- * [iR et

T

AUV O R

AU9186028

(12) PATENT ABRIDGMENT {11) pocumentno. AU-B-86028/91
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 644477
(54) Title

RULE DRIVEN TRANSACTION MANAGEMENT SYSTEM AND METHOD

interndtional Patent Classification(s)
(51) GO6F 015/40
(21) Application No. : 86028/91 {22) Application Date : 21.10.91
(30) Priority Data
(31) Number (32) Date (33) Country

601990 23.10.90 US UNITED STATES OF AMERICA
(43) Publication Date : 30.04.92
(44) Publication Date of Accepted Application : 09.12.93
(71) Applicant(s)

DIGITAL EQUIPMENT ‘CORPORATION
(72) Inventor(s)

JOHANNES KLEIN; ALBERTO LUTGARDO; EDWARD YJH-UEI CHANG; EDWARD CHI-MAN

CHENG; DORA LAI-WAN LEE; EDWARD SZE LU
(74) Attorney or Agent

DAVIES COLLISON CAVE , 1 Little Collins Street, MELBOURNE ViC 3000
(56) Prior Art Documents

US 5021945

US 4903196

US 4891753
(57) Claim

1. In a computer system, a method of performing distributed computatjons, the steps

of the method performed by said computer system comprising:

providing a set of cooperating computational agents to perform each distributed
computation, each computational agent being programmed to progress through a sequence
of state transitions among a predefined set of states;

defining and storing in at least one computer memory a plurality of distinct
predicates that can be assigned to ones of said computational agents, each distinct
predicate specifying a distinct state transition dependency between state transitions of first
and second specified ones of said computational agents; each said defined predicate
specifying a state transition of said first computational agent that is to be blocked until
said second computation agent performs a specified action that satisfies said each defined
predicate;

dynamically assigning a set of predicates to the set of computational agents
performing each distributed computation so as to define a corresponding set of state
transition interdependencies between said set of computational agents; wherein =ach

assigned predicate is sclected from said plurality of predicates, and different . . of

/2

. — = - R e T

——mees o T

(11) AU-B-86028/91 -2-
(10) 644477

predicates are assigned to the sets of computational agents for different distributed
computations;

performing each distributed computation with said set of computational agents
provided for that distributed computation, including blocking state transitions by ones of
said set computational agents in accordance with said predicates assigned to said set of
computation agents, and allowing each said blocked state transition to proceed when said

action specified by the corresponding predicate is performed.

5. A computer system for performing distributed computations, comprising:

a set of cooperating computational agents for performing each distributed
computation, each computational agent being programmed to progress through a sequence
of state transitions among a predefined set of states;

at least one computer memory;

a plurality of distinct predicates, stored in said computer memory, that can be
assigned to cnes of said computational agents, each distinct predicate specifying a distinct
state transition dependency between state transitions of first and secend specified ones
of said computational agents; each said defined predicate specifying a state transition of
said first computational agent that is to be blocked until said second computation agent
performs a specified action that satisfies said each defined predicate;

a distributed computation coordinator for dynamically assigning a set of predicates
to the set of computational agents performing each distributed computation so as to define
a corresponding set of state transition interdependencies between said set of
computational agents; whercin each assigned predicate is selected from said plurality of
predicates, and different sets of predicates are assigned to the sets of computational
agents for different distributed computations;

means for performing each distributed computation with said set of computational
agents for that distributed computation;

said set of computational agents for each distributed computation including means
for blocking state transitions by said set of computational agents in accordance with said
predicates assigned to said set of computation agents; and

said distributed computation coordinator including means for allowing each said
blocked state transition to proceed when said action specified by the corresponding
predicate is performed.

. e

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S):

Dlgital Equipment Cotporation

ADDRESS FOR SERVICE:
DAVIES & COLLISON

Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

INVENTION TITLE:

Rule driven transaction management system and method

e —————— g e T TTae s

The following statement is a full description of this invention, including the best method

of performing it known to me/us:-

i v+ st - i - e b e —a i

10

15

1a

The present invention relates generally to distributed database systems and
transaction processing computer systems, and is particularly related to methods

and systems for synchronizing computations in distributed computer systems.

BACKGROUND OF THE INVENTION

Referring to Figure 1, the present invention concerns interactions and
interdependencies of agents 102-1 through 102-N cooperating in a distributed
processing computer system 100. Depending on the operating system used,
each agent may be a thread or process, and thus is a unit that executes a
computation or program. Some of the agents 102-1 through 102-N may be
executing on a single common data processing unit while others are executing
at remote sites on other data processing units. More generally, agents can
be hosted on different computer systems using different operating systems.
Forthe purposes of the present discussion, it is sufficient to assume that there
is a communications path or bus 110 which interconnects all the agents in the
system 100.

in a typical system 100, some of the agents will be resource managers, such

as a database management server (DBMS), while other agents will be

computational units working directly on behalf of the users of the system. For

A-53174/GSW, PD30-0344

-y - - —— g e ¢ e -

10

15

20

25

— ~—r~ CRTNY mTg e v = Wyewe w o w p vt v ~ T - — - wrrv—w - _— -

2.

those not familiar with transaction (database) processing, a DBMS is a program
which handles all access to a particular database, thereby relieving users of
the system from having to deal with such complicated technical problems as
efficiently storing data and sharing data with a community of users.

In a transaction processing system such as an airline reservation system, agents
will be created dynamically as requests are made at reservation terminals. Each
agent is created by portions of the system to handle various aspects of the work
associated with any particular query or set of queries or updates being sent
by a particular reservation terminal.

The present invention concerns a general methodology for interlinking these
agents 102 so as to maintain data consistency and to define and enforce
interdependencies between the calculations being performed by various ones
of the agents. For instance, one agent 102-1 might generate a query that
results in the formation of two child agents 102-2 and 102-3, each of which
will handle database operations in different portions of the distributed database.
At the time that the two child agents 102-2 and 102-3 are created, the present
invention defines exactly how these agents are interdependent, and sets up
the necessary data structures to denote those interdependencies, as will be
explained in more detail below.

Each agent 102 represents a particular computation as a finite state machine
which progresses through a sequence of intemal states. Complex computations
are mapped by their agents into simpler sets of states suitable for
synchronization with other computations. Atypical sequence of state transitions
for an agent is shown in Figure 2. Definitions of the states 121-127 for the
agent shown in Figure 2 are listed in Table 1.

A-53174/GSW, PD90-0344

= L = —— e e Aeiieeie - COMMEN Mo e hih e e e o

10

15

20

25

30

T T T -
-3-
TABLE 1
REF STATE NAME DESCRIPTION

120 Active
121 Finishing

Performing a computation

Computation is complete and waiting for one or
more finish pre-conditions to be satisfied
Computation is complete and all
pre-conditions have been satisfied
Check on whether agent is able to commit the
transaction

Agent is prepared to commit or abort

Agent is unconditionally committed. Results of
computation become visible.

122 Finished finish
123 Preparing

124 Prepared
125 Committing

126 Aborting Rollback objects affected by computation so as to
leave everything as it was before computation
began

127 Forgotten Computation completed or aborted and purged from
system

In a typical transaction processing system, the process running in an Agent
can be aborted due to aninternal error condition at any time untilthe processes
is prepared. Typical internal error conditions which might cause a process to
abort include a "divide by zero", an attempt to execute an illegal instruction due
to a programming error, an unauthorized attgrfipt 10 access privileged system
resources, or the unavailability of a resource needed to complete the
computation. Once the agent has prepared, this means that the agent
guarantees that it can save the resuits ofits computation in a permanent fashion
if the distributed transaction commits, and that it can rollback the results of the
transaction so as to leave everything as it was before the transaction began

should the distributed transaction fail to commit.

A-53174/GSW, PD90-0344

T o w -

10

15

20

25

o oo m v o o ew e e ~

-4 -

The present invention provides a very general and flexible system and method
for making state transitions in each agent dependent on the status of other
agents cooperating in the distributed process.

"STANDARD" TWO PHASE COMMIT PROTOCOLS.
The prototypical situation discussed in the "transactional processing” computer

science literature is a distributed database management system. More
particularly, there is a well known prior art protocol used in transactional
processing called "two phase commit”, often abbreviated as 2PC. There are
many variations of 2PC used in commercial systems and/or discussed in the

literature, some of which will be discussed in detail below.

It is important to note that the present invention is not simply a method of
implementing two phase commit protocols. To the contrary, the present
invention provides a method of defining and enforcing a wide range of
interdependencies between cooperating agents. On the other hand, it is
important to understand how at least a standard two phase commit protocol
works.

Referring to Figure 3, "standard" two phase commit works as follows. A
transaction T1 involves at least two data processing units. For example, the
transaction may involve three agents, herein called Agent A 130, Agent B 132
and Agent C 134. Assuming that nothing goes wrong during execution of the
transaction T1, each agent performs the computations associated with the
transaction and stores new values computed during the transaction in such a
way that the transaction can still be reversed or aborted, thereby leaving the
database unchanged. As will be understood by thase skilled in the ar, there
are a number of different methods of doing such "rolibacks" and the particular

A-53174/GSW, PD90-0344

e e e et —n note e e mn . et My . MeoMGMBN . emn o e e

10

15

20

25

-5-

method used for making the transaction reversible is not important to the present
invention.

At some point in the transaction, one of the Agents, here Agent C, is assigned
the role of "coordinator" of the two phase commit protocol. The coordinator
sends a first message, called a Prepare message 140, which notifies all Agents
to the distributed transaction that the transaction is now to be terminated, and
hopefully committed. Each Agent to the transaction then attempts to Prepare
itself. Essentially, this means that the state of the database before the
transaction and the state of the database after the transaction are durably
stored. The Agent thus checks that either one of these states can be
guaranteed to be installed, depending on whether the transaction COMMITs
or ABORTSs.

Each Agent then votes on the disposition of the transaction by sending a
READY or ABORT message 142 back to the coordinator. If the attempt by
an Agent to prepare fails, or any preceding step of the transaction fails, the
Agent votes to ABORT. If the attempt to prepare succeeds, then the Agent
votes READY (i.e., thatitis ready to commit). Any Agentthat has voted READY
is said to be prepared.

When the coordinator has received votes from all the Agents participating in
the transaction, it knows the disposition of the transaction. The coordinator
COMMITs the transaction if all Agents have voted READY. [f any Agent voted
ABORT, or an Agent fails to respond to the Prepare message within a
predefined amount of time, then the coordinator ABORTS the transaction. In
either case the coordinator sends a transaction disposition message 144 (i.e.,
COMMIT or ABORT) to all Agents.

A-53174/GSW, PD90-0344

e e S0 DU U PSR SO PIE V=S S

r——— e v~y T g—————— o g v ——

-~y e

10

15

20

25

rr——— ey e ————— pr— g —

-6 -

When an Agent receives the transaction disposition message, it terminates the
transaction according to its direction. If the disposition is COMMIT, the agent
installs updated data values in the database. !f the disposition is ABORT, the
state of the database before the transaction is re-installed. The Agents send
an acknowledgement message 146 back to the ceordinator 134 upon stably

storing the transaction disposition.

It should be noted that the Agent 134 which acts as coordinator performs the
same functions as the other Agents during the 2PC protocol, except that it starts
the 2PC protocol and it collects the READY/ABORT votes of the other Agents.
Furthermore, this Agent goes through the prepare and commit phases of the
transaction. For all intents and purposes, the coordinator can be thought of
as a separate entity, even though it runs on the node of the system occupied
by one of the Agents.

OTHER TYPES OF PROTOCOLS AND INTER-AGENT DEPENDENCIES
it should be noted that there are a number of multi-phase commit protocols

known in the prior art. There are also a number of different versions of the

two-phase commit protocol described above.

One basic limitation of 2PC protocols, regardless of the particular type of 2PC
protocol used in any particular system, is the fact that there is just one type
of interdependency between agents - that is the only type of interdependency
in such a system is the "2PC type" of interdependency. There is generally no
provision for having multiple types of interdependencies within a single
distributed system, and most definitely no provision for having different types

of dependencies between various agents of a single transaction.

A-53174/GSW, PD90-0344

10

15

20

25

30

-7-

Another basic limitation in 2PC protocols is that the 2PC protocol is generally considered
to define a single unitary relationship between a set of cooperating agents. The software
for handling the 2PC software is generally a hardwired type of program which does not
vary from situation to situation. This makes it rather difficult to form communications
between two computer or transactional processing systems which use different 2PC

protocols.

However, in the realm of transactional processing and other distributed processes, there
are wide pumber of different types of interagent dependencies which are useful in
different situations. For instance, in some instances, it may only be necessary for one
agent to finish its computation before another agent is allowed to finish. In another
example, agents may be "nested" so that the pature of the dependence of one agent on
a second agent depends on whether that second agent finishes or fails to finish its

computation.

More generally, given any set of state transitions that may be defined for a particular
agent, it would be useful to be able to make each of those state transitions dependent on
the status of one or more other agents. Furthermore, the set of dependencies between
each pairing of agents may depenid (i.e., they may differ, depending) on the roles those
agents are playing in a particular transaction. 2PC does not provide any of the flexibility

needed for defining and implementing such a wide variety of types of dependencies.

SUMMARY OF THE INVENTION

According to the present invention there is provided in a computer system, a method of
performing distributed computations, the steps of the method performed by said computer
system comprising:

providing a set of cooperating computational agents to perform each distributed
computation, each computational agent being programmed to progress through a sequence
of state transitions among a predefined set of states;

defining and storing in at least one computer memory a plurality of distinct

predicates that can be assigned to ones of said computational agents, each distinct

930921,p:\oper\gep,86028.c,7

10

15

20

25

30

- 8-

predicate specifying a distinct state transition dependency between state transitions of first
and second specified ones of said computational agents; each said defined predicate
specifying a state transition of said first computational agent that is to be blocked until
said second computation agent performs a specified action that satisfies said each defined
predicate;

dynamically assigning a set of predicates to the set of computational agents
performing each distributed computation so as to define a corresponding set of state
transition interdependencies between said set of computational agents; wherein each
assigned predicate is. selected from said plurality of predicates, and different sets of
predicates are assigned to the sets of computational agents for different distributed
computations;

performing each distributed computation with said set of computational agents
provided for that distributed computation, including blocking state iransitions by ones of
said set computational agents in accordance with said predicates assigned to said set of
computation agents, and allowing each said blocked state transition to proceed when said

action specified by the corresponding predicate is performed.

The invention also provides a computer system for performing distributed computations,
comprising:

a set of cooperating computational agents for performing each distributed
computation, each computational agent being programmed to progress through a sequence
of state transitions among a predefined set of states;

at least one computer memory;

a plurality of distinct predicates, stored in said computer memory, that can be
assigned to ones of said computational agents, each distinct predicate specifying a distinct
state transition dependency between state transitions of first and second specified ones
of said computational agents; eack said defined predicate specifying a state transition of
sa:d first computational agent that is to be blocked until said second computation agent
performs a specified action that satisfies said each defined predicate;

a distributed computation coordinator for dynamically assigning a set of predicates
to the sei of computational agents performing each distributed computation so as to define

a corresponding set of state transition interdependencies between said set of

930921, pNoperigep,86028.c,8

A S i e i s it . T, A iR 8 e e

s e

10

15

20

- 8a -

computational agents; wherein each assigned predicate is selected from said plurality of
predicates, and different sets of predicates are assigned to the sets of computational
agents for different distributed computations;

means for performing each distributed computation with said set of computational
agents for that distributed computation;

said set of computational agents for each distributed computation including means
for blocking state transitions by said set of computational agents in accordance with said
predicates assigned to said set of computation agents; and

said distributed computation coordinator including means for allowing each said
blocked state transition to proceed when said action specified by the corresponding

predicate is performed.

In the preferred embodirhent, the primary types of dependencies between computational
agents are: (1) finish dependency, in which one agent cannot finish until after a specified
other agent finishes or aborts prior to finishing; (2) strong commit dependency, in which
one agent carmot commit unless another specified agent has committed or is prepared to
commit; and (3) weak commit dependency, in which if one agent finishes, another
specified agent cannot commit unless and until the one agent has committed or is

prepared to commit.
BRIEF DESCRIPTION OF THE DRAWINGS
Additional objects and features of the invention will be more readily apparent from the

following detailed description and appended claims when taken in conjunction with the

drawings, in which:

930921 p\operigep,86028.0,8

10

15

20

25

-9-

Figure 1 is a block diagram of a distributed data processing system with a
number of interdependent agents.

Figure 2 schematically depicts a set of state transitions in an agent.
Figure 3 schematically depicts the protocol known as two phase commit.

Figure 4 is a block diagram of the components of a computer system
incorporating the present invention.

Figure 5 depicts data structures in an agent control biock.
Figure 6 depicts a state table used to handle the processing of messages
received by an agent participating in a distributed transaction in the preferred

embodiment.

Figure 7 is a flow chart of the process for handling the receipt of an event
message.

Figure 8 depicts the symbols used to three types of interagent dependencies.
Figure 9 depicts a flat transactional model.

Figures 10A-10C depict three types of nested transactional models.

Figures 11A and 11B depici3 two open-nested transactional models.

Figure 12 depicts the agents of a fransaction using a mixture of flat and nested
transaction models.

A-53174/GSW, PD90-0344

10

15

20

25

-10 -

Figures 13A and 13B depicts agents and their interdependencies for a
transaction using a resource server in two different computer settings.

Figure 14 depicts agents of distinct transactions, each utilizing a distinct

resource conflict resolution rule.
DESCRIPTION OF THE P¥*sFERRED EMBODIMENT

Referring to Figures 4 and 5, the present invention provides a system and
method for "normalizing” disparate applications and other programs so that the
status of each such application and the application’s passage through various
milestones in its computational process is controllable and accessible to a
centralized manager. Another way to look at the invention is that for each
distinct program or execution thread, the invention defines a set of states that
denote the status of the computation being performed. This set of states is
typically very simple, because states are defined only for those state transitions
that are relevant to the centralized manager. Even for adatabase management
system which has a virtually unlimited number of possible internal states, the
present invention defines an "agent” which has only a handful of "states". Thus,
when this document uses the terms "state" and "state transitions” in terms of
the present invention, these are the states and state transitions of an agent,
not the internai states and state transitions of the agent's application program.

Each agent 200-204 in the preferred embodiment consists of an application
program 210 or resource manager program 212 coupled to an application
interface program 214 that implements the state machine for the agent. Each
agent also has a message queue 220 for receiving messages.

A-53174/GSW, PD90-0344

J— e = TS T —— - .- . + rp—— c e p— - pgtn - = Ty e e < v ey ¥
~ s x® v R —y ol s .

10

15

20

25

<11 -

An event synchronizer 230 comprises the central controller for coordinating

(synchronizing) state transitions among the agents of a distributed computation

or transaction. In the preferred embodiment, the event synchronizer 230 is

called a transaction manager because it performs the functions of atransaction

manager in a transaction processing system. For each agent 200, the

transaction manager 230 defines and stores a control block 232 in an array

of shared memory 240. Each control block 232 includes slots 242-256 for

denoting the following information:

slot 241 denotes the agent’s transaction identifier, which is a unique
identifier assigned to the agent upon creation of the agent by the
transaction manager 230;

slot 242 stores the current state of the agent;

slot 243 stores a pointer to a resource conflict resoiution routine, which
will be discussed below in the section of this document entitled "Resource
Conflict Resolution”;

slot 244 is a pointer to a wait list, which is a set of other agents waiting
on the agent corresponding to this control block;

slot 246 is a pointer to the agent's message queue 220, which enables
the agent to pick up messages sent by the transaction manager;

slot 248 is a list of all the dependencies between the agent corresponding
{o this control block and other agents;

slot 250 is list of pre-conditions, which are predicates that must be
satisfied before a particular state transition in the agent can be allowed
to occur,

slot 252 is a list of post-conditions, which are buffered event messages
that could not be processed at the time they were received;

slot 254 contains binary "dependency” flags, which facilitate quick
checking of the types of dependencies that are present in the
dependency list 246; and

A-53174/GSW, PD90-0344

10

15

20

25

- 12 -

- slot 256 is a pointer to a state transition table 260, which in turn, denotes
the subroutines 262 to be used for responding to each type of message
received by the agent.

Forinstance, if Agent A’s state transition from State 1 to State 2 is dependent
on Agent B having reached State C, that dependency is denoted in Agent A’s
dependency list 248, and Agent B's dependency list contains an item that
denotes a "negative" or complementary dependency.

The form of the dependency list 248 is shown in Figure 5. Each item in the
agent’s list of dependencies 248 is denoted as a dependency type, and the
identifier of another agent. The dependency type indicates the type of
relationship between the two agents, such as a type of state transition in the
agent that is dependent on (i.e., cannot proceed until) a particular state transition
in the other agent. Typically, each relationship between two agents is denoted
by complementary entries in the dependency lists of the two agents.

Each dependency item is translated into one or more pre-conditions, and
corresponding entries are made in the pre-condition list 250. Pre-conditions
corresponding to each dependency are denoted in the pre-condition list 250
by listing the state-transition for which a predicate is being defined, the identifier

of the other agent on which that state-transition depends, and the eventin that

other agent which must occur before the denoted state-transition is allowed
to proceed.

Post-transition actions in the preferred embodiments are requirements that the

agent send a message to another agent when a specified event in the agent
occurs. Upon each state transition, the state transition routine which performs

A-53174/GSW, PD90-0344

e - ———y

10

15

20

25

-13-

that transition inspects the dependency list 248 and sends event messages
to each other agent which is dependent on that state transition.

When an event message is received prior to the agent reaching the state in
which it would needs that message, such as receiving a commit message while
the receiving agent is still active, that message is stored as a post-condition
in the post-condition list 252. Each stored post-condition item denotes (1) the
state or event in the receiving agent which must be reached before the stored
message can be processed, (2) the identity of the sending agent, and (3) the
event in the sending agent. Once the receiving agent reaches the denoted
state, the post-condition is processed in the same way as a received message
(see description of Figure 7, below).

Some dependency types generate a plurality of post-condition entries in the
post-condition list, because the depending agent needs to know not only if a
particular normal state transition occurred, but also heeds to be informed if an

abnormal termination occurred, causing the first agent to abort.

Examples of pre-conditions and post-conditions for specific types of
dependencies will be given below.

The conirol block 232 for each agent is used by both the interface program
214 of each agent and by the transaction manager 230. In particular, prior to
each state transition, the interface program inspects the agent’s control block
232 to determine whether that state transition is dependent on an event external
to the agent (i.e., it depends on the occurrence of an event in some other
agent). This is done simply by looking in the control block to see if there is
an outstanding pre-condition for that particular state transition. [f so, the

interface program suspends the agent’s application program until such time

A-53174/GSW, PD90-0344

10

15

20

25

-14 -

that all pre-conditions for the state transition are removed by the transaction
manager 230.

In addition, each agent’s interface program 214 responds to messages from
the transaction manager to perform various protocols, such as beginning a
computation, aborting the agent’s computation, and ending a transaction.

The transaction manager 230 is responsible for enforcing dependencies between
agents participating in a transaction, which are denoted in the control blocks
232 of those agents. To do this, the transaction manager 230 generates
multiple instances of a transaction processor 270. The transaction processofs
270 maintain the control blocks 232 of the agents participating in the transaction,
and handie the flow of messages to and from the agents required for continued
processing of the transaction.

Messages generated by each agent concerning events in the agent are
transmitted to and temporarily stored in the transaction manager’'s message
queue 272. When a transaction processor instance 270 picks up an event
message from this message queue 272 (step 300 in Figure 7), the transaction
processor 270 identifies the agent to which the message is directed, if any,
(step 302), herein called the depending agent. The processor then selects a
transition function 262 based on the state transition table 260 for the depending
agent and the current state of that agent (step 304).

Referring to Figure 6, there is shown one example of a state transition table
260 and a corresponding set of transition functions (i.e., subroutines). Ascan
be seen, the way in which a message is processed depends on the current
state of the depending agent. Forinstance, if a first agent is finish dependent
on a second agent, a finish message from the second agent should be received

A-53174/GSW, PD90-0344

ey T

10

15

20

25

-15 -

by the transaction processor 270 while the first agent is in either the active or
finishing states. If a finish message is received while the first agent is in any
other, later state, the finish message is either an error, or is a finish message
from another agent with which the first agent has a different type of dependency.
In either of these cases the finish message should be ignored (which is what
the TMCERT1 transition function does).

Referring to Figure 7, each transition function 262, other than the error condition
functions (which deal with erroneous or extraneous messages) and functions
which create agents or which modify the dependency list in a control block,
when executed by a transaction processor, performs the following functions.
If the message concerns an event which is premature (step 306), in that it may
be needed for satistying pre-conditions relevant only to a later state, the

message is stored or buffered in the post-condition list 262 (step 308).

If the received message corresponds to a current pre-condition of the receiving
agent (step 310), the processor removes that pre-condition from the
pre-condition list 260 (step 312).. itthen checks to see whether there is a state
transition that is waiting to occur (step 314). Is so, the processor checks to
see if all pre-conditions for that waiting state transition are satisfied (step 316),
and performs the state transition (step 318) if the pre-conditions are ali satisfied.
The state change allows the agent to then proceed with the next portion of its
computation.

After each state transition in an agent 210, the transaction manager’s processor
inspects the agent’s dependency list to see if there are any post-transition
actions that need to be taken. If so, messages are sent to identified agents
concerning the occurrence of the state transition. In other words, if there one
or more other agents which have dependencies related to the state transition

A-53174/GSW, PD90-0344

e L me ae [N e e e e e e

- Ty - T e — T — — e e e oy v

PR S .

10

15

20

- 16 -

that took place in step 318, then messages are sent to those other agents at
step 320. Certain types of state transitions, such as a transition to the abort
state in a first Agent A, always cause a message to be sent (via the transaction
manager) to all the agents which have dependencies on that Agent A.

Finally, the processor inspects the post-condition list 262 to determine whether
there are any post-conditions pending for the current state of the agent (step
322). If so, it picks the oldest such a message (step 324) and then goes back
to step 310 for processing that message.

Some messages are not "event” messages and thus are handled differently
that the method shown in Figure 7. For example, a CREATE message causes
the transaction manager's processor to execute the TMC_CRE routine, which
creates a new agent for the application which generated the CREATE message.
A DROP message causes the transaction manager to run the TMC_DRP
routine, which deletes specified dependencies from an agent. A MODIFY
message causes the transaction manager to invoke the TMC_MOD routine,
which modifies or adds new dependencies to an agent’s control block.

The transition functions used in the preferred embodiment are shown in Table
2.

A-53174/GSW, PD90-0344

e+ e s S ——

10

15

20

25

30

35

-17 -

TABLE 2

REF SUBROUTINE DESCRIPTION

262-1 TMC_FIN Remove finish pre-condition, if any, for finish
dependencies

262-2 TMC_RQP Begin preparing

262-3 TMC_IGN Ignore request to prepare

262-4 TMC_PRE Remove prepare pre-condition, if any, for commit
dependencies

262-5 TMC_CMT Remove Commit pre-condition, if any, for commit
dependencies

262-6 TMC_FOR Forget transaction

262-7 TMC_FPR Fast prepare: transfers commit coordinator to the
receiver of the message.

262-8 TMC_ABT Abort transaction

262-9 TMC_ERf1 Single Error: event received which should not have
been received. Create message re same.

262-10 TMC_ER2 Double Error: erroneous event received, and agent
is also in :an errcneous state based on existing
dependencies.

262-11 TMC_CRE Create New Agent: this is a request by an
application for the transaction manager to create
an agent and begin and transaction.

262-12 TMC_DRP Drop dependencies: delete specified dependencies

_ from specified agent’s control block.

262-13 TMC_MOD Modify dependencies: modify specified
dependencies in specified agent’s control block.

262-14 TMC_CNF Query Conflict: potentially conflicting requests for -
use of a resource are checked to determine
whether simultaneous access is allowed.

262-15 TMC_CON Connection Granted: connection between processes

is established.

The entries in the state transition table 260 for each agent can be different,

because the transition subroutines needed by an agent depend on that agent's

dependencies. In other words, an agent with a strong commit dependency on

one or more other agents will have a different state transition table 260 than

A-53174/GSW, PD90-0344

PR U S USSP

e i R T T iy

10

15

20

25

S e st e aae e e

-18 -
an ageht having only finish dependencies on other agents. Appendix 1 hereto

shows a sampling of state transition tables for various combinations of

dependencies.

SPECIFIC EXAMPLES OF DEPENDENCIES

The invention as described above can be applied to any distributed computation
or distributed processing situation in which there is a need to coordinate state
transitions among the participating agents. The following is a description of
a system using three types of dependencies, and how those dependencies can
be used to form a commit protocol for a distributed transaction processing
system.

In this preferred embodiment, each agent of a transaction is modeled as a finite
state machine having the states shown in Figure 2. Furthermore, the set of
messages which each agent can receive, either from the transaction manager,
or from another agent, denoted here as Agent X, includes:

MESSAGE TYPE DESCRIPTION
Request Create Create a dependency relationship

Drop Drop a dependency relationship

Finish Agent X has finished

Request Prepare Receiving agent requested to prepare

Prepared Agent X has prepared

Commit Agent X has committed

Forget Forget the transaction (after committing or aborting)
Abort Abort transaction

Failure Failure in Agent X

Time-out Transaction has timed out

Rollback Rollback results of receiving agent’'s computation

A-53174/GSW, PD90-0344

— [e i e S—— TS e AR e ok . R o

v e e <

10

15

20

25

T SO, e B e i s et il

e ol SRS S . e e e ottt TR T Ty

-19 -

Query Conflict Message from Resource Manager asking
transaction manager to resolve possibly conflicting

requests for access to a resource

In the preferred embodiment a "prepared” message is used to convey a promise:
the agent sending a "prepared” message promises to commit if the recipient
of the prepared message commits (i.e., the agent sending the prepared
message is prepared to either commit or abort). This "prepared” message is

equivalent to "ready" message described above with respect to Figure 2.

Referring to Figures 8 through 11, the three types of dependencies used in
the preferred embodiment are herein called (1) strong commit dependency,
which is symbolized by a solid arrow, (2) weak commit dependency, which is
symbolized by a dashed arrow, and (3) finish dependency, which is symbolized
by a solid arrow with a perpendicular line through it.

A strong commit dependency (SCD) is defined as follows. If Agent A is strong
commit dependent on Agent B:

1) Agent A cannot commit unless either Agent B has already committed
or Agent B will eventually commit,

2) if Agent B aborts, Agent A must abort, and

3) if Agent A aborts, Agent B need not abort, unless there is another
dependency relationship between Agents A and B which so requires.

A weak commit dependincy (WCD) of Agent A on Agent B requires:
1) if Agent B has become finiished, then Agent A becomes strong commit

dependent on Agent B,
2) after Agent B finishes, if Agent B aborts, then Agent A must abort,

A-53174/GSW, PD90-0344

et ida e

10

15

20

-20 -

3) before Agent B finishes, if Agent B aborts, Agent A need not abort,
and
4) if Agent A aborts, Agent B need riot abort.

When Agent A is finish dependent (FD) on Agent B, before Agent A can finigh,
Agent B must have already finished or it must be known that Agent B will never

finish.

Notification Dependency Types. Each dependency between two agents creates

one or more pre-conditions in at least one of the agents. For each such
pre-condition in one agent there is a corresponding notification action in the
other agent. The notification action is a requirement that a message be sent
so as to satisfy a particular pre-condition in a particular agent. Thus, a
pre-condition in Agent A which dependson Agent B requires a notification action
in Agent B. That notification action, herein called a notification dependency,
is invoked when a corresponding event (i.e., state transition) occurs in Agent
B, causing Agent B to send an event message to Agent A. For instance, if
Agent A is finish dependent on Agent B, then Agent B will have a notification
dependency on Agent A, causing it to send a "finish event message” to Agent
A when Agent B reaches the finished state. Also, if Agent B aborts prior to
finishing, it will send an abort message to Agent A.

When Agent A is strong commit dependent (SCD) on Agent B, Agent B is said
to be notification strong commit dependent (NSCD) on Agent A. In other words,
a strong commit dependency on Agent B is listed in the dependency list of the
control block for Agent A, and a corresponding notification strong commit
dependency on Agent A is listed in the dependency list of the control block for
Agent B. Similarly, a notification weak commit dependency is noted in the
control block of an Agent B when another agent is weak commit dependent

A-53174/GSW, PD90-0344

10

15

20

25

-21 -

on Agent B, and a notification finish dependency is noted in the control biock
of Agent B when another agent is finish dependent on Agent B.

These "notification” dependencies are used by the transaction manager to
generate post-transition actions which prompt the transmission of messages
required for implementing the corresponding "positive” dependency. In other
words, the post-transition action corresponding to a notification dependency
causes a message to be sent which will satisfy a pre-condition in another agent.
For example, if Agent A is finish dependent on Agent B, a natification finish
dependency wilt be included in Agent B’s control block. As a result, when Agent
B reaches the Finished state, its application program interface will transmit a
message denoting the occurrence of that event, which will in turn satisfy Agent
A’s pre-condition finish dependency on Agent B.

Flat Transactional Model. In a distributed transaction processing system using

a flat transactional model, all the agents of a transaction have a mutual strong
commit dependency on at least one other agent, resulting a set of dependency
relationships as shown in Figure 9. This is equivalent to the "standard" two
phase commit model described above with reference to Figure 3 in the
"Background of the Invention" section of this document. The flat transactional
model makes the entire transaction an atemic unit of work, both from the outside
viewpoint and from the internal viewpuint.

Nested Transactional Model. in atransactional processing system with nested

agents, there are parent agents and child agents, with each child agent typically
having been created by or for its parent agent. All of the nested models shown
in Figures 10A, 10B and 10C require that child agents finish before parent
agents (i.e., that the parent agent be finish.dependent on the child). The model
in Figure 10A further requires that the child agent be strong commit dependent

A-53174/GSW, PD90-0344

r—— vy T e e e vr T Twemews wm— o me wy

[

10

15

20

25

L 3 -~

-922.

on the parent agent, and that the parent agent be weak commit dependent on
the child agent. The result of all these dependencies is that the transaction
appears to be an atomic unit of work from the outside viewpoint, but internally
the transaction is not atomic for brief periods of time. In particular, if a parent
agent is finish dependent and weak commit dependent on a child agent, and
the child agent aborts, the parent agent need not abort. The parent agent’s
application software may be designed to handle this contingency, for example,
by creating a new child agent, or by taking other exception handling actions.

It should be noted that the state table 260 of a parent agent which is weak
commit dependent on a child agent may change during the course of a
transaction. Initially, the parent agent will have a state table corresponding to
a finish dependency on the child agent. When and if the child agent finishes,
and sends a finish event message to the parent, the parent will become strong

commit dependent on the child 2gent, requiring a change in its state table.

The nested transactional model in Figure 10B has nesting without partial
rollbacks, which means that this is the same as a flat transactional model except
for the finish ordering requirement. Finally, the nested transactional model
shown in Figure 10C is simply an ordering requirement without any commit
dependencies. This last model is primarily used for controlling resource sharing.

The models shown in Figures 11A and 11B are open-nested models, which
must have a different type of rollback mechanism than the nested model of
Figure 10A. In particular, a child agent may commit long before its parent,
resulting in a transaction which is not an atomic unit of work. Further, weak
commit dependencies can be used to allow system resources to be released
for use by other transactions as soon as possible and to allow a parent
application to recover from an error which causes a child agent to abort. Mutual

A-53174/GSW, PD90-0344

e I I R s e = Tyt

10

15

20

25

-23-

strong commit dependencies tends to lock up resources until an entire
transaction is completed, whereas weak commit dependencies allow resources
to be reallocated earlier.

Figure 12 depicts a transaction using a mixture of the flat and nested models.
This type of transaction can arise when two different types of computer systems,
with different transactional models, are participating in a single transaction.
It can also arise in complex transactions within a single computer system. In
either case, the present invention allows agents using different types of
transactional models to participate in a single transaction without having to

reprogram the underlying commit protocols (herein dependency relationships).

Figures 13A and 13B depict examples of the agents and their interdependéncies
for a transaction using a resource server. Each application program and
resource program has an associated agent. When the application program
and resource server both reside on the same node of a computer network, the
configuration shown in Figure 13Ais used. In particular, when the application
program makes a call to the resource server, the XID1 agent is created to
handle the coordination of activities between the application program agent and
the resource server agent.

When the application program and resource server reside on different nodes
of a computer network, the configuration shown in Figure 13B is used. In
particular, two agents XID1 and XID2 are needed in this'example to coordinate
the activities of the application program agent and the resource server agent.

The following are examples of pre-conditions and post-transition actions for
specific types of dependencies.

A-53174/GSW, PD90-0344

e b e v s s A e R ST TN o e i e o i

© ey T T e — A v T Tamer e < = e e m g cwes

[

-24 -

AGENT A: STRONG COMMIT DEPENDENT ON AGENT B:
PRE-CONDITIONS IN AGENT A
Commit by A requires: Commit by Agent B
POST-TRANSITION ACTIONS BY AGENT B
5 Upon Commit, send Commit message to Agent A
Upon Abort, send Abort message to Agent A

AGENT A: WEAK COMMIT DEPENDENT ON AGENT B:
PRE-CONDITIONS IN AGENT A
10 Commit by Agent A requires:
(Finish and Commit by Agent B)
OR (Not Finish and Abort by Agent B)
POST-TRANSITION ACTIONS BY AGENT
Upon Finish, send Finish message to Agent A
15 Upon Commit, send Commit message to Agent A
Upon Abort, send Abort message to Agent A

AGENT A: FINISH DEPENDENCY ON AGENT B
PRE-CONDITIONS IN AGENT A
20 Finish by Agent A requires:
Finish by Agent B
OR (Not Finish and Abort by Agent B)
POST-TRANSITION ACTIONS BY AGENT B
Upon Finish, send Finish message to Agent A
25 Upon Abort, send Abort message to Agent A

AGENT A: MUTUAL STRONG COMMIT DEPENDENCY WITH AGENT B:

PRE-CONDITIONS IN BOTH AGENTS
Prepared by This Agent requires:

A-53174/GSW, PD90-0344

10

15

20

25

-95.-

(Request Prepared Message from Other Agent)
OR (Transaction Coordinator = This Agent)
Commit by This Agent requires:
Commit or Prepared by Other Agent
POST-TRANSITION ACTIONS BY BOTH AGENTS
Upon Preparing, if This Agent is Transaction Coordinator:

send Request Prepared message to Other Agent
- Upon Prepared, if This Agent is not Transaction Coordinator:
send Prepared message to Other Agent
- Upon Commit, if This Agent is Transaction Coordinator:
send Commit Message to Other Agent
- Upon Abort, send Abort Message to Other Agent (note that Abort
cannot be initiated by This Agent after it has prepared)

RESOURCE CONFLICT RESOLUTION.

For the purposes of this discussion, a "resource" is any portion of a computer
system which can be used by a process. For most purposes, each distinct
resource can be considered to be a set of memory locations, such as a record
in a database, a page of memory, a file, or some other unit which is indivisible
for purposes of having two or more processes share that resource. A potential
resource conflict occurs whenever one agent (or other process) requests access
to a resource that is already being used by another agent. In centain cases,
due to an established relationship between a set of agents, it is acceptable to
allow those agents simultaneous access to a resource, in which case the
potential conflict is resolved by allowing the requestor access to the resource
held by the other agent. In other cases the request for access must be denied,
and the requestor is put on a wait list which is checked periodically to determine
if conditions in the system have changes so as to make the resource needed
by the requestor available to the requestor (e.g., if the resource holder has

A-53174/GSW, PD90-0344

v =

10

15

20

25

- 26 -

released the resource and no other agent has submitted an earlier request for
access).

Resource sharing is subject to pre-conditions in much the same way that state
transitions are subject to pre-conditions. If a particular resource (e.g., a block
of memory at a particular address) is being used by Agent A, there needs to
be a rule or predicate which determines whether any other Agent B is to be
allowed either read or write access to that same block of memory. In the
preferred embodiment, the pre-conditions or predicates for such resource
sharing are based on the existence or nonexistence of dependencies between
the first agent to use the resource and the requesting agent. This will be
explained in more detail below.

Referring to Figure 14, in the preferred embodiment each transaction is assigned
one of five predefined resource conflict resolution rules 350. In other words,
there are five distinct resource conflict resolution rules 350, any one of which
can be used to resolve a potential resource conflict.

Whenever a resource manager 204 (see Figure 4) encounters a potential

resource conflict, it sends a message to the transaction manager 230 asking
the transaction manager 230 to resolve the potential conflict. This message
specifies the transaction ID of the agent 102-1 which first gained access to the
resource and the transaction ID of the agent 102-2 which is requesting access
to that same resource. The transaction manager 230 detérmiries which, if any,
of these rules applies to this conflict, thereby determining whether access by
the requesting agent is allowed, and sends a message to the resource manager
204 specifying how the conflict is to be resolved.

A-53174/GSW, PDS0-0344

e e i e

~— x —~ Y g g gt T T mewww s Uy _—

10

15

20

25

-27-

in the preferred embodiment, the agent which first gained access to a particular
resource is called alternatively "the active agent" or "the resource holder". |f
the requesting agent is part of the same transaction as the active agent, then
the specified resource conflict resolution rule for the transaction governs. If
the requesting agent is not part of the same transaction as the active agent
{(which currently has access to the resource), access will be denied and the
requesting agent will be forced to wait.

In other embodiments of the invention, if the two agents were not members
of the same transaction, it would be possible in some cases for the transaction
manager to create a new dependency between the two agents, such as a strong
commit dependency by the requesting agent 102-2 on the active agent 102-1.
This would create the relationship necessary to allow shared access to a
resource. Of course, there might have to be restrictions on when such new
dependencies could be generated by the transaction manager.

An important aspect of the resource sharing aspect of the present invention
is that the selection of a conflict resolution rule is independent of the predicates
or protocols used for synchronizing events by the event synchronization system.
In transaction processing systems, this means that a number of different
resource sharing arrangements can be used, independent of the specific commit
protocol being used for any particular transaction, thereby providing the ability
to tailor the resource sharing rules used for particular types or models of
transactions.

Each rule 350 is actually a routine used by the transaction manager to make

a resource sharing decision. The five conflict resolution rules provided by the
preferred embodiment are as follows:

A-53174/GSW, PD90-0344

TR TR TIWw v e sm oo - R

10

15

20

25

RULE 1:

RULE 2:

RULE 3:

RULE 4:

RULE 5:

——— W T e ey~ Ty y— e

———r—y s

-28 -

Shared access by distinct agents is not allowed until the active
agent commits.

Shared access is allowed if and only if the requesting agent is
strong commit dependent on the active agent.

Shared access is allowed, after the active agent finishes (and thus
before it commits) if and only if the requesting agent is strong
commit dependent on the active agent or there is a chain of
strong commit dependencies which make the requesting agent
indirectly strong commit dependent on the active agent.
Shared access is allowed between agents that are peers, after
the active agent finishes (and thus before it commits) if and only
if (1) the requesting agent is strong commit dependent on the
active agent or there is a chain of strong commit dependencies
which make the requesting agent indirectly strong commit
dependent on the active agent, and (2) all agents, if any, in the
chain of dependencies between the requesting agent and the
active agent are finished.

Shared access is allowed in a nested transaction, after the
resource holder finishes, if and only if (1) the requesting agent
is directly or indirectly strong commit dependent on the resource
holder and (2) all agents in the chain of dependencies between
the resource holder and the least common ancestor of the
requestor and resource holder are finished. In a nested
transaction with a tree of related agents, the "least common
ancestor” is the least removed agent which is a parent, directly
or indirectly, of both agents.

Rule 1 is the most restrictive in that it basically disallows resource sharing until

commit. Rule 2 corresponds generally to the resource sharing rules used in

A-53174/GSW, PD90-0344

-

10

15

20

25

-29 -

prior art transaction processing systems made by Digital Equipment Corporation
and Tandem. Rules 3 and 4 are resource sharing rules for flat transaction
models which use a "fast commit" protocol. Rules 5 and 6 are appropriate for
nested transaction models. As will be understood by those skilled in the an,
other embodiments of the present invention may use a variety of other resource
confiict resolution rules.

ALTERNATE EMBODIMENTS
As described above, each agent in a distributed computation generates "events”

as it progresses through a sequence of state transitions. Thus the terms "event”

and "state transition" are used synonymously. A distributed computation system

comprises a finite set of two or more agents connected by a communications
network. The actual means of communication between agents will vary from

environment to environment.

The history of a system can be completely described by an ordered list of events
in the system’s agents, and is thus similar to a "trace". Correctness criteria
for the joint behavior of a system (i.e., a group of agents) are specified in the
presentinvention interms of predicates. The predicates are then used to derive
the necessary protocols to be followed by each agent. In general, protocols
allow an agent in one state to move to a plurality of other states, but limit the
set of states to which the agent may move. The protocols or predicates of a
system allow for non-deterministic behavior of agents, but constrain that
behavior so as to comply with certain specified rules. Thus, a system'’s
predicates constrain the set of system histories which may occur, but do not
specifically require any one particular order of events. Protocols, such as (but
neot limited to) commit protocols, are implicitly enforced by defining the minimum
set of corresponding predicates or dependencies between agents. In alternate

embodiments of the present invention, predicates may be expressed as

A-53174/GSW, PD90-0344

-30 -

constraints on a system'’s possible histories through the specification, for

instance, of legal event paths or condition/action pairs.

While the present invention has been described with reference to a few specific
embodiments, the description is illustrative of the invention and is not to be
construed as limiting the invention. Various modifications may occur to those
skilled in the art without departing from the true spirit and scope of the invention
as defined by the appended claims.

A-53174/GSW, PD90-0344

~—

T TR T v o

-y~

ot

-« s = e —-

31
APPENDIX 1

STATE TRANSITION TABLE FOR DEPENDENCIES = NFD

FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
ACTIVE TCM_ER2 TCM ER2 TCM ER2Z TCM ER2 TMC_FOR TCM ER2 TCM ABT
FINISHING TCM_ER2 TCM _ER2 TCM ER2 TCM ER2 TMC_ER2 TCM_ER2 TCM _ER2
FINISHED TCM_ER2 TCM ER2 TCM ER2 TCM ER2 TMC FOR TCM ER2 TCM ABT
PREPARING TCM_ER2 TCM _ER2 TCM_ER2 TCM ER2 TMC_ER2 TCM ER2 TCM ER2
PREPARED TCM_ER2 TCM ER2 TCM ERZ TCM_ER2 TMC_ER2 TCM ER2 TCM ERZ?
COMMITTING TCM_ER2 TCM ER2 TCM_ER2 TCM ER2 TMC_ER2 TCM_ER2 TCM ER2
FORGOTTEN TCM_ER2 TCM _ER2 TCM ER2 TCM _ER2 TMC_ER2 TCM ER2 TCM_ER2
STATE TRANSITION TABLE FOR DEPENDENCIES = FD

FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
ACTIVE TMC_FIN TEM ER2Z TCM_ER2 TCM ER2 TMC_FOR TCM ER2 TCM ABT
FINISHING TMC_FIN TCM _ER2 TCM ER2 TCM _ER2 TMC_ER1 TCM ER2 TCM ABT
FINISHED TMC_ER1 TCM_ER2 TCM ER2 TCM_ER2 TMC_FOR TCM ER2 TCM_ABT
PREPARING TMC_ER2 TCM_ERZ TCM_ER2 TCM ER2 TMC_ER2 TCM_ER2 TCM ER2
PREPARED TMC_ER2 TCM_ER2 TCM _ER2 TCM_ER2 TMC_ER2 TCM_ER2 TCM ER2
COMMITTING TMC_ER2 TCM ER2 TCM ER2 TCM ER2 TMC_ER2 TCM_ER2 TCM_ER2
FORGOTTEN TMC_ER2 TCM_ER2 TCM ER2 TCM_ER2 TMC_ER2 TCM ER2 TCM ER2
STATE TRANSITION TABLE FOR DEPENDENCIES = NFD, fD

FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
ACTIVE TMC_FIN TCM _ER2 TCM ER2 TCM_ER2 TMC_FOR TCM_ER2 TCM_ABT
FINISHING TMC_FIN TCM ER2 TCM ER2 TCM_ER2 TMC_ERl TCM ER2 TCM ABT
FINISHED TMC_ER1 TCM_ER2 TCM _ER2 TCM ER2 TMC_FOR TCM ER2 TCM ABT
PREPARING TMC_ER2 TCM_ER2 TCM_ER2 TCM ER2 TMC_ER2 TCM ER2 TCM_ER2
PREPARED TMC_ER2 TCM_ER2 TCM ER2 TCM_ER2 TMC_ER2 TCM ER2 TCM ER2
COMMITTING TMC_ER2 TCM_ER2 TCM ER2 TCM ER2 TMC_ER2 TCM_ER2 TCM ER2
FORGOTTEN TMC_ER2 TCM ER2 TCM_ER2 TCM_ERZ2 TMC_ER2 TCM_ER2 TCM ER2
STATE TRANSITION TABLE FOR DEPENDENCIES = NSCD

FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
ACTIVE TMC_FIN TCM ER2 TCM ER2 TCM ER2 TMC_FOR TCM ER2 TCM ABT
FINISHING TMC_ER2 TCM_ER2 TCM_ERZ2 TCM ER2 TMC_ER2 TCM ER2 TCM ER2
FINISHED TMC_ER1 TCM_ER2 TCM_ER2 TCM_ER2 TMC _FOR TCM_ER2 TCM_ABT
PREPARING TMC_ER2 TCM_ER2 TCM _ER2 TCM ER2 TMC_ER2 TCM_ER2 TCM ER2
PREPARED TMC_ER2 TCM _ER2 TCM_ER2 TCM_ER2 TMC_ER2 TCM ER2 TCM ER2
COMMITTING TMC_ER1 TCM _ER2 TGM ER2 TCM ER2 TMC_ER2 TCM ER2 TCM ER2
FORGOTTEN TMC_ERZ TCM_ER2 TCM _ER2 TCM_ER2Z TMC ER1 TCM ER2 TCM ER1
STATE TRANSITION TABLE FOR DEPENDENCIES = NFD, NSCD

FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
ACTIVE TMC_FIN TCM ER2 TCM_ER2 TCM ERZ TMC_FOR TCM ER2 TCM ABT
FINISHING TMC_ER2 TCM_ER2 TCM_ER2 TCM ER2 TMC_ER2 TCM_ER2 TCM ER2
FINISHED TMC_ER1 TCM ER2 TCM _ER2 TCM ER2 TMC_FOR TCM ER2 TCM_ABT
PREPARING TMC_ER2 TCM_ER2 TCM ER2 TCM ER2 TMC ER2 TCM ER2 TCM ER2
PREPARED TMC_ERZ TCM ER2 TCM_ER2 TCM ER2 TMC ER2 TCM_ER2 TCM ER2
COMMITTING TMC_ER2 TCM_ER2 TCM ER2 TCM _ER2 TMC_ER2 TCM_ER2 TCM ER2
FORGOTTEN TMC_ER1 TCM_ER2 TCM ER2 TCM ER2 TMC_ER1 TCM ER2 TCM ER1

A-53174/GSW, PD90-0344

. vy

s S . o L een e ek mi e L

———v v wr—y

,,,,,,, -~

g ———" — e ———

STATE TRANSITION TABLE

ACTIVE
FINISHING
FINISHED
PREPARING
PREP ARED
COMMITTING
FORGOTTEN

STATE TRANSITION TABLE

ACTIVE
FINISHING
FINISHED
PREPARING
PREPARED
COMMITTING
FORGOTTEN

STATE TRANSITION TABLE

ACTIVE
FINISHING
FINISHED
PREPARING
PREPARED
COMMITTING
FORGOTTEN

STATE TRANSITION TABLE

ACTIVE
FINISHING
FINISHED
PREPARING
PREPARED
COMMITTING
FORGOTTEN

STATE TRANSITION TABLE

ACTIVE
FINISHING
FINISHED
PREPARING
PREPARED
COMMITTING
FORGOTTEN

FOR DEPENDENCIES = FD, NSCD

- 32 -

FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
TMC_FIN TCM ER2 TCM_ER2 TCM ER2 TMC _FOR TCM ER2 TCM ABT
TMC_FIN TCM _ER2 TCM_ER2 TCM_ER2 TMC_ER1 TCM _ER2 TCM ABT
TMC_ERL TCM ER2 TCM_ER2 TCM _ER2 TMC_FOR TCM ER2 TCM ABT
TMC_ER2 TCM ER2 TCM_ER2 TCM _ER2 TMC_ER2 TCM ER2 TCM ER2
TMC_ER2 TCM ER2 TCM_ER2 TCM_ER2 TMC_ER2 TCM ER2 TCM_ER2
TMC_ER2 TCM_ER2 TCM ER2 TCM_ER2 TMC_ER2 TCM_ER2 TCM ER2
TMC_ER1 TCM ER2 TCM_ER2 TCM_ER2 TMC_ER1 TCM ER2 TCM_ER1
FOR DEPENDENCIES = NFD, FD, NSCD
FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
TMC_FIN TCM ER2 TCM ER2 TCM _ER2 TMC_FOR TCM_ER2 TCM ABT
TMC_FIN TCM ER2 TCM_ER2 TCM ER2 TMC_ER1 TCM _ER2 TCM_ABT
TMC_ER1 TCM_ER2 TCM_ER2 TCM _ER2 TMC FOR TCM_ER2 TCM_ABT
TMC_ER2 TCM ER2 TCM _ER2 TCM_ER2 TMC ER2 TCM_ER2 TCM ER2
TMC_ER2 TCM_ER2 TCM_ER2 TCM_ER2 TMC_ER2 TCM_ER2 TCM ER2
TMGC_ER2 TCM_ER2 TCM ER2 TCM ER2 TMC_ER2 TCM _ER2 TCM ER2
TMC_ER1 TCM ER2 TCM_ER2 TCM ER2 TMC_ER1 TCM_ER2 TCM ER1
FOR DEPENDENCIES = SCD
FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
TMC_FIN TCM ER2 TCM ER2 TCM CMT TMC ER2 TCM ER2 TCM ABT
TMC_ER2 TCM_ER2 TCM ER2 TCM_ER2 TMC ER2 TCM_ER2 TCM ER2
TMC_ER1 TCM_ER2 TCM_ER2 TCM _CMT TMC_ER2 TCM_ER2 TCM_ABT
TMC_ER2 TCM_ER2 TCM_ER2 TCM_ER2 TMC_ER2 TCM_ER2 TCM ER2
TMC_ER2 TCM_ER2 TCM ER2 TCM ER2 TMC_ER2 TCM _ER2 TCM_ER2
TMC_ER1 TCM ER2 TCM ER2 TCM _ER1 TMC ER2 TCM_ER2 TCM ABT
TMC_ER2 TCM_ER2 TCM_ER2 TCM_ER2 TMC_ER2 TCM_ER2 TCM ER1
FOR DEPENDENCIES = NFD, SCD
FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
TMC_FIN TCM ER2 TCM_ER2 TCM_CMT TMC_FOR TCM_ER2 TGM ABT
TMC_ER2 TCM ER2 TCM ER2 TCM ER2 TMC ER2 TCM_ER2 TCM ER2
TMC_ER1l TCM _ER2 TCM_ER2 TCM_CMT TMC_FOR TCM_ER2 TCM_ABT
TMC_ER2 TCM ER2 TCM_ER2 TCM_ER2 TMC_ER2 TCM_ER2 TCM ER2
TMC_ER2 TCM_ER2 TCM_ER2 TCM ER2 TMC_ER2 TCM ER2 TCM ER2
TMC_ER1 TCM_ER2 TCM ER2 TCM_ER1 TMC_ER2 TCM_ER2 TCM ABT
TMC_ER2 TCM_ERZ TCM_ER2 TCM_ER2 TMC_ER2 TCM ER2 TCM ER2
FOR DEPENDENCIES = FD, SCD
FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
TMC_FIN TCM ER2 TCM ER2 TCM CMT TMC_ER2 TCM ERZ TCM ABT
TMC_FIN TCM _ER2 TCM_ER2 TCM_CMT TMC_ER2 TCM ER2 TCM ABT
TMC_ER1 TCM_ER2 TCM_ER2 TCM_CMT TMC_ER2 TCM_ER2 TCM ABT
TMC_ER2 TCM ER2 TCM ER2 TCM ER2 TMC_ER2 TCM ER2 TCM ER2
TMC_ER2 TCM_ER2 TCM_ER2 TCM_ER2 TMC_ER2 TCM ER2 TCM ER2
TMC_ER1 TCM ER2 TCM ER2 TCM_ER1 TMC_ER2 TCM _ER2 TCM ABT
TMC_ER2 TCM ER2 TCM ER2 TCM ER2 TMC ER2 TCM_ER2 TCM ER2

A-53174/GSW, PD90-0344

[P S S

ey ——

— - Rer*-- cang Ry TNYT v~ oyrwe = - - w e

oy

- 33 -
STATE TRANSITION TABLE FOR DEPENDENCIES = NDF, FD, SCD

FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
ACTIVE TMC_FIN TCM ER2 TCM ER2 TCM _CMT TMC_FOR TCM ER2 TCM ABT
FINISHING TMC_FIN TCM_ER2 TCM_ER2 TCM CMT TMC_ER2 TCM_ER2 TCM_ABT
FINISHED TMC_ER1 TCM ER2 TCM_ER2 TCM CMT TMC_FOR TCM _ER2 TCM_ABT
PREPARING TMC_ER2 TCM_ER2 TCM_ER2 TCM ER2 TMC_ER2 TCM _ER2 TCM ER2
PREPARED TMC_ER2 TCM _ER2 TCM ER2 TCM_ER2 TMC_ER2 TCM ER2 TCM ER2
COMMITTING TMC_ERl TCM_ER2 TCM_ER2 TCM ER1 TMC_ER2 TCM_ER2 TCM ABT
FORGOTTEN TMC_ER2 TCM_ER2 TCM ER2 TCM_ER2 TMC_ER2 TCM ER2 TCM ER2
STATE TRANSITION TABLE FOR DEPENDENCIES = Mutual SCD

FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
ACTIVE TMC_FIN TCM RQP TCM PRE TCM_ER1 TMC_FOR TCM FPR TCM ABT
FINISHING TMC_ER2 TCM_ER2 TCM _ER2 TCM ER2 TMC _ER2 TCM ER2 TCM ER2
FINISHED TMC_ER1 TCM_RQP TCM_ER1 TCM ER1 TMC_ER1 T7.M FPR TCM_ABT
PREPARING TMC_ER1 TCM_ERl TCM_PRE TCM_CMT TMC_ER1 TCM_ER1 TCM ABT
PREPARED TMC_ER1 TCM_IGN TCM ER1l TCM CMT TMC_ER1 TCM_ER1 TCM ABT
COMMITTING TMC_ER1 TCM_ER1 TCM ER1 TCM ER1 TMC_FOR TCM ER1 TCM ER1
FORGOTTEN TMC_ER1 TCM_ER1 TCM_ER1 TCM_ER1l TMC_ER1 TCM_ER1 TCM_ER1
STATE TRANSITION TABLE FOR DEPENDENCIES = NFD, FD, NSCD, SCD, Mutual SCD

FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
ACTIVE TMC_FIN TCM_RQP TCM PRE TCM CMT TMC FOR TCM _FPR TCM ABT
FINISHING TMC_FIN TCM_RQP TCM ER2 TCM CMT TMC_ER1 TCM ER2 TCM ER2
FINISHED TMC_ER1 TCM _RQP TCM_ER1 TCM_CMT TMC_ER1 TCM_FPR TCM ABT
PREPARING TMC_ER1 TCM ER1 TCM_PRE TCM_CMT TMC ER1 TCM_ER1 TCM_ABT
PREPARED TMC_ER1 TCM_IGN TCM_ER1 TCM CMT TMC_ER1 TCM_ER1 TCM_ABT
COMMITTING TMC_ER1 TCM_ERl1 TCM_ER1 TCM_ER1 TMC FOR TCM ER1 TCM_ABT
FORGOTTEN TMC_ER1 TCM_ER1 TCM_ER1 TCM_ER1 TMC_ER1 TCM_ER1l TCM_ERL

A-53174/GSW, PD90-0344

U RV

N i ST

10

15

20

25

30

-34 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. In a computer system, a method of performing distributed computations, the steps
of the method performed by said computer system comprising:

providing a set of cooperating computational agents to perform each distributed
computation, each computational agent being programmed to progress through a sequence
of state transitions among a predefined set of states;

defining and storing in at least one computer memory a plurality of distinct
predicates that can be assigned to ones of said computational agents, each distinct
predicate specifying a distinct state transition dependency between state transitions of first
and second specified ones of said computational agents; each said defined predicate
specifying a state transition of said first computational agent that is to be blocked until
said second computation agent performs a specified action that satisfies said each defined
predicate;

dynamically assigning a set of predicates to the set of computational agents
performing each distributed computation so as to define a corresponding set of state

transition interdependencies between said set of computational agents; wherein each

assigned predicate is selected from said plurality of predicates, and different sets of

predicates are assigned to the sets of computational agents for different distributed
computations;

performing each distributed computation with said set of computational agents
provided for that distributed computation, including blocking state transitions by ones of
said set computational agents in accordance with said predicates assigned to said set of
computation agents, and allowing each said blocked state transition to proceed when said

action specified by the corresponding predicate is performed.

2. The method of performing distributed computations of claim 1, said method
including the step of:

storing in said at least one computér memory dependency data for each said
computational agent specifying (A) a first set stat¢ transitions of said each computational
agent that are to be blocked, (B) pre—conditions for allowing each of said first set of state

transitions to proceed, (C) a second set of state transitions of said each computational

930921,p:\oper\gep,86028.c,34

o o x - o ~e WAV - = mmvrm pee age - -

10

15

25

30

- 35~

agent that are pre-conditions for state transitions by other ones of said computational
agents, and (D) said other computational agents for which each of said second set of state

transitions are preconditions.

3. The method of performing distributed computations of claim 2, said performing
step including: upon each state transition in each one of said computational agents, when
said stored dependency data indicates that said state transition is a pre-~condition for state
transitions by other specified ones of said computational agents, sending messages to said
other specified ones of said computational agents notifying that said state transition has
taken place;

receiving said messages from other ones of said computational agents; and

when a state transition by one of said computational agents is blocked, waiting to
receive messages corresponding to said pre-conditions specified by said stored
dependency data for said blocked state transition, and allowing said blocked state
transition to proceed when said messages corresponding to said specified pre—conditions

are received.

4. The method of performing distributed computations of claim 1, further including:

providing resources to be accessed by said computational agents;

establishing a plurality of distinct resource conflict resolution rules for determining
whethér to allow any specified two of said computational agents to share access to any
of said resources;

each of said plurality of resource conflict resolution rules including (A) distinct
dependency criteria requiring predefined state transition depenuencies between state
transitions of any specified two computational agents as a precondition for allowing said

two computational agents to share access to any of said resources; at least one of said

plurality of resource conflict resolution rules including (B) timing criteria for allowing,

shared access to any of said resources only after specified state transitions occur; and
when a first one of said computational agents has access to any one of said

resources and a second one of said computational agents requests access to the same one

resource, selecting one of said plurality of resource resolution rules, if any, having

dependency criteria satisfied by said first 2nd second computational agents, and allowing

930921,p:\open\gcp, 86028:c,35

20

25

30

- 36 -

said second computational agent to share access to said one resource with said first

computational agent in accordance with said selected resource resolution rule.

S. A computer system for performing distributed computations, comprising:

a sct of cooperating computational agents for performing each distributed
computation, each computational agent being programmed to progress through a sequence
of state transitions among a predefined set of states;

at least one computer memory;

a plurality of distinct predicates, stored in said computer memory, that can be
assigned to ones of said computational agents, each distinct predicate specifying a distinct
state transition dependency between state transitions of first and second specified ones
of said computational agents; each said defined predicate specifying a state transition of
said first computational agent that is to be blocked until said second computation agent
performs a specified action that satisfies said each defined predicate;

a distribuied computation coordinator for dynamically assigning a set of predicates
to the set of computational agents performing each distributed computation so as to defirie
a corresponding set of state transition interdependencies between said set of
computational agents; wherein each assigned predicate is selected from said plurality of
predicates, and different sets of predicates are assigned to the sets of computational
agents for different distributed computations;.

means for performing each distributed computation with said set of computational
agents for that distributed computation;

said set of computational agents for each distributed computation including means
for blocking state transitions by said set of computational agents in accordance with said
predicates assigned to said set of computation agents; and

said distributed .omputation coordinator including means for allowing each said
blocked state transition to proceed when said action specified by the corresponding

predicate is performed.

6. The computer system of claim 5,

said' distributed compuitation coordinator including means for storing in said it

least one computer memory dependency data for each said computational agent specifying

930921,p\opeRgep 86028 2,36

—~—e——

W v - r— e o e - er warw—m P — — g v—— o v oy - e -

10

15

20

-37 -

(A) a first set state transitions of said each computational agent that are to be blocked,
(B) pre—conditions for allowing each of said first set of state transitions to proceed, (C)
a second set of state transitions of said each computational agent that are pre—conditions
for state transitions by other ones of said computational agents, and (D) said other
computational agents for which each of said second set of state transitions are

preconditions.

7. The computer system of claim 6, said distributed computation coordinator
including means for responding to each state transition in each one of said computational
agents, when said stored dependency data indicates that said state transition is a pre~
condition for state transitions by other specified ones of said computational agents, by
sending messages to said other specified ones of said computational agents notifying that
said state transition has taken place;

each of said computational agents including means for receiving said messages
from other oenes of said computational agents, and for waiting to receive messages
corresponding to said pre~ceaditions specified by said stored dependency data when a
state transition by said each computational agent is blocked, and for allowing said
blocked state transition to proceed when said messages corresponding to said specified

pre-conditions are received.

8. The computer system of ¢laim 5, further including:

resources to be accessed by said computational agents;

a plurality of distinct resource conflict resolution rules, stored in said at least one
computer memory, for determining whether to allow any specified two of said
computational agents to share access to any of said resources;

each of said plurality of resource conflict resolution rules including (A) distinct
dependency criteria requiring predefined state transition dependercies between state
transitions of any specified two computational agents as a precondition for allowing said
two computational agents to share access to any of said resources; at least one of said
plurality of resource conflict resolution rules including (B) timing criteria for allowing
shared access to any of said resources only aftér specified state transitions occur; and

said distributed computation ¢oordinator including resource conflict resolution

930921,p:\oper\gop,86028:6,37

e i e e il i ein s s S it ni s e et A v i s e - e

rrp— e~y T e gy

. S IR Rl Lo I IER et SRR NI i

10

15

20

25

- 38 -
means; said resource conflict resolution means, when a first one of said computational
agents has access to any one of said resources and a second one of said computational
agents requests access to the same one resource, selecting one of said plurality of
resource resolution rules, if any, having dependency criteria satisfied by said first and
second computational agents, and allowing said second computational agent to share
access to said one resource with said first computational agent in accordance with said

selected resource resolution rule.

9. A method of performing distributed computations substantially as hereinbefore

described with reference to the accompanying drawings.

10. A computer system for performing distributed computations substantially as

hereinbefore described with reference to the accompanying drawings.

DATED this 21st day of September, 1993
DIGITAL EQUIPMENT CORPORATION
By its Patent Attorneys

DAVIES COLLISON CAVE

i /K 930921 p:\oper\gcp,86028:,38

e e e i e e N el . W e mesedi . ——

10

15

TTTTIRTTT TUwey T ot oo

ey T T g T Tiamews o

ABSTRACT

During the processing of a transaction or other distributed computation, a
computation management system creates a number of agents to handle various
aspects or portions of the computations to be performed. Each agent
progresses through a predefined set of state transitions which define the status
of the agent at any pointin time. The computation management system defines
for each agent a set of dependencies, each dependency corresponding to a
state transition which will be blocked until a particular state transition occurs
in another specified agent. By defining selected combinations of dependencies

for each agent, a variety of different interdependencies and cooperating

protocols can be implemented. The distributed processing management system
can be used both for managing transaction processing and for synchronizing

events in other types of distributed computations.

 —— - R SR |
————— —— A T g o

1/7
100
102-1 1022 1023
AGENT AGENT AGENT
110
- " 102.
r1,024 f102 5 Vs 02-N
AGENT AGENT | ¢ @ @ | AGENT
FIGURE 1
ACTIVE
21— vy
FINISHING
12— ¢ 126 —
FINISHED
28— ¥ /’;: ABORTING
PREPARING
124~ +
PREPARED
15—, W
COMMITTING 127~
~— »{ FORGOTTEN

FIGURE 2

© g = JE -

e = T v~y

———

$6028/7/
2/7
r 134 [130
AGENT A
AGENT C
(COORDINATOR) [132
() AGENT B
CREADY D2
FIGURE 3
10- 24 10-: 2 .212 204
!gm 200 2102 20 ¥ r
APPLICATION PGM APPLICATION PGM RESOURCE MANAGER
INTERFACE INTERFACE INTERFACE
7 7 T
214-1 214-2 214-3
220-1 270~ 220-3.
era @ L2252
: TRANSACTION ID 5 42
e, 230 \ [240 / | STATE o '343
SRR / | RESRC CNFLCT RES 3 44
SeouL 232:11 7/ WAIT LIST 5
SEQUENCER "MSGOUEUEPTR |50
(TRANSACTION ~ 248
MANAGER) 232-2 DEPENDENCY LIST 50
PRECONDITION LIST _'ész
2323 | \ POSTCONDITION LIST 554
\ | DEPENDENCY FLAGS 356
\| STATE TABLE PTR
262\

FIGURE 4

260

J— —— e S omty TTUTwT T oY T o Y T T - T T - o
3/7
4 /f248
DEPENDENCY TYPE OQOTHER AGENT
DT1 AG4
DT1 AG4
e °
° °®
° ™
[fzso
PRE-CONDITION LIST
STATE TRANSITION OQTHERAGENT EVENT
DT1 AG4
DT1 AG4
L] ®
) °
[} [2
/’252
POST-CONDITION LIST
EVENT OTHER AGENT
DT1 AG4
DT1 AG4
™) o
® °
o °
/’254
DT1 | DT2 | DT3 | DT4 | DT5 | DT6
X X o0 0
/
N
FIGURE §

RSN ——

bt

4/7
/260
STATE TRANSITION TABLE
FINISH REQPRE PREPAR COMMIT FORGET REQFPR ABORT
ACTIVE TMC_FIN TMC_RQP TMC_PRE TMC_CMT TMC_FOR TMC_FPR TMC_ABT
FINISHING TMC_FIN TMC RQP TMC_ER2 TMC_CMT TMC_ER1 TMC_ER2 TMC_ABT
FINISHED TMC_ER1| TMC RQP {TMC_ER1 TMC_CMT TMC_ER1 TMC_FPR TMC_ABT
PREPARING | TMC_ER1 TMC_ER1 TMC_CMT TMC_ER1 TMC_ER1 TMC_ABT
PREPARED | TMC_ER1 TMC_IGN TMC_CMT TMC_ER1 TMC_ER1 TMC_ABT
COMMITTING| TMC_ER1 TMC_ER1 TMC_ER1 TMC_FOR TMC_ER1 TMC_ABT
FORGOTTEN | TMC_ER1 TMC_ER1 TMC_ER1 TMC_ER1 TMC_ER1 TMC_ER1
262-1
TMC_FIN /26 op
« TMC_RQP -2} 03
TMC_IGN —f o4
TMC_PRE { o
TMC_CMT {2-6’
TME FOR {27
TMC_FPR | 2
| 2628
TMC ABT 2629
TMC ER2
| 2p2-11
TMC_CRE 262.12
TMC_DRP —;62 13
TMC_MOD —;6 214
TMC_CNF y-/: 5.15
TMC_CON

FIGURE 6

TSR T TR T Y v

.

5/7

RECEIVE AGENT EVENT MESSAGE

300
;_/

v

s 302

THE RECEIVED MESSAGE

IDENTIFY DEPENDING AGENT, IF ANY, THAT IS THE TARGET OF

v

(304

LOOK UP AND SELECT TRANSITION FUNCTION IN STATE TABLE

MESSAGE CORRESPONDS
TO PRE-CONDITION
?

[312

r 308
STORE MESSAGE IN
POST-CONDITION LIST]

REMOVE PRE-CONDITION FROM

PRE-CONDITION LIST OF DEPENDING AGENT

34

"1S A STATE TRANSITION

?

316

ALL PRE-CONDITIONS IN
DEPENDING AGENT SATISFIED
7 :

PENDING IN DEPENDING AGENT

318
[4

PERFORM STATE TRANSITION

v

320
f }

POST-TRANSITION ACTIONS, IF ANY.

POST-TRANSITION MESSAGES.

INSPECT DEPENDENCY LIST TO IDENTIFY

SEND MESSAGES CORRESPONDING TO IDENTIFIED

ANY POST-CONDITIONS
FOR STATE TRANSITION

' DONE

324
(.

CURRENT STATE OF AGENT

PICK UP OLDEST POST-CONDITION APPLICABLE TO

FIGURE 7

e N e e | M e i sl nal s - e

- — e

_ - — e e -

6/7

SCD (STRONG COMMIT DEPENDENCY)
FD (FINISH DEPENDENCY)
@. - WCD (WEAK COMMIT DEPENDENCY)

FLAT

FIGURE 8

MODEL .
0O Oruc

NESTED

MODEL)
PARENT o

CHILD °

FIGURE 10A

MULTILEVEL

FIGURE 9

PARENT °
CHILD °

FIGURE 10B FIGURE 10C

PARENT

MODEL
PARENT ° PARENT °

CHILD

Y _
@ CHILD °

FIGURE 11A FIGURE 11B

7/7

COMPUTER SYSTEM 1

FIGURE 12

COMPUTER
SYSTEM 2

FIGURE 13A FIGURE 13B
350-1
\ 243
RULE 1 ,
o b |~/
. — —
1021 A RULE 2 \ 1023
RULE 3
~{ RULE4
, 243
3504 " RuLE 5 < |
: 3505 —_ ™ 102.4
: 230

FIGURE 14

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

