发明名称
基于实时数字仿真器的电磁暂态与机电暂态混合仿真方法

摘要
本发明涉及一种基于实时数字仿真器的电磁暂态与机电暂态混合仿真方法，属于电力系统暂态仿真技术领域。采用机电暂态仿真系统对第一电力系统进行实时仿真计算，采用 RTDS 对第二电力系统进行电磁暂态实时仿真计算；机电暂态仿真系统通过接口进程控制系统将第一电力系统的电压和电流量传送给 RTDS，RTDS 利用电压和电流量对第二电力系统进行电磁暂态计算；RTDS 通过接口进程控制系统将仿真计算得到的第二电力系统的电压和电功率传递给机电暂态仿真系统，机电暂态仿真系统利用电压和电功率对第一电力系统进行机电暂态计算。本发明方法有助于了解大规模电力系统机电暂态过程的动态特性和某一特定部分的电磁暂态过程，可以协调仿真规模、精度和速度。
1. 一种基于实时数字仿真器的电磁暂态与机电暂态混合仿真方法，其特征在于该方法包括以下步骤:
 (1) 采用机电暂态仿真系统对第一电力系统进行机电暂态实时仿真计算；
 (2) 采用实时数字仿真器对第二电力系统进行电磁暂态实时仿真计算；
 (3) 在机电暂态仿真系统和实时数字仿真器之间设置一个接口进程控制系统；
 (4) 上述机电暂态仿真系统通过上述接口进程控制系统将仿真计算得到的第一电力系统的电压和电流量传递给实时数字仿真器，实时数字仿真器利用电压和电流量对第二电力系统进行电磁暂态计算；
 (5) 上述实时数字仿真器通过上述接口进程控制系统将仿真计算得到的第二电力系统的电压和电功率传递给机电暂态仿真系统，机电暂态仿真系统利用电压和电功率对第一电力系统进行机电暂态计算。
基于实时数字仿真器的电磁暂态与机电暂态混合仿真方法

技术领域
[0001] 本发明涉及一种基于实时数字仿真器的电磁暂态与机电暂态混合仿真方法，属于电力系统暂态仿真技术领域。

背景技术
[0002] 在电力系统运行过程中，电磁暂态与机电暂态过程是同时发生的。电磁暂态过程是指电力系统各个元件中电势和磁场及相应的电压和电流的变化过程，电磁暂态仿真用数值计算方法对电力系统中从几微秒到几毫秒之间的电磁暂态过程进行仿真。机电暂态过程是指电力系统中发电机和电动机电磁转矩的变化引起电机转子机械运动的变化过程。机电暂态过程仿真主要研究电力系统受到大干扰后的暂态稳定和小扰动后的静态稳定性能。RTDS是加拿大曼尼托巴直流研究中心开发的，国际上最成熟的电磁暂态实时仿真系统，但不具备机电暂态仿真功能，只能对特定的现象和范围进行仿真分析。

发明内容
[0003] 本发明的目的是提出一种基于实时数字仿真器的电磁暂态与机电暂态混合仿真方法，综合机电暂态仿真和电磁暂态仿真各自的优点，对大规模常规电力系统进行机电暂态实时仿真，对其中重点关注的局部网络或者特定的电力系统元件采用实时数字仿真器（以下简称RTDS）进行电磁暂态实时仿真。
[0004] 本发明提出的基于实时数字仿真器的电磁暂态与机电暂态混合仿真方法，包括以下步骤：
[0005] (1) 采用机电暂态仿真系统对第一电力系统进行机电暂态实时仿真计算；
[0006] (2) 采用实时数字仿真器对第二电力系统进行电磁暂态实时仿真计算；
[0007] (3) 在机电暂态仿真系统和实时数字仿真器之间设置一个接口进程控制系统；
[0008] (4) 上述机电暂态仿真系统通过上述接口进程控制系统将仿真计算得到的第一电力系统的电压和电流量传递给实时数字仿真器，实时数字仿真器利用电压和电流量对第二电力系统进行电磁暂态计算；
[0009] (5) 上述实时数字仿真器通过上述接口进程控制系统将仿真计算得到的第二电力系统的电压和电功率传递给机电暂态仿真系统，机电暂态仿真系统利用电压和电功率对第一电力系统进行机电暂态计算。
[0010] 本发明提出的基于实时数字仿真器的电磁暂态与机电暂态混合仿真方法，借助已有的实时数字仿真器电磁暂态实时仿真系统，利用其开放的输入、输出功能，将机电暂态计算功能附加在RTDS之上，形成统一的混合仿真系统，不但有助于了解大规模电力系统机电暂态过程的动态特性，而且有助于了解大规模电力系统中某一特定部分的电磁暂态过程，一定程度上可以弥补各自方法的不足，拓宽了电力系统数字仿真技术的研究范围，可以协调仿真的规模、精度和速度，为研究大规模电力系统的稳定性和动态特性提供了新的方法和途径。
附图说明
[0011] 图 1 是本发明方法的系统结构示意图。
[0012] 图 2 是本发明方法中使用的接口进程控制系统在电磁暂态与机电暂态混合实时仿真方法中的原理结构图。
[0013] 图 3 是接口进程控制系统中通信卡的结构框图。
[0014] 图 4 是接口进程控制系统中信号分配器的结构框图。

具体实施方式
[0015] 本发明提出的基于实时数字仿真器的电磁暂态与机电暂态混合仿真方法，其系统结构示意图如图 1 所示，包括以下步骤：
[0016] （1）采用机电暂态仿真系统对第一电力系统进行机电暂态实时仿真计算。本发明采用的机电暂态仿真系统名称为TH-STR2，由清华大学提出，该系统曾以“输电网优化规划算法和软件”的名称获得 1992 年国家教委科技进步一等奖，校经多年使用和逐步完善，已成为一套成熟的机电暂态仿真系统。
[0017] （2）采用实时数字仿真器对第二电力系统进行电磁暂态实时仿真计算。本发明采用的实时数字仿真器（RTDS），是由加拿大 Manitoba 直流研究会提出，国际上最成熟的电磁暂态实时仿真系统，已在国内外得到广泛应用；
[0018] （3）在机电暂态仿真系统和实时数字仿真器之间设置一个接口进程控制系统；
[0019] （4）上述机电暂态仿真系统通过上述接口进程控制系统将仿真计算得到的第一电力系统的电压和电流量传递给实时数字仿真器，实时数字仿真器利用电压和电流量对第二电力系统进行电磁暂态计算；
[0020] （5）上述实时数字仿真器通过上述接口进程控制系统将仿真计算得到的第二电力系统的电压和电功率传递给机电暂态仿真系统，机电暂态仿真系统利用电压和电功率对第一电力系统进行机电暂态计算。
[0021] 上述方法中，在机电暂态仿真系统和实时数字仿真器之间，设置了接口进程控制系统，该接口进程控制系统与机电暂态仿真系统和实时数字仿真器的系统结构如图 2 所示。从图 2 中可以看出，该接口进程控制系统包括：
[0022] 通信卡，用于通过计算机上的并行总线接收机电暂态仿真系统对第一电力系统的机电暂态仿真计算结果，并将该计算结果发送至信号分配器，同时接收来自信号分配器的实时数字仿真器对第二电力系统的电磁暂态仿真计算结果，并将该计算结果通过并行总线发送至计算机；
[0023] 信号分配器，将接收的上述计算结果发送至实时数字仿真器，同时接收来自实时数字仿真器对第二电力系统的电磁暂态仿真计算结果，并将该计算结果发送至通信卡；
[0024] 通信卡和信号分配器之间通过光纤连接。
[0025] 上述接口进程控制系统中，所述的通信卡的结构框图，如图 3 所示，包括：
[0026] 程序存储器，用于存储中央处理器的程序代码，程序存储器与中央处理器相连接；
[0027] 数据存储器，用于存储中央处理器的数据，数据存储器与中央处理器相连接；
[0028] 并行总线接口控制器，用于根据计算机并行总线协议，接收或发送计算机与中央处理器之间的通信数据，并行总线接口控制器与中央处理器相连接；
[0029] 中央处理器，用于通过并行总线接口控制器接收机电暂态仿真系统对第一电力系统的机电暂态仿真计算结果，并将该计算结果发送至网络控制器，同时通过网络控制器和光信号收发器接收实时数字仿真器对第二电力系统的电磁暂态仿真计算结果，并将该计算结果通过并行总线接口控制器发送至计算机；
[0030] 网络控制器，用于将中央处理器产生的信号转换成网络协议后，发送至光信号收发器，同时接受光信号收发器的信号，并发送至中央处理器，网络控制器与中央处理器相连接；
[0031] 光信号收发器，用于将网络控制器的电信号转换成光信号后，将光信号发送至信号分配器，同时将接收自信号分配器的光信号转换成电信号后发送至网络控制器，光信号收发器与信号分配器相连接。
[0032] 上述接口进程控制系统中，所述的信号分配器的结构框图，如图4所示，包括：
电源模块，用于为信号分配器提供电源，输入为220伏交流电压，输出为正5伏、正负15伏和正负24伏直流电压；
通讯模块，用于接收通信卡中光信号收发器的光信号，并将光信号转换为电信号，将电信号经自定义总线发送至数模转换器，同时通过自定义总线接收数模转换器的电信号，将电信号转换为光信号，发送至通讯卡中的光信号收发器；
数模转换器，用于将通讯模块发送的数字信号转换成模拟信号，并将该模拟信号发送至实时数字仿真器；
模数转换器，用于将实时数字仿真器发送的模拟信号转换成数字信号，并将该数字信号发送至通讯模块；
[0037] 电源模块、通讯模块、数模转换器和模数转换器分别通过自定义总线相连接。
[0038] 上述接口进程控制系统的实施例中，通信卡所用的主要部件如下：
中央处理器采用美国TI公司的数字信号处理器(DSP)，型号为TMS320DM642；
[0040] 程序存储器采用美国SST公司型号为SST39VF040的快速存储器；
[0041] 数据存储器采用美国Microchip公司型号为93LC66B的可擦除的快速存储器；
[0042] 并行总线接口控制器采用美国PLX公司型号为PEX8112的接口芯片；
[0043] 网络控制器采用美国DAVICOM公司型号为DM9000A的太网接口芯片；
[0044] 光信号收发器采用中国武汉灵创公司的多模收发器，型号为L-TR0323；
[0045] 信号分配器所用的主要部件如下：
通讯模块分别采用美国TI公司型号为TMS320VC33的数字信号处理器(DSP)；美国DAVICOM公司型号为DM9000A的太网接口芯片及中国武汉灵创公司型号为L-TR0323的多模收发器；
数模转换器采用美国BB公司的16位精度的数字量/模拟量转换芯片，型号为DAC7744E；
模数转换器采用美国ADI公司的16位精度的模拟量/数字量转换芯片，型号为AD7656；
电源模块采用美国TI公司型号为TPS54310PW的电源芯片。
图 4