A method of determining rewards due to a player playing a regulated gaming machine may include configuring player interaction with a plurality of games assets to give rise to Wagering Opportunities and a selectively available second Wagering Opportunity. The machine may be further configured to have an overall minimum return to player (RTP) and an overall maximum RTP. Using the accepted funds and a first payout schedule that defines a first RTP that is at least as great as the minimum overall RTP, it may be determined whether and how much to reward the player whenever the player interacts with the first Wagering Opportunities to generate first Wagering Events. For at least some of the first Wagering Events generated, a portion of a reward due to the player may be virtually contributed to a bounty. Only when the player successfully interacts with the available second Wagering Opportunity, a second Wagering Event is generated and the player is rewarded an amount at least equal to the bounty according to a second payout schedule that defines a second RTP that is greater than the overall minimum RTP, without exceeding the overall maximum RTP of the game.
FIG. 4
FIG. 8

Gaming System Server 800

- Processors 810
- Memory 816
- Interface(s) 826
- Device Drivers 832
- Peripheral Devices 831
- Display(s) 835
- I/O Devices 850
- Database Component(s) 854
- Authentication/Validation module 847
- Communication Interface(s) 845
- OCR Processing Engine 834
- Transaction Processing Engine 822
- Database Manager 828
- Search Engine 829
- Configuration Engine 832
- Network Server Component(s) 836
- Messaging Server Component(s) 838
- API Interface(s) to 3rd Party Server System(s) 848
- Context Interpreter 802
- Time Interpreter 818
- Status Tracking Component(s) 912
- User Interface Component(s) 822
- Web Interface Component(s) 828
- User Profile Manager 807
- Search Engine 828
- Configuration Engine 832
- Messaging Server Component(s) 836
- Status Tracking Component(s) 812
- Login Component(s) 803
- Time Synchronization Engine 824
- Network Server Component(s) 836
- Messaging Server Component(s) 838
- API Interface(s) to 3rd Party Server System(s) 848
ACCEPT FUNDS FROM PLAYER

PROVIDE GAME CONFIGURED SUCH THAT PLAYER INTERACTION WITH GAME ASSETS WITHIN THE GAME GIVES RISE TO FIRST WAGERING OPPORTUNITY, AND SUCH THAT THE GAME HAS AN OVERALL MINIMUM RETURN TO PLAYER (RTP) AND AN OVERALL MAXIMUM RTP.

DETERMINE, USING ACCEPTED PLAYER FUNDS AND A FIRST PAYOUT SCHEDULE DEFINING A FIRST RTP THAT IS AT LEAST AS GREAT AS THE MINIMUM OVERALL RTP, WHETHER AND FOR AT LEAST SOME OF THE FIRST WAGERING EVENTS, VIRTUALLY CONTRIBUTE A PORTION OF A REWARD DUE TO THE PLAYER TO A BOUNTY.

SELECTIVELY MAKE SECOND WAGERING OPPORTUNITY AVAILABLE FOR PLAYER INTERACTION.

WHEN PLAYER SUCCESSFULLY INTERACTS WITH AVAILABLE SECOND WAGERING OPPORTUNITY, GENERATE SECOND WAGERING EVENT AND REWARD PLAYER AN AMOUNT AT LEAST EQUAL TO THE BOUNTY ACCORDING TO A SECOND PAYOUT SCHEDULE THAT DEFINES A SECOND RTP THAT IS GREATER THAN THE OVERALL MINIMUM RTP.
PROVIDE CONSOLE-TYPE OR ARCADE-TYPE GAME COMPRISING A PLURALITY OF GAME ASSETS APPEARING ONSCREEN DURING GAME PLAY.

MODIFY PROVIDED GAME SUCH THAT PLAYER INTERACTION WITH SELECTED ONES OF THE PLURALITY OF GAME ASSETS GIVES RISE TO FIRST WAGERING OPPORTUNITIES AND A SECOND WAGERING OPPORTUNITY.

THE GAME DETERMINES, USING ACCEPTED PLAYER FUNDS AND A FIRST PAYOUT SCHEDULE, WHETHER AND HOW MUCH TO REWARD THE PLAYER WHENEVER THE PLAYER INTERACTS WITH THE FIRST WAGERING OPPORTUNITIES TO GENERATE FIRST WAGERING EVENTS.

FOR AT LEAST SOME OF THE FIRST WAGERING EVENTS, A PORTION OF A REWARD DUE TO THE PLAYER IS VIRTUALLY CONTRIBUTED TO A BOUNTY.

SECOND WAGERING OPPORTUNITY IS MADE SELECTIVELY AVAILABLE FOR PLAYER INTERACTION ONLY WHEN PLAYER SUCCESSFULLY INTERACTS WITH AVAILABLE SECOND WAGERING OPPORTUNITY, SECOND WAGERING EVENT IS GENERATED AND PLAYER IS Rewarded AN AMOUNT AT LEAST EQUAL TO THE BOUNTY ACCORDING TO A SECOND PAYOUT SCHEDULE THAT DEFINES A SECOND RTP THAT IS GREATER THAN THE OVERALL MINIMUM RTP.

LOAD MODIFIED GAME INTO REGULATED GAMING MACHINE.
METHODS, DEVICES AND SYSTEMS FOR VIRTUAL CONTRIBUTIONS AND BOUNTIES IN REGULATED CASINO GAMES

BACKGROUND

[0001] Embodiments shown and described herein are directed to methods, devices systems, and computer programs for implementing virtual contributions and bounties in wager-based games in regulated casino games.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 illustrates a block diagram of a gaming network suitable for implementing embodiments.
[0003] FIG. 2 shows a block diagram of an electronic gaming system according to one embodiment.
[0004] FIG. 3 illustrates a network diagram of gaming network that may be configured to implement embodiments described herein.
[0005] FIG. 4 is a block diagram of electronic gaming device, according to one embodiment.
[0006] FIG. 5 is a block diagram of an intelligent electronic gaming system, according to one embodiment.
[0007] FIG. 6 is a block diagram of a mobile gaming device with which an embodiment may be practiced.
[0008] FIG. 7 shows a system server suitable for implementing various aspects of embodiments described herein.
[0009] FIG. 8 shows a functional block diagram of a gaming system server according to one embodiment.
[0010] FIG. 9 shows a block diagram illustrating components of a gaming system suitable for implementing an embodiment.
[0011] FIG. 10 is a flowchart of a method according to one embodiment.
[0012] FIG. 11 is a flowchart of a method according to one embodiment.
[0013] FIG. 12 shows a wager-based regulated gaming machine configured according to embodiments. FIG. 12 also shows exemplary tangible, non-transitory computer-readable media having data stored thereon representing sequences of instructions which, when executed by the regulated gaming computing device, cause the regulated gaming computing device to determine rewards due to a player playing a wager-based game according to embodiments.

DETAILED DESCRIPTION

[0014] Veteran gamblers (e.g., older gamblers demographic age 50+) have been accustomed to a standard set of video gaming symbols (e.g., A, J, K, Q from playing cards) which, for example, may be accompanied with a multitude of additional themed symbols (e.g., fruits, animals, fantasy creatures, media personas, etc.) presented on a series of wheels or drums. Newer technology has made possible the use of digital display screens that present the reels and symbols in a digital format. Such existing slot machine technology, however, is dated and may be unappealing to younger players. Indeed, younger gamblers (e.g., also referred to as “gamers”), on the other hand, are accustomed to home gaming consoles (Nintendo, XBOX, PlayStation and the like) that provide them with exquisitely-rendered immersive 2D & 3D game environments with which they can interact. These gamers, who are used to fast paced, energetic, and visually stunning games, feel that the display method of the traditional slot machines are unappealing, which leads to decreased revenue for casino operators.

[0015] It is desirable, therefore, to offer hybrid arcade/wager-based games or gambling arcade games that provide hybrid arcade-style, wager-based gaming techniques, which find a ready demographic in younger gamers. However, one significant obstacle regarding such hybrid arcade-style, wager-based gaming techniques is that they often rely on complex back end solutions that require lengthy and costly processes of regulatory review and approvals in many different gaming jurisdictions.

[0016] One possible workaround to this significant obstacle is to configure/design a hybrid arcade-style, wager-based game such that it is compliant with currently approved wager-based gaming regulatory standards such as, for example, the well-known GLI standards, which have already been approved in various gaming jurisdictions. One example of a GLI standard is the GLI-11 standard version 3.0, Published Sep. 21, 2016 by Gaming Laboratories International, LLC, which is incorporated herein by reference.

[0017] For example, in one embodiment, a hybrid arcade-style, wager-based game may be configured to provide an arcade-style gaming interface which enables a player to participate in an arcade-style game at the wager-based gaming machine. One or more events and/or activities performed by the player (e.g., during play of the arcade-style game) may automatically trigger a random number generator (RNG)-based wager that is compliant with applicable gaming standards, rules and regulations. Because such wager-based activities comply with currently existing GLI standard(s) (and/or other national, regional, local gaming rules and regulations), such hybrid arcade-style, wager-based games may not require additional regulatory approval for deployment in casino venues.

[0018] In one embodiment, a hybrid arcade-style, wager-based game may be created by combining a new and different visual game representation with a new and different method of player interaction. The hybrid arcade-style, wager-based game may be configured to provide a perceptually stimulating experience using a wide variety of human interface devices (HID), based on the theme/style of the gambling game at hand. For example, some games may utilize a gun controller for first person shooter games, or steering wheels, accelerator and brake pedals for driving games. These and other types of games and interactions may be adapted for hybrid arcade/wager-based gaming.

[0019] For example, the format of the hybrid arcade-style, wager-based game may also focus on other types of video and/or arcade-style games such as, for example, non-linear (e.g., open world) type video and/or arcade-style games such as, for example, Grand Theft Auto, linear type video and/or arcade-style games such as, for example, Half-Life, massively multiplayer online ("MMO") type video and/or arcade-style games such as, for example, World of Warcraft, role-playing game ("RPG") type video and/or arcade-style games such as, for example, Final Fantasy, and/or others. Such games may feature a player character that may be moved through the game world via player input, (e.g., HID), which allows for an increased sense of excitement through gameplay by providing a multitude of player-choice possibilities through a wide-array of path directions.

[0020] In some embodiments, the format of the hybrid arcade-style, wager-based game may facilitate a gameplay environment in which multiplayer functionality takes place.
The multiplayer gameplay may have multiple “enrollment” aspects in which one, for example, particular player could be on location at a casino playing a hybrid arcade/wager-based game, while another (e.g., different) player could be at a different location, concurrently participating in the same hybrid arcade/wager-based game, but without participating in any wagering aspect/portions of hybrid arcade/wager-based game. A non-wagering game such as this is commonly known as a “free to play” game, which the player is allowed to download and install on their own devices. The player may then progress through the game (e.g., which is very similar to the wager based counter-part) without taking part in wager-based events. Gaming situations such as these may promote a “clicks to bricks” outcome where a casino property promotes their games to home users, and invites them to develop familiarity and expertise on non-wagering versions of the games. Later, those same home players may be invited to visit the casinos to play the hybrid arcade/wager version of the games.

In some embodiments, different players concurrently participating in the same hybrid arcade/wager-based game may each separately configure his/her respective wagering parameters/amounts, which may be different from the wagering parameters/amounts configured by other game player-participants.

FIG. 1 illustrates a block diagram of an embodiment of a hybrid arcade/wager-based gaming system 100 which may be implemented via a computer network. At least a portion of the various functions, actions, operations, and activities performed by one or more component(s) of the hybrid arcade/wager-based gaming system may be initiated in response to detection of one or more conditions, events, and/or other criteria satisfying one or more different types of minimum threshold criteria. According to embodiments, at least a portion of the various types of functions, operations, actions, and/or other features provided by the hybrid arcade/wager-based gaming system may be implemented at one or more client systems(s), at one or more server(s), and/or combinations thereof. According to different embodiments, the present hybrid arcade/wager-based gaming system 100 may be implemented in hardware and/or combinations of hardware and software.

According to one embodiment, a hybrid arcade/wager-based gaming system 100 may include local casino system(s) 122, client computer systems 130, mobile devices 160 and remote/internet-based gaming services 190 and other 3rd party entities 150, coupled to a computer/communication network 110. The local casino system(s) 122 may include local casino gaming system server(s) 120. The local casino system(s) 122 may also include and provide Class 2 RNG system(s)/service(s) 124. The Class 2 RNG system(s)/service(s) 124 may be configured to dynamically generate and/or provide Class 2 gaming type RNG outcomes to be used by hybrid arcade/wager-based Gaming devices as “predetermined” RNG outcome(s). Class 3 RNG system(s)/service(s) 126 may also be provided to dynamically generate and provide Class 3 gaming “predetermined” RNG outcome(s). Local casino system(s) 122 may also include electronic gaming machine(s) (EGMs) 128 that may be configured as described herein below.

Client computer system(s) 130 may also be operable to couple to the network 110 and implement various types of functions, operations, actions, and/or other features such as those described or referenced herein via, for example, a web browser 132. Similarly, mobile computing devices 160 (e.g., mobile phones, tablets and the like) may be configured to access the network 110 and to use a mobile web browser 162 and/or one or more mobile applications (apps) 166 to implement some or all of the functionality described herein. Third party entities 150 may also be configured to carry out some or all of the functionality described herein via the network 110.

Remote/internet-based gaming service(s) 190 may also be coupled to network 110 and may comprise class 2 RNG service(s) 194 as described relative to reference numeral 124, class 3 RNG service(s) 196 as described relative to reference numeral 126, and remote database service(s) 180. Remote system/service(s) 170 may be provided, which may include, for example, content provider servers/services, media streaming servers/services, database storage/access/query servers/services, financial transaction servers/services, payment gateway servers/services, electronic commerce servers/services, event management/scheduling servers/services and/or other services as needed. Remote/internet-based gaming service(s) 190 may also include gaming servers 192.

According to embodiments, multiple instances or threads of hybrid arcade/wager-based gaming may be concurrently implemented and/or initiated via the use of one or more processors and/or other combinations of hardware and/or hardware and software. Embodiments may access and/or utilize information from one or more associated databases via communication with one or more local and/or remote memory devices.

According to different embodiments, various different types of encryption/decryption techniques may be used to facilitate secure communications over the network 110 and/or via other communication channels. For example, such encryption may utilize random number generators, SHA-1 (e.g., Secured Hashing Algorithm), MD2, MD5, DES (e.g., Digital Encryption Standard), 3DES (e.g., Triple DES), RC4 (e.g., Rivest Cipher), ARC4 (e.g., related to RC4), TKIP (e.g., Temporal Key Integrity Protocol, uses RC4), AES (e.g., Advanced Encryption Standard), RSA, DSA, DH, NTRU, and ECC (e.g., elliptic curve cryptography), PKA (e.g., Private Key Authentication), Device-Unique Secret Key and other cryptographic key data, SSL and/or others. Other security measures may include use of well-known hardware-based and/or software-based security components, and/or any other known or yet to be devised security and/or hardware and encryption/decryption processes implemented in hardware and/or software.

Embodiments of hybrid arcade/wager-based gaming described herein may be implemented in hardware and/or a combination of both hardware and software. Possible implementations include in an operating system kernel, in a separate user process, in a library package bound into network applications, on a specially constructed machine, or on a network interface card. In a specific embodiment, various aspects described herein may be implemented in software such as an operating system or in an application running on an operating system.

Alternatively, hardware and/or software embodiments of present hybrid arcade/wager-based gaming techniques described herein may be implemented on a general-purpose programmable computer selectively activated or reconfigured by a computer program stored in memory. Such programmable machine may include, for example, mobile or
FIG. 2 shows an example block diagram of an electronic gaming system 200 according to one embodiment. As shown, electronic gaming system 200 may include electronic gaming devices (EGDs) 251 (e.g., electronic gaming terminals, electronic gaming machines, wager-based video gaming machines, etc.), which may be coupled to network 205 via a network link 210. Network 205 may include the internet and/or a private network. One or more video streams may be received at video/multimedia server 215 from EGDs 251. Video/multimedia server 215 may also send one or more video streams to mobile devices 245, 255, EGDs 251, and/or other remote electronic devices. Video/multimedia server 215 may send these video streams via network link 210 and network 205.

Electronic gaming system 200 may include an accounting/transaction server 220, a gaming server 225, an authentication server 230, a player tracking server 235, a voucher server 240, and a searching server 242. The accounting/transaction server 220 may compile, track, store, and/or monitor cash flows, voucher transactions, winning vouchers, losing vouchers, and/or other transaction data for the casino operator and for the players. Transaction data may include the number of wagers, the size of these wagers, the date and time for these wagers, the identity of the players making these wagers, and the frequency of the wagers. Accounting/transaction server 220 may also generate tax information relating to these wagers, generate profit/loss and/or other reports for predetermined gaming options, contingent gaming options, predetermined betting structures, and/or outcome categories. Gaming server 225 may generate gaming options based on predetermined betting structures and/or outcome categories. These gaming options may be predetermined gaming options, contingent gaming options, and/or any other gaming option disclosed herein. The authentication server 230 may determine the validity of vouchers, players’ identity, and/or an outcome for a gaming event. The player tracking server 235 may track a player’s betting activity, a player’s preferences such as the player’s preferred language, drinks, font, sound level, and the like. Based on data obtained by player tracking server 235, a player may be eligible for gaming rewards (e.g., free play), promotions, and/or other awards (e.g., complimentary food, drinks, lodging, concerts, etc.). Voucher server 240 may generate a voucher, which may include data relating to gaming options. The generated vouchers may be physical (e.g., paper) or digital.

Searching server 242 may implement a search on one or more gaming devices to obtain gaming data. Searching server 242 may implement a messaging function, which may transmit a message to a third party (e.g., a player) relating to a search, a search status update, a game status update, a wager status update, a confirmation of a wager, a confirmation of a money transfer, and/or any other data relating to the player’s account. The message can take the form of a text display on the gaming device, a pop up window, a text message, an email, a voice message, a video message and the like. Searching server 242 may implement a wagering function, which may be an automatic wagering mechanism. These functions of searching server 242 may be integrated into one or more servers. Searching server 242 may be configured to, for example, determine which games paid out the most money during a time period, which games kept the most money from players during a time period, which games are most popular (e.g., top games), which games are least popular, which games have the most amount of money wager during a period, which games have the highest wager volume, which games are more volatile (e.g., volatility, or deviation from the statistical norms, of wager volume, wager amount, pay out, etc.) during a time period, and the like. Search may also be associated with location queries, time queries, and/or people queries.

According to embodiments, the gaming network 300 may include a display system server(s) 304 configured to manage content (e.g., graphics, images, text, video fees, etc.) to be displayed and/or presented at one or more EGDs, dealer displays, administrator displays, etc. One or more EGD multimedia system server(s) 305 may be provided and coupled to network 310 and configured to manage content (e.g., graphics, images, text, video fees, audio feeds, etc.), which, for example, is to be streamed or provided to one or more EGDs (e.g., or to one or more groups of EGDs). One or more messaging system server(s) 306 may be provided and coupled to network 310 and configured for the management of messaging and/or other communications among and between the various systems, components, devices, EGDs, players, dealers, and administrators of the gaming network. Mobile system server(s) 308 may manage communications and/or data exchanged with various types of mobile devices such as player-managed mobile devices (e.g., smart phones, PDAs, tablets, mobile computers), casino-managed mobile devices (e.g., mobile gaming devices), financial system server(s) 312 may be configured to track, manage, report and store financial data and financial transactions relating to one or more hybrid arcade/wager-based game sessions. According to one embodiment, a player tracking system server 314 may include at least one database that tracks each player’s hands, wins/losses, bet amounts, player preferences, etc., in the network. In one implementation, the presenting and/or awarding of promotions, bonuses, rewards, achievements, etc., may be based on a player’s play patterns, time, games selected, bet amount for each game type, etc. A player tracking system server may also help establish a player’s preferences, which assists the casino in their promotional efforts to award player comps (e.g., loyalty points); decide which promotion(s) are appropriate; generate bonuses and the like. Data tracking & analysis system(s) 318 may be configured to manage and analyze game data. In one embodiment, the data tracking & analysis system(s) may be configured to aggregate multisite hybrid arcade/wager-based gaming trends, local wins and jackpots.

Gaming system server(s) 322, 324 may each be dedicated to one or more specifically designated type(s) of game(s). Each game server may include game logic to host one of more virtual hybrid arcade/wager-based game sessions. At least some game server(s) may also be configured to track the game accounting (e.g., money in, money out) for a virtual hybrid arcade/wager-based game being played, and/or for updating the financial system servers 312 at the end of each game. The game server(s) 322, 324 may also be configured to generate the EGD graphics primitives (e.g., game virtual objects and game states), and may further be operable to update EGDs when a game state change (e.g., new card dealt, player upped the ante, player folds/busts,
services. Mobile Game Device(s) 336, 346 may be configured to provide the services described below relative to FIG. 6.

[0039] According to specific embodiments, a variety of different game states may be used to characterize the state of current and/or past events which are occurring (e.g., or have occurred) at a given EGD. For example, in one embodiment, at any given time in a game, a valid current game state may be used to characterize the state of game play (e.g., and/or other related events, such as, for example, mode of operation of the EGD, etc.) at that particular time. In at least one embodiment, multiple different states may be used to characterize different states or events which occur at the EGD at any given time. In one embodiment, when faced with ambiguity of game state, a single state embodiment forces a decision such that one valid current game state is chosen. In a multiple state embodiment, multiple possible game states may exist simultaneously at any given time in a game, and at the end of the game or at any point in the middle of the game, the EGD may analyze the different game states and select one of them based on certain criteria. Thus, for example, when faced with ambiguity of game state, the multiple state embodiment(s) allow all potential game states to exist and move forward, thus deferring the decision of choosing one game state to a later point in the game. The multiple game state embodiment(s) may also be more effective in handling ambiguous data or game state scenarios.

[0040] A variety of different entities may be used (e.g., either singly or in combination) to track the progress of game states which occur at a given gaming EGD. Examples of such entities may include a master controller system, display system, gaming system, local game tracking component(s), remote game tracking component(s), etc. Examples of various game tracking components may include, but are not limited to: automated sensors, manually operated sensors, video cameras, intelligent playing card shoes, RFID readers/writers, RFID tagged chips, objects displaying machine readable code/patterns, etc.

[0041] Local game tracking components at the EGD may be operable to automatically monitor game play activities at the EGD, and/or to automatically identify key events which may trigger a transition of game state from one state to another as a game progresses. Depending upon the type of game being played at the gaming table, examples of possible key events may include the start of a new gaming session; the end of a current gaming session; the start of a virtual slot wheel spin; a game start event; a game end event; the detection of an event that triggers the initialization of wager-based event (e.g., killing a zombie, carrying out a predetermined action upon encountering a Wagering Opportunity, and the like); the detection of event that triggers the end of a wager-based event; the detection of event that triggers the initiation or end of a randomized game play event; an initial wager period start or end; a subsequent wager period start or end; or a payout period start or end.

[0042] FIG. 4 shows a block diagram 400 of electronic gaming device 400 according to one embodiment. As shown, electronic gaming device 400 may include a processor 402, a memory 404, a network interface 422, input devices 428, and a display 426. Processor 402 may generate gaming options based on predetermined betting structures and/or outcome categories. Predetermined betting structures may utilize more than one outcome category to generate via processor 402 gaming options. Predetermined betting struc-
tures may combine any outcome category with any other outcome category to gaming options. The processor 402 may offer a gaming option that is structured so that the gaming option relates to at least one EGD. Processor 402 may generate contingent gaming options and/or predetermined gaming options. Contingent gaming options 410 may be structures configured such that a wager is activated when a triggering event occurs.

Network interface 422 may be configured to enable the electronic gaming device 400 to communicate with remote devices/systems such as, for example, video/multimedia server(s), accounting/transaction server(s), gaming server(s), authentication server(s), player tracking server(s), voucher server(s) over a communication network, such as shown at 110, 205 and 310. Input devices 428 may be or include mechanical buttons, electronic buttons, one or more touchscreens, microphones, cameras, optical scanners, or any combination thereof. Input devices 428 may be utilized to make a wager, to make an offer to buy or sell a voucher, to determine a voucher’s worth, to cash in a voucher, to modify (e.g., change sound level, configuration, font, language, etc.) electronic gaming device 400, to select a movie or music, to select type of content to be displayed on main and/or auxiliary screen(s) of EGD, or any combination thereof.

Arcade-style game engine 442 may be configured to manage the arcade-style game play portion (or entertainment portion) of the hybrid arcade/wager-based game. In contrast, a wager-based game engine 444 may be configured to manage the wager-based game event portion(s) of the game according to embodiments. A Random Number Generator (RNG) Engine 446 may be provided and may include software and/or hardware algorithms and/or processes which are used to generate random outcomes, and may be used by the wager-based game engine to generate wager-based game event outcomes.

Display 426 may show video streams from one or more gaming devices, gaming objects from one or more gaming devices, computer generated graphics, predetermined gaming options, and/or contingent gaming options. The memory 404 may include various memory modules 440, including a future betting module 406, a predetermined game options module 408, a contingent game options module 410, a confirmation module 412, a validation module 414, a voucher module 416, a reporting module 418, a maintenance module 420, a player tracking preferences module 424, a searching module 430, and an account module 432.

Future betting module 406 may store data relating to the predetermined betting structure. Processor 402 may utilize data in future betting module 406 to generate predetermined gaming options and/or contingent gaming options. Any other processor (e.g., gaming server 225, any virtualized gaming server, etc.) may implement the functions of processor 402. Predetermined game options module 408 may store data relating to predetermined gaming options, which may be offered to a player. The contingent gaming options module 410 may store data relating to contingent gaming options, which may be offered to a player. The confirmation module 412 may utilize data received from a voucher, the transaction history of the voucher (e.g., in the case in which the voucher changed hands in a secondary market), and/or the identity of the player to confirm the value of the voucher. In another example, confirmation module 412 may utilize game event data, along with voucher data to confirm the value of the voucher. A validation module 414 may utilize data received from a voucher to confirm the validity of the voucher. Voucher module 416 may store data relating to generated vouchers, redeemed vouchers, bought vouchers, and/or sold vouchers. Reporting module 418 may generate reports related to a performance of electronic gaming device 400, electronic gaming system (s), hybrid arcade/wager-based game(s), video streams, gaming objects, credit device(s) or identification device(s), for example.

In one implementation, reporting module 418 may reside on a central server and may be configured to aggregate and generate real-time statistics on betting activities at one or more hybrid arcade/wager-based games at one or more participating casinos. The aggregate betting statistics may include trends (e.g., aggregate daily wager volume and wager amount by game type, by casinos, and the like), top games with the most payouts, top tables with the most payouts, top search structures used by players, most popular hybrid arcade/wager-based game(s) by wager volume, most searched for game, hybrid arcade/wager-based game(s) with least payouts, weekly trends, monthly trends, and other statistics related to game plays, wagers, people, location, and searches.

Maintenance module 420 may track any maintenance that is implemented on electronic gaming device 400 and/or electronic gaming system 200. Maintenance module 420 may be schedule preventative maintenance and/or request a service call based on a device error. The player tracking preferences module 424 may compile and track data associated with a player’s preferences.

Searching module 430 may include one or more searching structures, one or more searching algorithms, and/or any other searching mechanisms. In one example, the search may end once one or more triggering events are determined. In another example, the search may end once data has been received from a predetermined number (e.g., one, two, ten, one hundred, all) of the devices. In another example, the search may be based on a predetermined number of devices to be searched in combination with a predetermined number of search results to be obtained. In another example, the searching structures may be based on one or more specific games. In another example, the searching structure may be based on a player’s preferences, past transactional history, player input, a particular hybrid arcade/wager-based game or game type, a particular EGD, a particular casino, a particular location within a casino, game outcomes over a time period, payout over a time period, and/or any other criteria. Searching algorithms may be dynamic searching programs, which may be modified based on one or more past results, as described previously. In another example, the search algorithm may generate a search priority based on the probability of success various events and/or conditions. In some embodiments, the search algorithm may utilize any dynamic feedback procedure to enhance current and/or future searching results.

Account module 432 may include data relating to an account balance, a wager limit, a number of wagers placed, credit limits, any other player information, and/or any other account information. Data from account module 432 may be utilized to determine whether a wager may be accepted. For example, when a search has determined a triggering event, the device and/or system may determine
whether to allow this wager based on one or more of a wager amount, a number of wagers, a wager limit, an account balance, and/or any other criteria.

[0051] In at least one embodiment, at least a portion of the modules discussed in block diagram 400 may reside locally in gaming terminal 400. However, in at least some embodiments, at least part of the functions performed by these modules may be implemented in one or more remote servers. For instance, modules 406-420 and 424 may each be on a remote server, communicating with gaming terminal 400 via a network interface such as Ethernet in a local area network (LAN) or a wide area network (WAN) topology. In some implementations, these servers may be physical servers in a data center. In some other implementations, these servers may be virtualized. In yet some other implementations, the functions performed by these modules may be implemented as web services. For example, the predetermined game options module 408 may be implemented in software as a web service provider. Gaming terminal 400 would make service requests over the web for the available predetermined wager options to be displayed. Regardless of how the modules and their respective functions are implemented, the interoperability with the gaming terminal 400 is seamless. In one implementation, reporting module 418 may reside on a central server and may be configured to aggregate and generate real time statistics on betting activities at one or more hybrid arcade/wager-based games at one or more participating casinos. The aggregate betting statistics may include trends (e.g., aggregate daily wager volume and wager amount by game types, by casinos, and the like), top games with the most payouts, top EGDs with the most payouts, top search structures used by players, most popular hybrid arcade/wager-based game(s) by wager volume, most searched for game(s), EGDs with least payouts, weekly trends, monthly trends, and other statistics related to game plays, wagers, people, location, and searches.

[0052] FIG. 5 is a block diagram of an exemplary intelligent multi-player electronic gaming system 500 according to one embodiment. Gaming system 500 may be implemented as a gaming server or as an electronic gaming machine (e.g., EGM) or electronic gaming device (e.g., EGD).

[0053] As shown, gaming system 500 may include at least one processor 510, at least one interface 506, and memory 516. Additionally, gaming system 500 may include at least one master gaming controller 512, a multi-touch sensor and display system 590, a plurality of peripheral device components 550, and various other components, devices, systems such as, for example, arcade-style game engine(s) 541; wager-based game engine(s) 543; RNG engine(s) 545; transponders 554; wireless communication components 556; gaming chip/wager token tracking components 570; games state tracking components 574; motion/gesture analysis and interpretation components 584, and audio/video processors 583 which, for example, may include functionality for detecting, analyzing and/or managing various types of audio and/or video information relating to various activities at the gaming system. Various interfaces 506 may be provided for communicating with other devices, components and systems, as may be a tournament manager 575; sensors 560; one or more cameras 562; one or more microphones 563; secondary display(s) 535a; input devices 530a; motion/gesture detection components 551; and peripheral devices 550.

[0054] The arcade-style game engine(s) 541 may be configured to manage the arcade-style game play portion (or entertainment portion) of the hybrid arcade/wager-based game. Conversely, the wager-based game engine(s) 543 may be configured to manage the wager-based game event portion(s) of the hybrid arcade/wager-based game. RNG engine (s) 545 may include software and/or hardware algorithm and/or processes used to generate random outcomes, and may be used by the wager-based game engine to generate wager-based game event outcomes. Monetary payout manager 522 may be configured or designed to include functionality for determining the appropriate monetary payout(s) (if any) to be distributed to player(s) based on the outcomes of the wager-based game events which are initiated during play of one or more hybrid arcade/wager-based games. The non-monetary payout manager 524 may be configured to include functionality for determining the appropriate non-monetary payout(s) (if any) to be awarded or distributed to player(s) based on the outcomes of the wager-based game events which are initiated during play of one or more hybrid arcade/wager-based games.

[0055] One or more cameras (e.g., 562) may be used to monitor, stream and/or record image content and/or video content relating to persons or objects within each camera’s view. For example, in at least one embodiment where the gaming system is implemented as an EGD, camera 562 may be used to generate a live, real-time video feed of a player (e.g., or other person) who is currently interacting with the EGD. In some embodiments, camera 562 may be used to verify a user’s identity (e.g., by authenticating detected facial features), and/or may be used to monitor or track facial expressions and/or eye movements of a user or player who is interacting with the gaming system.

[0056] In at least one embodiment, display system 590 may include EGD controllers 591; multipoint sensing device(s) 592 (e.g., multi-touch surface sensors/components); display device(s) 595; and Input/touch surface 596. According to embodiments, display surface(s) 595 may include one or more display screens. Master gaming controller 512 may include authentication/validation components 544; device drivers 552; logic devices 513, which may include one or more processors 510; memory 516, which may include configuration software 514, non-volatile memory 519, EPROMS 508, RAM 509, associations 518 between indicia and configuration software, and interfaces 506.

[0057] In at least one embodiment, the peripheral devices 550 may include power distribution components 558; non-volatile memory 519a (e.g., and/or other types of memory); bill acceptor 553; ticket I/O 555; player tracking I/O 557; meters 559 (e.g., hard and/or soft meters); meter detect circuitry 559a; processor(s) 510a; interface(s) 506a; display(s) 535; independent security system 561; door detect switches 567; candles, etc. 571; input devices 530, for example.

[0058] In one implementation, processor 510 and master gaming controller 512 may be included in a logic device 513 enclosed in a logic device housing. The processor 510 may include any conventional processor or logic device configured to execute software (i.e., sequences of computer-readable instructions to be executed) allowing various tasks such as communicating with a remote source via communication interface 506, such as a server that stores authentication information or games, converting signals read by an interface to a format corresponding to that used by software
or memory in the gaming system; accessing memory to configure or reconfigure game parameters in the memory according to indica read from the device; communicating with interfaces, various peripheral devices and/or I/O devices; operating peripheral devices such as, for example, card readers, paper ticket readers, etc.; operating various I/O devices such as, for example, displays 535 and input devices 530. For instance, the processor 510 may send messages including game play information to the displays 535 to inform players of game play/event information, wagering information, and/or other desired information.

[0059] In at least one implementation, the gaming system may include card readers such as used with credit cards, or other identification code reading devices to allow or require player identification in connection with play of the card game and associated recording of game action. Such a player identification interface can be implemented in the form of a variety of magnetic and/or chip-card readers commercially available for reading a player-specific identification information. The player-specific information can be provided on specially constructed magnetic cards issued by a casino, or magnetically coded credit cards or debit cards frequently used with national credit organizations such as Visa, MasterCard, American Express, or banks and other institutions.

[0060] The gaming system may include other types of participant identification mechanisms which may use a fingerprint image, eye blood vessel image reader, or other suitable biometric information to confirm identity of the player. Such personalized identification information could also be used to confirm credit use of a smart card, transponder, and/or player’s personal player input device (e.g., UID).

[0061] The gaming system 500 also includes memory 516 which may include, for example, volatile memory (e.g., RAM 509), non-volatile memory 519 (e.g., disk memory, FLASH memory, EPROMs, etc.), alterable memory (e.g., EPROMs 508), etc. The memory may be configured or designed to store, for example: 1) configuration software 514 such as all the parameters and settings for a game playable on the gaming system; 2) associations 518 between configuration indica read from a device with one or more parameters and settings; 3) communication protocols allowing the processor 510 to communicate with peripheral devices and I/O devices 4) a secondary memory storage device 515 such as a non-volatile memory device, configured to store gaming software related information (e.g., the gaming software related information and memory may be used to store various audio files and games not currently being used and invoked in a configuration or reconfiguration); 5) communication transport protocols (e.g., such as, for example, TCP/IP, USB, Firewire, IEEE1394, Bluetooth, IEEE 802.11x (e.g., IEEE 802.11 standards), hiperlan/2, HomeRF, etc.) for allowing the gaming system to communicate with local and non-local devices using such protocols; etc. In one implementation, the master gaming controller 512 communicates using a serial communication protocol. A few examples of serial communication protocols that may be used to communicate with the master gaming controller include but are not limited to USB, RS-232 and Netplex (e.g., a proprietary protocol developed by IGT, Reno, Nev.).

[0062] A plurality of device drivers 552 may be stored in memory 516. Example of different types of device drivers may include device drivers for gaming system components, device drivers for gaming system components, etc. The device drivers 552 may utilize a communication protocol of some type that enables communication with a particular physical device. The device driver abstracts the hardware implementation of a device. For example, a device driver may be written for each type of card reader that may be potentially connected to the gaming system. Examples of communication protocols used to implement the device drivers include Netplex, USB, Serial, Ethernet, Firewire, I/O debouncer, direct memory map, serial, PCI, parallel, RF, Bluetooth™, near-field communications (e.g., using near-field magnetics), 802.11 (e.g., Wi-Fi), etc. When one type of a particular device is exchanged for another type of the particular device, a new device driver may be loaded from the memory 516 by the processor 510 to allow communication with the device. For instance, one type of card reader in gaming system 500 may be replaced with a second type of card reader where device drivers for both card readers are stored in the memory 516.

[0063] The software units stored in the memory 516 may be upgraded as needed. For instance, when the memory 516 is a hard drive, new games, game options, various new parameters, new settings for existing parameters, new settings for new parameters, device drivers, and new communication protocols may be uploaded to the memory from the master gaming controller 512 or from some other external device. As another example, when the memory 516 includes a CD/DVD drive including a CD/DVD designed or configured to store game options, parameters, and settings, the software stored in the memory may be upgraded by replacing a second CD/DVD with a second CD/DVD. In yet another example, when the memory 516 uses one or more flash memory 519 or EPROM 508 units designed or configured to store games, game options, parameters, settings, the software stored in the flash and/or EPROM memory units may be upgraded by replacing one or more memory units with new memory units which include the upgraded software. One or more of the memory devices, such as the hard-drive, may be employed in a game software download process from a remote software server.

[0064] The gaming system 500 may also include various authentication and/or validation components 544 which may be used for authenticating/validating specified gaming system components such as, for example, hardware components, software components, firmware components, information stored in the gaming system memory 516, etc.

[0065] Sensors 560 may include, for example, optical sensors, pressure sensors, RF sensors, Infrared sensors, motion sensors, audio sensors, image sensors, thermal sensors, biometric sensors, etc. As mentioned previously, such sensors may be used for a variety of functions such as, for example: detecting the presence and/or monetary amount of gaming chips which have been placed within a player’s wagering zone and/or detecting (e.g., in real time) the presence and/or monetary amount of gaming chips which are within the player’s personal space, for example. In one implementation, at least a portion of the sensors 560 and/or input devices 530 may be implemented in the form of touch keys selected from a wide variety of commercially available touch keys used to provide electrical control signals. Alternatively, some of the touch keys may be implemented by a touchscreen display. For example, in at least one implementation, the gaming system player may include input functionality for enabling players to provide their game play decisions/instructions (e.g., and/or other input) to the EGD.
using the touch keys and/or other player control sensors/buttons. Additionally, such input functionality may also be used for allowing players to provide input to other devices in the casino gaming network (e.g., such as, for example, player tracking systems, side wagering systems, etc.)

[0066] Wireless communication components 556 may include one or more communication interfaces having different architectures and utilizing a variety of protocols such as, for example, 802.11 (e.g., Wi-Fi), 802.15 (e.g., including Bluetooth™), 802.16 (e.g., WiMAX), 802.22, Cellular standards such as CDMA, CDMA2000, WCDMA, Radio Frequency (e.g., RFID), Infrared, Near Field Magnetic communication protocols, etc. The communication links may transmit electrical, electromagnetic or optical signals which carry digital data streams or analog signals representing various types of information. An example of a near-field communication protocol is the ECMA-340 “Near Field Communication-Interface and Protocol (e.g., NFCP-1)”, published by ECMA International (e.g., www.ecma-international.org), herein incorporated by reference in its entirety for all purposes. It will be appreciated that other types of Near Field Communication protocols may be used including, for example, near field magnetic communication protocols, near field RF communication protocols, and/or other wireless protocols which provide the ability to control with relative precision (e.g., on the order of centimeters, inches, feet, meters, etc.) the allowable radius of communication between at least 5 devices using such wireless communication protocols.

[0067] Power distribution components 558 may include, for example, components or devices which are operable for providing wireless power to other devices. For example, in one implementation, the power distribution components 558 may include a magnetic induction system which is adapted to provide wireless power to one or more portable UIDs at the gaming system. In one implementation, a UID docking region may include a power distribution component which is able to recharge a UID placed within the UID docking region without requiring metal-to-metal contact.

[0068] A motion/gesture detection component(s) 551 may be configured or designed to detect player movements and/or gestures and/or other input data from the player. In some implementations, each gaming system may have its own respective motion/gesture detection component(s). In other embodiments, motion/gesture detection component(s) 551 may be implemented as a separate sub-system of the gaming system which is not associated with any one specific gaming system or device.

[0069] FIG. 6 is a block diagram of an exemplary mobile gaming device 600 in accordance with a specific embodiment. In at least one embodiment, one or more players may participate in a game session using mobile gaming devices. In at least some embodiments, the mobile gaming device may be configured or designed to include or provide functionality which is similar to that of an electronic gaming device (e.g., EGD) such as that described, for example, in FIG. 4.

[0070] As shown in FIG. 6, mobile gaming device 600 may include mobile device application components (e.g., 660), which, for example, may include UI components 662; database components 664; processing components 666 and/or other components 668 which, for example, may include components for facilitating and/or enabling the mobile gaming device to carry out the functionality described herein.

[0071] The mobile gaming device 600 may include mobile device app component(s) that have been configured or designed to provide functionality for enabling or implementing at least a portion of the functionality of the hybrid arcade/wager-based game techniques at the mobile gaming device.

[0072] According to embodiments, various aspects, features, and/or functionalities of the mobile gaming device may be performed, implemented and/or initiated by processor(s) 610, device drivers 642; memory 616; interface(s) 606; power source(s)/distribution 643; geolocation module 646; display(s) 635; I/O devices 630; audio/video devices(s) 639; peripheral devices 631; motion detection module 640; user identification/authentication module 647; client app component(s) 660; other component(s) 668; UI Component (s) 662; database component(s) 664; processing component (s) 666; software/hardware authentication/validation 644; wireless communication module(s) 645; information filtering module(s) 649; operating mode selection component 648; speech processing module 654; scanner/camera 652 and/or OCR processing engine 656, for example.

[0073] FIG. 7 shows a system server 780 that may be configured according to embodiments. The system server 780 may include at least one network device 760, and at least one storage device 770 (e.g., such as, for example, a direct attached storage device). In one embodiment, system server 780 may be configured to implement at least some of the hybrid arcade/wager-based game techniques described herein. Network device 760 may include a master central processing unit (e.g., CPU) 762, interfaces 768, and a bus 767 (e.g., a PCI bus). When acting under the control of appropriate software or firmware, the CPU 762 may be responsible for implementing specific functions associated with the functions of a desired network device. For example, when configured as a server, the CPU 762 may be responsible for analyzing packets; encapsulating packets; forwarding packets to appropriate network devices; instantiating various types of virtual machines, virtual interfaces, virtual storage volumes, virtual appliances; etc. The CPU 762 preferably accomplishes at least a portion of these functions under the control of software including an operating system (e.g., Linux), and any appropriate system software (e.g., such as, for example, AppLogic (e.g.,™) software).

[0074] CPU 762 may include one or more processors 763 such as, for example, one or more processors from the AMD, Motorola, Intel and/or MIPS families of microprocessors. In an alternative embodiment, processor 763 may be specially designed hardware for controlling the operations of system server 780. In a specific embodiment, a memory 761 (e.g., such as non-volatile RAM and/or ROM) also forms part of CPU 762. However, there are different ways in which memory could be coupled to the system. Memory block 761 may be used for a variety of purposes such as, for example, caching and/or storing data, programming instructions, etc.

[0075] Interfaces 768 may be typically provided as interface cards. Alternatively, one or more of the interfaces 768 may be provided as on-board interface controllers built into the system motherboard. Generally, they control the sending and receiving of data packets over the network and sometimes support other peripherals used with the system server 780. Among the interfaces that may be provided may be FC interfaces, Ethernet interfaces, frame relay interfaces, cable interfaces, DS3 interfaces, token ring interfaces, InfiniBand interfaces, and the like. In addition, various very high-speed
interfaces may be provided, such as fast Ethernet interfaces, Gigabit Ethernet interfaces, ATM interfaces, HSSI interfaces, POS interfaces, FDDI interfaces, ASI interfaces, DHEI interfaces and the like. Other interfaces may include one or more wireless interfaces such as, for example, 802.11 (e.g., WiFi) interfaces, 802.15 interfaces (e.g., including Bluetooth® 802.16 (e.g., WiMAX) interfaces, 802.22 interfaces, Cellular standards such as CDMA interfaces, CDMA2000 interfaces, WCDMA interfaces, TDMA interfaces, Cellular 3G interfaces, and the like.

[0076] Generally, one or more interfaces may include ports appropriate for communication with the appropriate media. In some cases, they may also include an independent processor and, in some instances, volatile RAM. The independent processors may control such communications intensive tasks as packet switching, media control and management. By providing separate processors for the communications intensive tasks, these interfaces allow the master microprocessor 762 to efficiently perform routing computations, network diagnostics or security functions.

[0077] In at least one embodiment, some interfaces may be configured or designed to allow the system server 780 to communicate with other network devices associated with various local area network (e.g., LANs) and/or wide area networks (e.g., WANs). Other interfaces may be configured or designed to allow network device 760 to communicate with one or more directly attached storage device(s) 770.

[0078] Regardless of network device’s configuration, it may employ one or more memories or memory modules (e.g., such as, for example, memory block 765, which, for example, may include random access memory (e.g., RAM)) configured to store data, program instructions, logic and processes for the general-purpose network operations and/or other information relating to the functionality of the embodiments described herein. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store data structures, and/or other specific non-program information described herein.

[0079] Because such information and program instructions may be employed to implement the systems/methods described herein, one or more embodiments relates to machine readable media that include program instructions, state information, etc., for performing various operations described herein. Examples of machine-readable storage media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media such as floppy media; and hardware devices that may be specially configured to store and perform program instructions, such as read-only memory devices (e.g., ROM) and random access memory (e.g., RAM). Some embodiments may also be embodied in transmission media such as, for example, a carrier wave travelling over an appropriate medium such as airwaves, optical lines, electric lines, etc. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.

[0080] FIG. 8 illustrates an example of a functional block diagram of a gaming system server in accordance with a specific embodiment. As shown, the gaming system server 800 may a context interpreter 802 which, for example, may be operable to automatically and/or dynamically analyze contextual criteria relating to a detected set of event(s) and/or condition(s), and automatically determine or identify one or more contextually appropriate response(s) based on the contextual interpretation of the detected event(s)/condition(s). Examples of contextual criteria which may be analyzed may include, but are not limited to, for example, location-based criteria (e.g., geolocation of mobile gaming device, geolocation of EGD), time-based criteria, identity of user(s), user profile information, transaction history information and recent user activities, for example. Time synchronization engine 804 may be operable to manage universal time synchronization (e.g., via NTP and/or GPS). The search engine 828 may be operable to search for transactions, logs, game history information, player information, hybrid arcade/wager-based game information, etc., which may be accessed from one or more local and/or remote databases. The gaming system server 800 may also include a configuration engine 832 that may be configured to determine and handle configuration of various customized configuration parameters for one or more devices, component(s), system(s), and/or process(es). Time interpreter 818 may be operable to automatically and/or dynamically modify or change identifier activation and expiration time(s) based on various criteria such as, for example, time, location, transaction status, etc. Authentication/Validation component(s) 847 (e.g., password, software/hardware info, SSL certificate) may be operable to perform various types of authentication/validation tasks. The transaction processing engine 822 may be operable to handle various types of transaction processing tasks such as, described and/or referenced herein.

An OCR processing engine 834 may be operable to perform image processing and optical character recognition of images such as those captured by a gaming device camera, for example. The database manager 826 may be configured to handle various types of tasks relating to database updates, management and access. In at least one embodiment, the database manager may be operable to manage game history databases, player tracking databases and/or other historical record keeping. Log component(s) 809 may be operable to generate and manage transactions history logs, system errors, connections from APIs. Status tracking component(s) 812 may be provided and configured to automatically and/or dynamically determine, assign, and/or report updated transaction status information based, for example, on a state of the transaction. Gateway component(s) may be operable to facilitate and manage communications and transactions with external payment gateways. Web interface component(s) 808 may be operable to facilitate and manage communications and transactions with virtual live electronic gaming device web portal(s). API interface(s) to gaming system server(s) may be operable to facilitate and manage communications and transactions with API Interface(s) to the gaming system server(s). API Interface(s) to 3rd party system server(s) may be provided, which may be operable to facilitate and manage communications and transactions with API interface(s) to 3rd party system server(s).

[0081] One or more general-purpose processors 810 may be provided. In an alternative embodiment, at least one processor may be specially designed hardware for controlling the operations of a gaming system. In a specific embodiment, a memory (e.g., such as non-volatile RAM and/or ROM) also forms part of the CPU. When acting under the control of appropriate software or firmware, the CPU may be responsible for implementing specific functions associated
with the functions of a desired network device. The CPU preferably accomplishes all these functions under the control of software including an operating system, and any appropriate applications software. Memory 816 may be provided. The memory 816 may include volatile memory (e.g., RAM), non-volatile memory (e.g., disk memory, FLASH memory, EPROMs, etc.), unalterable memory, and/or other types of memory. According to different embodiments, one or more memories or memory modules (e.g., memory blocks) may be configured or designed to store data, program instructions for the functional operations of the mobile gaming system and/or other information. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store data structures, metadata, identifier information/images, and/or information/data relating to other features/functions described herein. Interface(s) 806 may be provided such as, for example, wired interfaces and/or wireless interfaces. Suitable device driver(s) 842 may also be provided, as may be one or more display(s) 835. Messaging server component(s) 836 may provide various functions and operations relating to messaging activities and communications. Similarly, network server component(s) 837 may be configured to provide various functions and operations relating to network server activities and communications. User account/profile manager component(s) 807 may be provided to manage various aspects of user accounts and/or profiles.

[0082] FIG. 9 shows a block diagram illustrating components of a gaming system 900 suitable for implementing various aspects of the embodiments shown and described herein. In FIG. 9, the components of a gaming system 900 for providing game software licensing and downloads are described functionally. The described functions may be instantiated in hardware, firmware and/or software and executed on a suitable device. In the system 900, there may be many instances of the same function, such as multiple game play interfaces 911. Nevertheless, in FIG. 9, only one instance of each function is shown. The functions of the components may be combined. For example, a single device may comprise the game play interface 911 and include trusted memory devices or sources 909.

[0083] The gaming system 900 may receive inputs from different groups/entities and output various services and/or information to these groups/entities. For example, game players 925 primarily input cash or indicia of credit into the system, make game selections that trigger software downloads, and receive entertainment in exchange for their inputs. Game software content providers provide game software for the system and may receive compensation for the content they provide based on licensing agreements with the gaming machine operators. Gaming machine operators select game software for distribution, distribute the game software on the gaming devices in the system 900, receive revenue for the use of their software and compensate the gaming machine operators. The gaming regulators 930 provide rules and regulations that are applicable to the gaming system and receive reports and other information informing adherence to these rules.

[0084] The game software license host 901 may be a server connected to a number of remote gaming devices that provides licensing services to the remote gaming devices. For example, the license host 901 may 1) receive token requests for tokens used to activate software executed on the remote gaming devices, 2) send tokens to the remote gaming devices, 3) track token usage and 4) grant and/or renew software licenses for software executed on the remote gaming devices. The token usage may be used in use-based licensing schemes, such as a pay-per-use scheme.

[0085] In another embodiment, a game usage-tracking host 922 may track the usage of game software on a plurality of devices in communication with the host. The game usage-tracking host 922 may be in communication with a plurality of game play hosts and gaming machines. From the game play hosts and gaming machines, the game usage tracking host 922 may receive updates of an amount that each game available for play on the devices may be played and on amount that may be wagered per game. This information may be stored in a database and used for billing according to methods described in a utility-based licensing agreement.

[0086] The game software host 902 may provide game software downloads, such as downloads of game software or game firmware, to various devices in the game system 900. For example, when the software to generate the game is not available on the game play interface 911, the game software host 902 may download software to generate a selected game of chance played on the game play interface. Further, the game software host 902 may download new game content to a plurality of gaming machines responsive to a request from a gaming machine operator.

[0087] The game software host 902 may also include a game software configuration-tracking host 913. The function of the game software configuration-tracking host is to keep records of software configurations and/or hardware configurations for a plurality of devices in communication with the host (e.g., denominations, number of paylines, paytables, max/min wagers).

[0088] A game play host device 903 may include a host server connected to a plurality of remote clients that generates games of chance that are displayed on a plurality of remote game play interfaces 911. For example, the game play host device 903 may include a server that provides central determination of wager outcomes on a plurality of connected game play interfaces 911. As another example, the game play host device 903 may generate games of chance, such as slot games or wager-based video games, for display on a remote client. A game player using the remote client may be able to select from a number of games that are provided on the client by the host device 903. The game play host device 903 may receive game software management services, such as receiving downloads of new game software, from the game software host 902 and may receive game software licensing services, such as the granting or renewing of software licenses for software executed on the device 903, from the game license host 901.

[0089] The game play interfaces or other gaming devices in the gaming system 900 may be portable devices, such as electronic tokens, cell phones, smart cards, tablet PCs and PDAs. The portable devices may support wireless communications. The network hardware architecture 916 may be enabled to support communications between wireless mobile devices and other gaming devices in gaming systems. The wireless mobile devices may be used to play games of chance, such as described herein.

[0090] The gaming system 900 may use a number of trusted information sources. Trusted information sources 904 may include devices, such as servers, that provide
information used to authenticate/activate other pieces of information. Cyclic Redundancy Check (CRC) values used to authenticate software, license tokens used to allow the use of software or product activation codes used to activate software are examples of trusted information that might be provided from a trusted information source 904. Trusted information sources may include a memory device, such as an EPROM, that includes trusted information used to authenticate other information. For example, a game play interface, 911 may store a private encryption key in a trusted memory device that is used in a private key/public key encryption scheme to authenticate information from another gaming device.

[0091] Gaming devices storing trusted information might utilize apparatus or methods to detect and prevent tampering. For instance, trusted information stored in a trusted memory device may be encrypted to prevent its misuse. In addition, the trusted memory device may be secured behind a locked door. Further, one or more sensors may be coupled to the memory device to detect tampering with the memory device and provide some record of the tampering. Yet another example, the memory device storing trusted information might be designed to detect tampering attempts and clear or erase itself when an attempt at tampering may be detected.

[0092] The gaming system 900 of example embodiments may include devices 906 that provide authorization to download software from a second device to a second device and devices 907 that provide activation codes or information that allow downloaded software to be activated. The devices, 906 and 907, may be remote servers and may also be trusted information sources.

[0093] A device 906 that monitors a plurality of gaming devices to determine adherence of the devices to gaming jurisdictional rules 908 may be included in the system 900. A gaming jurisdictional rule server may scan software and the configurations of the software on a number of gaming devices in communication with the gaming rule server to determine whether the software on the gaming device is valid for use in the gaming jurisdiction where the gaming device is located. For example, the gaming rule server may request a digital signature, such as CRCs, of particular software components and compare them with an approved digital signature value stored on the gaming jurisdictional rule server.

[0094] Further, the gaming jurisdictional rule server may scan the remote gaming device to determine whether the software is configured in a manner that is acceptable to the gaming jurisdiction where the gaming device is located. For example, a maximum wager limit may vary from jurisdiction to jurisdiction and the rule enforcement server may scan a gaming device to determine its current software configuration and its location and then compare the configuration on the gaming device with approved parameters for its location.

[0095] A gaming jurisdiction may include rules that describe how game software may be downloaded and licensed. The gaming jurisdictional rule server may scan download transaction records and licensing records on a gaming device to determine whether the download and licensing was carried out in a manner that is acceptable to the gaming jurisdiction in which the gaming device is located. In general, the game jurisdictional rule server may be utilized to confirm compliance to any gaming rules passed by a gaming jurisdiction when the information needed to determine rule compliance is remotely accessible to the server.

[0096] Game software, firmware or hardware residing a particular gaming device may also be used to check for compliance with local gaming jurisdictional rules. When a gaming device is installed in a particular gaming jurisdiction, a software program including jurisdiction rule information may be downloaded to a secure memory location on a gaming machine or the jurisdiction rule information may be downloaded as data and utilized by a program on the gaming machine. The software program and/or jurisdiction rule information may check the gaming device software and software configurations for compliance with local gaming jurisdictional rules. In another embodiment, the software program for ensuring compliance and jurisdictional information may be installed in the gaming machine prior to its shipping, such as at the factory where the gaming machine is manufactured.

[0097] The gaming devices in game system 900 may utilize trusted software and/or trusted firmware. Trusted firmware/software is trusted in the sense that it has not been tampered with. For instance, trusted software/firmware may be used to authenticate other game software or processes executing on a gaming device. As an example, trusted encryption programs and authentication programs may be stored on an EPROM on the gaming machine or encoded into a specialized encryption chip. As another example, trusted game software, e.g., game software approved for use on gaming devices by a local gaming jurisdiction may be required on gaming devices on the gaming machine.

[0098] The devices may be connected by a network 916 with different types of hardware using different hardware architectures. Game software can be quite large and frequent downloads can place a significant burden on a network, which may slow information transfer speeds on the network. For game-on-demand services that require frequent downloads of game software in a network, efficient downloading is essential for the service to viable. Thus, network efficient devices 910 may be used to actively monitor and maintain network efficiency. For instance, software locators may be used to locate nearby locations of game software for peer-to-peer transfers of game software. In another example, network traffic may be monitored and downloads may be actively rerouted to maintain network efficiency.

[0099] One or more devices may provide game software and game licensing related auditing, billing and reconciliation reports to server 912. For example, a software licensing billing server may generate a bill for a gaming device operator based upon a usage of games over a time period on the gaming devices owned by the operator. In another example, a software auditing server may provide reports on game software downloads to various gaming devices in the gaming system 900 and current configurations of the game software on those gaming devices.

[0100] At particular time intervals, the software auditing server 912 may also request software configurations from a number of gaming devices in the gaming system. The server may then reconcile the software configuration on each gaming device. The software auditing server 912 may store a record of software configurations on each gaming device at particular times and a record of software download transactions that have occurred on the device. By applying
each of the recorded game software download transactions since a selected time to the software configuration recorded at the selected time, a software configuration is obtained. The software auditing server may compare the software configuration derived from applying these transactions on a gaming device with a current software configuration obtained from the gaming device. After the comparison, the software-auditing server may generate a reconciliation report that confirms that the download transaction records are consistent with the current software configuration on the device. The report may also identify any inconsistencies. In another embodiment, both the gaming device and the software auditing server may store a record of the download transactions that have occurred on the gaming device and the software auditing server may reconcile these records.

[0101] In an EGM or EGD, a Payout Schedule for a wager is a randomized monetary Return to a Player. Some alternative industry terms for a Payout Schedule may include Paytable, Payline, Payback Percentage or Distribution. The phrase Payout Schedule is used and defined here to avoid ambiguity that may be inherent in these alternate terms.

[0102] In the simplest terms, a Payout Schedule can be described as a table of information. Each of the table’s Entries (rows) may include at least three Elements (columns). One of the Elements for an Entry may include some identifying information for a Wagering Event or multiple Wagering Events. Another Element of the Entry may include the Probability (standard mathematical definition) of the Event occurring. The other important Element is the Payback Value for the Wagering Event, should the Wagering Event occur.

[0103] The overall Return to the Player (also known as RTP) along with the Payback Values in the table are generally expressed as either (a) a multiple of the Wager or (b) a specific value, such as a dollar (or other currency) amount. All entries in a Payout Schedule should be expressed in the same terms, as mixing Wager multiples and specific values will typically not yield useful information.

[0104] In other implementations of a Payout Schedule, these listed values may not be explicitly present in the table, but may instead be indirectly indicated. For instance, if two six-sided dice are used as a basis into a Payout Schedule, the Probability of a seven (7) being rolled is higher than any other number. If seven was indicated in the actual Payout Schedule, it would be indirectly related to the probability of the 7 being rolled (which is ¼, or 0.166666 . . .) Those of skill in the art will recognize that there are many alternate methods of expressing a Probability, as well as many alternate methods of specifying a Payback Value. For instance, rather than specifying the Payback Value in terms of dollars and cents, or as a multiple of a wager, it could be expressed instead as the value of a “Brand New Car!” or the value of a Progressive Prize. For clarity, this description will assume that Probabilities are real numbers between 0 and 1 inclusive, while Payback Values will either be Multiples of the Wager (expressed as percentages) or constant values (such as one dollar ($1)).

[0105] Herein, the sum of all Probabilities in a Payout Schedule will equal 1 in a Complete Payout Schedule. It is acceptable to assume that a paytable has a Missing Entry if the sum of all Probabilities is less than 1. This Missing Entry’s Probability is equal to one minus the sum of the existing Probabilities. The Payback Value of the Missing Entry is zero. If the sum of the Probabilities is greater than one, the Payout Schedule is invalid.

[0106] To use a Payout Schedule, a random value must be generated. This random value must be used such that each Entry in the Payout Schedule can be identified using some transformation of the random value combined with some form of look-up into the Payout Schedule using the Probability of each Entry. For example, consider the following Payout Schedule in Table 1:

![Table]

<table>
<thead>
<tr>
<th>Event</th>
<th>Probability</th>
<th>Payback Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Roll = 1 or 2 or 3</td>
<td>.5</td>
<td>$0</td>
</tr>
<tr>
<td>Die Roll = 4</td>
<td>.166666 . . .</td>
<td>$1</td>
</tr>
<tr>
<td>Die Roll = 5</td>
<td>.166666 . . .</td>
<td>$2</td>
</tr>
<tr>
<td>Die Roll = 6</td>
<td>.166666 . . .</td>
<td>$3</td>
</tr>
</tbody>
</table>

[0107] The Value of a Payout Schedule is a Sum of Products. Each Entry in the Payout Schedule will have its own Entry Value. This Entry Value is simply the product of the Probability and the Payback Value. The Value of the Payout Schedule is the sum of all Entry Values in the Payout Schedule. Therefore, for the Payout Schedule of Table 1, its Value is calculated as shown below:

$$(0.5 \times 0.166666\times 0.166666\times 0.166666\times 0.166666\times 0.166666) = $1.0$$

[0108] In this case, if the wager was $1, and the expected Value was $1, the casino (and the player) would expect neither win nor lose money on this game over time.

[0109] Note that random values may have different distributions. Most typical gaming devices use a uniform distribution, as a single random number is used to determine some outcome, such as a reel stop position, a wheel position, the value of a playing card, etc. However, some games or gaming devices may be configured to use a non-uniformly distributed random outcome. One such non-uniform random distribution is the Gaussian distribution. A Gaussian distribution (also known as a Normal distribution) is obtained whenever the sum of multiple uniformly distributed random numbers is calculated. For example, if the sum of two 6-sided dice is used to determine how much to pay the player, the outcome of 7 is more common than any other outcome by virtue of the Gaussian distribution of the random result of summing two 6-sided dice. The outcome is still completely random— it’s just not uniformly distributed between 2 and 12. The examples used in this description will assume the generation of random numbers that are uniformly distributed unless otherwise specified. Note, however, that this does not preclude the use of non-uniform distributions in alternate embodiments.

[0110] In compliance with virtually all US-based gaming regulations, the randomized return must not be based on any previous actions or outcomes. Therefore, a gaming device is not typically permitted to alter the outcome of a random number generator because the gaming device has paid more or less than some target percentage over time. Therefore, the description and embodiments herein will assume the same constraint.

[0111] There are a large number of gambling games that are legal to play in the United States that can be reduced to one or more Payout Schedules. For example, the simple game of Roulette uses a uniformly-distributed random value (the ball landing somewhere on the wheel) along with a set
of rules that denote the payout for each of the various possible outcomes. The payout for “black” is usually one-for-one: If you wager $1 on “black,” and the ball lands on a “black” number, you will receive $1 for every $1 bet (aka 2 to 1 odds). For this wager, there are 18 black numbers, 18 red numbers, and (hypothetically) 2 green numbers (0 and 00). The frequency of getting black is 18/38, or roughly 47.4%, and has a value of 2. The frequency of getting “not-black” is roughly 52.6%, and has a value of 0. Therefore, the value to the player (the Payout Schedule Value) for “black” wager on roulette is:

\[(2\times47.4\%)/(2\times52.6\%)=94.8\%\]

[0112] In other words, the casino can expect to win (after many millions of wagers) 1-0.948–0.052, or 5.2 cents, for every dollar wagered on “black” in Roulette. Note: Because no units (currency) was set on the Payback Values, it can be assumed that they are unit-less and, therefore, suitable to be used as a Multiplier for the wager.

[0113] A classic slot machine follows a similar schedule. Each possible combination of symbols on the screen (or on a payline) has a specific Probability of occurring. That combination also has a Payback Value (return to player). This Payback Value may be zero, or it may be millions of dollars. Using the same basic formula that was used in the simple wager of “black” on Roulette, the overall payback percentage of a slot machine is determined by summing up the products of each symbol combination’s Probability of occurring and the Payback Value for that combination of symbols.

[0114] Over a sufficiently long period of time, the value of a Payout Schedule converges to a constant, designed Value (94.8% in the previous Roulette example). For purposes of calculating the theoretical Return to Player (RTP) of a game, regardless of the individual details comprising a Payout Schedule (Roulette vs. Slot Machine vs. other.), if the Values of two Payout Schedules (as calculated above) are the same, then the Theoretical Return to Player for the wager will be the same. As such, the use of the term “Value of the Payout Schedule” is inclusive of every possible way that a payout schedule can be constructed.

[0115] For instance, if an example stated: “Carrying out a predetermined action (e.g., collecting a Blue Diamond, eating a Power Pill, etc.) results in the evaluation of a Payout Schedule with a Value of 91%,” no assumption should be made about how the Payout Schedule is constructed. In one embodiment, the rolling of a die may be used as the Value of the Payout Schedule. In another embodiment, a slot machine outcome may be used to determine the Value of the Payout Schedule. In yet another embodiment, the spinning of a virtual wheel may be used to determine the Value of the Payout Schedule. For example, a randomized lookup into a lookup-table may be used to establish the Value of the Payout Schedule.

[0116] Even if two Payout Schedules have the same Value, the Payout Schedules may have very different Volatilities. In the simplest terms, a Payout Schedule with a higher Volatility will require more wagers to converge to some given Confidence Interval (standard statistical definition) around the Payout Schedule Value than a Payout Schedule with a lower Volatility. In many (if not most) gambling games, combining the theoretical Payback Value with the Volatility is a significant part of the craftsmanship behind mathematical game design. Unless noted otherwise, the Volatility of a Payout Schedule does not affect the use of the term Payout Schedule—two Payout Schedules with the same Value may be considered equivalent in various alternate embodiments and examples described herein. Various terms such as counters, tokens, achievements, etc. will all be called Counters in this description.

[0117] Herein, the phrase Wagering Event means a wager instance that is generated as a result of a player interacting with a Wagering Opportunity; or any Wagering Opportunity within a game that is recognized by the game as a Wagering Event. Wagering opportunities may include hardware-based actions such as: pressing a button, pulling a trigger, touching the screen, etc. Wagering Opportunities may also include, but are not limited to, virtual events (events that occur virtually within a video game), such as touching or attempting to touch any game object with a player-controlled avatar (humanoid, vehicle, held weapon or fist, etc.) or having the player’s avatar come within a certain proximity of the game object, firing a projectile at any game object (either requiring the projectile to hit or simply be fired, or alternately having the projectile aimed such that it eventually comes within a certain proximity to a game object), making a selection or a move or as the result of making a selection or a move (such as placing an “X” on a Tic-Tac-Toe board, moving your piece in a Monopoly game, sliding a tile or gem in a Match-3 game, etc.), and in general taking any action within a game or allowing any interaction to occur within a game, at any point in time or during or after any duration of time. For any of these opportunities, if a wager has been made prior to, simultaneous with or subsequent to their occurrence, and directly or indirectly because of their occurrence, the combination of the Wager and the occurrence becomes known as a Wagering Event. There may be a myriad of possible Wagering Opportunities within a game. Part of the game’s design will be determining which (and when) opportunities may be wagered upon, thereby defining the difference between a Wagering Opportunity and a Wagering Event. Some events may not be or include a Wagering Opportunity until some specific time or upon the occurrence of some other predicate event(s).

[0118] According to one embodiment, some Wagering Events may occur less frequently, may be associated with a greater time delay within the game, may require a greater degree of dexterity or cleverness and/or may generally be more subjectively difficult to accomplish. Some Wagering Events may be associated with more than one such attribute. Naturally, such Wagering Events may have a higher perceived value to a player than Wagering Events that are associated, for example, with a higher frequency of occurring and/or that require a comparatively lesser degree of dexterity, cleverness and/or that are comparatively easier to accomplish.

[0119] In any event, regardless of such attributes that may be associated with one or more Wagering Events, the game must be considered “fair”. A primary tenet regarding fairness is that the rules of the game must be completely described to the player, such that the player may make an informed decision whether or not to play the game based on how the game is played. This rule applies to all known regulated gaming jurisdictions. The gaming embodiments shown and described herein are fair and it is assumed that the rules of the game are clearly described to the player.

[0120] Also, the game must never pay out so much money that the casino (or other gaming establishment) will consis-
ently lose money to a player that, through luck and/or consistently skillful actions, accomplishes many or all of the Wagering Events. While it is acceptable, for a player that consistently accomplishes most or all Wagering Events that are subjectively more valuable, to win more money (including more than he or she put into the gaming machine) than another player that accomplishes none or a limited number of such subjectively more valuable Wagering Events, the game must be designed in such a manner as to guarantee that the winnings over time, for any player, will not cause the casino to lose money. The embodiments shown and described herein allow for the game designer to guarantee that no player, however, lucky, clever, dexterous or skillful, cannot win more than 100% of his or her wagers over a significantly long period of time and over many iterations of the game. This proposition may be called, in short-hand, the Unacceptably High Payback Rule.

0121] Frequently within a game, there will be Wagering Events that may be subjectively perceived as being more valuable, harder to accomplish, that occur less frequently (collectively, Harder Wagering Events) and there will be Wagering Events that may be subjectively perceived as being comparatively less valuable, easier to accomplish, that occur more frequently (collectively, Easier Wagering Events). For example, in the classic Matching game Jeuweled™, matching 3 gems is considered to be Easier than matching 4 gems. Also, opportunities to match 3 gems may occur more frequently than do opportunities to match a greater number of gems (4, 5, 6, or 7, for example). In a first-person shooter game, a head shot (smaller target, more difficult to hit) may be considered to be Harder and a body shot (larger target, comparatively easier to hit) may be considered to be Easier. Because of basic human nature, players typically expect larger rewards for Harder activities.

0122] According to one embodiment, one way to address this desire for a larger reward is to assign a different and higher-valued Payout Schedule to Harder Wagering Events. Such a paradigm allows for a consistently greater return to the skilled player and for an occasionally greater return for the lucky player. Other embodiments are configured to enhance such a paradigm to both enhance all players' experiences and to protect the casino.

0123] According to one embodiment, each individual wager placed through the gaming machine receiving some player interaction when the player encounters a Wagering Event, should never have an expected RTP that falls below a specified minimum (such as 75% in Nevada), regardless of game state or game history. According to another embodiment, the overall RTP, over the life of the game, should not exceed some specified maximum, most likely mathematically capped at 100%, even if the player were to successfully and consistently accomplish all available skillful actions required during Wagering Events. It is to be understood that, over the short term, any player may be rewarded more than his or her wagers. However, even if the luckiest and most skilled player in the world were to play a game machine or configured according to one or more of the embodiments shown and described herein for an extended period of time, that player would never be rewarded a return that cost the casino (or other operator) money.

0124] Notwithstanding, according to one embodiment, the expected RTP of an individual Wagering Event within a game may be larger for a Harder Wagering Event than the expected RTP for a comparatively Easier Wagering Event within the same game. It is these Harder (and/or less-frequently occurring) Wagering Events that are associated with a better (for the player) RTP, that keep the player engaged in the game at hand, and that heighten his or her excitement during game play. Engaging gameplay is usually an indicator of higher revenue in the gaming industry. According to one embodiment, an Easier (and/or frequently occurring) Wagering Event may have an expected RTP of (for example) 75%, while a Harder (and/or less frequently occurring) Wagering Event may have an expected RTP of, for example, 85% (or even higher than 100%, as described below) associated therewith.

0125] According to one embodiment, some portion of each or selected wagers may be virtually contributed towards a bounty or other prize, all of which, a portion of which or a multiple of which may be awarded at a later time, upon the player successfully completing some action for one or more predetermined Wagering Events. Conversely, according to embodiments, if the player fails to successfully complete some action(s) for one or more predetermined future (usually, Harder) Wagering Events associated with the bounty, the player may forfeit all of such bounty, without causing the game to fall below the regulatorily-mandated minimum RTP. In some implementations, a predetermined, usually Harder Wagering Event, may be presented to the player as a long-awaited challenge, such as battling a particularly fearsome foe, solving a particularly intractable puzzle or making a difficult choice, sometimes using clues, abilities, knowledge or equipment gathered during prior game play. The player’s tension should be higher, as the player’s potential reward increases. For example, after the player makes a predetermined number of wagers, a predetermined Wagering Opportunity (such as battling a bigger, more powerful foe) may become enabled (that is, enabled to become a Wagering Event upon player interaction therewith) where the expected RTP of that predetermined Wagering Opportunity may be significantly higher than 100%, without violating the Unacceptably High Payback Rule. Because this Wagering Opportunity is only selectively available to the player (e.g., only after a predetermined number of Wagering Events, after a predetermined duration of game play or upon accomplishing predetermined actions(s)), this larger expected RTP can be funded by the previous virtual contributions made by the player as he or she places wagers during Wagering Events during the game.

0126] According to one embodiment, at least a portion of the value of this bounty may be explicitly communicated to the player as they are playing. However, this bounty is not automatically awarded to the player (as would be the case in a classic progressive game). Instead, at least a portion (or a multiple) of the sum of the prior virtually-contributed amounts become available to the player based on in-game activities and based upon some predetermined action by the player in response to encountering a predetermined Wagering Event. According to embodiments, should the player not be successful in obtaining the predetermined and well-documented action to successfully complete the Wagering Event (i.e., defeat the bigger, more powerful foe, solving the difficult puzzle or making the correct decision based upon the circumstances presented), that player may not win this bounty, regardless of the fact a dollar amount was displayed. That is, according to embodiments, the displayed amount for the bounty is a would-be bounty for completing a (presumably, Harder) action in response to encountering a predeter-
Consider the case in which the player walks away from or cashes out of a game in which he or she has accumulated a non-zero bounty. Even though the bounty is potential (as opposed to realized) stored value, it still represents value that may be realized in the future. Should the bounty not be reset upon cashout (or some other event), “vultures” may become problematic. In the present context, vultures may be thought of as people loitering around a gaming machine waiting for a player to quit the game and walk away from a gaming machine that has a non-zero stored value in the bounty. Accordingly, embodiments may be configured to clear all “stored value” to be on cashout (or some other event) automatically, at the request of the customer and/or at the request of a gaming regulator or casino operator.

Consider the exemplary Payout Schedule table shown in Table 2:

<table>
<thead>
<tr>
<th>Payout</th>
<th>Probability</th>
<th>Range</th>
<th>RTP (calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80%</td>
<td>0 . . . 79</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10%</td>
<td>80 . . . 89</td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>5%</td>
<td>90 . . . 94</td>
<td>.25</td>
</tr>
<tr>
<td>10</td>
<td>5%</td>
<td>96 . . . 99</td>
<td>.550</td>
</tr>
</tbody>
</table>

Total RTP (Sum): .95 (95%)
accomplishing tasks he or she (and/or the game designer) perceives as being Harder, Wagering Opportunities that conclude a chapter of the game’s narrative or that are thematically significant to the game.

To illustrate the use of higher RTP for Harder Wagering Opportunities, the following paragraphs discuss a matching game. It is to be understood, however, that a First Person Shooter, driving game or virtually any task may be substituted for the matching in the matching game discussed hereunder. It is believed that a player is willing to accept a lower reward for accomplishing Easier tasks, such as matching three like next-adjacent items (or finding the three power packs necessary to charge a ray gun capable of killing zombies, for instance). However, say the player just found a way to Match 7 items in a row. If the game rewards that player with a low value (maybe zero or less than his wage), the player may become very frustrated playing that game, believing that a higher reward should be due for accomplishing Harder tasks. Indeed, it is believed that player would like to have a reward for matching 7 items (or accomplishing some other more difficult task) that is be, say, 50 times his wager or more. Guaranteeing that type of payback is not addressed by simply assigning different Payback Schedules to the Match 7 Wagering Event and the Match 3 Wagering Event. This is because of the Unacceptably High Payback Rule as the Casino might end up paying the player, over time and even over many iterations, more than the player’s aggregate wages. No casinos would agree to host such a gaming machine on their floor.

As an illustration, the following presents exemplary rules of a Match 3 game, according to one embodiment. It is to be understood, however, that most (if not all) of the game parameters and characteristics may be altered to offer an entertaining experience for the player. As such, the numbers and values used below are arbitrarily chosen for purposes of clarity of explanation and should not be interpreted as limiting any embodiment described herein.

In this particular embodiment, the game is an object-matching game having functionality similar to that of the arcade game Bejeweled™. Here, it is assumed that the player places a wager and is presented with a playing board (a matrix) of items such as gems. The player is expected to identify and select 3 or more gems (or other objects, animals, etc.) of the same type (e.g. red gems, blue gems, tigers, foxes, ducks and the like) that are next adjacent to one another (left, right, top, bottom, diagonally) on the playing board. Each time gems or other objects are matched, they are removed from the playing board and replaced by new gems or objects. A player begins the game with only Match 3 actions available on the playing board (or one type of slow-moving dead-eyed zombie or zombies attacking him or her within the apocalyptic urban zombie spawning grounds). Match 4, 5, 6, (or more capable zombies) actions are not available at the start of the game as the playing board, at this stage of the game, does not include 4, 5 or 6 next adjacent gems or objects or the user is not initially presented with such higher-valued game assets.

A low-numbered Match Wagering Event (e.g., Match-3) may offer the player a lower RTP. Each time the player makes a Match wager, a counter may be incremented or there may be a random chance of incrementing the counter for each bonus and by making a sufficient number of Match wagers, the player will unlock Bonus-4, Bonus-5, Bonus-6 and Bonus-7 pays that are triggered by making matching 4 items (Match-4), matching 5 items (Match-5), matching 6 items (Match-6) or matching 7 items (Match-7) respectively. Instead of higher-order Match Wagering Opportunities, faster or more agile zombies may present themselves for battle. If a higher bonus is not yet available, higher matches will trigger the lowest bonus available. For example, a Match-7 can trigger a Bonus-6 if that is the highest-level bonus currently available.

Each of these subsequent bounties (i.e., Match-4, Match-5, Match-6, Match-7), may be associated with and provide the player with more than 100% of his or her wager; that is, provide a greater than 100% RTP. However, such greater RTPs for Harder Wagering Opportunities (i.e., the opportunity to match 4, 5, 6 or 7 next-adjacent like items) may only be available to the player after a predetermined number of lower-valued Match wagers have been made. This is how, according to embodiments, the greater-than-100% RTP Payout Schedules are made possible and funded.

For illustration purposes, consider a simplified embodiment in which only two Wagering Opportunities are selectively made available: a plurality of first, “Match-3” Wagering Opportunities and one or more second, “Match-More” Wagering Opportunities, along with a bounty Payout Schedule called “Bonus-More”. The Payout Schedule for such a Match-3 Wagering Event may take the form shown in Table 3:

<table>
<thead>
<tr>
<th>Payout</th>
<th>Probability</th>
<th>Range</th>
<th>RTP (calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80%</td>
<td>0 . . . 79</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10%</td>
<td>80 . . . 89</td>
<td>.10</td>
</tr>
<tr>
<td>5</td>
<td>5%</td>
<td>90 . . . 94</td>
<td>.25</td>
</tr>
<tr>
<td>10</td>
<td>5%</td>
<td>96 . . . 99</td>
<td>.50</td>
</tr>
</tbody>
</table>

The Payout Schedule for a Match-More Wagering Event may take the form shown in Table 4:

<table>
<thead>
<tr>
<th>Payout</th>
<th>Probability</th>
<th>Range</th>
<th>RTP (calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>75%</td>
<td>0 . . . 79</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>15%</td>
<td>80 . . . 89</td>
<td>.15</td>
</tr>
<tr>
<td>5</td>
<td>5%</td>
<td>90 . . . 94</td>
<td>.25</td>
</tr>
<tr>
<td>10</td>
<td>5%</td>
<td>96 . . . 99</td>
<td>.50</td>
</tr>
</tbody>
</table>

The Payout Schedule for the Bonus-More Wagering Events may be designed to return greater than 100% of the player’s wager. For example, the Payout Schedule for Bonus-More Wagering Events may take the form of Table 5:

<table>
<thead>
<tr>
<th>Payout</th>
<th>Probability</th>
<th>Range</th>
<th>RTP (calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80%</td>
<td>0 . . . 79</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10%</td>
<td>80 . . . 89</td>
<td>1.0</td>
</tr>
</tbody>
</table>
TABLE 5—continued

<table>
<thead>
<tr>
<th>Payout</th>
<th>Probability</th>
<th>Range</th>
<th>RTP (calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>5%</td>
<td>90 . . . 94</td>
<td>1.25</td>
</tr>
<tr>
<td>50</td>
<td>5%</td>
<td>96 . . . 99</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Total RTP (Shuni) 4.75 (475%)

[0142] The 475% RTP, however, does not cause the game, according to embodiments, to violate the Unacceptably High Payback rule. This is because, according to one embodiment, the player will not have access to a second Bonus-More Wagering Opportunity until he or she has accumulated a predetermined number of tokens (which may or may not be awarded for each first Match-3 Wagering Event) and/or has made a predetermined number of prior first Match-3 wagers (killed a predetermined number of zombies, collected a predetermined number of iridescent rings or the like). Below, for purposes of illustration only, it is assumed that a second Bonus-More Wagering Opportunity is made available after 10 tokens have been accumulated on the “Bonus-More” meter, earned through interacting with the first Match-3 Wagering Events. The Bonus-More meters may be visible to the player.

[0143] The following describes the manner in which high RTPs may be offered for higher-valued Wagering Events, according to illustrative implementation. Since the target overall RTP of the game is to be set in this example at 95%, this 95% can be subtracted from the 475% RTP of the Bonus-More RTP to yield a difference of 380%. For each first Match-3 Wagering Event, the RTP is deficient from the target overall RTP of 95% by 10%, as 95%-85%-10%. This deficiency can be made up by requiring the player to make, on average, 38 (380%/10%) first Match-3 wagers before enabling a second Match-More wager to trigger a Wagering Event in which the Bonus-More bounty is at play. This can be achieved by contributing a token 26.3% of the time thereby, on average, accumulating 10 tokens over 38 Match-3 Wagering Events. Together, the Match-3 RTP and the Bonus-More RTP yields 85%+4%475%=37.05

[0144] Over the 38 Match-3 Wagering Events and the 1 Match-More Wagering Event, on average, the overall RTP becomes the desired 95%, as 37.05/39=0.95 or 95%.

[0145] However, when the player does a “Match-More” play, their immediate payback will be at 90%, requiring that the chance of incrementing a token be decreased accordingly. We now need to ensure that the bounty play only contributes 5% for each “Match-More” wager (95%-90%-5%). To do this, the contribution probability is cut in half and a token is contributed at a rate of 13.15% (a token is contributed 13.5% of the time), thereby requiring the player to play an average of 76 lower-valued Wagering Events to enable the Wagering Event in which the bounty may be won. This yields the following calculation for the for the “Match-More”+“Bonus-More” RTP:

90%+4%475%=73.15
73.15/77=0.95 (95%)

[0146] As with the Match-3, the division is by 77 because there would have been a total of 76+1=77 Wagering Events to yield an outcome of 73.15.

[0147] According to embodiments, in order to support changing bet sizes at arbitrary points in the game and to keep the bonus pays fair, the token count may be always incremented by the bet amount. According to embodiments, the number of tokens earned must then exceed the base token threshold multiplied by the bet size in order to activate the bonus. Consequently, a player that increases his or her bet size between plays may disable their bonus. The gaming machine may then display the bonus meter as the token count divided by the current bet size. Also, there may be occurrences where tokens are unusable until the bet size is reduced due to rounding of the tokens.

[0148] For example: If we have a bonus meter that requires 10 tokens to fill at a 1 credit bet it will require 400 tokens to fill at a 40-credit bet. If the player plays at 10 credits and accumulates 50 tokens and half fills the token meter, switching to a 5 bet will immediately increase the meter to 100% full.

[0149] According to some embodiments, the Match-More Wagering Event may be replaced by an altogether different Wagering Opportunity; that is, not just an opportunity to match a number of items greater than three. For example, after having accumulated 10 tokens as described above, the player may be challenged by a new and different Wagering Opportunity that bears only some (or no) similarity to the Match-3 Wagering Events that enabled the new and different Wagering Opportunity. For example, the player may be tasked with a match Wagering Opportunity that is perceived to be significantly harder to achieve than the matching tasks that led the player to this point in the game. Alternatively, the player may be presented with another challenge altogether, such as throwing virtual darts at balloons or any other entertaining and engaging task that is subjectively harder to accomplish. In a scripted console-type game that immerses the player in a virtualized game world, the challenge that is associated with the bounty may be thematically significant to the narrative or resolve some tension that has been building up in the story up to that point. If the player successfully carries out the intended action (popping all balloons, killing the Boss foe, for example), the player may be awarded all or a multiple of a bounty. The bounty may be sized such that the player, by carrying out the intended action or actions, makes a wager and wins an amount determined by a higher-than 100% RTP Payout Schedule associated with this wager. In this manner and according to embodiments, a player that consistently carries out the intended action(s) required by Wagering Event associated with the bounty will, over time and on average, earn back the intended, designed-for maximum overall RTP (e.g., 95%) of the game. Similarly, a player that consistently fails to carry out the intended action(s) required by Wagering Event associated with the bounty will, over time and on average, earn back at least the intended minimum RTP (e.g., 75%), but less than the aforementioned designed-for maximum overall RTP of the game. Of course, a player that is only sometimes successful in carrying out the intended action(s) required by Wagering Event associated with the bounty will, over time and on average, earn back somewhere between the intended minimum RTP (e.g., 75%) and the intended maximum RTP (e.g., 95%). The actions necessary to achieve the goal presented by the Wagering Opportunity that is associated with the bounty may require some measure of cleverness, manual dexterity, speed, skill and/or other player attributes.
To further illustrate the use of higher-valued Pay-out Schedules for Harder Wagering Events, the following paragraphs discuss a regulated Match wagering game in greater detail. It is believed that players are willing to accept lower rewards for accomplishing Easier tasks, in exchange for higher rewards for Harder tasks. Exemplary rules of a more complex, multi-tiered Match game using virtual contributions, according to one embodiment, may be as follows. It is to be understood, however, that most (if not all) of the game parameters and characteristics may be altered to offer an entertaining experience for the player. As such, the numbers and values used below are arbitrarily chosen for purposes of clarity of explanation and should not be interpreted as limiting any embodiment described herein.

Every time that a player Matches 3, the player effectively places a wager and is rewarded (or not) according to a Pay-out Schedule with a Value of 95%. The player will be awarded one C3 counter (Match-3 counter) for this Wagering Event. In this implementation, the Value of each C3 Counter is 15%, which is “taken out of”, or virtually contributed from the 95% intended overall RTP of the game. Note that the award of a Counter (C3 or other) need not be guaranteed. There may be a “chance to award a counter”. In this manner, multiplying the probability of a Counter by the value of the Counter yields the value that can be added to the Pay-out Schedule(s) of the subsequent tiers’ Wagering Events.

Once five (5) such C3 counters are accumulated by the player, a Match-4 Wagering Event is enabled and the five C3 counters are removed. This allows some other action or event in the game to become a Wagering Event. In other words, the action or event in the game was not a Wagering Event until the 5 C3 counters were accumulated, the Match-4 Wagering Event enabled and the 5 C3 counters removed. The player must still interact with a predetermined in-game asset, perform the action or otherwise cause this next Wagering Event to occur. There is no guarantee at any point in time that the Wagering Event is available for the player. Indeed, just because a Match 7 or other Wagering Event becomes enabled does not guarantee that there are currently 7 appropriate items or gems to match or that the game offers a like Wagering Opportunity to the player. In conventional games, once the 5 Counters are collected, something occurs automatically (such as entering a bonus game, receiving an immediate payout, etc.). Sometimes, therefore, it is to be anticipated that a Match-N Wagering Event may be enabled when there are no N items currently available for matching. Such a Wagering Opportunity, however, may present itself at some later time during gameplay, at which time the player will have the opportunity to carry out the intended action(s) and place a wager on the now-available higher-valued Wagering Event.

According to some embodiments, prior to this point, the player was not allowed to make a Match 4 action. In some other embodiments, the Match 4 action would be available to the player, but not as a Wagering Opportunity that is configured to enable or generate a Wagering Event, thereby preventing the player from wagering or winning any amount from that not-yet-enabled action. Alternate embodiments may allow the Match 4 action to be taken, but to be treated as a Match 3 Wagering Event (at the lower valued Pay-out Schedule). Alternatively, the Match 4 action may be taken by treated as the highest-level Match N that is enabled at the time (e.g. if a Match 7 is found, but the highest enabled action is Match 5, then the Match 7 action would be treated as if it were a Match 5). In some embodiments the player may be prompted or asked if he would like to accept this “lower” Wagering Event when this situation occurs.

Because five such C3 counters were required to enable this action, the Match 4 Pay-out Schedule Value is set to 115%, 20% higher than the 95% Pay-out Schedule for Match 3. Even though each C3 Counter was valued at 15%, 10% of each of each of these counters is not used for Match 4. It is important to note that only one (1) Match 4 action is enabled and once a Match 4 action is found and taken by the player, that Match 4 action is disabled again. In an alternate embodiment, each Match level has an “enabled counter” that is incremented when the lower level counters are fully collected and decremented every time that the Match is made. e.g. say fifteen (15) Match 5 Wagering Events occur consecutively. This would enable three (3) opportunities to take a Match 4 action. Among other benefits, this would make the overall payback of the game more stable.

Similarly, each Match 4 Wagering Event may award the player a C4 Counter valued at the virtually-contributed 10% (taken out of the 115%). After five (5) of these C4 counters are accumulated, the Match 5 action is enabled (again—for only one Wagering Event). However, because both the C3 and C4 counters are contributing a total of 300% (50% from 5×C3 (10% each) counters and 250% from 5×5=25 C3 (10% each) counters), the Match 5 Pay-out Schedule Value can be up to 400% without violating the Unacceptably High Payback Rule. This tiered scheme according to embodiments may be continued with higher-ordered Wagering Events.

This contribution of 10% is a simple example. For the Harder Wagering Events to have a significantly higher Value, one embodiment is configured such that part of every (or at least some) Easier Wagering Event’s Counter’s value is virtually contributed to the Harder Wagering Event. It may be a desirable game design decision to set the value of the C3 counters to 50% or higher, virtually contributing and forwarding most of the Value to the Harder Wagering Events and retaining only small amounts (if any) to the player for the Easiest Wagering Events. Further, the virtual contribution of a constant percentage to fund Harder Wagering Events is not the only contribution mechanism available to the game designer. For example, a Pay-out Schedule could be used to determine how much to virtually contribute forward. For instance, for the C3 counters, a Pay-out Schedule with a Value of 15% could be forwarded. Further, the proportions of the 15% from C3 counters that are contributed to the C4 and C5 (in this example) may themselves be Pay-out Schedules, either in combination with or instead of the aforementioned 15% C3 forwarded Value.

Finally, it may be a desirable game design decision to provide the ability to “force” or “guarantee” the availability of a higher-tiered Wagering Event if one isn’t available when it becomes enabled (via collection of Counters). This may be implemented as a “magic wand” effect whereby, after maybe one minute where no Match 7 opportunity has presented itself, the game modifies one or more gems such that a Match 7 opportunity becomes available immediately, or perhaps becomes obviously available by taking a much simpler Match 3 action. Alternatively, in a Zombies game, if killing the Boss Zombie (a hard-to-kill über Zombie) is the Harder Wagering Event, it may “Spawn”
or otherwise become available once the sufficient number of Counters has been collected, and not before that time.

[0158] Inherent in embodiments is the notion of anticipated wins, whereby a player becomes more invested in the game the longer he plays the game. i.e. If the player knew he or she was very close to unlocking a major potential winning action (whether a Match 7 Wagering Opportunity, facing the Boss Zombie or the like), that player would be more likely to continue playing that gaming device. In this manner, continued play equates to a more exciting entertainment experience for the player and with increased revenue for the casino.

[0159] FIG. 10 is a flowchart of a method according to one embodiment. In particular, FIG. 10 is a flowchart of a method of determining rewards due to a player playing a regulated gaming machine (e.g., an EGM or an EGD, as described above). In one embodiment, the method may comprise accepting funds from a player, as shown at B101. However, in a “free-to-play” implementation, no funds are accepted from the player and any amounts awarded to the player may be value-less points or some functional equivalent. The funds may include paper money, coins, tokens and/or any accepted form of electronic money or value. As outlined in Block B102, a game may be provided in the regulated gaming machine and configured such that player interaction with a plurality of games assets within the game gives rise to a plurality of first (Easier, in one implementation) Wagering Opportunities and (at least) a second (Harder, in one implementation) Wagering Opportunity. The game may include an arcade-type game, a scripted console-type game and/or any hybrid thereof in which player interaction with in-game assets gives rise to a plurality of first Wagering Opportunities (matching items, forming words or structures, killing a zombie, for example) and at least one second Wagering Opportunity. As foreshadowed above, the second Wagering Opportunity may include a Wagering Opportunity of the same type as the first Wagering Opportunities (a harder match problem, forming longer or more elaborate structures or killing a boss zombie, for example) or may be of an altogether different type of Wagering Opportunity. To conform with applicable gaming regulations, the provided game is configured to have an overall minimum return to player (RTP). To satisfy casinos and gaming operators, the provided game is also configured to have an overall maximum RTP (i.e., the percentage of money returned to player, over a great many play iterations, converges to the predetermined and designed-for maximum overall RTP).

[0160] In Block B103 of FIG. 10, it may be determined, using the accepted funds and a first Payout Schedule that defines a first RTP that is at least as great as the minimum overall RTP, whether and how much to reward the player whenever the player interacts with the first Wagering Opportunities to generate first Wagering Events. As alluded to above, the player interaction with the first Wagering Opportunities may take the form of a player matching items, killing a zombie, collecting items on a road or race track, carrying out a specific action on an adventure quest, and the like. When the player interacts with a first Wagering Opportunity, a corresponding first Wagering Event is generated, a random number generated, normalized or scaled and applied to the first Payout Schedule to determine whether and how much the player is to be rewarded. As noted in FIG. 10, the first Payout Schedule may define a first RTP that is at least as great as the minimum overall RTP (e.g., if the state-mandated minimum RTP for regulated gaming machines is 75% in Nevada, the first RTP may be set, for example, at 80%).

[0161] As noted above, according to one embodiment, for at least some (e.g., more than one, a few, most or all) of the first Wagering Events generated, a portion of a reward due to the player (or some predetermined or programmatically-determined amount) may be virtually contributed to a bounty, as shown at B104. It is to be noted that this is a virtual contribution and that the bounty, even as it is accumulated after many first Wagering Events, only denotes potential value, as it is worth nothing until it is earned by successfully interacting with the second Wagering Opportunity and generating a second Wagering Event, as described herein.

[0162] Block B105 calls for selectively making the second Wagering Opportunity available for player interaction. Indeed, after a predetermined number of first Wagering Events and/or after a predetermined period of game play (and/or any other predetermined criteria), the second Wagering Opportunity is selectively made available for player interaction. This second Wagering Opportunity may be harder to successfully interact with than the first Wagering Opportunities were. Indeed, successfully interacting with the second Wagering Opportunity may require greater dexterity, cleverness, speed, skillful action and/or may generally be perceived as being of higher subjective value to the player, to the game storyline and/or may simply be made available less frequently than the first Wagering Opportunities. Decision block B106 determines whether the player has successfully interacted (by whatever criteria the game designer has chosen) with the second Wagering Opportunity. For example, successfully interacting with a match game may be to match 7 items and successfully interacting with a second Wagering Opportunity in a zombie game may be to kill the Boss Zombie, which may be bigger, badder and generally harder to kill than the undead cohort of regular zombies that form the first Wagering Opportunities.

[0163] If the player fails to successfully interact with the second Wagering Opportunity, the player forfeits all of the accumulated bounty, as shown at B107. Note that, in this case, the player still enjoys the first RTP, which is guaranteed to be at least as great as the overall minimum RTP of the game. This is the reason that the bounty may be thought of as only potential future value: it may or may not be awarded to the player and has no inherent value until earned in a predetermined manner. In any event, however, even players who never manage to successfully interact with the selectively available second Wagering Opportunity or opportunities (there may be more than one) nevertheless achieve at least the minimum overall RTP of the game. Moreover, such players will still enjoy their game play, even if they are never awarded the bounty.

[0164] As shown at Block B108, when (and only when) the player successfully interacts with the available second Wagering Opportunity, a second Wagering Event is generated and a random number generated, normalized and applied to a second Payout Schedule. According to one embodiment, the normalized or scaled random number is then applied to the second Payout Schedule and the player is then awarded an amount that is at least equal to the bounty, as determined by the random number and the second Payout Schedule. According to one embodiment, the second Payout
Schedule defines a second RTP that is greater than the overall minimum RTP of the game. In some embodiments, the second RTP may be greater than the maximum overall RTP of the game, as developed above. According to one embodiment, the bounty is funded by a sum of the virtually contributed portions of the rewards due to the player for successfully interacting with the first Wagering Opportunities, thereby enabling the second Payout Schedule to offer a high RTP (which can be even higher—for this second Wagering Event—than the overall maximum RTP of the game) while the game itself, on average and over many iterations, never returns more to players than the predetermined and designed-for overall maximum RTP. It is to be understood, however, that the phrase “virtually contributed portions of the rewards due to the player” does not mean that money due to the player is taken from him or her to fund the bounty. According to embodiments, the phrase “virtually contributed portions of the rewards due to the player” instead means that the player 1) is rewarded what the player earns through his or her wagers and 2) that the “contributions” are virtual, as nothing of present monetary value is taken from the player’s winnings to fund high-valued Wagering Events. Indeed, prior to the player successfully interacting with the second Wagering Opportunity, the sum of the virtual contributions is only a number, with no present value.

According to one embodiment, the method may be further configured to display at least a portion of the bounty to the player. Even though the bounty has no value to until the player successfully interacts with the available second Wagering Opportunity or opportunities, according to embodiments, the player knows that he or she is guaranteed to earn at least the amount indicated by the bounty if he or she were to carry out the required action called for by the selectively available (in a boss or challenge level of the game, for example) second Wagering Opportunity. Indeed, according to embodiments, the amount of the bounty shown to the player is the minimum amount he or she will be rewarded as a result of the Wagering Event generated for successfully interacting with the second Wagering Opportunity. For example, rewarding the bounty to the player may comprise rewarding the player with an integer, for example, multiple of the bounty (e.g., 1x the bounty, 2x the bounty or 3x the bounty, etc.) or may comprise rewarding the player with an amount equal to a sum of the bounty and an additional (e.g., fixed, programmatically-determined or randomly-generated) amount. According to one embodiment, the magnitude of the multiple may be determined according to another Payout Schedule. For example, this Payout Schedule may specify that the multiple will be one of 1x, 2x, 3x or 5x, each with a predetermined likelihood (e.g., 25%) of being chosen by randomness. The magnitude of the bounty and of the multiple or additional amount may be calculated, in a manner similar to that detailed above, such that the player is required to make at least a predetermined number of first Wagering Events to ensure that the overall maximum RTP of the game is respected. According to embodiments, not all first Wagering Events (such as, for example, killing a zombie) will result in a virtual contribution and not all virtual contributions need be equal to one another. However, mathematically, it may be shown that, according to one embodiment, successfully interacting with the first Wagering Opportunities (and thereby placing wagers through the corresponding first Wagering Events) results in non-zero virtual contributions to the bounty, on average, a predetermined percentage of the time—say 20%. Of course, it is possible that, for a very lucky player, the probabilities work such that virtual contributions are made for each of the first Wagering Events. Conversely, it is also possible that, for a singularly unlucky player, the probabilities work such that no virtual contributions are made in any of the first Wagering Events. However, a typical player’s in-game experience should usually fall somewhere between these two corner cases.

According to one embodiment, the bounty may be configured to increase (via the aforementioned virtual contributions) each time a first Wagering Event is generated, at random intervals throughout the game. According to another embodiment, the bounty may be configured to increase only some of the time. For example, the game may be configured to virtually contribute to the bounty a percentage (e.g., 10% or 15%) of the time a first Wagering Event is generated, thereby enhancing player anticipation and extending gameplay.

According to one embodiment, virtually contributions to the bounty may also be configured to occur at some of the time) such that a selectively greater portion of the reward is virtually contributed to the bounty when the player unsuccessfully interacts with one or more of the first Wagering Opportunities. Therefore, when a player fails to kill a zombie or accomplish any other required task, at least some of the time, a relatively greater portion of the reward or potential reward may be virtually contributed to the bounty. Conversely, for players that are more adept, dexterous, clever or lucky at successfully interacting with the first Wagering Opportunities, a relatively smaller virtual contribution to the bounty may be made. In this manner, some embodiments may at least partially compensate for less-able players by virtually contributing a greater amount to the bounty, thereby enabling such comparatively less-able players another chance at a greater payout, through successfully interacting with the second Wagering Opportunity.

According to embodiments, the bounty is independent of an amount of the funds accepted from the player, as it is gradually built up from virtual contributions over the course of the game and has only potential future value until earned by successfully interacting with the second Wagering Opportunity. Fig. 11 is a flowchart of another method according to one embodiment. In particular, Fig. 11 is a flowchart of a method of providing a game for a regulated gaming machine. Such a method may be carried out, for example, by a developer of games for regulated, wager-based games. As shown, Block B111 calls for providing an existing console-type game or arcade-type game. The provided game may natively comprise a plurality of game assets (characters, objects, etc.) appearing onscreen during game play that may be used as Wagering Opportunities that may trigger corresponding Wagering Events. In one embodiment, a new console-type or arcade-type game may be developed especially for this purpose. However, it may be beneficial to leverage the goodwill and fan base of popular existing games to appeal to particular demographics. For example, versions of popular games such as Halo, Call of Duty, Grand Theft Auto, Biohazard, Mass Effect and the like may be adapted for wager-based gaming according to embodiments.

As shown at B112, the provided game may be modified such that:
player interaction with selected ones of the plurality of game assets gives rise to first Wagering Opportunities and a second Wagering Opportunity, as shown at B113;

the game determines, using the accepted funds and a first Payout Schedule that defines a first RTP that is at least as great as the minimum overall RTP, whether and how much to reward the player whenever the player interacts with the first Wagering Opportunities to generate first Wagering Events, as shown at B114;

for at least some of the first Wagering Events generated, a portion of a reward due to the player is virtually contributed to a bounty, as shown at B115;

the second Wagering Opportunity is made selectively available for player interaction, as called for at B116; and

only when the player successfully interacts with the available second Wagering Opportunity, a second Wagering Event is generated and the player is rewarded an amount at least equal to the bounty according to a second Payout Schedule that defines a second RTP that is greater than the overall minimum RTP, the bounty being funded by a sum of the virtually contributed portions of the rewards due to the player for successfully interacting with the first Wagering Opportunities and wherein, on average, the overall maximum RTP of the game is not exceeded, as shown at B117.

As shown at B118, the modified (or newly-developed) game may be loaded into the regulated gaming machine, and placed on the casino floor, after having met all regulatory requirements.

FIG. 12 shows a wager-based regulated gaming machine configured according to embodiments. FIG. 12 also shows exemplary tangible, non-transitory computer-readable media having data stored thereon representing sequences of instructions which, when executed by the regulated gaming computing device, cause the regulated gaming computing device to determine rewards due to a player playing a wager-based game according to embodiments. As shown therein, reference number 1202 is a regulated gaming machine, also referenced herein as an electronic gaming device (EGD) and electronic gaming machine (EGM). The regulated gaming machine 1202 may comprise direct access data storage devices such as magnetic disks 1204, non-volatile semiconductor memories (EEPROM, Flash, etc.) 1206, a hybrid data storage device comprising both magnetic disks 1204 and non-volatile semiconductor memories, as suggested at 1205, one or more microprocessors 1208 and volatile memory 1210. The regulated gaming machine 1202 may also comprise a network interface 1212, configured to communicate over network 1214 with remote servers (not shown in FIG. 12). References 1204, 1205 and 1206 are examples of tangible, non-transitory computer-readable media having data stored thereon representing sequences of instructions which, when executed by a regulated gaming computing device, cause the regulated gaming computing device to determine rewards due to a player playing a wager-based game as described and shown herein. Some of these instructions may be stored locally in the gaming machine 1202, while others of these instructions may be stored (and/or executed) remotely and communicated to the gaming machine 1202 over the network 1214. In other embodiments, all of these instructions may be stored locally in the gaming machine 1202, while in still other embodiments, all of these instructions are stored and executed remotely, based on player interactions at the gaming machine 1202, and the results communicated to the gaming machine 1202. In another embodiment, the instructions may be stored on another form of a tangible, non-transitory computer-readable medium, such as shown at 1216. For example, reference 1216 may be implemented as an optical disk, which may constitute a suitable data carrier to load the instructions stored thereon onto the gaming machine 1202, thereby re-configuring the gaming machine to one or more of the embodiments described and shown herein. In other implementations, reference 1216 may be embodied as an encrypted Flash drive. Other implementations are possible.

In the foregoing description, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects and/or features of the exemplary embodiments. It will be apparent to one skilled in the art, however, that one or more aspects and/or features described herein may be omitted in favor of others or omitted all together. In some instances, the description of well-known process steps and/or structures are omitted for clarity or for the sake of brevity.

Herein, devices or processes that are described as being in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices or processes that are disclosed to be in communication with one another may communicate directly or indirectly through one or more intermediaries.

Further, although constituent steps of methods have been described in a sequential order, such methods may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described herein does not, in and of itself, indicate a requirement that the steps be performed in that order. The steps of described processes may be performed in an order that differs from the order described herein. Further, some steps may be performed simultaneously despite being described or implied as occurring non-simultaneously (e.g., because one step is described after the other step). Moreover, the illustration of a process by its depiction in a drawing does not imply that the illustrated process is exclusive of other variations and modifications thereto, does not imply that the illustrated process or any of its steps are necessary to one or more of the invention(s), and does not imply that the illustrated process is preferred over other processes.

When a single device or article is described, it will be readily apparent that more than one device/article (e.g., whether or not they cooperate) may be used in place of a single device/article. Similarly, where more than one device or article is described (e.g., whether or not they cooperate), it will be readily apparent that a single device/article may be used in place of the more than one device or article. The functionality and/or the features of a device may be alternatively embodied by one or more other devices that are not explicitly described as having such functionality/features.

Lastly, while certain embodiments of the disclosure have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods, devices and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and
systems described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure. For example, those skilled in the art will appreciate that in various embodiments, the actual physical and logical structures may differ from those shown in the figures. Depending on the embodiment, certain steps described in the example above may be removed, others may be added. Also, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Although the present disclosure provides certain preferred embodiments and applications, other embodiments that are apparent to those of ordinary skill in the art, including embodiments which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of the present disclosure is intended to be defined only by reference to the appended claims.

1. A method of determining rewards due to a player playing a regulated gaming machine, comprising:
 accepting funds from a player;
 providing, in the regulated gaming machine, a game configured such that player interaction with a plurality of games assets within the game gives rise to first wagering opportunities and a second wagering opportunity, the game being further configured to have an overall minimum return to player (RTP) and an overall maximum RTP;
 determining, using the accepted funds and a first payout schedule that defines a first RTP that is at least as great as the minimum overall RTP; whether and how much to reward the player whenever successful player interactions with the first wagering opportunities are received, to generate first wagering events;
 for at least some of the first wagering events generated, virtually contributing a portion of a reward due to the player to a bounty; and
 selectively making the second wagering opportunity available for player interaction;
 only when a successful player interaction with the available second wagering opportunity is received, generating a second wagering event and rewarding the player an amount at least equal to the bounty according to a second payout schedule that defines a second RTP that is greater than the overall minimum RTP, wherein the bounty is funded by a sum of the virtually contributed portions of the rewards due to the player for successfully interacting with the first wagering opportunities and wherein, on average, the overall maximum RTP of the game is not exceeded.

2. The method of claim 1, wherein the second wagering opportunity is only made available for player interaction after a predetermined number of first wagering events have occurred.

3. The method of claim 1, wherein the second wagering opportunity is only made available for player interaction after a predetermined period of time during which the player only interacts with the first wagering opportunities.

4. The method of claim 1, wherein the second wagering opportunity is harder to successfully interact with than are the first wagering opportunities.

5. The method of claim 1, further comprising displaying at least a portion of the bounty to the player.

6. The method of claim 1, wherein the player is not rewarded any of the bounty for unsuccessfully interacting with the second wagering opportunity.

7. The method of claim 1, wherein the bounty has no monetary value to the player until the player successfully interacts with the available second wagering opportunity.

8. The method of claim 1, further comprising making the second wagering opportunity available in a boss level of the game.

9. The method of claim 1, wherein rewarding the player an amount at least equal to the bounty comprises one of:
 rewarding the player with at least one of a randomly selected multiple, greater than 1, of the bounty, and
 rewarding the player with an amount equal to a sum of the bounty and an additional amount.

10. The method of claim 1, wherein the bounty is configured to increase at random intervals throughout the game.

11. The method of claim 1, further comprising virtually contributing a selectively greater portion of the reward to the bounty when unsuccessful player interactions with one or more of the first wagering opportunities are received.

12. The method of claim 1, wherein the second RTP defined by the second payout schedule is greater than the overall maximum RTP, without causing the overall maximum RTP of the game to be exceeded.

13. The method of claim 1, wherein the bounty is independent of an amount of the funds accepted from the player.

14. The method of claim 1, wherein virtually contributing is performed a selectable percentage of the times the first wagering events are generated.

15. A method of providing a game for a regulated gaming machine, comprising:
 providing an existing console-type game or arcade-type game, the provided game comprising a plurality of game assets appearing onscreen during game play;
 modifying the provided game such that:
 player interaction with selected ones of the plurality of game assets gives rise to first wagering opportunities and a second wagering opportunity;
 the game accepts funds from a player to play the game and to wager on the first and second wagering opportunities;
 the game has an overall minimum Return to Player (RTP) and an overall maximum RTP;
 the game determines, using the accepted funds and a first payout schedule that defines a first RTP that is at least as great as the minimum overall RTP, whether and how much to reward player interactions with the first wagering opportunities are received to generate first wagering events;
 for at least some of the first wagering events generated, a portion of a reward due to the player is virtually contributed to a bounty;
 the second wagering opportunity is made selectively available for player interaction; and
 only when a successful player interaction with the available second wagering opportunity is received, a second wagering event is generated and the player is rewarded an amount at least equal to the bounty according to a second payout schedule that defines a second RTP that is greater than the overall minimum RTP, the bounty being funded by a sum of the virtually contributed
portions of the rewards due to the player for successfully interacting with the first wagering opportunities and wherein, on average, the overall maximum RTP of the game is not exceeded; and loading the modified game into the regulated gaming machine.

16. An electronic, wager-based gaming device, comprising:

- a memory;
- a processor, and
- a plurality of processes spawned by the processor, the plurality of processes comprising processing logic to:
 - accept funds from a player;
 - provide a game configured such that player interaction with a plurality of games assets within the game gives rise to first wagering opportunities and a second wagering opportunity, the game being further configured to have an overall minimum Return to Player (RTP) and an overall maximum RTP;
 - determine using the accepted funds and a first payout schedule that defines a first RTP that is at least as great as the minimum overall RTP, whether and how much to reward the player whenever player interactions with the first wagering opportunities are received to generate first wagering events;
 - for at least some of the first wagering events generated, virtually contribute a portion of a reward due to the player to a bounty; and
 - selectively make the second wagering opportunity available for player interaction;
 - only when a successful player interaction with the available second wagering opportunity is received, generate a second wagering event and reward the player an amount at least equal to the bounty according to a second payout schedule that defines a second RTP that is greater than the overall minimum RTP; the bounty being funded by a sum of the virtually contributed portions of the rewards due to the player for successfully interacting with the first wagering opportunities in such a manner that, on average, the overall maximum RTP of the game is not exceeded.

17. A tangible, non-transitory computer-readable medium having data stored thereon representing sequences of instructions which, when executed by a regulated gaming computing device, cause the regulated gaming computing device to determine rewards due to a player playing a wager-based game by:

- providing, in the regulated gaming machine, a game configured such that player interaction with a plurality of games assets within the game gives rise to first wagering opportunities and a second wagering opportunity, the game being further configured to have an overall minimum return to player (RTP) and an overall maximum RTP;
- determining, using funds accepted from the player and a first payout schedule that defines a first RTP that is at least as great as the minimum overall RTP, whether and how much to reward the player whenever the player interacts with the first wagering opportunities to generate first wagering events;
- for at least some of the first wagering events generated, virtually contributing a portion of a reward due to the player to a bounty; and
- selectively making the second wagering opportunity available for player interaction;
- only when a successful player interaction with the available second wagering opportunity is received, generating a second wagering event and rewarding the player an amount at least equal to the bounty according to a second payout schedule that defines a second RTP that is greater than the overall minimum RTP; wherein the bounty is funded by a sum of the virtually contributed portions of the rewards due to the player for successfully interacting with the first wagering opportunities and wherein, on average, the overall maximum RTP of the game is not exceeded.

* * * * *