s) which are prepared by dissolving solid active ingredient(s) in water to 10 produce an aqueous solution, and rendering the solution sterile. Suitable pharmaceutical excipients include starch, cellulose, glucose, lactose, talc, gelatin, malt, rice, flour, chalk, silica, magnesium stearate, sodium stearate, glycerol monostearate, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol, and the like. The compositions may be subjected to conventional 15 pharmaceutical additives such as preservatives, stabilizing agents, wetting or emulsifying agents, salts for adjusting osmotic pressure, buffers and the like. Suitable pharmaceutical carriers and their formulation are described in Remington's Pharmaceutical Sciences by E. W. Martin. Such compositions will, in any event, contain an effective amount of the active compound together with a suitable carrier so 20 as to prepare the proper dosage form for proper administration to the recipient.


The pharmaceutical preparations can also contain preserving agents, solubilizing agents, stabilizing agents, wetting agents, emulsifying agents, sweetening agents, coloring agents, flavoring agents, salts for varying the osmotic pressure, buffers, 25 coating agents or antioxidants. They can also contain other therapeutically valuable substances, including additional active ingredients other than those of formula I.

The "therapeutically effective amount" or "dosage" of a compound according to this invention can vary within wide limits and may be determined in a manner known in 30 the art. Such dosage will be adjusted to the individual requirements in each particular case including the specific compound(s) being administered, the route of administration, the condition being treated, as well as the patient being treated. In general, in the case of oral or parenteral administration to adult humans weighing approximately 70 kg, a daily dosage of from about 0.01 mg/kg to about 50 mg/kg

should be appropriate, although the upper limit may be exceeded when indicated. The dosage is preferably from about 0.3 mg/kg to about 10 mg/kg per day. A preferred dosage may be from about 0.70 mg/kg to about 3.5 mg/kg per day. The daily dosage can be administered as a single dose or in divided doses, or for 5 parenteral administration it may be given as continuous infusion.

The compounds of the present invention can be prepared by any conventional manner. Suitable processes for synthesizing these compounds are provided in the examples. Generally, compounds of formula I can be prepared according to the Schemes 10 described below. The sources of the starting materials for these reactions are also described.

In the schemes below, the substituent at the 2-position of the thiazole ring is often drawn as a substituted phenyl moiety. It will be apparent to one of ordinary skill in the art that similar reactions are possible in the case of 2-heterocycl-thiazoles and in some cases, 2-alkyl-thiazoles. Drawing the structures with substituted phenyl substituents was useful for illustrative purposes, and does not limit the scope of the invention.

Scheme 1

25 The coupling of carboxylic acids of structure **1** with amines of structure **2**, according to Scheme 1, can be achieved using methods well known to one of ordinary skill in the art. For example, the transformation can be carried out by reaction of carboxylic acids of structure **1** or of appropriate derivatives thereof such as activated esters, with amines of diverse structure or their corresponding acid addition salts (e.g., the hydrochloride salts) in the presence, if necessary, of a coupling agent, many examples

of which are well known *per se* in peptide chemistry. The reaction is conveniently carried out by treating the carboxylic acid of structure **1** with the hydrochloride of the reacting amine in the presence of an appropriate base, such as diisopropylethylamine, a coupling agent such as O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium

5 hexafluorophosphate, and in the optional additional presence of a substance that increases the rate of the reaction, such as 1-hydroxybenzotriazole or 1-hydroxy-7-azabenzotriazole, in an inert solvent, such as a chlorinated hydrocarbon (e.g., dichloromethane) or N,N-dimethylformamide or N-methylpyrrolidinone, at a temperature between about 0 °C and about room temperature, preferably at about

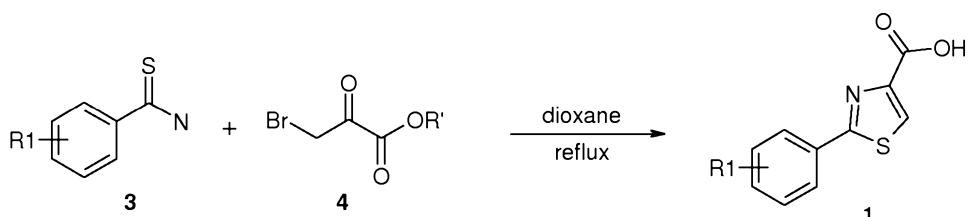
10 room temperature. Alternatively, the reaction can be carried out by converting the carboxylic acid of formula **1** to an activated ester derivative, such as the N-hydroxysuccinimide ester, and subsequently reacting this with an amine or its corresponding acid addition salt. This reaction sequence can be carried out by reacting the carboxylic acid of formula **1** with N-hydroxysuccinimide in the presence

15 of a coupling agent such as N,N'-dicyclohexylcarbodiimide in an inert solvent such as tetrahydrofuran at a temperature between about 0 °C and about room temperature. Alternatively, the N-hydroxysuccinimide ester can be prepared by reaction of commercially available 2-aryl-thiazole-5-carboxylic acids of formula **1** with TSTU (N,N,N',N'-Tetramethyl-O-(N-succinimidyl)uronium tetrafluoroborate, CAS #

20 105832-38-0, available from Aldrich Chemical Company, Milwaukee, WI). The reaction is conveniently carried out in the presence of an organic base such as triethylamine or diisopropylethylamine. The reaction can be carried out in polar solvents such as mixtures of DMF and dioxane according to the solubility of the carboxylic acid. The reaction can be carried out at a temperature between about 0 °C

25 and about room temperature, preferably at around room temperature. This chemistry can be carried out either in the synthesis of a single compound or in the synthesis of libraries of compounds using automated parallel synthesis methods.

Alternatively, compounds of formula **2** can be prepared by converting the carboxylic acid of formula **1** to the corresponding acyl halide, preferably the acid chloride, and then reacting this with an amine of formula HNR2R3, in the presence of base, preferably di-isopropylethyl amine, in an inert solvent such as dichloromethane or N,N-dimethylformamide. Acyl chlorides can be conveniently formed by reaction of carboxylic acids of structure **1** with chlorinating reagents, such as thionyl chloride or


oxalyl chloride, preferably the latter, in dry dichloromethane at a temperature between about 0 °C and about room temperature.

Commercially available 2-aryl-thiazole-4-carboxylic acids include the following

5

CAS #	Name
368869-97-0	4-Thiazolecarboxylic acid, 2-(2,3-dihydro-5-benzofuranyl)-
257876-07-6	4-Thiazolecarboxylic acid, 2-(2,3-dichlorophenyl)-
255728-35-9	4-Thiazolecarboxylic acid, 2-[2-chloro-4-(trifluoromethyl)phenyl]-
145293-20-5	4-Thiazolecarboxylic acid, 2-(4-aminophenyl)-
144061-16-5	4-Thiazolecarboxylic acid, 2-[4-(trifluoromethyl)phenyl]-
132307-22-3	4-Thiazolecarboxylic acid, 2-(3,4-dimethoxyphenyl)-
115311-41-6	4-Thiazolecarboxylic acid, 2-(2-pyridinyl)-
115311-40-5	4-Thiazolecarboxylic acid, 2-(2-aminophenyl)-
115311-32-5	4-Thiazolecarboxylic acid, 2-[3-(trifluoromethyl)phenyl]-
115311-25-6	4-Thiazolecarboxylic acid, 2-(2-methylphenyl)-
115299-10-0	4-Thiazolecarboxylic acid, 2-(2-methoxyphenyl)-
115299-07-5	4-Thiazolecarboxylic acid, 2-(3-methoxyphenyl)-
113334-58-0	4-Thiazolecarboxylic acid, 2-(3-hydroxyphenyl)-
57677-80-2	4-Thiazolecarboxylic


CAS #	Name
39067-29-3	acid, 2-(4-methoxyphenyl)-4-Thiazolecarboxylic acid, 2-(3-pyridinyl)-4-Thiazolecarboxylic acid, 2-(4-hydroxyphenyl)-4-Thiazolecarboxylic acid, 2-(2-hydroxyphenyl)-4-Thiazolecarboxylic acid, 2-(4-pyridinyl)-4-Thiazolecarboxylic acid, 2-(4-bromophenyl)-4-Thiazolecarboxylic acid, 2-(3-methylphenyl)-4-Thiazolecarboxylic acid, 2-(4-methylphenyl)-4-Thiazolecarboxylic acid, 2-(4-chlorophenyl)-4-Thiazolecarboxylic acid, 2-(4-nitrophenyl)-4-Thiazolecarboxylic acid, 2-phenyl-
36705-82-5	
27501-91-3	
21278-86-4	
21160-50-9	
17229-00-4	
17228-99-8	
17228-98-7	
17228-97-6	
7113-10-2	

Scheme 2

5

2-Aryl-thiazole-5-carboxylic acids of formula **1** can be prepared by treatment of substituted thiobenzamides (**3**) with 3-bromopyruvic acid (**4**, R' = H) in dioxane under reflux conditions as shown in Scheme 2. Compounds of formula **2** are then obtained by coupling the carboxylic acid of formula **1** with amines as described above.

Scheme 3

Alternatively, 2-aryl-thiazole-5-carboxylic acids of formula **1** can also be prepared by treatment of substituted thiobenzamides of formula **3** with ethyl 3-bromopyruvate (**4**, R' = Et) in dioxane under reflux conditions to form 2-aryl-thiazole-4-carboxylic acid ethyl esters (Scheme 3). The 2-aryl-thiazole-4-carboxylic acids are then formed by saponification of the ethyl esters, for example by treatment with lithium hydroxide in a mixture of tetrahydrofuran and water.

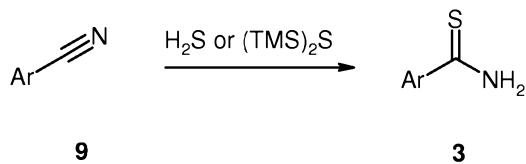
10

Many suitable aryl-thiocarboxamides (both carbocyclic and heterocyclic) are available commercially. For example, the Available Chemicals Directory (ACD, from MDL Inc., San Leandro, CA) lists 200 commercially available aryl-thiocarboxamides, examples of which include:

15

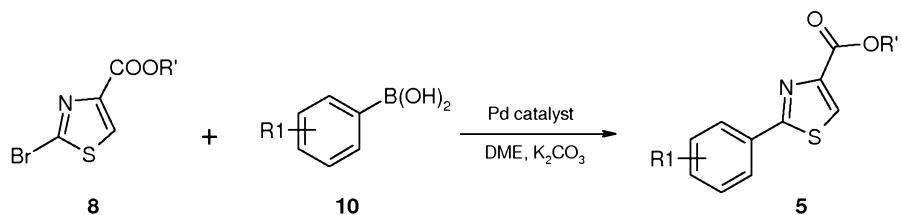
Commercial sources of thiobenzamides

Reagent name	Supplier
Thiobenzamide	Aldrich
4-(Trifluoromethyl)-thiobenzamide	Aldrich
2-Chlorothiobenzamide	Lancaster
4-Chlorothiobenzamide	Lancaster
2,3-Dichlorothiobenzamide	Maybridge International
4-(<i>tert</i> -Butyl)thiobenzamide	Maybridge International
4-Methoxythiobenzamide	Lancaster
2,3-Dihydrobenzo[b]furan-5-carbothioamide	Maybridge International
4-Methyl-thiobenzamide	Maybridge International
2,4-Difluorothiobenzamide	Maybridge International


Thiobenzamides useful for the preparation of compounds of this invention can also be made by reactions that are well known in the field of organic synthesis.

5

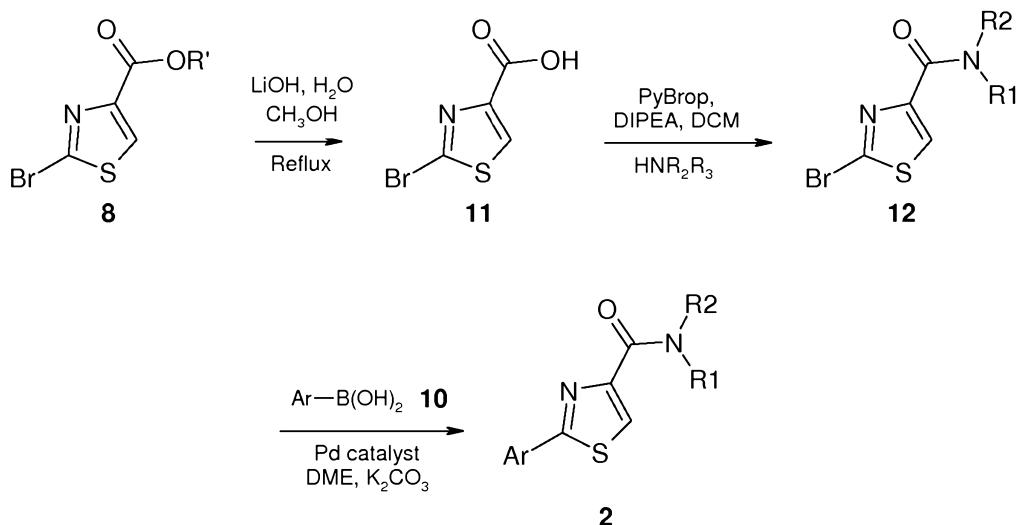
Scheme 4


For example, thiobenzamides (**3**) can be made from benzoic acids of formula **6** as shown above. The amidation of a benzoic acids can be accomplished by activation of the carboxylic acid conveniently by treating it with a chlorinating agent such as 10 thionyl chloride or phosphorus oxychloride or phosphorus pentachloride, in the optional additional presence of a catalytic amount of N,N-dimethylformamide, at a temperature between about 0 °C and about 80 °C depending on the reactivity of the chlorinating agent followed by treatment with ammonium hydroxide. The resultant benzamide (**7**) is then treated with P₄S₁₀. This method is reported in Collection of 15 Czechoslovak Chemical Communications, 55(11), 2722-30; 1990.

20

Scheme 5

Alternatively, aryl-thiocarboxamides of formula **3** can be made by treatment of aryl nitriles in inert solvent with hydrogen sulfide or bis-(trimethylsilyl)sulfide as shown in Scheme 5 by heating the mixture at a temperature between about 70 °C and about 100 °C. Aryl nitriles are available from a variety of different transformations known 25 to those of skill in the art, such as those outlined in "Comprehensive Organic Transformations: A Guide to Functional Group Preparations" [R. C. Larock, VCH Publishers, Inc., N.Y. 1989, pages 861-862, 976-977, and 991-993] and in "Advanced Organic Chemistry" [J. March, 3rd Edition, Wiley Interscience, NY, 1985].



Scheme 6

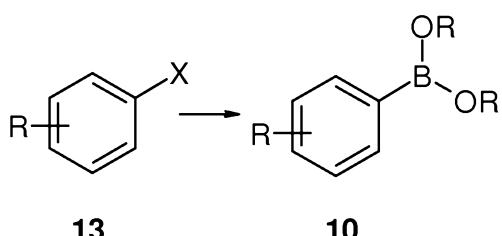
2-Aryl-thiazole-5-carboxylic acids of formula **5** can also be prepared as shown in
 5 Scheme 6 by coupling of 2-bromo-thiazole-4-carboxylic acid ethyl ester (**8**, R = Et, CAS # 100367-77-9, available from Combi-Blocks, LLC, San Diego, CA) and arylboronic acids (**10**) under Suzuki coupling reactions conditions. The conditions of this method are disclosed in many publications which have been reviewed by A. Suzuki in an article entitled **“The Suzuki reaction with arylboron compounds in arene chemistry”** in *Modern Arene Chemistry* 2002, 53-106. In carrying out this reaction
 10 any of the conditions conventional in a Suzuki reaction can be utilized.

Generally these reactions are carried out in the presence of a metal catalyst such as a palladium catalyst utilizing any conventional organic solvent and a weak inorganic
 15 base. Among the preferred organic solvents are non-polar aprotic solvents, e.g. xylene or toluene, or polar aprotic solvents, e.g. dimethoxyethane. The weak inorganic base can be a carbonate or bicarbonate or phosphate or hydroxide, such as potassium carbonate, cesium carbonate, potassium phosphate or sodium hydroxide. As will be clear to one of skill in the art of organic synthesis, carrying out the reaction in the
 20 presence of sodium hydroxide will also lead to saponification of the ester. The source of palladium can be a palladium(0) complex (e.g., tetrakis(triphenylphosphine)palladium(0)) or a compound which can be reduced in situ to give palladium(0) (for example, palladium(II) acetate or bis(triphenylphosphine)palladium(II) chloride or Pd(dppf)Cl₂), and the reaction can
 25 be carried out in the optional additional presence of a catalytic amount of a phosphine ligand, for example tri-*o*-tolylphosphine or tri-*tert*-butylphosphine. The reaction is carried out at a temperature between about room temperature and about 100 °C, and preferably about 90 °C.

As will be clear to one of skill in the art of organic synthesis, the Stille or Negishi reactions can in many cases be used in place of the Suzuki reaction. Information on the Stille reaction can be found in an article by M. Kosugi and K. Fugami in *Handbook of Organopalladium Chemistry for Organic Synthesis*; E.-I. Negishi, Ed.; 5 John Wiley & Sons, Inc., Hoboken, N. J, 2002, pages 263-283. For example, the reaction can be conveniently carried out by reacting a compound of formula **8** with a compound of formula Ar—M where M represents SnMe₃ or SnBu₃, in a convenient inert solvent such as dioxane, in the presence of a catalytic amount of a palladium(0) complex (e.g., tetrakis(triphenylphosphine)palladium(0)) or a compound which can 10 be reduced in situ to give palladium(0) (for example, palladium(II) acetate or bis(triphenylphosphine)palladium(II) chloride), in the presence of a catalytic amount of a phosphine ligand, for example tri-*o*-tolylphosphine, at a temperature about 100 °C. Another alternative is to use the Negishi reaction whereby a compound of formula **8** is treated with an organozinc reagent of formula Ar—ZnBr in a convenient 15 inert solvent such as tetrahydrofuran, in the presence of a catalytic amount of a palladium(0) complex (e.g., tetrakis(triphenylphosphine)palladium(0)) or Cl₂Pd(dppf)-CH₂Cl₂), at a temperature about 65 °C. Suitable reaction conditions can be found in the literature, for example in J. A. Miller and R. P. Farrell *Tetrahedron Lett.* **1998**, 39, 6441-6444; and in K. J. Hodgetts and M. T. Kershaw *Org. Lett.* **2002**, 20 4, 1363-1365.

Scheme 7

Alternatively, compounds of structure **2** can be prepared as shown in Scheme 7 by hydrolyzing an ester of formula **8**, coupling the resulting carboxylic acid of formula **11** with an amine of formula HNR2R3, and then carrying out a Suzuki reaction on the amide of formula **12**. As will be evident to one of skill in the art, a Stille reaction or 5 Negishi reaction as mentioned above can be used in place of a Suzuki reaction. The ester hydrolysis can be conveniently effected by treating the compound of formula **8** where R' = Et with one equivalent of an alkali metal hydroxide, such as potassium hydroxide, sodium hydroxide, or lithium hydroxide, preferably lithium hydroxide, in a suitable solvent, such as a mixture of tetrahydrofuran, methanol, and water. The 10 reaction can be carried out at a temperature between about 0 °C and about 70 °C, preferably at about 65 °C. The coupling of the acid of formula **11** with an amine of formula HNR2R3 can be carried out using conditions described above in connection with Scheme 1. A further example of a coupling agent which is convenient for this coupling reaction is PyBrop (bromotripyrrolidinophosphonium hexafluorophosphate, 15 CAS # 132705-51-2, available from Fluka Chemical Corp., Milwaukee, WI). The Suzuki reaction is conveniently carried out as described above in relation to Scheme 6.


Examples of boronic acids useful for the preparation of compounds of the invention are included in the following table:

20

Boronic acids	
3-Chloro-phenylboronic acid	3-Methoxyphenylboronic acid
3-Chloro-5-methylphenylboronic acid	2- Trifluoromethoxyphenylboronic acid
3-Chloro-6-methoxyphenylboronic acid	3- Trifluoromethoxyphenylboronic acid
3-Chloro-4-fluorophenylboronic acid	2-Benzyloxyphenylboronic acid
3-Chloro-4-methylphenylboronic acid	3-Benzyloxyphenylboronic acid
3-Chloro-2-methylphenylboronic acid	(2-Phenoxy)phenylboronic acid
4-Chloro-3-methylphenylboronic acid	6-Fluoro-2-methoxyphenylboronic acid
2,4-Di-chlorophenylboronic acid	2-Fluoro-3-methoxyphenylboronic acid
4-Chloro-2-methylphenylboronic acid	5-Fluoro-2-methoxyphenylboronic acid
4-Chloro-2-	3,4-Dimethoxyphenylboronic

Boronic acids	
methoxylphenylboronic acid	acid
4-Chloro-2-ethoxylphenylboronic acid	2,5-Dimethoxyphenylboronic acid
4-Chloro-3-aminophenylboronic acid	5-Benzo[1,3]dioxoleboronic acid
3-Isopropylphenylboronic acid	2,3,4-Trimethoxyphenylboronic acid
2,5-Dichlorophenylboronic acid	2-Methylsulfanyl-phenylboronic acid
Cyclopenten-1-ylboronic acid	3-Methylsulfanyl-phenol
Cyclohexen-1-ylboronic acid	2-Aminophenyl boronic acid
Cyclohepten-1-ylboronic acid	3-Aminophenyl boronic acid
Thiophene-3-boronic acid	N-(2-Phenylboronic acid)-methanesulfonamide
2-Acetylphenylboronic acid	2-Nitrophenylboronic acid
2-Methylphenylboronic acid	4-Phenyl-phenylboronic acid
3-Methylphenylboronic acid	3-Phenyl-phenylboronic acid
(2-Hydroxymethylphenyl)boronic acid dehydrate	2-Phenyl-phenylboronic acid
(3-Hydroxymethylphenyl)boronic acid dehydrate	1H-Indole-5-boronic acid
4-Hydroxyphenyl)boronic acid dehydrate	Quinoline-8-boronic acid
2-Methoxyphenylboronic acid	

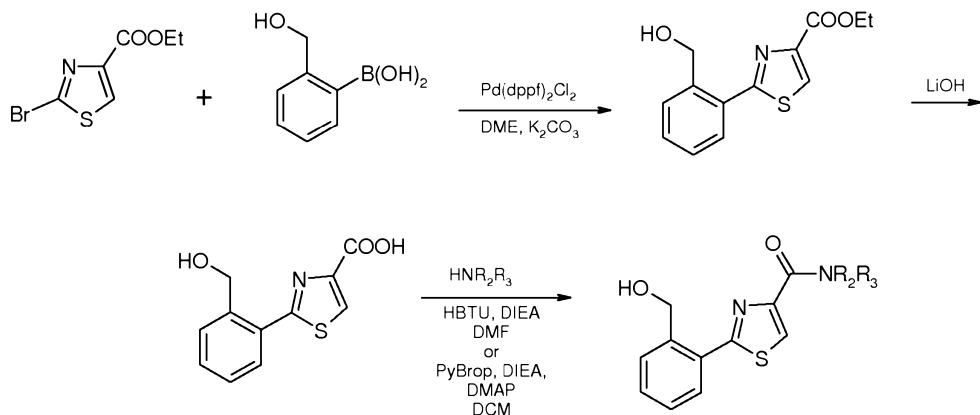
Phenyl boronic acids and boronic esters useful in the preparation of compounds of formula **2** may be commercially available or can be made by reactions that are well known in the field of organic synthesis, such as those outlined below. Phenyl boronic acids and phenyl boronic esters are formed by treatment of aryl halides (**13**) with organo lithium reagents such as n-butyl lithium followed by treatment with boron triisopropoxide or 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi-1,3,2-dioxaborolane, followed by acidic work-up as is well known to those skilled in the art.

Several primary and secondary amines are applicable for use in the methods described above; such amine reagents are commercially available from suppliers such as Aldrich Chemical Company, Inc. (Milwaukee, WI), Lancaster Synthesis Ltd. (Lancashire, UK), TCI America (Portland, OR), and Maybridge plc (Tintagel, Cornwall, UK). For the purposes of illustration, a number of commercially available amines are shown in the table below. Many other examples can be found by consulting the Available Chemicals Directory (MDL Information Systems, San Leandro, CA) or SciFinder (Chemical Abstracts Service, Columbus, OH).

Commercially available amine reagent	
<i>trans</i> -decahydroisoquinoline	3-pyridin-3-yl-pyrrolidine
(2S,6R)-2,6-dimethyl-piperidine	4-chlorodecahydro-quinoline
2-2(Pyridyl)-piperidine hydrochloride	4-hydroxy-cyclohexyl-amine
1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylamine	5-hydroxy-adaman-ylamine
2,6,6-trimethyl-bicyclo[3.1.1]hept-3-ylamine	7-Aza-bicyclo[2.2.1]heptane
2,6-dimethyl-morpholine	adamantan-1-ylamine
2,6-dimethylpiperidine	Adamantan-2-ylamine
2-ethyl-piperidine	allyl-cyclohexyl-amine
2-isobutyl-pyrrolidine	azepan-4-one
2-isopropyl-pyrrolidine	azepane
2-methylpiperidine	azocane
2-propyl-piperidine	benzyl-isopropyl -amine
3,3,5-Trimethyl-6-aza-bicyclo[3.2.1]octane	cycloheptylamine
3,5-dimethylpiperidine	cyclohexyl-ethyl-amine
3-Aza-bicyclo[3.2.2]nonane	cyclohexyl-methyl-amine
3-benzyl-piperidine	cyclooctylamine
3-phenyl-morpholine	decahydroisoquinoline
3-phenyl-pyrrolidine	decahydro-quinoline
3-phenyl-thiomorpholine	hexahydro-furo[3,2-c]quinoline
(1R,2R,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylamine	
(1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylamine	
4,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylamine	

EXAMPLES

Reagents were purchased from Aldrich, Sigma, Bachem Biosciences, Advanced ChemTech, Lancaster and Argonaut Argogel and used without further purification.


5 Unless otherwise indicated, all reagents were obtained from commercial sources.

LC/MS (liquid chromatography/mass spectroscopy) spectra were recorded using the following system. For measurement of mass spectra the system was configured with a Micromass Platform II: API Ionization in positive electrospray (mass range: 150 - 1200 amu). The simultaneous chromatographic separation was achieved with the

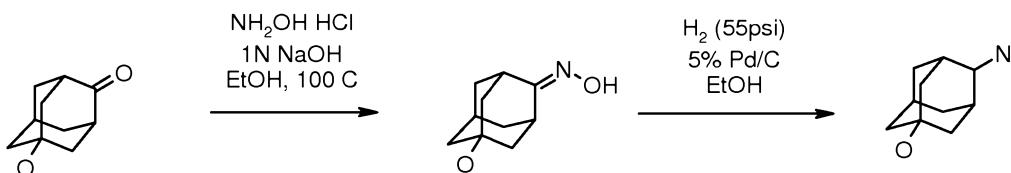
10 following HPLC system: Column, ES Industries Chromegabond WR C-18 3u 120 \AA (3.2 x 30mm) Cartridge; Mobile Phase A: Water (0.02% TFA) and Phase B: Acetonitrile (0.02% TFA); gradient 10% B to 90% B in 3 minutes; equilibration time, 1 minute; flow rate of 2 mL /minute.

15 Compounds were purified using various methods of chromatography including flash column chromatography using silica gel and eluting with ethyl acetate and hexane solvent mixtures or other appropriate solvents. Certain compounds were also purified by reversed phased HPLC, using methods well known to those skilled in the art.

20 **Intermediate 1: 2-(2-Hydroxymethyl-phenyl)-thiazole-4-carboxylic acid**

Step 1. 2-(2-hydroxymethyl-phenyl)-thiazole-4-carboxylic acid, ethyl ester

25 Ethyl 2-bromothiazole-4-carboxylate (Combi-Blocks, Inc., San Diego, CA; 2.0 g, 8.5 mmol) and 2-hydroxymethylphenylboronic acid (Combi-Blocks, San Diego, CA; 1.1 g, 7.2 mmol) were dissolved in ethylene glycol dimethyl ether, followed by addition


of 1,1'-bis(diphenylphosphino)ferrocene palladium(II) chloride complex with dichloromethane (Alfa Aesar; 350 mg, 0.43 mmol). Nitrogen was bubbled through the reaction mixture for 2 min and then 2 M aqueous solution of potassium carbonate was added (8.4 mL). The resulting mixture was stirred at 90 °C for 2h. Then it was 5 allowed to cool down to room temperature, diluted with ethyl acetate and filtered through Celite. The filtrate was then washed with water, dried over anhydrous sodium sulfate and filtered through a silica plug. The crude material was purified on silica gel column using ethyl acetate and hexanes to give 1.3 g of yellow oil. HRMS calcd for C13H13NO3S (M+) 263.0616, observed 263.0620.

10

Step 2. 2-(2-Hydroxymethyl-phenyl)-thiazole-4-carboxylic acid

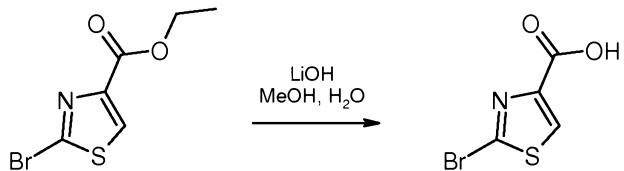
To a solution of 2-(2-hydroxymethyl-phenyl)-thiazole-4-carboxylic acid, ethyl ester (1.3 g) in THF (5 mL) was added an aqueous solution of LiOH:H₂O (472 mg in 5 mL water) and the resulting biphasic mixture was stirred vigorously at room temperature 15 for 3 h. The reaction mixture was then acidified with 1N HCl, diluted with water and extracted three times with ethyl acetate. The combined organic extracts were dried over anhydrous sodium sulfate and then concentrated. The crude product was dissolved in a small amount of ethyl acetate and precipitated by addition of hexanes to give 2-(2-hydroxymethyl-phenyl)-thiazole-4-carboxylic acid (926 mg) as a light 20 yellow solid. HRMS calcd for C11H9NO3S (M+) 235.0303, observed 235.0302.

Intermediate 2: 4-Amino-adamantan-1-ol

25

Step 1. 5-Hydroxy-adamantan-2-one oxime

5-Hydroxyadamantan-2-one (TCI America, Portland, OR; 3 g, 18.0 mmol) was dissolved in EtOH (20 mL) and the solution was added to a solution of hydroxylamine hydrochloride (12g, 172.7 mmol) in 1N NaOH (16 mL). The mixture 30 was heated at 100 °C for 1 hour. The EtOH was evaporated, and water and DCM were added. The separated aqueous layer was further extracted twice with DCM. The

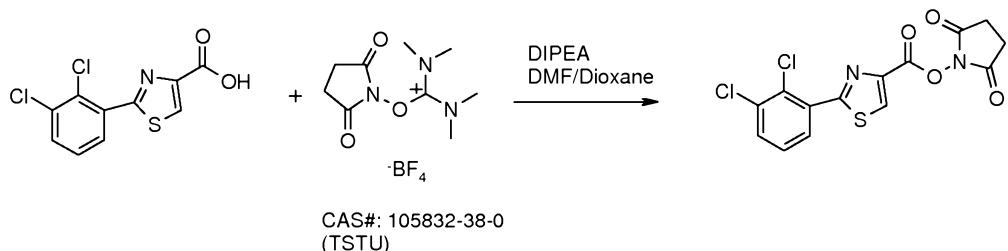

combined DCM layers were evaporated under vacuum. Crystallization from EtOAc gave 5-hydroxy-adamantan-2-one oxime (2.3 g, 71%).

Step 2. 4-Amino-adamantan-1-ol

5 Pd/C (5%, 0.05 g) was added to a mixture of 5-hydroxy-adamantan-2-one oxime (1 g, 5.5 mmol) in EtOH in a Parr hydrogenation bottle. The hydrogenation reaction was performed in a Parr hydrogenation instrument with 55 Psi pressure of hydrogen at room temperature for 72 hours. The mixture was filtered through celite and concentrated under vacuum to dryness to give 4-amino-adamantan-1-ol (0.82 g, 89%).

10

Intermediate 3: 2-Bromo-thiazole-4-carboxylic acid



15 To a solution of 2-bromo-thiazole-4-carboxylic acid ethyl ester (Combi-Blocks, Inc., San Diego, CA; 5 g, 21.2 mmol) in MeOH (25 mL) and water (25 mL) was added LiOH (0.56 g, 23.3 mmol). After stirring for 4h at reflux temperature, MeOH was evaporated *in vacuo*. To the residue was added more water, the mixture was acidified to pH 2 with concentrated HCl (3 mL), and extracted with EtOAc. The combined
20 extracts were evaporated to give 2-bromo-thiazole-4-carboxylic acid which was used without further purification. The compounds of the present invention were preferably prepared by methods A to F:

Method A

25 **Preparation of activated carboxylic acid esters useful for parallel library synthesis**

- 40-

2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid (4.1 g, 15 mmol) was dissolved in a mixture of 50 mL of DMF and 50 mL of dioxane. To this solution

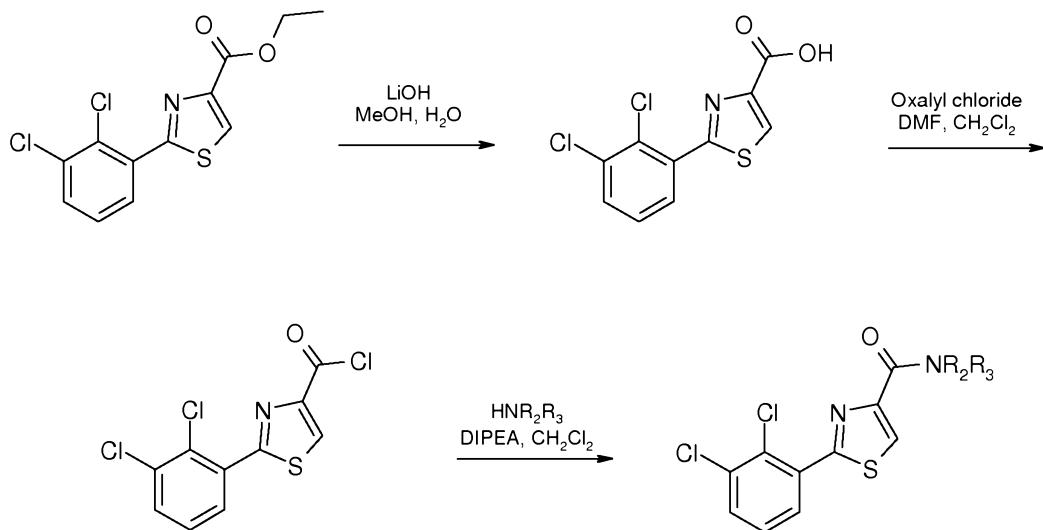
5 diisopropylethylamine (7.8 mL, 45 mmol) and ethanaminium, N-[(dimethylamino)[(2,5-dioxo-1-pyrrolidinyl)oxy]methylene]-N-methyl-, tetrafluoroborate(1-) (TSTU, Aldrich Inc.; 6.8 g, 22.5 mmol) was added. The reaction mixture was stirred at room temperature for 3 h after which 150 mL water was added and the organic layer was separated. The organic layer was extracted with 50 mL

10 water twice, dried and concentrated. The crude mixture was washed with 100 mL isopropanol, to give 2-(2,3-dichloro-phenyl)-thiazole-4-carboxylic acid 2,5-dioxo-pyrrolidin-1-yl ester (4.8 g, 87% yield) and used without further purification.

Parallel library synthesis method

15 Commercially available primary and secondary amines at 0.3 molar concentration in DMF were prepared. Separately prepared were solutions of hydroxysuccinimide esters at 0.3 molar concentration in DMF. Using a multi-channel automated liquid handling system (TECAN Int.) 0.25 mL of the amine solutions were arrayed on a microtitre plate. To corresponding wells were added 0.25 mL of the hydroxysuccinimide ester

20 solutions. To the reaction mixture of each well was added 0.15 mL of a triethylamine solution in DMF at 1.0 molar concentration. The reaction plates were sealed and shaken at room temperature overnight. At this time, the solutions in each well of the reaction plates were concentrated to remove volatile solvents at room temperature using a Genevac centrifugal evaporation system. The residue in each well was worked


25 up using a multi-channel automated liquid handling system such as that made by TECAN to perform a dichloromethane-water liquid-liquid extraction. The desired compounds were obtained in the dichloromethane layer. From the dichloromethane layer, aliquots were removed for analysis by a LC-MS system. Subsequently, dichloromethane was removed using a centrifugal evaporation system.

Examples of compounds synthesized in this manner include [2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone (compound of Example 1); Azocan-1-yl-[2-(2,3-dichloro-phenyl)-thiazol-4-yl]-methanone (compound of Example 2); and Azepan-1-yl-[2-(2,3-dichloro-phenyl)-thiazol-4-yl]-methanone 5 (compound of Example 3).

Method B

Preparation of activated carboxylic acid esters useful for parallel library synthesis

10

Step 1. Ester Hydrolysis

15 To a solution of 2-(2,3-dichloro-phenyl)-thiazole-4-carboxylic acid ethyl ester (Maybridge plc, Tintagel, Cornwall, UK; 20 g, 66.2 mmol) in MeOH (100 mL) and water (100 mL) was added LiOH (1.7 g, 72.8 mmol). After stirring for 4h at reflux temperature, MeOH was evaporated *in vacuo*. To the residue was added more water, and the solution was acidified to pH 2 with concentrated HCl (7 mL), and extracted 20 with EtOAc. The combined extracts were evaporated to give product which was used without further purification.

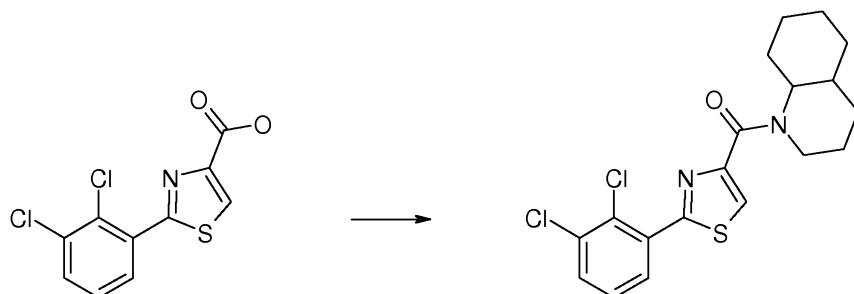
Step 2. Preparation of Acid Chloride

To a solution of 2-(2,3-dichloro-phenyl)-thiazole-4-carboxylic acid (40 mmol) in dry dichloromethane (150 mL) was added oxalyl chloride (10 mL of 2 M solution in

dichloromethane, 20 mmol) slowly. Dry DMF (5 mL) was added subsequently with extreme caution over 10 minutes. After the gas evolution ceased, the mixture was stirred for another 30 minutes. The mixture was evaporated to dryness under reduced pressure. Then dry toluene was added to the residue and evaporated again to dryness 5 under highly reduced pressure. The resultant product was used for the next step without further purification.

Step 3. Preparation of Amide

A 1.0 M solution of 2-(2,3-dichloro-phenyl)-thiazole-4-carbonyl chloride (11.7 g, 40 10 mmol) in 40 mL dichloromethane was prepared, and 0.2 mL of such solution (0.2 mmol) was distributed to reaction tubes with a TECAN automated liquid handler. Then separate 0.5 M solutions of each reacting amine in dichloromethane (DCM) 15 were prepared, and 0.4 mL of each solution was added with TECAN automated liquid handler to the above reaction tubes cooled in an ice-water bath. 1.0 M DIPEA (0.8 mL, 0.8 mmol) in DCM was added to each tube in the ice-water bath. After stirring in 20 the ice-water bath for 30 minutes, the reaction mixture was stirred for another 4 hours at room temperature. The reaction mixture was subjected to liquid-liquid extraction three times with water and DCM. The organic layer was combined and evaporated to dryness under reduced pressure. The final product was purified by C-18 reversed phase HPLC with a gradient of 25%-100% Acetonitrile/Water.

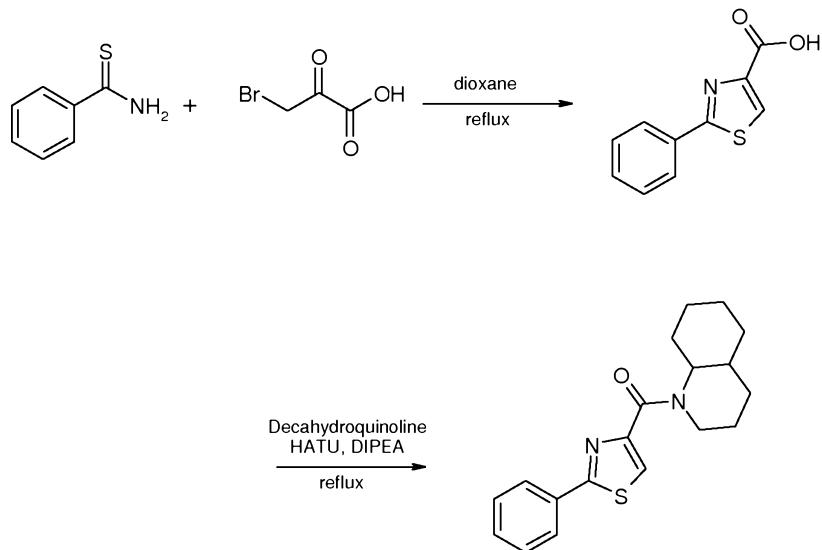

An example of a compound synthesized in this manner includes (Octahydro-quinolin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone (compound of Example 4).

25

Method C

Amide coupling for single compound synthesis

Some compounds of the present invention were alternatively prepared by amide coupling. For example, [2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(octahydro-quinolin-30 1-yl)-methanone (the compound of Example 1) was prepared as follows:

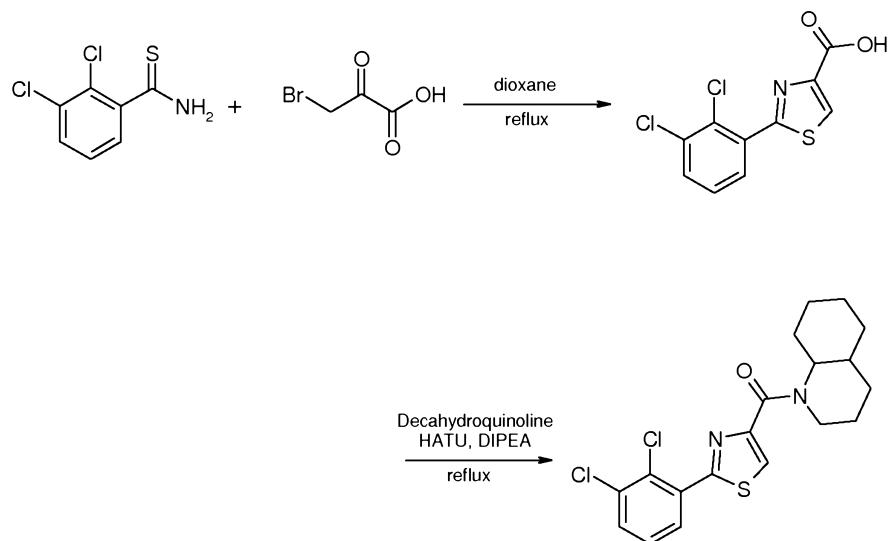

A solution of 2-(2,3-dichloro-phenyl)-thiazole-4-carboxylic acid (Maybridge; 1.0 g, 3.66 mmol), decahydro-quinoline (Aldrich; 0.56 g, 4.0 mmol), *O*-(7-Azabenzotriazol-5-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU, 1.46 g, 3.84 mmol) and diisopropylethylamine (0.67 mL, 3.84 mmol) in DMF (2 mL) was stirred at room temperature overnight. At this time, the reaction mixture was diluted with ethyl acetate and extracted twice with 1 N HCl and twice with water. The ethyl acetate layer was washed with brine, dried over MgSO₄ and then treated with 10 decolorizing carbon. The solution was concentrated *in vacuo*. The product was purified by silica gel flash column chromatography eluting with an ethyl acetate/hexane gradient. LC-MS m/e calcd for C₁₉H₂₀N₂Cl₂OS (M+H⁺) 394, found 394.

15

Method D

Preparation of target compounds starting from thiobenzamide precursors

Thiobenzamide precursors were used to make compounds of the invention. For example, (octahydro-quinolin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone (the 20 compound of Example 4) was synthesized in the following manner:


Step 1. 2-Phenyl-thiazole-4-carboxylic acid

5 A solution of thiobenzamide (Aldrich; 1.37 g, 10 mmol) and 3-bromopyruvic acid (1.67g, 10 mmol) in dioxane (50 mL) was heated at reflux for 2 hrs. The solution was concentrated *in vacuo*. Water (50 mL) was added. The resulting solid was filtered and triturated with ether to give a white solid (2.0 g, 99%).

10 Step 2. (Octahydro-quinolin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone
 2-Phenyl-thiazole-4-carboxylic acid (205 mg), HATU (418 mg), and decahydroquinoline (139 mg) were dissolved in DMF (5 mL). Diisopropylethylamine (192 μ L) was added. The resulting mixture was stirred at ambient temperature overnight. The solution was diluted with 20 ml of ethyl acetate and washed with 0.2N

15 HCl (2 x 10 mL), saturated NaHCO₃ (10 mL) and brine (10 mL), dried (MgSO₄) and concentrated *in vacuo* to give a white foam. The crude material was purified by flash chromatography (0-30% ethyl acetate/hexane) to give a white solid (305 mg, 94%): LC-MS m/e calcd for C₁₉H₂₂N₂OS (M+H⁺) 327, found 327.

20 [2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-octahydro-quinolin-1-yl-methanone was also synthesized in the following manner.

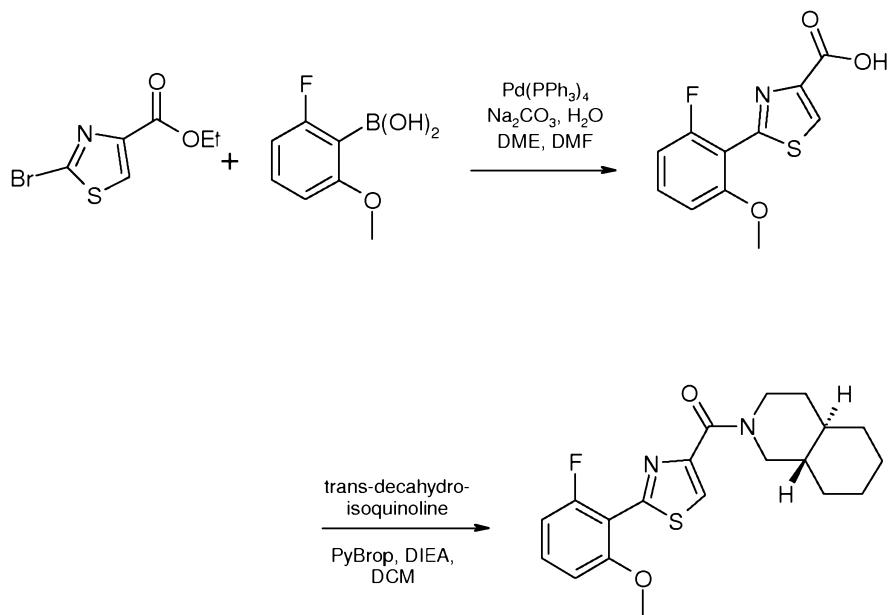
Step 1. 2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid

5 A solution of 2,3-dichloro-thiobenzamide (Maybridge plc, Tintagel, Cornwall, UK; 2.06 g, 10 mmol) and 3-bromopyruvic acid (1.67g, 10 mmol) in dioxane (50 mL) was heated at reflux for 2 hrs. The solution was concentrated in *vacuo*. Water (50 mL) was added. The resulting solid was filtered and triturated with ether to give a white solid (2.68 g, 98%).

10

Step 2. [2-(2,3-Dichloro-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone

2-(2,3-Dichloro-phenyl)-thiazole-4-carboxylic acid (822 mg), HATU (1.25 g), and decahydroquinoline (418 mg) were dissolved in DMF (10 mL).


15 Diisopropylethylamine (575 μ L) was added. The resulting mixture was stirred at ambient temperature overnight. The solution was diluted with 50 ml of ethyl acetate and washed with 0.2N HCl (2 x 25 mL), saturated NaHCO₃ (20 mL) and brine (20 mL), dried (MgSO₄) and concentrated in *vacuo* to give a yellow foam. The crude material was purified by flash chromatography (0-20% ethyl acetate/hexane) to give a white solid (978 mg, 83%): LC-MS m/e calcd for C₁₉H₂₀Cl₂N₂OS (M+H⁺) 395, 20 found 395.

Method E

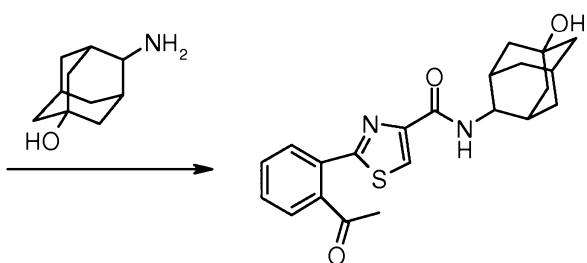
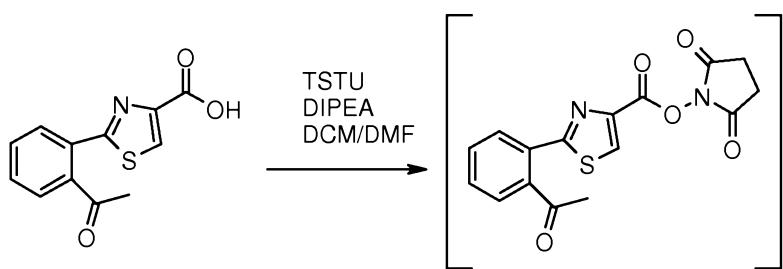
Preparation of target compounds starting from ethyl 2-bromothiazole-4-carboxylate precursors

Ethyl 2-bromothiazole-4-carboxylate precursors were used to prepare compounds of the present invention.

5 **Preparation of [2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(2-methyl-piperidin-1-yl)-methanone**

10

Step 1: 2-(2-Fluoro-6-methoxy-phenyl)-thiazole-4-carboxylic acid

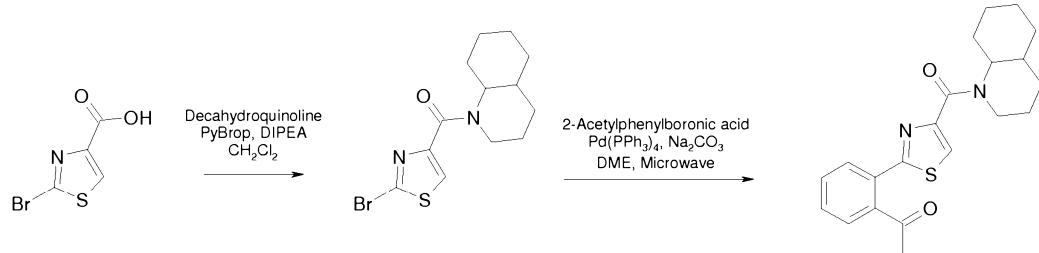


Tetrakis(triphenylphosphine)palladium (0.54 g, 0.48 mmol, 2.2% mol eq) was added to a degassed (nitrogen) mixture of 2-bromo-thiazole-4-carboxylic acid ethyl ester (Combi-Blocks, Inc., San Diego, CA; 5 g, 21.2 mmol), 1-methoxy-6-fluorophenylboronic acid (4.68 g, 27.56 mmol), and sodium carbonate (23 mL, 2 M solution in water) in DME (100mL) and DMF (100 mL). The reaction mixture was refluxed under inert atmosphere overnight. After cooling to room temperature, the reaction mixture was filtered through celite, and water and EtOAc were added. The aqueous layer was separated, acidified with conc. HCl to pH 2 and then was extracted three times with EtOAc. The combined EtOAc layers were dried under vacuum. The residue was chromatographed on silica, eluting with EtOAc/Hexane (0-30% gradient) to give 2-(2-fluoro-6-methoxy-phenyl)-thiazole-4-carboxylic acid (4.5 g) which was used directly in the next step.

Step 2: [2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(2-methyl-piperidin-1-yl)-methanone

2-(2-Fluoro-6-methoxy-phenyl)-thiazole-4-carboxylic acid (49.5 mg, 0.2 mmol) from the previous step, trans-decahydro-isoquinoline (TCI America, Portland, OR; 27.8 mg, 0.2 mmol), DIPEA (0.1 mL, 0.57 mmol), and PyBrop (103 mg, 0.22 mmol) were mixed in dry DCM (1 mL) and the mixture was left stirring for overnight at room temperature. To the mixture was added water. The DCM layer was separated and the aqueous layer was extracted with DCM twice. The combined DCM layers were dried under vacuum and purified by C-18 reversed phase HPLC with a gradient of 10-100% Acetonitrile/water to give [2-(2-fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(2-methyl-piperidin-1-yl)-methanone (12 mg, 16%).

1-{2-[4-((*trans*)-Octahydro-isoquinoline-2-carbonyl)-thiazol-2-yl]-phenyl}-ethanone was synthesized in a similar manner, by the reaction of 2-acetyl-phenyl-boronic acid (Aldrich) with 2-bromo-thiazole-4-carboxylic acid ethyl ester (Combi-Blocks, Inc., San Diego, CA) in a Suzuki reaction, followed by hydrolysis and coupling with trans-decahydroquinoline.

2-(2-acetyl-phenyl)-thiazole-4-carboxylic acid (5-hydroxy-adamantan-2-yl)-amide (the compound of Example 168) was prepared using Method E:

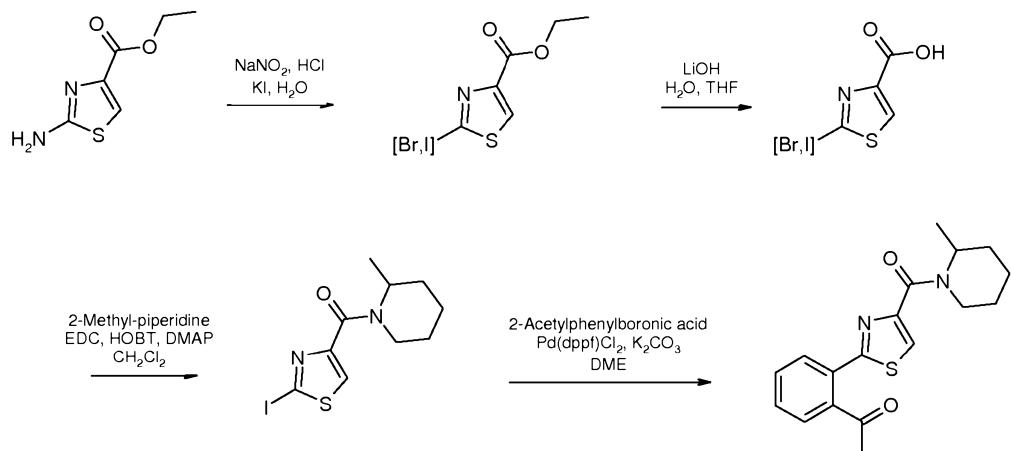

2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid (prepared in a Suzuki reaction between 2-acetyl-phenyl-boronic acid [Aldrich] with 2-bromo-thiazole-4-carboxylic acid ethyl ester [Combi-Blocks, Inc., San Diego, CA] using conditions similar to those described above for the preparation of 2-(2-fluoro-6-methoxy-phenyl)-thiazole-4-carboxylic acid; 49.5 mg, 0.2 mmol) was dissolved in a mixture of dry DCM (1.6 mL) and dry DMF (0.4 mL). DIPEA (0.1 mL) and TSTU (72 mg, 0.24 mmol) were added to the mixture. After the mixture was stirred for 2h and checked with LC-MS for the generation of active ester, 4-aminoadamantan-1-ol (Intermediate 2; 33.5 mg, 0.2 mmol) from Step 2 was added to the mixture. After another 2 hours water was added to the mixture and the organic layer was separated. The aqueous layer was further extracted twice with DCM. The combined organic layers were evaporated under vacuum and purified by C-18 reversed phase HPLC with a gradient of 10-100% Acetonitrile/water to give 36 mg product.

Method F

Preparation of target compounds starting from 2-bromothiazole-4-carboxylic acid precursors

Another preferred method of synthesizing compounds of the present invention utilizes 2-bromothiazole-4-carboxylic acid precursors. The compounds of Examples 92, 119 and 125 were made in this manner:

5 **Example 92 Synthesis of 1-{2-[4-(Octahydro-quinoline-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone**


Step 1. (2-Bromo-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone

10 A solution of 2-bromo-thiazole-4-carboxylic acid (Intermediate 3; 21.2 mmol), decahydroquinoline (3.54 g, 25.4 mmol), DIPEA (7.4 mL, 42.4 mmol), and PyBrop (11.9 g, 25.4 mmol) in dry DCM (70 mL) was stirred overnight at room temperature. The mixture was extracted with DCM and water three times. The combined DCM extracts were evaporated, and the residue was chromatographed on silica, eluting with
 15 EtOAc/Hexane (0 – 10% gradient) to give (2-bromo-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone (6.0 g, 86%).

Step 2. 1-{2-[4-(Octahydro-quinoline-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone

In a Microwave process tube, tetrakis(triphenylphosphine)palladium (5 mg, 0.004 mmol) was added to a degassed (nitrogen) mixture of 2-acetylphenylboronic acid (Aldrich; 38 mg, 0.15 mmol) and sodium carbonate (2 M in water, 0.2 mL, 0.4 mmol), and (2-bromo-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone (from Step 1; 50 mg, 0.15 mmol) in DME (dry, 1.5 mL). The tube was submitted to 150 W Microwave Irradiation at 160 °C for 5 minutes. The reaction mixture was cooled to room
 25 temperature, filtered through celite and silica plug, and extracted with EtOAc and water three times. The organic layers were combined, concentrated and purified by C-18 reversed phase HPLC with a gradient of 10-100% Acetonitrile/Water to give 1-{2-[4-(octahydro-quinoline-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone (40 mg, 70%).

Example 119 Synthesis of [2-(2-Methoxy-phenyl)-thiazol-4-yl]-(2-methyl-piperidin-1-yl)-methanone

5

Step 1. Mixture of 2-iodo-thiazole-4-carboxylic acid ethyl ester and 2-bromo-thiazole-4-carboxylic acid ethyl ester

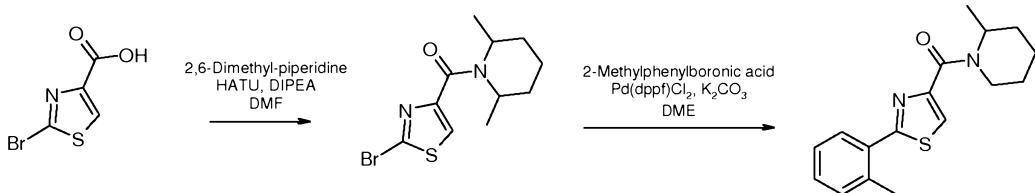
To a 1 L, 3-necked round bottom flask was added 2-amino-thiazole-4-carboxylic acid ethyl ester hydrobromide (20 g, 79 mmol). This was diluted with water (150 mL) followed by conc. HCl (150 mL). This mixture was cooled to \sim minus 5 $^{\circ}\text{C}$. Separately, 8.15 g of sodium nitrite was dissolved in 75 mL of water. A solution of sodium nitrite (8.15 g, 118.1 mmol) in water (75 mL) was slowly added dropwise over a 30 minute period. The mixture was stirred for approximately 2 h after the completion of the addition of the sodium nitrite solution while maintaining the reaction temperature at 0 $^{\circ}\text{C}$. To this mixture was added dropwise over 10 minutes a solution of potassium iodide (17.6 g, 106.0 mmol) in water (75 mL). During the addition, dichloromethane was added to maintain the fluidity of the reaction mixture. After 1 hour, the ice bath was removed. The mixture was extracted with dichloromethane (3 x 500 mL). The combined organic extracts were washed with 10% $\text{Na}_2\text{S}_2\text{O}_3$ (2 x 250 mL). The organic layer was dried over MgSO_4 , filtered and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography eluting with 10-75% dichloromethane in hexane to give a mixture of 2-iodo-thiazole-4-carboxylic acid ethyl ester and 2-bromo-thiazole-4-carboxylic acid ethyl ester (10.8 g). This material was used for the next step without further purification.

Step 2. Mixture of 2-iodo-thiazole-4-carboxylic acid ethyl ester and 2-bromo-thiazole-4-carboxylic acid

A solution of lithium hydroxide (3.27 g, 136.5 mmol) in water (65 mL) was added to 5 a solution of the mixture of 2-iodo-thiazole-4-carboxylic acid ethyl ester and 2-bromo-thiazole-4-carboxylic acid ethyl ester (from Step 1; 10.8 g) in tetrahydrofuran (100 mL). The mixture was stirred at room temperature for 2.5 hours. At this time, the reaction mixture was concentrated in *vacuo*, followed by addition of water (100 mL). The resultant solution was acidified to pH 1 with 1 M HCl. A white solid was formed. 10 The aqueous suspension was extracted with ethyl acetate (3 x 250 mL). The combined organic extracts were washed with water (250 mL) and brine (250 mL). The combined organic extracts were dried over MgSO₄, filtered and then concentrated *in vacuo* to give a mixture of 2-iodo-thiazole-4-carboxylic acid ethyl ester and 2-bromo-thiazole-4-carboxylic acid (11.5 g). This material was used in the next step without 15 further purification.

Step 3. (2-Iodo-thiazol-4-yl)-(2-methyl-piperidin-1-yl)-methanone

A solution of a mixture of 2-iodo-thiazole-4-carboxylic acid ethyl ester and 2-bromo-thiazole-4-carboxylic acid (from Step 2; 11.5 g), N,N-dimethylaminopyridine (11.2 g, 20 91.7 mmol), HOBT (10.0 g, 74.0 mmol), 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (14.0 g, 73.0 mmol), and 2-methyl-piperidine (8 mL, 68.1 mol) in dry dichloromethane (150 mL) and dry acetonitrile (20 mL) was stirred at room temperature for 72 h. At this time, the reaction mixture was concentrated *in vacuo*. The resulting solution was diluted with dichloromethane (25 mL) and 1 N HCl 25 (250 mL). The mixture was stirred for several hours at room temperature. At this time, the mixture was filtered and the solids were washed with dichloromethane (200 mL). The aqueous layer was extracted with dichloromethane (2 x 250 mL). The combined organic layers were washed with water (450 mL) and brine (450 mL). The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*, and purified by flash 30 column chromatography eluting with a gradient of ethyl acetate in hexanes to give (2-iodo-thiazol-4-yl)-(2-methyl-piperidin-1-yl)-methanone (8.1 g, 30% yield from 2-amino-thiazole-4-carboxylic acid ethyl ester hydrobromide).


Step 4. [2-(2-Methoxy-phenyl)-thiazol-4-yl]- (2-methyl-piperidin-1-yl)-methanone

A mixture of (2-iodo-thiazol-4-yl)-(2-methyl-piperidin-1-yl)-methanone (Step 3; 200 mg, 0.59 mmol), 2-methoxyphenylboronic acid (Combi-Blocks, Inc., San Diego, CA; 135 mg, 0.89 mmol), potassium carbonate (201 mg, 1.45 mmol), and PdCl₂dppf (Strem Chemicals, Inc., Newburyport, MA; 22 mg, 0.03 mmol) in dimethoxyethane (3 mL) in a scintillation vial was heated at ~78 °C for 72 h with shaking. The reaction mixture was cooled to room temperature, concentrated in vacuo using a Genevac evaporator, and purified using automated mass-directed LC-MS purification.

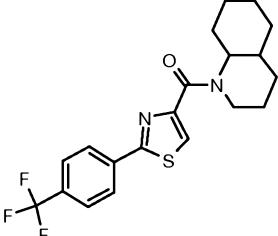
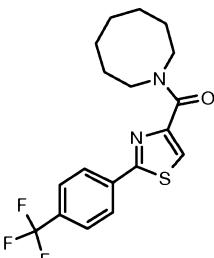
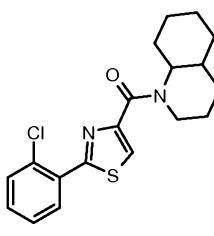
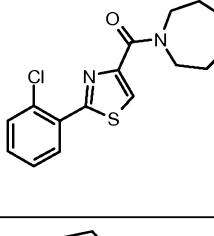
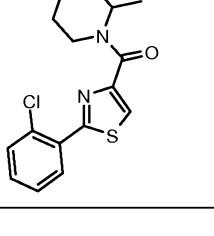
10

Example 125 Synthesis of (2,6-Dimethyl-piperidin-1-yl)-(2-o-tolyl-thiazol-4-yl)-methanone

15

Step 1. (2-Bromo-thiazol-4-yl)-(2,6-dimethyl-piperidin-1-yl)-methanone

A solution of 2-bromothiazole-4-carboxylic acid (Intermediate 3; 2 g, 9.6 mmol), 2,6-dimethylpiperidine (1.18 mL, 8.8 mmol), HATU (4.18 g, 11.0 mmol) and DIEA (2.1 mL, 12.1 mmol) in DMF (10 mL) was stirred at room temperature for 1 h. Ethyl acetate (20 mL) was added and the solution was washed with 0.2 M HCl (2 x 10 mL), water (10 mL), and brine (10 mL), then it was dried (MgSO₄), filtered, evaporated, and purified by flash column chromatography (10-40% ethyl acetate/hexanes) to give (2-bromo-thiazol-4-yl)-(2,6-dimethyl-piperidin-1-yl)-methanone (2.3 g, 86%) as a white solid.






Step 2. (2,6-Dimethyl-piperidin-1-yl)-(2-o-tolyl-thiazol-4-yl)-methanone

A mixture containing (2-bromo-thiazol-4-yl)-(2,6-dimethyl-piperidin-1-yl)-methanone (Step 1; 91 mg, 0.3 mmol), 2-methylphenylboronic acid (45 mg, 0.33 mmol), Pd(dppf)Cl₂ (Dichloro-(1,1-bis(diphenylphosphino)-ferrocene) palladium(II)) (11 mg, 0.015 mmol), and potassium carbonate (0.3 mL, 2 M aqueous, 0.6 mmol) in DME (2 mL) was heated to 90 °C for 8 hrs. The solvent was evaporated and water (5

mL) was added. The mixture was extracted with ethyl acetate (3 x 5 mL). The combined organic layers were dried with MgSO₄ and concentrated *in vacuo*. The crude product was purified by flash chromatography with a solvent gradient of 0-30% ethyl acetate in hexanes to give (2,6-dimethyl-piperidin-1-yl)-(2-o-tolyl-thiazol-4-yl)-5 methanone (68 mg, 75%) as a white solid.

The compounds of the invention in Examples 1-185 below were prepared by the methods described above:

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
1		394	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone	Decahydron-quinoline	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	A
2		368	Azocan-1-yl-[2-(2,3-dichlorophenyl)-thiazol-4-yl]-methanone	Azocane	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	D
3		354	Azepan-1-yl-[2-(2,3-dichlorophenyl)-thiazol-4-yl]-methanone	Azepane	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	D
4		326	(Octahydro-quinolin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone	Decahydron-quinoline	2-Phenyl-thiazole-4-carboxylic acid	D
5		300	Azocan-1-yl-(2-phenyl-thiazol-4-yl)-methanone	azocane	2-Phenyl-thiazole-4-carboxylic acid	D
6		286	Azepan-1-yl-(2-phenyl-thiazol-4-yl)-methanone	azepane	2-Phenyl-thiazole-4-carboxylic acid	D

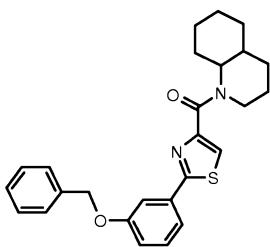
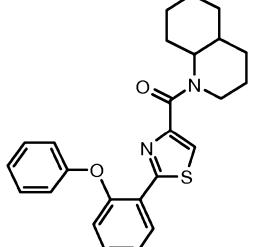
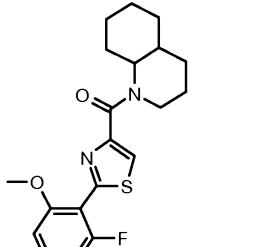
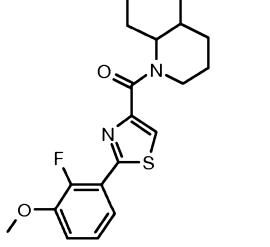
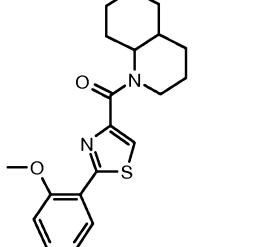
Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
7		394	(Octahydro-quinolin-1-yl)-[2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-methanone	decahydro-quinoline	2-(4-trifluoromethyl-phenyl)-thiazole-4-carboxylic acid	D
8		368	Azocan-1-yl-[2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-methanone	azocane	2-(4-trifluoromethyl-phenyl)-thiazole-4-carboxylic acid	D
9		360	[2-(2-Chlorophenyl)-thiazol-4-yl]-[octahydro-quinolin-1-yl]-methanone	decahydro-quinoline	2-(2-Chlorophenyl)-thiazole-4-carboxylic acid	D
10		334	Azocan-1-yl-[2-(2-chlorophenyl)-thiazol-4-yl]-methanone	azocane	2-(2-Chlorophenyl)-thiazole-4-carboxylic acid	D
11		320	Azepan-1-yl-[2-(2-chlorophenyl)-thiazol-4-yl]-methanone	azepane	2-(2-Chlorophenyl)-thiazole-4-carboxylic acid	D
12		320	[2-(2-Chlorophenyl)-thiazol-4-yl]-[2-(2-methylpiperidin-1-yl)-methanone	2-methyl piperidine	2-(2-Chlorophenyl)-thiazole-4-carboxylic acid	D

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
13		360	[2-(4-Chlorophenyl)-thiazol-4-yl]-(octahydroquinolin-1-yl)-methanone	decahydro-quinoline	2-(4-Chlorophenyl)-thiazole-4-carboxylic acid	D
14		320	Azepan-1-yl-[2-(4-chlorophenyl)-thiazol-4-yl]-methanone	azepane	2-(4-Chlorophenyl)-thiazole-4-carboxylic acid	D
15		320	[2-(4-Chlorophenyl)-thiazol-4-yl]-(2-methylpiperidin-1-yl)-methanone	2-methyl piperidine	2-(4-Chlorophenyl)-thiazole-4-carboxylic acid	D
16		354	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-(2-methylpiperidin-1-yl)-methanone	2-methyl piperidine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	D
17		356	[2-(4-Methoxyphenyl)-thiazol-4-yl]-(octahydroquinolin-1-yl)-methanone	decahydro-quinoline	2-(4-methoxybutyl-phenyl)-thiazole-4-carboxylic acid	D
18		368	[2-(2,3-Dihydrobenzofuran-5-yl)-thiazol-4-yl]-(octahydroquinolin-1-yl)-methanone	decahydro-quinoline	2,3-Dihydrobenzofuran-5-carbothioic acid amide	D

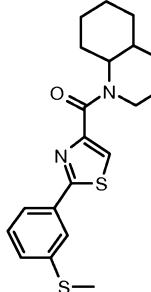
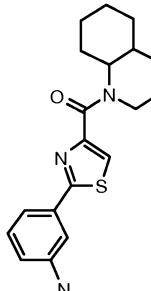
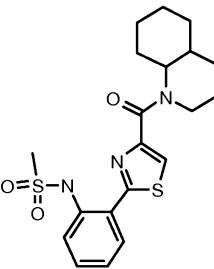
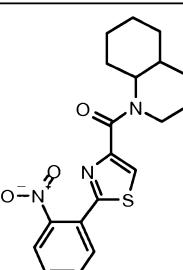
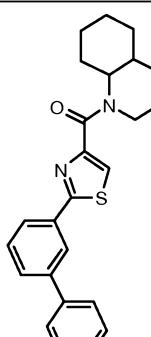
Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
19		328	[2-(2,3-Dihydrobenzofuran-5-yl)-thiazol-4-yl]-[2-(2-methylpiperidin-1-yl)-thiazol-4-yl]-methanone	2-methyl piperidine	2,3-Dihydrobenzofuran-5-carbothioic acid amide	D
20		340	(Octahydroquinolin-1-yl)-(2-p-tolyl-thiazol-4-yl)-methanone	decahydro-quinoline	2-(4-methyl-phenyl)-thiazole-4-carboxylic acid	D
21		300	Azepan-1-yl-(2-p-tolyl-thiazol-4-yl)-methanone	azepane	2-(4-methyl-phenyl)-thiazole-4-carboxylic acid	D
22		300	(2-Methylpiperidin-1-yl)-(2-p-tolyl-thiazol-4-yl)-methanone	2-methyl piperidine	4-methyl-phenyl-boronic acid	F
23		336	Azocan-1-yl-[2-(2,4-difluorophenyl)-thiazol-4-yl]-methanone	azocane	2-(2,4-Difluorophenyl)-thiazole-4-carboxylic acid	D
24		322	Azepan-1-yl-[2-(2,4-difluorophenyl)-thiazol-4-yl]-methanone	azepane	2-(2,4-Difluorophenyl)-thiazole-4-carboxylic acid	D

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
25		322	[2-(2,4-Difluorophenyl)-thiazol-4-yl]-(2-methylpiperidin-1-yl)-methanone	2-methyl piperidine	2-(2,4-Difluorophenyl)-thiazole-4-carboxylic acid	D
26		336	[2-(2,4-Difluorophenyl)-thiazol-4-yl]-(3,5-dimethylpiperidin-1-yl)-methanone	3,5-dimethyl piperidine	2-(2,4-Difluorophenyl)-thiazole-4-carboxylic acid	D
27		300	(3,5-Dimethylpiperidin-1-yl)-(2-phenylthiazol-4-yl)-methanone	3,5-dimethyl piperidine	2-Phenylthiazole-4-carboxylic acid	D
28		334	[2-(2-Chlorophenyl)-thiazol-4-yl]-(3,5-dimethylpiperidin-1-yl)-methanone	3,5-dimethyl piperidine	2-(2-Chlorophenyl)-thiazole-4-carboxylic acid	D
29		334	[2-(4-Chlorophenyl)-thiazol-4-yl]-(3,5-dimethylpiperidin-1-yl)-methanone	3,5-dimethyl piperidine	2-(4-Chlorophenyl)-thiazole-4-carboxylic acid	D
30		368	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-(3,5-dimethylpiperidin-1-yl)-methanone	3,5-dimethyl piperidine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	D

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
31		332	(2,6-Dimethylmorpholin-4-yl)-[2-(4-methoxyphenyl)-thiazol-4-yl]-methanone	2,6-dimethylmorpholine	2-(4-methoxybutyl-phenyl)-thiazole-4-carboxylic acid	D
32		330	(3,5-Dimethylpiperidin-1-yl)-[2-(4-methoxyphenyl)-thiazol-4-yl]-methanone	3,5-dimethylpiperidine	2-(4-methoxybutyl-phenyl)-thiazole-4-carboxylic acid	D
33		314	(3,5-Dimethylpiperidin-1-yl)-[2-(4-methylphenyl)-thiazol-4-yl]-methanone	3,5-dimethylpiperidine	2-(4-methylphenyl)-thiazole-4-carboxylic acid	D
34		362	[2-(2,4-Difluorophenyl)-thiazol-4-yl]-[octahydroquinolin-1-yl]-methanone	decahydro-quinoline	2-(2,4-Difluorophenyl)-thiazole-4-carboxylic acid	D
35		360	[2-(3-Chlorophenyl)-thiazol-4-yl]-[octahydroquinolin-1-yl]-methanone	decahydro-quinoline	3-Chlorophenylboronic acid	F






Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
36		394	[2-(2,4-Dichlorophenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	deahydro-quinoline	2,4-Dichlorophenyl boronic acid	F
37		394	[2-(2,5-Dichlorophenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	deahydro-quinoline	2,5-Dichlorophenyl boronic acid	F
38		374	[2-(5-Chloro-2-methylphenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	deahydro-quinoline	3-Chloro-5-methylphenyl boronic acid	F
39		390	[2-(5-Chloro-2-methoxyphenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	deahydro-quinoline	3-Chloro-6-methoxyphenyl boronic acid	F
40		378	[2-(3-Chloro-4-fluorophenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	deahydro-quinoline	3-Chloro-4-fluorophenyl boronic acid	F

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
41		374	[2-(3-Chloro-4-methylphenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	3-Chloro-4-methylphenyl boronic acid	F
42		374	[2-(3-Chloro-2-methylphenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	3-Chloro-2-methylphenyl boronic acid	F
43		374	[2-(4-Chloro-3-methylphenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	4-Chloro-3-methylphenyl boronic acid	F
44		374	[2-(4-Chloro-2-methylphenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	4-Chloro-2-methylphenyl boronic acid	F
45		390	[2-(4-Chloro-2-methoxyphenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	4-Chloro-2-methoxyphenyl boronic acid	F

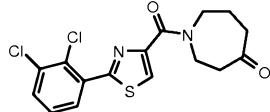
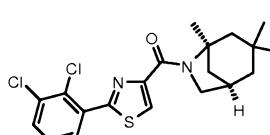
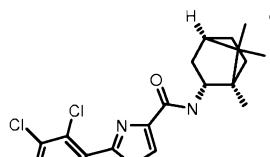
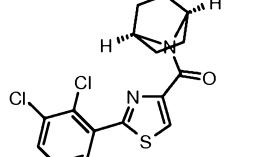
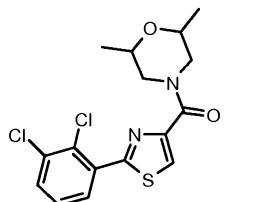
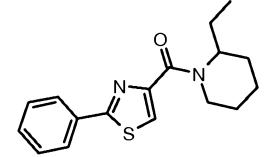
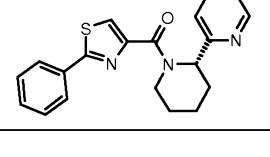





Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
46		404	[2-(4-Chloro-2-ethoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	4-Chloro-2-ethoxyphenyl boronic acid	F
47		375	[2-(3-Amino-4-chloro-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	4-Chloro-3-aminophenyl boronic acid	F
48		368	[2-(3-Isopropyl-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	3-Isopropylphenyl boronic acid	F
49		316	(2-Cyclopent-1-enyl-thiazol-4-yl)- (octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	Cyclopenten-1-ylboronic acid	F
50		330	(2-Cyclohex-1-enyl-thiazol-4-yl)- (octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	Cyclohexen-1-ylboronic acid	F

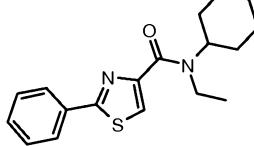
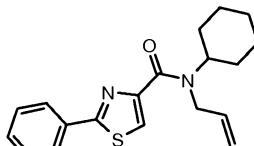
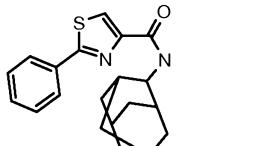
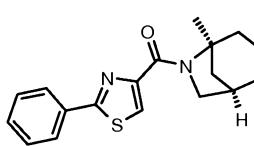
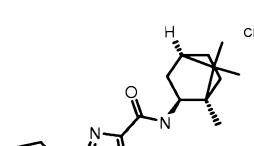
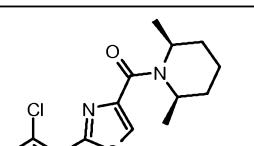
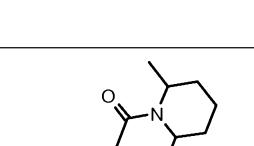
Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
51		344	(2-Cyclohept-1-enyl-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	Cyclohepten-1-ylboronic acid	F
52		340	(Octahydro-quinolin-1-yl)-(2-o-tolyl-thiazol-4-yl)-methanone	decahydro-quinoline	2-Methylphenyl boronic acid	F
53		356	[2-(2-Hydroxymethyl-1-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	(2-Hydroxymethyl phenyl)boronic acid dehydrate	F
54		356	[2-(3-Hydroxymethyl-1-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	(3-Hydroxymethyl phenyl)boronic acid dehydrate	F
55		342	[2-(4-Hydroxy-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	4-Hydroxyphenyl boronic acid dehydrate	F

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
56		356	[2-(2-Methoxyphenyl)-thiazol-4-yl]-(octahydroquinolin-1-yl)-methanone	decahydro-quinoline	2-Methoxyphenyl boronic acid	F
57		356	[2-(3-Methoxyphenyl)-thiazol-4-yl]-(octahydroquinolin-1-yl)-methanone	decahydro-quinoline	3-Methoxyphenyl boronic acid	F
58		410	(Octahydroquinolin-1-yl)-[2-(2-trifluoromethoxy-phenyl)-thiazol-4-yl]-methanone	decahydro-quinoline	2-Trifluoromethoxyphenyl boronic acid	F
59		410	(Octahydroquinolin-1-yl)-[2-(3-trifluoromethoxy-phenyl)-thiazol-4-yl]-methanone	decahydro-quinoline	3-Trifluoromethoxyphenyl boronic acid	F
60		432	[2-(2-Benzyloxy-phenyl)-thiazol-4-yl]-(octahydroquinolin-1-yl)-methanone	decahydro-quinoline	2-Benzyloxyphenylboronic acid	F

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
61		432	[2-(3-Benzylxy-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	3-Benzylxyphenylboronic acid	F
62		418	(Octahydro-quinolin-1-yl)-[2-(2-phenoxy-phenyl)-thiazol-4-yl]-methanone	decahydro-quinoline	(2-Phenoxy)phenylboronic acid	F
63		374	[2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	6-Fluoro-2-methoxyphenylboronic acid	F
64		374	[2-(2-Fluoro-3-methoxy-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	2-Fluoro-3-methoxyphenylboronic acid	F
65		374	[2-(5-Fluoro-2-methoxy-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	5-Fluoro-2-methoxyphenylboronic acid	F

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
66		386	[2-(3,4-Dimethoxyphenyl)-thiazol-4-yl]-(octahydroquinolin-1-yl)methanone	decahydro-quinoline	3,4-Dimethoxyphenylboronic acid	F
67		386	[2-(2,5-Dimethoxyphenyl)-thiazol-4-yl]-(octahydroquinolin-1-yl)methanone	decahydro-quinoline	2,5-Dimethoxyphenylboronic acid	F
68		370	(2-Benzo[1,3]dioxol-5-yl-thiazol-4-yl)-(octahydroquinolin-1-yl)methanone	decahydro-quinoline	5-Benzo[1,3]dioxoleboronic acid	F
69		416	(Octahydroquinolin-1-yl)-[2-(2,3,4-trimethoxyphenyl)-thiazol-4-yl]methanone	decahydro-quinoline	2,3,4-Trimethoxyphenylboronic acid	F
70		372	[2-(2-Methylsulfonylphenyl)-thiazol-4-yl]-(octahydroquinolin-1-yl)methanone	decahydro-quinoline	2-Methylsulfonylphenylboronic acid	F








Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
71		372	[2-(3-Methylsulfanyl-phenyl)-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone	deahydro-quinoline	3-Methylsulfanyl-phenol	F
72		341	[2-(3-Aminophenyl)-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone	deahydro-quinoline	3-Aminophenyl boronic acid	F
73		419	N-{2-[4-(Octahydro-quinoline-1-carbonyl)-thiazol-2-yl]-phenyl}-methanesulfonamide	deahydro-quinoline	N-(2-Phenylboronic acid)-methane sulfonamide	F
74		371	[2-(2-Nitrophenyl)-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone	deahydro-quinoline	2-nitrophenyl boronic acid	F
75		402	(2-Biphenyl-3-yl-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone	deahydro-quinoline	3-phenyl-phenylboronic acid	F








Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
76		402	(2-Biphenyl-2-yl-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	2-phenyl-phenylboronic acid	F
77		365	[2-(1H-Indol-5-yl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	1H-Indol-5-boronic acid	F
78		332	(Octahydro-quinolin-1-yl)-(2-thiophen-3-yl-thiazol-4-yl)-methanone	decahydro-quinoline	Thiophene-3-boronic acid	F
79		417	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-(3,4,5,6-tetrahydro-2H-[2,2']bipyridinyl-1-yl)-methanone	1,2,3,4,5,6-Hexahydro-[2,2']bipyridine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
80		406	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid adamantan-1-ylamide	adamantan-1-ylamine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	C
81		406	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid adamantan-2-ylamide	Adamantan-2-ylamine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
82		380	(3-Aza-bicyclo[3.2.2]non-3-yl)-[2-(2,3-dichlorophenyl)-thiazol-4-yl]-methanone	3-Aza-bicyclo[3.2.2]nonane	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
83		408	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid ((1R,4R)-4,7,7-trimethylbicyclo[2.2.1]hept-2-yl)-amide	4,7,7-trimethylbicyclo[2.2.1]hept-2-ylamine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
84		403	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-[3-pyridin-3-yl-pyrrolidin-1-yl]-methanone	3-pyridin-3-yl-pyrrolidine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
85		349	(2-Phenyl-thiazol-4-yl)-(3,4,5,6-tetrahydro-2H-[2,2']bipyridinyl-1-yl)-methanone	1,2,3,4,5,6-Hexahydro-2H-[2,2']bipyridinyl	2-Phenyl-thiazole-4-carboxylic acid	B
86		360	(4-Chlorooctahydro-quinolin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone	4-chlorodecahydro-quinoline	2-Phenyl-thiazole-4-carboxylic acid	B
87		326	(Octahydro-isoquinolin-2-yl)-(2-phenyl-thiazol-4-yl)-methanone	decahydro-isoquinoline	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
88		326	(4aR,8aS)-Octahydro-isoquinolin-2-yl-(2-phenyl-thiazol-4-yl)-methanone	trans-decahydroisoquinoline	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
89		312	(3-Aza-bicyclo[3.2.2]non-3-yl)-(2-phenyl-thiazol-4-yl)-methanone	3-Aza-bicyclo[3.2.2]nonane	2-Phenyl-thiazole-4-carboxylic acid	B
90		340	2-Phenyl-thiazole-4-carboxylic acid ((1R,2R,4R)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl)-amide	1,7,7-trimethylbicyclo[2.2.1]hept-2-ylamine	2-Phenyl-thiazole-4-carboxylic acid	B
91		340	2-Phenyl-thiazole-4-carboxylic acid ((1R,4R)-4,7,7-trimethylbicyclo[2.2.1]hept-2-yl)-amide	4,7,7-trimethylbicyclo[2.2.1]hept-2-ylamine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
92		368	1-{2-[4-(Octahydroquinoline-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone	decahydro-quinoline	2-Acetylphenylboronic acid	F
93		368	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-2,6-dimethylpiperidin-1-yl-methanone	2,6-methyl piperidine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	C
94		368	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-2-ethylpiperidin-1-yl-methanone	2-ethyl-piperidine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
95		382	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-2-propylpiperidin-1-yl-methanone	2-propyl-piperidine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
96		417	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]- (S)-3,4,5,6-tetrahydro-2H-[2,2']bipyridinyl-1-yl-methanone	(S)- 3,4,5,6-tetrahydro- -2H-[2,2']bipyridine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
97		368	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]- (2-isopropylpyrrolidin-1-yl)-methanone	2-isopropylpyrrolidine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
98		428	(4-Chlorooctahydroquinolin-1-yl)- [2-(2,3-dichlorophenyl)-thiazol-4-yl]-methanone	decahydroquinoline	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
99		422	1-[2-(2,3-Dichlorophenyl)-thiazole-4-carbonyl]-2-methyloctahydroquinolin-4-one	decahydroquinoline	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
100		382	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid cyclohexylethyl-amine	cyclohexyl-ethyl-amine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
101		394	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid allylcyclohexyl-amine	allylcyclohexyl-amine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
102		394	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]- (octahydroisoquinolin-2-yl)-methanone	Decahydroisoquinoline	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
10 3		368	1-[2-(2,3-Dichlorophenyl)-thiazole-4-carbonyl]-azepan-4-one	azepan-4-one	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
10 4		408	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-methanone	3,3,5-Trimethyl-6-aza-bicyclo[3.2.1]octane	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
10 5		408	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid ((1R,2R,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide	1,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylamine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
10 6		352	(7-Aza-bicyclo[2.2.1]hept-7-yl)-[2-(2,3-dichlorophenyl)-thiazol-4-yl]-methanone	7-Aza-bicyclo[2.2.1]heptane	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
10 7		370	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-[2,6-dimethylmorpholin-4-yl]-methanone	2,6-dimethylmorpholine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
10 8		300	(2-Ethyl-piperidin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone	2-ethyl-piperidine	2-Phenyl-thiazole-4-carboxylic acid	B
10 9		349	(2-Phenyl-thiazol-4-yl)-(S)-3,4,5,6-tetrahydro-2H-[2,2']bipyridin-2-yl)-methanone	2(S)-,2,3,4,5,6-Hexahydr o-	2-Phenyl-thiazole-4-carboxylic acid	B

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
			2-yl-1-yl-methanone	[2,2']bipyridinyl		
11 0		314	2-Phenylthiazole-4-carboxylic acid cyclohexyl-ethyl-amide	cyclohexyl-ethyl-amine	2-Phenylthiazole-4-carboxylic acid	B
11 1		326	2-Phenylthiazole-4-carboxylic acid allyl-cyclohexyl-amide	allyl-cyclohexyl-amine	2-Phenylthiazole-4-carboxylic acid	B
11 2		338	2-Phenylthiazole-4-carboxylic acid adamantan-2-ylamide	-hexahydro-furo[3,2-c]quinoline	2-Phenylthiazole-4-carboxylic acid	B
11 3		340	(2-Phenylthiazol-4-yl)-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-methanone	3,3,5-Trimethyl-6-aza-bicyclo[3.2.1]octane	2-Phenylthiazole-4-carboxylic acid	B
11 4		340	2-Phenylthiazole-4-carboxylic acid ((1R,2S,4R)-1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide	1,7,7-Trimethyl-bicyclo[2.2.1]hept-2-ylamine	2-Phenylthiazole-4-carboxylic acid	B
11 5		334	[2-(2-Chlorophenyl)-thiazol-4-yl]-((2S,6R)-2,6-dimethyl-piperidin-1-yl)-methanone	2S,6R)-2,6-dimethyl-piperidine	2-chlorophenyl-boronic acid	F
11 6		334	[2-(2-Chlorophenyl)-thiazol-4-yl]-(2,6-dimethyl-piperidin-1-yl)-methanone	2,6-dimethyl-piperidine	2-chlorophenyl-boronic acid	F

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
11 7		390	[2-(2-Chloro-6-methoxy-phenyl)-thiazol-4-yl]- (octahydro-quinolin-1-yl)-methanone	decahydro-quinoline	3-CHLORO-6-METHOXY-PHENYLBORONIC ACID	F
11 8		330	(2,6-Dimethyl-piperidin-1-yl)-[2-(2-methoxy-phenyl)-thiazol-4-yl]-methanone	2,6-dimethyl-morpholine	2-methoxy-phenyl-boronic acid	E
11 9		316	[2-(2-Methoxy-phenyl)-thiazol-4-yl]- (2-methyl-piperidin-1-yl)-methanone	2-methyl piperidine	2-methoxyphenyl boronic acid	F
12 0		334	[2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]- (2-methyl-piperidin-1-yl)-methanone	2-methyl piperidine	2-fluoro-3-methoxyphenyl boronic acid	E
12 1		330	2-(2-Hydroxymethyl-phenyl)-thiazole-4-carboxylic acid cyclohexylmethyl-amide	cyclohexyl-methyl-amine	2-hydroxymethyl-phenyl-boronic acid	E
12 2		334	2-(2-Chloro-phenyl)-thiazole-4-carboxylic acid cyclohexylmethyl-amide	cyclohexyl-methyl-amine	2-chloro-phenyl-boronic acid	E
12 3		348	2-(2-Chloro-phenyl)-thiazole-4-carboxylic acid cyclohexylmethyl-amide	cyclohexyl-ethyl-amine	2-chloro-boronic acid	E
12 4		336	2-(2-Chloro-phenyl)-thiazole-4-carboxylic acid (4-hydroxy-cyclohexyl)-	4-hydroxy-cyclohexyl-amine	2-chloro-boronic acid	E

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
			amide			
12 5		314	(2,6-Dimethylpiperidin-1-yl)-(2- <i>o</i> -tolylthiazol-4-yl)-methanone	2,6-dimethylpiperidine	2-methylphenyl-boronic acid	F
12 6		336	[2-(2-Chloropyridin-3-yl)-thiazol-4-yl]-(2,6-dimethylpiperidin-1-yl)-methanone	2,6-dimethylpiperidine	2-chloro-3-pyridyl-boronic acid	F
12 7		385	(2,6-Dimethylpiperidin-1-yl)-[2-(2-morpholin-4-yl-phenyl)-thiazol-4-yl]-methanone	2,6-dimethylpiperidine	2-morpholin-4-yl-phenyl boronic acid	F
12 8		343	[2-(2-Dimethylamino-phenyl)-thiazol-4-yl]-(2,6-dimethylpiperidin-1-yl)-methanone	2,6-dimethylpiperidine	2-dimethylamino-phenyl-boronic acid	F
12 9		342	1-[2-[4-(2,6-Dimethylpiperidin-1-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	2,6-dimethylpiperidine	2-acetyl-phenyl-boronic acid	E
13 0		328	1-[2-[4-(2-Methylpiperidin-1-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	2-methylpiperidine	2-acetyl-phenyl-boronic acid	E
13 1		342	1-[2-[4-(2-Ethylpiperidin-1-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	2-ethylpiperidine	2-acetyl-phenyl-boronic acid	E

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
13 2		356	1-[2-[4-(2-Propyl-piperidine-1-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	2-propyl-piperidine	2-acetyl-phenyl-boronic acid	E
13 3		391	1-[2-[4-(3,4,5,6-Tetrahydro-2H-[2,2']bipyridinyl-1-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	1,2,3,4,5,6-hexahydro-2H-[2,2']bipyridinyl	2-acetyl-phenyl-boronic acid	E
13 4		391	1-[2-[4-((S)-3,4,5,6-Tetrahydro-2H-[2,2']bipyridinyl-1-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	(S)-1,2,3,4,5,6-hexahydro-2H-[2,2']bipyridinyl	2-acetyl-phenyl-boronic acid	E
13 5		392	1-[2-[4-(3-Phenylmorpholine-4-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	3-phenylmorpholine	2-acetyl-phenyl-boronic acid	E
13 6		408	1-[2-[4-(3-Phenylthiomorpholine-4-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	3-phenylthiomorpholine	2-acetyl-phenyl-boronic acid	E
13 7		356	1-[2-[4-(2-isobutyl-pyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	2-isobutyl-pyrrolidine	2-acetyl-phenyl-boronic acid	E
13 8		342	1-[2-[4-(2-isopropyl-pyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	2-isobutyl-pyrrolidine	2-acetyl-phenyl-boronic acid	E

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
13 9		402	1-[2-[4-(4-Chlorooctahydroquinoline-1-carbonyl)thiazol-2-yl]phenyl]ethanone	4-chlorodec ahydroquinoline	2-acetyl-phenylboronic acid	E
14 0		356	2-(2-Acetylphenyl)-thiazole-4-carboxylic acid cyclohexylethylamide	cyclohexyl-ethyl-amine	2-acetyl-phenylboronic acid	E
14 1		368	2-(2-Acetylphenyl)-thiazole-4-carboxylic acid allylcyclohexylamide	allylcyclohexyl-amine	2-acetyl-phenylboronic acid	E
14 2		368	1-[2-[4-((trans)-Octahydroisoquinoline-2-carbonyl)thiazol-2-yl]phenyl]ethanone	trans-decahydroisoquinoline	2-acetyl-phenylboronic acid	E
14 3		328	1-[2-[4-(Azepane-1-carbonyl)thiazol-2-yl]phenyl]ethanone	azepane	2-acetyl-phenylboronic acid	E
14 4		342	2-(2-Acetylphenyl)-thiazole-4-carboxylic acid cycloheptylamine	Cycloheptyl amine	2-acetyl-phenylboronic acid	E
14 5		342	1-[2-[4-(Azocane-1-carbonyl)thiazol-2-yl]phenyl]ethanone	azocane	2-acetyl-phenylboronic acid	E

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
14 6		356	2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid cyclooctylamide	Cyclooctylamine	2-acetyl-phenylboronic acid	E
14 7		380	2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid adamantan-1-ylamide	adamantan-1-ylamine	2-acetyl-phenylboronic acid	E
14 8		380	2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid adamantan-2-ylamide	adamantan-2-ylamine	2-acetyl-phenylboronic acid	E
14 9		382	1-[2-[4-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]octane-6-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	3,3,5-trimethyl-6-aza-bicyclo[3.2.1]octane	2-acetyl-phenylboronic acid	E
15 0		354	1-[2-[4-(3-aza-bicyclo[3.2.2]nonane-3-carbonyl)-thiazol-2-yl]-phenyl]-ethanone	3-aza-bicyclo[3.2.2]nonane	2-acetyl-phenylboronic acid	E
15 1		382	2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid ((1R,2R,3R,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-3-yl)-amide	2,6,6-trimethylbicyclo[3.1.1]hept-3-ylamine	2-acetyl-phenylboronic acid	E

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
15 2		382	2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid ((1R,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl)-amide	1,7,7-trimethylbicyclo[2.2.1]hept-2-ylamine	2-acetyl-phenylboronic acid	E
15 3		382	2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid ((1R,2R,4R)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl)-amide	1,7,7-Trimethylbicyclo[2.2.1]hept-2-ylamine	2-acetyl-phenylboronic acid	E
15 4		378	2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid benzyl-isopropyl-amine	benzyl-isopropyl-amine	2-acetyl-phenylboronic acid	E
15 5		376	1-{2-[4-(3-phenylpyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone	3-phenylpyrrolidine	2-acetyl-phenylboronic acid	E
15 6		377	1-{2-[4-(3-pyridin-3-ylpyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone	3-pyridin-3-ylpyrrolidine	2-acetyl-phenylboronic acid	E
15 7		404	1-{2-[4-(3-benzylpiperidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone	3-benzylpiperidine	2-acetyl-phenylboronic acid	E

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
			ethanone			
15 8		374	[2-(2-Fluoro-6-methoxyphenyl)-thiazol-4-yl]- (octahydroisoquinolin-2-yl)-methanone	<i>trans</i> -decahydro-isoquinoline	2-fluoro-6-methoxyphenyl boronic acid	E
15 9		388	[2-(2-Fluoro-6-methoxyphenyl)-thiazol-4-yl]- ((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-methanone	3,3,5-trimethyl-6-aza-bicyclo[3.2.1]octane	2-fluoro-6-methoxyphenyl boronic acid	E
16 0		386	[2-(2,3-Dimethoxyphenyl)-thiazol-4-yl]- (octahydroquinolin-1-yl)-methanone	decahydro-quinoline	2,3-dimethoxyphenyl-boronic acid	E
16 1		420	(4-Chlorooctahydroquinolin-1-yl)-[2-(2,3-dimethoxyphenyl)-thiazol-4-yl]-methanone	4-chlorodecahydro-quinoline	2,3-dimethoxyphenyl-boronic acid	E
16 2		352	2-o-Tolyl-thiazole-4-carboxylic acid adamantan-2-ylamide	adamantan-2-ylamine	2-Methylphenylboronic acid	E
16 3		312	2-o-Tolyl-thiazole-4-carboxylic acid (1S,2R,4R)-bicyclo[2.2.1]hept-2-ylamide	1,7,7-trimethylbicyclo[2.2.1]hept-2-ylamine	2-Methylphenylboronic acid	E
16 4		397	[2-(2-Fluoro-6-methoxyphenyl)-thiazol-4-yl]- (S)-3,4,5,6-tetrahydro-2H-[2,2']bipyridine	(S)-3,4,5,6-tetrahydro-2H-[2,2']bipyridine	2-fluoro-6-methoxyphenyl-boronic acid	E

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
			[2,2']bipyridinyl-1-yl-methanone			
16 5		374	[2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(octahydro-isoquinolin-2-yl)-methanone	decahydro-isoquinoline	2-fluoro-6-methoxy-phenyl-boronic acid	E
16 6		388	2-(2-Fluoro-6-methoxy-phenyl)-thiazole-4-carboxylic acid ((1R,4R)-4,7,7-trimethylbicyclo[2.2.1]hept-2-yl)-amide	4,7,7-trimethylbicyclo[2.2.1]hept-2-ylamine	2-fluoro-6-methoxy-phenyl-boronic acid	E
16 7		383	[2-(2-Fluoro-6-methoxy-phenyl)-thiazol-4-yl]-(3-pyridin-3-yl-pyrrolidin-1-yl)-methanone	3-pyridin-3-yl-pyrrolidine	2-fluoro-6-methoxy-phenyl-boronic acid	E
16 8		396	2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid (5-hydroxy-adamantan-2-yl)-amide	5-hydroxy-adamantan-2-ylamine	2-Acetyl-phenyl-boronic acid	E
16 9		358	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-thiomorpholin-4-yl-methanone	Thiomorpholine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	D

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
17 0		370	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-(2,6-dimethylmorpholin-4-yl)-methanone	2,6-dimethylmorpholine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	D
17 1		394	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-(4aR,8aS)-octahydroisoquinolin-2-yl-methanone	Decahydronisoquinoline (trans)	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
17 2		408	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid ((1R,2R,3R,5S)-2,6,6-trimethylbicyclo[3.1.1]hept-3-yl)-amide	(-)-Isopino camphethylamine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
17 3		340	[2-(2,3-Dichlorophenyl)-thiazol-4-yl]-(2-methylpyrrolidin-1-yl)-methanone	2-Methylpyrrolidine	2-(2,3-Dichlorophenyl)-thiazole-4-carboxylic acid	B
17 4		320	2-(2-Chlorophenyl)-thiazole-4-carboxylic acid cyclohexylamide	Cyclohexylamine	2-(2-Chlorophenyl)-thiazole-4-carboxylic acid	D
17 5		327	(Octahydroquinolin-1-yl)-(2-pyridin-3-yl-thiazol-4-yl)-methanone	Decahydron-quinoline	2-(3-Pyridyl)-1,3-thiazole-4-carboxylic acid (Maybridge)	A

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
17 6		286	(2-Methyl-piperidin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone	2-Methyl-piperidine	2-Phenyl-thiazole-4-carboxylic acid	D
17 7		382	[2-(4-tert-Butyl-phenyl)-thiazol-4-yl]-(octahydro-quinolin-1-yl)-methanone	Decahydron- o-quinoline	2-(4-tert-Butyl-phenyl)-thiazole-4-carboxylic acid	D
17 8		368	(3,5-Dimethyl-piperidin-1-yl)-[2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-methanone	3,5-Dimethyl-piperidine	2-(4-Trifluoromethyl-phenyl)-thiazole-4-carboxylic acid	D
17 9		370	(2,6-Dimethyl-morpholin-4-yl)-[2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-methanone	2,6-Dimethyl-morpholine	2-(4-Trifluoromethyl-phenyl)-thiazole-4-carboxylic acid	D
18 0		402	(2-Biphenyl-4-yl-thiazol-4-yl)-(octahydro-quinolin-1-yl)-methanone	Decahydron- o-quinoline	4-Biphenyl-boronic acid	F

Ex	Structure	Mass ES(+)	Systematic Name	Amine Reagent	Other Reagent	Method
18 1		315	[2-(2-Amino-phenyl)-thiazol-4-yl]-(2,6-dimethyl-piperidin-1-yl)-methanone	2,6-Dimethyl-piperidine	2-Amino-phenyl-boronic acid	E*
18 2		368	2-(2-Hydroxymethyl-phenyl)-thiazole-4-carboxylic acid adamantan-1-ylamide	1-Amino-adamantan-1-yl	2-Hydroxymethyl-phenyl-boronic acid	E
18 3		290	(2,6-Dimethyl-piperidin-1-yl)-(2-furan-3-yl-thiazol-4-yl)-methanone	2,6-Dimethyl-piperidine	2-Bromo-thiazole-4-carboxylic acid	F
18 4		386	[2-(2,3-Dimethoxy-phenyl)-thiazol-4-yl]-(octahydro-isoquinolin-2-yl)-methanone	Decahydron-isoquinoline	2,3-Dimethoxy-phenyl-boronic acid	E
18 5		396	1-{2-[4-(3-Cyclohexyl-piperidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone	3-Cyclohexyl-piperidine hydrochloride	2-Acetyl-phenyl-boronic acid	E

*In Example 181, the aniline nitrogen was protected as the bis-Boc derivative following the Suzuki reaction, and the Boc groups were removed using trifluoroacetic acid in dichloromethane following the saponification and amide coupling reactions.

5

EXAMPLE 186

Testing of Compounds of the Invention

The in vitro inhibition of 11 β -HSD1 by compounds of the present invention was demonstrated as follows:

Purified human HSD1 was diluted in 50 mM Tris-HCl, 100 mM NaCl, 0.1 mg/mL BSA, 0.02% Lubrol, 20 mM MgCl₂, 10 mM glucose 6-phosphate, 0.4 mM NADPH,

60 U/mL glucose 6-phosphate dehydrogenase to a concentration of 1.5 μ g/mL (Enzyme Solution). Cortisone (100 μ M) in DMSO was diluted to 1 μ M with 50 mM Tris-HCl, 100 mM NaCl (Substrate Solution). Test compounds (40 μ M) in DMSO were diluted 3 fold in series in DMSO and further diluted 20 fold in Substrate

5 Solution. Enzyme Solution (10 μ L/well) was added into 384 well microtiter plates followed by diluted compound solutions (10 μ L/well) and mixed well. Samples were then incubated at 37 °C for 30 min. EDTA/biotin-cortisol solution (10 μ L/well) in 28 mM EDTA, 100 nM biotin-cortisol, 50 mM Tris-HCl, 100 mM NaCl was then added followed by 5 μ L/well of anti-cortisol antibody (3.2 μ g/mL) in 50 mM Tris-HCl, 100

10 mM NaCl, 0.1 mg/mL BSA and the solution was incubated at 37 °C for 30 min. Five μ L per well of Eu-conjugated anti-mouse IgG (16 nM) and APC-conjugated streptavidin (160 nM) in 50 mM Tris-HCl, 100 mM NaCl, 0.1 mg/mL BSA was added and the solution was incubated at room temperature for 2 hours. Signals were quantitated by reading time-resolved fluorescence on a Victor 5 reader (Wallace).

15

Percent inhibition of HSD1 activity by an agent at various concentrations was calculated by the following formula:

$$\% \text{ Inhibition} = 100 * [1 - (F_s - F_b) / (F_t - F_b)],$$

20

wherein:

F_s is the fluorescence signal of the sample which included the agent,

F_b is the fluorescence signal in the absence of HSD1 and agent,

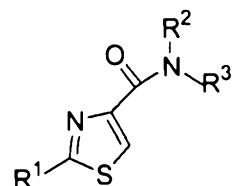
F_t is the fluorescence signal in the presence of HSD1, but no agent.

25

The inhibitory activities of test compounds were determined by the IC₅₀s, or the concentration of compound that gave 50% inhibition.

Results obtained by the foregoing test using a representative number of compounds of

30 formula I as the test compounds are shown in the following table:


Example #	Enzyme Assay IC50 (μM)
Example 10	0.05
Example 17	0.373
Example 33	0.365
Example 46	0.102
Example 61	0.457
Example 96	0.04
Example 115	0.34
Example 117	1.5
Example 119	0.73
Example 124	1.9
Example 144	0.032
Example 180	0.93

It is to be understood that the invention is not limited to the particular embodiments of the invention described above, as variations of the particular embodiments may be

5 made and still fall within the scope of the appended claims.

The claims defining the invention are as follows:

1. A compound of the formula (I):

5

wherein:

R¹ is benzofuran, cyclopentene, cyclohexene, cycloheptene, benzo[1,3] dioxole, indole or phenyl, wherein said phenyl is unsubstituted or mono-, bi-, or tri-substituted independently with halogen, lower alkyl, halo-lower-alkyl, phenyl, —OCH₃,

10 —O(CH₂)_nCH₃, —(CH₂)_nOH, —OH —NH₂, —OCF₃, —O(CH₂)_n-phenyl, —SCH₃, —NSO₂CH₃, thiophene, morpholine, —C(O)CH₃, —N(CH₃)₂ or —NO₂;

one of R² or R³ is cyclohexane and the other is alkyl or allyl,

or

R² and R³, together with the N atom to which they are attached, is decahydroguinoline, azocane, azepane, pipendine, morpholine, adamantane, thiomorpholine, cyclooctane, cyclohepane, pyrrolidine, decahydroisoauinoline, azepane-4-one, hydroxyadaman-ylamine, azabicyclo[3.2.2.]nonane, bicyclic[2.2.1]hept-2-ylamine, hexahydro[3.2-c]quinoline, bicyclic[3.1.1]heptane or azabicyclo[3.2.1]octane; or a pharmaceutically acceptable salt thereof,

20 with the proviso that the following compounds are excluded:

[2-(2,3-Dihydro-benzo[1,4]dioxin-2-yl)-thiazol-4-yl]-pyrrolidin-1-yl-methanone;

[2-(2,3-Dihydro-benzo[1,4]dioxin-2-yl)-thiazol-4-yl]-morpholin-4-yl-methanone;

(4-Phenyl-3,6-dihydro-2H-pyridin-1-yl)-(2-phenyl-thiazol-4-yl)-methanone;

(2-Benzo[1,2,5]oxadiazol-5-yl-thiazol-4-yl)-morpholin-4-yl-methanone;

25 Morpholin-4-yl-(2-pyridin-3-yl-thiazol-4-yl)-methanone

[2-(4-Methyl-pyridin-3-yl)-thiazol-4-yl]-pipendin-1-yl-methanone;

[2-(4-Methyl-pyridin-3-yl)-thiazol-4-yl]-morpholin-4-yl-methanone;

[2-(5-Methyl-isoxazol-3-yl)-thiazol-4-yl]-pipendin-1-yl-methanone; and

[2-(3-Methyl-5-trifluoromethyl-pyrazol-1-yl)-thiazol-4-yl]-morpholin-4-yl-methanone.

30 2. The compound according to claim 1, wherein R¹ is phenyl.

3. The compound according to claim 1, wherein R¹ is phenyl mono- or bi-substituted with halogen, alkyl, lower alkoxy, —SCH₃ or —C(O)CH₃.

4. The compound according to claim 1, wherein said compound is azocan-1-yl-[2-(2,3-dichloro-phenyl)-thiazol-4-yl]-methanone.

5. The compound according to claim 1, wherein said compound is [2-(3-chloro-phenyl)-thiazol-4-yl]-octahydro-quinolin-1-yl)-methanone.

6. The compound according to claim 1, wherein said compound is [2-(3-methylsulfanyl-phenyl)-thiazol-4-yl]-octahydro-quinolin-1-yl)-methanone.

7. The compound according to claim 1, wherein said compound is (2-phenyl-thiazol-4-yl)-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-methanone.

8. The compound according to claim 1, wherein said compound is 1-{2-[4-(2-isopropyl-pyrrolidine-1-carbonyl)-thiazol-2-yl]-phenyl}-ethanone.

9. The compound according to claim 1, wherein said compound is 2-(2-acetyl-phenyl)-thiazole-4-carboxylic acid cyclooctylamide.

10. The compound according to claim 1, wherein said compound is 2-(2-acetyl-phenyl)-thiazole-4-carboxylic acid adamantan-2-ylamide.

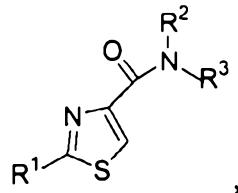
11. The compound according to claim 1, wherein said compound is 1-{2-[4-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]octane-6-carbonyl)-thiazol-2-yl]-phenyl}-ethanone.

12. The compound according to claim 1, wherein said compound is 2-(2-acetyl-phenyl)-thiazole-4-carboxylic acid ((1R,2R,3R,5S)-2,6,6-trimethyl-bicyclo[3.1.1]hept-3-yl)-amide.

13. The compound according to claim 1, wherein said compound is [2-(2-fluoro-6-methoxy-phenyl)-thiazol-4-yl]-((1R,5R)-3,3,5-trimethyl-6-aza-bicyclo[3.2.1]oct-6-yl)-methanone.

14. The compound according to claim 1, wherein said compound is 2-o-tolyl-thiazole-4-carboxylic acid adamantan-2-ylamide.

15. The compound according to claim 1, wherein said compound is 2-(2-Acetyl-phenyl)-thiazole-4-carboxylic acid (5-hydroxy-adamantan-2-yl)-amide.


16. A pharmaceutical composition, comprising a therapeutically effective amount of a compound according to any one of claims 1 to 15 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

17. A method for treating type II diabetes mellitus or metabolic syndrome, comprising the step of administering to a patient in need thereof a therapeutically effective amount of a compound according to any one of claims 1 to 15 or of a composition according to claim 16.

18. Use of a therapeutically effective amount of a compound according to any one of claims 1 to 15 for the manufacture of a medicament for the treatment of type II diabetes mellitus or metabolic syndrome.

19. A compound of the formula (I)

5

as defined in claim 1, substantially as hereinbefore described with reference to the Examples.

10

Dated 2 May, 2011

F. Hoffmann-La Roche AG

Patent Attorneys for the Applicant/Nominated Person

SPRUSON & FERGUSON