woO 2007/008506 A2 |00 0 00T AT O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 January 2007 (18.01.2007)

lﬂfb A0 0 R R

(10) International Publication Number

WO 2007/008506 A2

(51) International Patent Classification:

GOGF 9/45 (2006.01)
(21) International Application Number:
PCT/US2006/026081
(22) International Filing Date: 30 June 2006 (30.06.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

11/177,130 8 July 2005 (08.07.2005) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventor: TAN, Victor; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

(74) Agent: MICROSOFT CORPORATION; Attn.: Sharon
Rydberg, (sharonr-21/2029), LCA, International Patent De-
partment, One Microsoft Way, 21/2029, Redmond, WA
98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: SELECTIVE PRE-COMPILATION OF VIRTUAL CODE TO ENHANCE EMULATOR PERFORMANCE

(57) Abstract: A method and com-

201 puter-readable medium perform a pre-
2 0 __,J boot scan of an emulated binary to de-
Scan Emulated tect a function that is above a predeter-
mined complexity threshold. e de-
Code ined plexity threshold. The d
tected function may then be precom-
piled during a boot-up process. The
205 pre-boot scan may also detect a func-
203 tion that falls below a second predeter-
mined complexity threshold. The de-
———J tected function may be placed inline
Precompile Yes Detect Complex with the code body. Just-in-time trans-
H % i 2 lation may then be performed at run-
Function(s) Function(s)~ :
ime.
209 No
-
o 207
b . } Yesi Detect Simple |
i Inline Function(s) i«-----3 . :
: ®) : i Function(s)?
i No
e >
\/ 211

JIT Translation /
Execution

WO 2007/008506 A2 {000 0T 0000 0 000 0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2007/008506 PCT/US2006/026081

PERFORMANCE

FIELD OF THE INVENTION

[0001] The present invention relates generally to the field of software emulation. More
particularly, the present invention relates to the selective pre-compilation and inlining of virtual

code.

BACKGROUND OF THE INVENTION

[0002] When a software application such as a video game or the like is compiled, it is
typically converted into virtual code, such as an intermediate emulated binary that provides a
description of the application as well as instructions as to how the application is to run. A
software emulator performs a binary translation of a software application’s intermediate binary at
some point before the application is executed. Binary translation refers to the process of
converting the intermediate binary into a machine-executable binary that is specific to the type of
processor that will execute the code. The executable binary is then ready to be executed by the

processor for which it has been formatted.

[0003] One such binary translation method is referred to as “just-in-time” (“JIT”)
binary translation, which, as the name suggests, is a binary translation of software code that
occurs just before the code is to be executed. As a result, a particular intermediate binary may be
used on a variety of processors and computing platforms, as the processor-specific changes that
need to occur for the code to run successfully do not happen until just prior to execution. JIT
translation also provides relatively quick load and boot times because binary translation does not

occur during boot-up.

[0004] Unfortunately, JIT translation may adversely affect the execution of the code at
runtime. For example, a typical gaming system may be able to perform JIT translation during
runtime for most average-complexity graphics functions within the code without having-adverse
effects on the code’s execution (i.e., without affecting graphics rendering). However, if a
particularly complex graphics function is encountered — such as one involving a large segment of
artificial intelligence (“AI”) — there may not be sufficient processor resources available to
perform both the function translation and the code execution. A user may therefore notice a
momentary pause in code execution as a visible “flicker” or “stutter” during playback. As
programmers constantly strive for increased graphics realism, such delays are becoming more

and more undesirable.

WO 2007/008506 PCT/US2006/026081

[0005] Another translation method involves the use of a software precompiler. A
precompiler performs a binary translation of the entire static intermediate binary that represents a
software application’s code prior to execution. The translation typically occurs when the
software is being loaded during a boot-up process (at “load time”). While the use of a
precompiler provides for faster, interruption-free execution at runtime, the initial load time when
the precompiler performs the binary translation is lengthened. Thus, a user may expetience an
unreasonably long system boot time and, as a result, precompilers are typically not used for large

programs.

[0006] Another problem occurs at runtime in connection with executing relatively
simple functions within a machine-executable binary. For example, many functions involve calls
from the main body of the code to a subroutine. The call to the subroutine and the call return
from the subroutine (referred to as “context switching”) require processing time. For most
functions, the processing time required for the context switch is negligible when compared to the
processing time required to execute the function itself. However, if the function is very small the
processing time required for the context switch may become a sizable percentage of the overall
execution time required for the function. As a result, the execution of such a function as a
subroutine is less efficient than if the function was simply executed within the main body of the
code. This inefficiency can adversely affect the performance of JIT translation as well as code
execution because of the extra processing time that is taken up by the context switch. While
executing such a function as a subroutine may be inefficient, such subroutines in general
typically serve as a convenient tool for software developers. Thus, simply creating code that has

all such functions located in the main body of the code is undesirable.

[0007] Accordingly, there is a need for a mechanism that overcomes the above

shortcomings and drawbacks. The present invention satisfies this need.
SUMMARY OF THE INVENTION

[0008] In view of the above shortcomings and drawbacks, a method and computer-
readable medium are provided that perform a pre-boot scan of an emulated binary to detect a
function that is above a predetermined complexity threshold. The detected function may then be
precompiled during a boot-up process. The pre-boot scan may also detect a function that falls
below a second predetermined complexity threshold. The detected function may be placed inline
with the code body. Just-in-time translation may then be performed at runtime, where the
precompiled functions may be directly executed without further translation, and any function that

was moved inline may be executed without a context switch.

WO 2007/008506 PCT/US2006/026081

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is an example computing environment in which aspects of the present

invention may be implemented;

[0010] FIG. 2 is a flowchart illustrating an example method in accordance with an

embodiment of the present invention;

[0011] FIG. 3 is a block diagram illustrating an example code flow in accordance with

an embodiment of the present invention; and

[0012] FIGs. 4A-B are block diagrams illustrating an example modification of a code

flow in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

- [0013] The subject matter of the present invention is described with specificity to meet
statutory requirements. However, the description itself is not intended to limit the scope of this
patent. Rather, the inventors have contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or elements similar to the ones described in
this document, in conjunction with other present or future technologies. Moreover, although the
term “step” may be used herein to connote different aspects of methods employed, the term
should not be interpreted as implying any particular order among or between various steps herein

disclosed unless and except when the order of individual steps is explicitly described.
Example Computing Environment

[0014] FIG. 1 illustrates an example of a suitable computing system environment 100
on which the invention may be implemented. The computing system environment 100 is only
one example of a suitable computing environment and is not intended to suggest any limitation
as to the scope of use or functionality of the invention. Neither should the computing
environment 100 be interpreted as having any dependency or requirement relating to any one or

combination of components illustrated in the exemplary operating environment 100.

[0015] The invention is operational with numerous other general purpose or special
purpose computing system environments or configurations. Examples of well known computing
systems, environments, and/or configurations that may be suitable for use with the invention
include, but are not limited to, personal computers, server computers, hand-held or laptop
devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable
consumer electronics, network PCs, minicomputers, mainframe computers, distributed

computing environments that include any of the above systems or devices, and the like.

WO 2007/008506 PCT/US2006/026081

[0016] The invention may be described in the general context of computer-executable
instructions, such as program modules, being executed by a computer. Generally, program
modules include routines, programs, objects, components, data structures, etc. that perform
particular tasks or implement particular abstract data types. The invention may also be practiced
in distributed computing environments where tasks are performed by remote processing devices
that are linked through a communications network. In a distributed computing environment,
program modules may be located in both local and remote computer storage media including

memory storage devices.

[0017] With reference to FIG. 1, an exemplary system for implementing the invention
includes a general purpose computing device in the foronf a computer 110. Components of
computer 110 may include, but are not limited to, a processing unit 120, a system memory 130,
and a system bus 121 that couples various system components including the system memory to
the processing unit 120. The system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. By way of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced
ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral

Component Interconnect (PCT) bus also known as Mezzanine bus.

[0018] Computer 110 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and non-removable media. By way of
example, and not limitation, computer readable media may comprise computer storage media
and communication media. Computer storage media includes both volatile and nonvolatile,
removable and non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules or other
data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information and which can
accessed by computer 110. Communication media typically embodies computer readable
instructions, data structures, program modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” means a signal that has one or more of its characteristics set or
changed in such a manner as to encode information in the signal. By way of example, and not

limitation, communication media includes wired media such as a wired network or direct-wired

4.

WO 2007/008506 PCT/US2006/026081

connection, and wireless media such as acoustic, RF, infrared and other wireless media.
Combinations of the any of the above should also be included within the scope of computer

readable media.

[0019] The system memory 130 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that
help to transfer information between elements within computer 110, such as during start-up, is
typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on by processing unit 120. By way of
example, and not limitation, FIG. 1 illustrates operating system 134, application programs 135,

other program modules 136, and program data 137.

[0020] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard
disk drive 140 that reads from or writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152,
and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk
156 such as a CD ROM or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used in the exemplary operating
environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital
versatile disks, digital video tapé, solid state RAM, solid state ROM, and the like. The hard disk
drive 141 is typically connected to the system bus 121 through a non-removable memory
interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable memory interface, such as interface
150.

[0021] The drives and their associated computer storage media discussed above and
illustrated in FIG. 1, provide storage of computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for example, hard disk drive 141 is
illustrated as storing operating system 144, application programs 145, other program modules
146, and program data 147. Note that these components can either be the same as or different
from operating system 134, application programs 135, other program modules 136, and program
data 137. Operating system 144, application programs 145, other program modules 146, and
program data 147 are given different numbers here to illustrate that, at a minimum, they are
different copies. A user may enter commands and information into the computer 20 through

input devices such as a keyboard 162 and pointing device 161, commonly referred to as a mouse,

-5-

WO 2007/008506 PCT/US2006/026081

trackball or touch pad. Other input devices (not shown) may include a microphone, joystick,
game pad, satellite dish, scanner, or the like. These and other input devices are often connected
to the processing unit 120 through a user input interface 160 that is coupled to the system bus,
but may be connected by other interface and bus structures, such as a parallel port, game port or
a universal serial bus (USB). A monitor 191 or other type of display device is also connected to
the system bus 121 via an interface, such as a video interface 190. In addition to the monitor,
computers may also include other peripheral output devices such as speakers 197 and printer

196, which may be connected through an output peripheral interface 190.

[0022] The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router, a network PC, a peer device or
other common network node, and typically includes many or all of the elements described above
relative to the computer 110, although only a memory storage device 181 has been illustrated in
FIG. 1. The logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a
wide area network (WAN) 173, but may also include other networks. Such networking
environments are commonplace in offices, enterprise-wide computer networks, intranets and the

Internet.

[0023] When used in a LAN networking environment, the computer 110 is connected
to the LAN 171 through a network interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet. The modem 172, which may be
internal or external, may be connected to the system bus 121 via the user input interface 160, or
other appropriate mechanism. In a networked environment, program modules depicted relative to
the computer 110, or portions thereof, may be stored in the remote memory storage device. By
way of example, and not limitation, FIG. 1,illustrates remote application programs 185 as
residing on memory device 181. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the computers may

be used.
Example Embodiments

[0024] In the discussion that follows, details relating to code emulation and binary
translation are assumed to be known to those skilled in the art. Accordingly, such details are
largely omitted herein for the sake of clarity and explanation. In addition, an example
embodiment involving graphics rendering in the context of gaming software is used herein solely

for purposes of explanation, and is not intended to limit the invention to any such embodiment.

-6-

WO 2007/008506 PCT/US2006/026081

[0025] An embodiment of the present invention selectively combines JIT translation
and precompilation techniques to avoid pauses during a software application’s code execution. A
pre-boot scan of such code’s emulated binary may be performed to detect complex functions
within the binary. During the software’s boot process, an embodiment precompiles the detected
complex functions. At runtime, a JIT translation technique is used for the remainder of the
binary, while the precompiled functions may be executed directly and without further translation.
In addition, during such a pre-boot scan, an embodiment may detect very simple functions and
selectively relocate them to the main body of the code (a process referred to herein as
“inlining”). At runtime, the context switching that would otherwise be necessary to execute the

functions can be avoided.

[0026] A pre-boot scan of an embodiment may increase the amount of time required to
perform the initial boot process. However, because the precompilation and inlining operations
are applied selectively, the increase in boot time may be managed to remain within an acceptable
limit. Thus, code execution may be improved to avoid noticeable pauses without overextending

the application’s boot time.

[0027] Referring now to FIG. 2, an example method 200 of an embodiment is
illustrated. At step 201 emulated code, such as an intermediate binary of a video game, for
example, is scanned. Any type of scanning mechanism may be used. For example, one such
scanning method is described in commonly-assigned U.S. Application No. 11/128,699, filed
May 12, 2005 and entitled “Function-Level Just-in-Time Translation Engine with Multiple Pass
Optimization,” which is hereby incorporated by reference in its entirety. Scanning may involve,
for example, moving an instruction pointer or the like through the emulated code flow according
to relative instruction displacement techniques or the like, as should be known to those skilled in
the art. As the scan proceeds through the emulated code, function boundaries are determined to
establish the complexity of each function within the emulated code. The term “complexity” as
used herein refers to any measure of processing time or resources that would be required to
compile and/or execute the function. For example, complexity may be measured in terms of
function size (e.g., number of lines of code, etc.), processing difficulty or the like. For instances
involving functions that are referenced through function pointers, or another form of absolute
addressing, a binary-specific reference to such functions may be used to enable the

precompilation of step 211, below, to take place.

[0028] After the scanning of step 201 has completed, at step 203 a determination is
made as to whether one or more complex functions were detected. As noted above, what

constitutes a “complex” function may be based on any criteria. In addition, a predetermined

-7 -

WO 2007/008506 PCT/US2006/026081

threshold may be selected so that only functions exceeding the threshold are determined to be
complex. As noted above, a predetermined threshold may be in terms of lines of code. Thus, if a
function contains more than the threshold number of lines of code, the function may be
determined to be complex. The threshold may be predetermined based on any number of factors.
For example, the precompilation of step 205, to be discussed below, may increase the overall
boot-up time of the application. A developer or the like may wish to keep the increase in boot-up
time caused by such precompilation to within a certain limit. Thus, the threshold may be
selected, for example, to result in as many functions determined to be complex as can be

precompiled within the time limit.

[0029] If the determination of step 203 is that no functions are complex, method 200
may proceed to optional step 207. If the determination of step 203 is that one or more functions
are complex, then at step 205 the complex functions are compiled — which is referred to herein as
“precompilation” because such compilation takes place prior to the execution of the code (and
prior to any JIT translation). According to an embodiment, once the function has been

precompiled according to step 205, it is ready for execution without further processing.

[0030] At optional step 207, a determination is made as to whether one or more
“simple” functions are detected. As was the case with complex functions, what constitutes a
simple function may be based on any criteria. For example, a simple function may be defined as
a subroutine that has less than a threshold number of lines of code. The threshold may be
selected based on the processing time required by the context switch as compared to the
processing time required to execute the subroutine, for example. Additional factors may also be

considered, including application-specific factors.

[0031] For example, a particular subroutine may have fewer than the threshold number
of lines of code but may appear numerous times throughout the application’s code. The inlining
of a function may involve essentially copying the lines of code within the function to the main
body of code in place of the corresponding function call. Thus, during execution the function’s
code may be compiled and executed inline without having to context switch to and from the
subroutine from which the code originated. Such copying may increase the overall size of the
application because of the duplicated data. As a result, subroutines that appear numerous times
throughout an application may necessitate so much duplication that a processing benefit to be
gained from inlining the functions may be offset by increased storage requirements, excessive
processing time required for inlining numerous functions, efc. As a result, such functions may

not be determined to be simple, even if they would otherwise qualify according to the threshold.

WO 2007/008506 PCT/US2006/026081

[0032] ~ If one or more functions are determined to be simple in optional step 207, then
at optional step 209 the functions are placed inline with the main body of the application code.
As noted above, placing a code inline may entail copying the code from the subroutine or the like
and replacing a corresponding function call in the main body with the subroutine code. A
graphical representation of the effect of placing a function inline is illustrated in FIGs. 4A-B, to
be discussed below. If the determination of step 207 is that no functions were determined to be

simple in optional step 207, then method 200 proceeds directly to step 211.

[0033] At step 211, JIT translation of the emulated code takes place in connection with
the code’s execution by way of a runtime engine or the like. Because, as noted above, complex
functions have been precompiled in step 205, such functions do not need to be translated at step
211 and may be executed directly. In addition, a context switch does not need to be performed

for any functions that were placed inline at step 209.

[0034] As was noted above, the thresholds and factors used for determining whether a
function is complex or simple (and therefore whether the function should be precompiled or
placed inline, respectively) may be based on a variety of factors, including, but not limited to, the
desired boot time of the application. Thus, it will be appreciated that an embodiment permits a
developer or the like to determine an acceptable trade-off between the runtime benefit caused by

such precompilation and/or inlining and the corresponding increase in boot time.

[0035] FIG. 3 represents an example code flow in accordance with an embodiment.
Functions 310a-d represent functions within the main body 300 of an application’s virtual code.
During runtime, function 310a is translated using JIT translation process 320a. The code flow is
represented by arrow A that leads to JIT translation process 320a from function 310a, and then
once JIT translation process 320a has completed, arrow B indicates that function 310a is then
executed. The emulated binary then proceeds to function 310b by way of arrow C. Function
310b also undergoes JIT translation by process 320b, as represented by arrow A, and executed as
represented by arrow B. Once the binary reaches precompiled function 310c, however, no JIT
translation is required because precompiled function 310c, having already undergone translation
in accordance with, for example, step 205 of FIG. 2, is ready to be executed. The same is true for
precompiled function 310d. Thus, it can be seen that FIG. 3 provides an illustration of a modified

JIT translation process that may occur in accordance with an embodiment.

[0036] FIGs. 4A-B illustrate an example code flow in connection with the inlining of
code as was discussed above in connection with optional step 209 of FIG. 2. Referring to FIG.
4A, functions 410a-b are located within the main body 400 of an application. Subroutines 420a-b

are called from functions 410a-b, respectively, as indicated by arrow A, and the result of

-9.

WO 2007/008506 PCT/US2006/026081

subroutines 420a-b are returned to functions 410a-b as indicated by arrow B. As can be seen in
FIG. 4A, subroutine 420b is designated as “simple,” which indicates that it has, for example, less
than a threshold number of code lines, as was discussed above in connection with step 207 of
FIG. 2. The code flow from function 410a to function 410b within the main 400 is represented

by arrow C.

[0037] Referring now to FIG. 4B, function 410a and subroutine 420a are as was
discussed above in connection with FIG. 4A. However, it can be seen that function 410b does
not contain a call to subroutine 420b. Instead, function 410b proceeds to subroutine 420b that has
been placed in the main body 400 of the code. Thus, the call and return indicated by arrows A
and B is avoided for subroutine 420b. Subroutine 420b’ represents the memory occupied by the
original subroutine 420b that is not used because its code has been copied to the main body 400
of the code.

[0038] While the present invention has been described in connection with the
embodiments of the various figures, it is to be understood that other similar embodiments may be
used or modifications and additions may be made to the described embodiment for performing
the same function of the present invention without deviating therefrom. Therefore, the present
invention should not be limited to any single embodiment, but rather should be construed in

breadth and scope in accordance with the appended claims.

-10-

WO 2007/008506 PCT/US2006/026081

What is Claimed:

1. A method, comprising:
scanning virtual code having at least one function;

determining whether the at least one function exceeds a first predetermined threshold

during said scan;

if the at least one function exceeds the first predetermined threshold, precompiling the

function; and
performing a just-in-time translation of the virtual code.

2. The method of claim 1, wherein the predetermined threshold corresponds to a

predetermined complexify level.

3. The method of claim 2, wherein the complexity level corresponds to a predetermined

number of lines of code.

4, The method of claim 1, further comprising loading the virtual code during a boot-up

process, and wherein said scanning step is performed prior to said loading step.

5. The method of claim 1, wherein said precompiling step lengthens a virtual code boot-up
period by a duration of time, and wherein the first predetermined threshold is based on

the duration of time.

6. The method of claim 1, wherein the virtual code has a main body and at least one

subroutine, and further comprising:

determining that at the at least one subroutine has a complexity that is less than a second

predetermined threshold; and
placing the at least one subroutine in the main body of the virtual code.

7. The method of claim 6, wherein the at least one subroutine has a line of code and wherein

the main body has a function call corresponding to the subroutine, and wherein said

-11-

WO 2007/008506 PCT/US2006/026081

placitig step comprises copying the line of code from the at least one subroutine and

replacing the function call in the main body of the virtual code with the line of code.

8. The method of claim 7, further comprising a plurality of subroutines, and wherein said
placing step is performed only if the number of subroutines is below a third

predetermined threshold.

9. The method of claim 1, wherein the virtual code implements graphics rendering software.

10. A method, comprising:

performing a pre-boot scan of an emulated binary of a software application;

identifying a first function within the binary that exceeds a first predetermined threshold;

identifying a second function within the binary that requires a context switch for

execution and is below a second predetermined threshold;

precompiling the first function;

placing the second function inline in a main body of the emulated binary; and

performing a just-in-time translation of the emulated binary.

11. The method of claim 10, wherein the just-in-time translation produces a second binary

that is adapted to be executed by a predetermined processor.

12. The method of claim 11, further comprising executing the translated binary.

13. The method of claim 10, wherein the just-in-time translation is performed at a runtime of

the software application.

14. The method of claim 10, wherein the software application is gaming software.

15. The method of claim 10, wherein the first and second functions relate to graphics

rendering.

-12 -

WO 2007/008506 PCT/US2006/026081

16. A computer-readable medium having computer-executable instructions for performing a

method, the method comprising:
scanning virtual code having at least one function;
determining whether the at least one function exceeds a first predetermined threshold;

if the at least one function exceeds the first predetermined threshold, precompiling the

function; and
performing a just-in-time translation of the virtual code.

17. The computer-readable medium of claim 16, wherein the method further comprises
loading the virtual code during a boot-up process, and wherein said scanning step is

performed prior to said loading step.

18. The computer-readable medium of claim 16, wherein said precompiling step lengthens a
virtual code boot-up period by a duration of time, and wherein the first predetermined

complexity threshold is based on the duration of time.

19. The computer-readable medium of claim 16, wherein the virtual code has a main body

and at least one subroutine, and further comprising:

determining that at the at least one subroutine has a complexity that is less than a second

predetermined complexity threshold; and
placing the at least one subroutine in the main body of the virtual code.

20. The computer-readable medium of claim 19, wherein the at least one subroutine has a
line of code and wherein the main body has a function call corresponding to the
subroutine, and wherein said placing step comprises copying the line of code from the at
least one subroutine and replacing the function call in the main body of the virtual code

with the line of code.

-13 -

PCT/US2006/026081

WO 2007/008506

1/4

S8l SWVYOO0ud

[oo] [oooooo] o] o
T — > NOILVYII'lddV F mm:mu_n—
K JLONIA L9l
A 4
08 9alAeq i) oL ShL T
owm_m.Sn_s_oo 291 pieoafe) Bunuiod viva s%xowo% 4 | Swvooud W3LSAS
JLONTY WvHD0Md | oS | NOILVOITddY | ONILYN3dO
A A mw
NIOMION €a1y P> . sl [~
“ _ﬂm||||—l_\mv E [oooooo] W_
= 573
LLL ! 0) Il epeq
L [— —— \ S A weiboid
“ 0Z1 0071 05T aoepeju| 071 @oeMoU|
yomjeN || eoepojuyj aseuoy| Kiowapy fiowapy =
ealy [e20] | | MloMIoN nduj Jasn 3IeJOA-UON a[1Je[OA-UON Em._m%n_.-h_mn.v__%:uo
: a|qeAoway a[qeAOCISY-UON
“ A A A y Y —
| .| |9€} sweiboig
Lolsioyeads f«— v 121 sng wejshs g uoneojddy
| R Y 060 — Y
ST " 9} soepieyul aoeuIalU] oct [FET wayshs
961 Jojung < A» jeseydued 09pIA nu Bunesado
_ Indino Buisseooid 75T (Wvy)
| T
L6} Lo) | T som |
) “ (| TEL (Woy)
< m
!

WO 2007/008506 PCT/US2006/026081

2/4
201
200 |
Scan Emulated
Code
205
/J 203
J
Precompile Yes| Detect Complex
Function(s) Function(s)?

. . i Yesi Detect Simple
Inline Function(s) -4 ----- Function(s)?

--

JIT Translation /
Execution

FIGURE 2

PCT/US2006/026081

WO 2007/008506
330 3/4
310a 320a
__J
Function A » JIT Translation
-
B
C
l 310b 320b
_
Function A p JIT Translation
47
B
C
l 310c
Precompiled
Function
C
l 310d
Precompiled
Function

FIGURE 3

WO 2007/008506

PCT/US2006/026081

4/4
400
410a 420a
.,
Function ¢ A Subroutine
>
B
C
l 410b 420b
Function -t A Suproutlne
— (Simple)
B
FIGURE 4A
400
410a 420a
)
Function - A Subroutine
>
B
C
l 410b 420b
" T b
Function Subroutine :
' (Simple)
lo
420b
Subroutine
(Simple)

FIGURE 4B

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings

