03/067568 Al

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 August 2003 (14.08.2003) PCT

(10) International Publication Number

WO 03/067568 Al

(51) International Patent Classification’: GO09G 5/00 (79)
(21) International Application Number: PCT/US03/03647
(22) International Filing Date: 6 February 2003 (06.02.2003) (81)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
10/068,461 6 February 2002 (06.02.2002) US
10/288,821 6 November 2002 (06.11.2002) US
84
(71) Applicant: CITRIX SYSTEMS, INC. [US/US]; 851 W.
Cypress Creek Road, Fort Lauderdale, FL 33309 (US).

(72) Inventors: BLOOMFIELD, Marc; 2610 N.E. 47th
Street, Lighthouse Point, FL. 33064 (US). MUIR, Jeff;
Lot 17 Manuka Road, Logan Village, 4207, New South
Wales (AU). PANASYUK, Anatoliy; 52 A Albion Street,

Agent: BLASI, RObert, S.; TESTA, HURWITZ &
THIBEAULT, LLP, High Street Tower, 125 High Street,
Boston, MA 02110 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Pennant Hills, NSW 2120 (AU). BEHRAKIS, Elias, C.; Published:

20 Concord Road, Dracut, MA 01826 (US). —

with international search report

[Continued on next page]

(54) Title: INTERACTING WITH SOFTWARE APPLICATIONS DISPLAYED IN A WEB PAGE

CLIENT DESKTOP /310
= 312 MENU
LOCAL WINDOW 314
BROWSER WINDOW 320 »
APPL.
ICON
! APPLICATION APPLICATION

394” OUTPUT |,..1 OUTPUT »

. WINDOW WINDOW WEB PAGE
APPL A X CONTENT
ICON 14

N

326
WEB PAGE 322 I
1

(57) Abstract: The invention enables the display of application-output data within application-output windows (326) embedded in
a web browser window (320). The application-output windows (326) can be dynamically moved, resized and otherwise manipulated
within the web browser window (320) even when the application program providing the source of the application-output data is
non-web enabled (e.g., legacy applications). The invention receives window attribute information associated with the application-
output windows (326) via a first virtual channel (660) and displays application-output data received via a second channel (670) within
the application-output windows (326), which are formed and/or modified using the window attribute information.

w0 03/067568 A1 NN 000 .0 D O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 03/067568 PCT/US03/03647

INTERACTING WITH SOFTWARE APPLICATIONS DISPLAYED IN A WEB PAGE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to co-pending U.S. patent application number
09/086,898, filed May 29, 1998; co-pending U.S. patent application number 08/855,977, filed
May 14, 1997; co-pending U.S. patent application number 09/247,220, filed February 10, 1999;
co-pending U.S. patent application number 10/068,461, filed February 6, 2002; and co-pending
U.S. patent application number 10/288,821, ﬁled‘November 6, 2002, the entirety of which are
incorporated herein by reference.

TECHNICAL FIELD

[0002] The present invention relates to the display of information in a communications network

and more specifically to displaying the output of executing application programs in a web page.

BACKGROUND

[0003] Businesses in today’s fast-paced global marketplace strive to improve their productivity
and profitability by providing their employees with access to business-critical applications and
data at fixed locations within the workplace as well as at mobile locations. The popularity of
web-based computing, combined with the need to expedite information access for mobile users,
has spurred adoption of enterprise portals. Enterprise portals are company web sites that
aggregate, personalize and serve applications, data and content to users, while offering
management tools for organizing and using information more efficiently. In some companies,
portals have replaced traditional desktop software with browser-based access to a virtual
workplace that is easy to use, convenient and ubiquitous. Companies that implement portals also
benefit from a fast return on investment due to increased worker productivity and greater
efficiency in their information technology infrastructure.

[0004] True desktop software replacement requires that a portal offer a full complement of
information resources. Business applications are, arguably, the most vital information resource

that workers need to access. Business applications also typically represent a major investment,

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-2

and often a competitive advantage, which must not be lost when moving to web-based systems.
From the standpoint of productivity, application access via the ﬁortal is needed so that users are
not forced to switch back and forth between the browser and the desktop to do their work. With
a split browser/desktop system, it is more difficult to locate and coordinate material from various
sources. Users are also typically tied to the desktop device because it provides key applications
that may not be accessible via the browser.

[0005] These business drivers provide compelling motivation to include existing and upcoming
applications in portal implementations. However, few applications have been developed
specifically for web-based delivery and those that have often provide reduced functionality as
compared to their equivalent desktop applications. Although it is possible to use existing
applications in a portal by re-engineering them for web publication using HTML, scripting,
Java™ and other proprietary means, this approach is time-consuming and expensive and may
delay portal implementation. Likewise, such implementations may experience reduced
functionality and/or may not be feasible because the “download and run” model of application
execution is too resource-intensive. .

[0006] Accordingly, methods and systems are desired that enable efficient deployment of
legacy applications in enterprise portals without undertaking expensive development efforts that

may be marginally effective and which dilute the return on investment of the portal.

SUMMARY OF THE INVENTION

[0007] The present invention overcomes these shortcomings by applying web-enablement
technology to legacy applications so that these applications remain in their original 'form, with
the same user interface and full functionality to which their users are already accustomed, while
allowing such viewers to interact with the applications via application-output windows displayed
within a web page.

[0008] In one embodiment, the invention provides a method of displaying application-output
data within one or more application-output windows positioned within a web browser window.
The application-output data can be generated by a web enabled application program and/or a
non-web enabled application program that is unmodified (e.g., so called “legacy applications”).
The application programs that provide the source of the application-output data can reside on

different application servers and the application-output data from these different application

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-3
servers is displayed within one or mofe application-output windows in the same wéb browser
window. In one aspect, the application-output windows are child windows of the web browser
window. In one embodiment, the application-output windows are relocatable beyond the
boundaries of the web browser window. In another aspect, window attribute information
associated with the application-output windows is received via a first virtual channel and
application-output data (e.g., graphical data) is received via a second virtual channel. In yet
another aspect, the window attribute information of the application-output windows displayed
within the web browser window is modifiable independently of the web browser that formed the
web browser window. The invention displays the application-output data in the application-
output window in accordance with the window attribute information. .
[0009] In one embodiment, the invention provides a client agent that monitors and responds to
events associated with the applicatioﬁ-output wiﬁdows, such as detecting a resize event input by
a viewer of the web browser window and in response resizing an affected application-output
window. The client agent performs these functions independently of the web browser. In one
embodiment, the client agent is executed/instantiated in response to an application object (e.g.,
an ActiveX control) embedded in the web page displayed in the web browser window. In this
embodiment, the client agent uses the window attribute information of the application-output
windows received via the second virtual channel to modify at least one property of the
application object, where the modified property triggers a corresponding change in the associated
application-output windows. In a further aspect, the client agent establishes the first and second
virtual channels independently of the web browser.

[0010] In this manner, the invention avoids expensive development and user training costs, and
provides access to the full functionality of the original legacy application at mobile locations that

have web access.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The invention is pointed out with particularity in the appended claims. The advantages

of this invention described above, and further advantages, may be better understood by reference

to the following description taken in conjunction with the accompanying drawings, in which:
FIG. 1 schematically illustrates a client device, a web server, and a server farm connected

via a data communications network, where a client agent on the client device and one or more

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-4-
server agents in the server farm operate in accordance with an embodiment of the invention;

FIG. 2 provides a high-level flow diagram illustrating steps performed by the client age;nt
and web server in accordance with an embodiment of the invention;

FIG. 3 is an illustrative screen representation of the client desktop, where the application-
output windows displayed within the web browser window of the client desktop are formed in
accordance with an embodiment of the invention;

FIG. 4 is a screen representation of the application-output windows of FIG. 3, illustrating
that application-output windows can be moved and/or resized within the web browser window in
accordance with an embodiment of the invention;

FIG. 5 is a screen representation of the application-output windows of FIG. 3, illustrating
that the application-output windows can be displayed within and/or beyond the boundaries of the
web browser window and can exhibit varying z-orders, in accordance with an embodiment of the
invention; and

FIG. 6 schematically illustra_ltes the processes of the client agent and the type of data that
is transferred between the client agent and the server agents, in accordance with an embodiment

of the invention.

DETAILED DESCRIPTION

[0012] Portals and other web-based implementations capable of displaying application-output
data to remote users are, preferably, implemented using a server-based computing model.
Server-based computing is analogous to enterprise portals, which improve user productivity
through single-point access to information resources (e.g., application programs), in that server-
based computing enhances the overall efficiency of the portal via single-point application
administration.

[0013] In server-based computing models, application processing, administration, support and
deployment are typically based on one or more central servers, which may be geographically
distant from a user’s display device‘. Remote users interact with particular applications hosted on
these application servers by sending keystrokes, mouse movements, and other input/output
actions to the application servers via data communication networks (e.g., LAN, MAN, WAN,
Internet, Intranet, etc.) and receive screen/window updates, files and other data therefrom.

Because much, if not all, of the application processing takes place on the server, the user’s

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-5-

display device operates essentially as a thin client and thus requires few resources (e.g.,
processing power, nonvolatile memory, volatile memory, etc.) to display the application-output
data of what may be a compute-intensive application. Further, by reducing the overall quantity
of data that travels across the network, significant improvements can be realized in application
performance and security.

[0014] Coupling this server-based computing model with web-based implementations of
application programs (e.g., portals) enables users to access business critical applications on
virtually any device connected to the web, including home computers, laptop computers,
computer workstations, wireless and handheld communication devices, and information
appliances running on a wide array of platforms. Device and platform flexibility allows mobile
workers to move seamlessly from one device to another and receive a consistent, personalized
information set, which includes access to the full functionality of business-critical, legacy
applications.

[0015] In brief overview, a user of a device connected to the web requests access to one or
more application programs from a web server. After authenticating the user’s credentials, the
web server accesses user-specific and application-specific parameters from a memory coupled to
the web server. The web server subsequently communicates these parameters to one or more
application execution servers hosting the requested application programs, and software processes
operating on the application execution servers execute and initialize the requested application
programs using the communicated parameters. In this manner, each instance of the application
programs is personalized for a particular requesting user. The particular network addresses of the
application execution servers hosting these personalized application programs are then forwarded
to the user’s device, which establishes a communications link and client-server session therewith.
[0016] Commands, events, graphical data, and window attribute information associated with
the executing application programs are communicated between, the user device and the
application execution servers during the client-server session to ensure that the application-
output data is displayed seamlessly on the desktop of the user device. Seamless display of the
application-output data refers to the presentation of the data on the user desktop in a manner that
is consistent with how locally-executing applications are presented and manipulated in the local
desktop of the user device. In other words, a user views and interacts with the application-output
data generated by the remote application programs as if the application programs were being

executed locally.

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-6-

[0017] In one embodiment, the output of the application programs is displayed in one or more
application-output windows positioned within a web page displayed by a web browser of the
user’s device. In a further embodiment, the attributes of the application-output windows can be
modified so that the application-output windows are moveable and resizeable within the
boundaries of the web page. In another embodiment, the application-output windows initially
appear within the boundaries of the web page and are subsequently moveable so that they are
positioned outside the boundaries of the web page and thus give the appearance that the
application-output windows correspond to locally-executing applications rather than to remotely-
executing applications. In yet another embodiment, the application-output windows initially -
appear outside the boundaries of the web page and thus also appear to correspond to locally-
executing applications. In one embodiment, the application output displayed in the application-
output windows and the attributes of the application-output windows themselves are
communicated and manipulated by software processes on the user’s device and on the
application execution servers, without involvement of the web server or web browser that
initially provided access to the application programs.

[0018] In more detail and with reference to FIG. 1, a server-based computing architecture 100,
capable of providing remote users with web-access to the full functionality of web and legacy
applications (e.g., unmodified application programs that are not designed for web-based
delivery), includes a client device 110 (e.g., any digital data processing device), a web server
112, one or more application execution servers 114 that are either standalone or clustered within
a server farm 116 and which are preferably protected by a firewall 118, and a data
communications network 120 (e.g., Internet, Intranet, etc.) that provides the necessary
connectivity to enable each of these elements to communicate with each other.

[0019] In operation and also with reference to FIG. 2, a user of the client device 110 directs a
browser 122 executing on the client device 110 to submit a request for access to particular web
page content 124 accessible via the web server 112 (step 210). In one embodiment, the user
enters a universal resource locator (“URL”) address into the browser 122. The URL is associated
with the web page content 124 hosted by the web server 112 and the browser 122 responds by
transmitting the request for access to the appropriate URL address. The web server 112 receives
the request for access, which typically includes user credential information (e.g., user ID,

password, group/project membership identifier, etc.), and authenticates the user to the server

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-7 -

farm 116 or to the individual servers 114 that provide at least some of the web page content 124
(step 212). _

[0020] The web server 112 authenticates the user by accessing an authentication process that
compares the credentials entered by the user with previously-assigned credentials. In one
embodiment, the authentication process and database of previously-assigned credentials are
stored and maintained on the web server 112. In other embodiments, the previously-assigned
credentials can be stored in the server farm 116, on individual application execution servers 114,
and/or on an administrative server (not shown) that is coupled to the web server 112 via the
Internet or other data communication network.

[0021] In the scenario where the web page content 124 corresponds to an enterprise portal,
which provides access to an application set 126 (e.g., the set of application programs that have
been personalized for the user by a portal administrator), the web server 112 accesses one or
more application objects 128 (e.g., COM-compliant Java objects, ActiveX objects, HTML tagé,
etc.) that call web server-side scripts to authenticate the user (step 212) and/or to obtain the
application set 126 information associated with the portal and user from the server farm 116 (step
214). The application objects 128 also include properties that are associated with the user and/or
the particular applications 130 in the application set 126 that are provided via the portal. The
user properties include, for example, group/project information that identifies the particular
applications 130 and data that the user needs to access in order to allow the user to collaborate
with other members of the group/project. The application properties include, for example, the
user’s preferences for each of the applications 130 in the application set 126.

[0022] The scripts called by the application objects 128 establish a network session between
the web server 112 and the server farm 116 via, for example, a central administrative process
(not shown), which monitors and controls each server 114 in the server farm 116. The
administrative process selects one or more servers, which host the application programs 130 in
the application set 126 specified by‘ the application objects 128, based, for example, on a server
and/or network performance basis. The desired application set 126 can be provided entirely by a
single server 114 by selecting/allocating each application 130 in the application set 126 from a
plurality of applications 130,132 hosted on the server 114. Alternatively, the application set 126
can be provided by a plurality of servers 114 with each of the plurality of servers 114 hosting at

least one of the application programs in the application set 126°. A more detailed description of

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-8-

server farms and their administration/operation can be found in International Patent Application
No. PCT/US01/14314, which is incorporated herein by reference in its entirety.

[0023] The administrative process launches one or more server agents 134 on the
selected/allocated servers 114 in response to the scripts called by the application objects 128. |
Server agents 134 are software processes that execute, initialize, and interact with each of the
application programs 130 in the application set 126 in accordance with the properties specified
by the application objects 128. In one embodiment, there is a server agent 134 for each
application program 130 in the application set 126. In other embodiments, there is a single
server agent 134 for the application set 130, to the extent that all of the application programs 130
are hosted on the same server 114. In yet another embodiment, there is a single server agent 134
for each server 114. The server agents 134 then provide the output of the application programs
130 in the application set 126 as well as any other information relating to the application set 126
to the web server 112, which subsequently formats the application set information into the web
page content 124 (step 216). The web page content 124 can include application icons
corresponding to one or more of the application programs 130 in the application set 126 as well
as application-output data from one or more of the application programs 130. In one
embodiment, the application—outpuf data provided by the application programs 130 corresponds
to graphical data that is formatted to fit into a window, which exhibits attributes (e.g., window
position on the web page, size, style, z-order, etc.) as initially specified by the properties of the
application objects 128.

[0024] In one illustrative embodiment and with reference to FIG. 3, the browser 122 receives
and displays the web page content 124 within a browser window 320, which includes many
possible graphical user interface (“GUI”) elements (e.g., menu 312, local window 314, etc.) that
form the client desktop 310 displayed on a display device coupled to the client device 110 (step
218). In this particular embodiment, the web page content 124 is displayed within a web page
322 displayed by the browser 320 and includes one or more application icons 324 and/or one or
more application-output windows 326, which are associated with the application set 126. In one
embodiment, one or more of the application objects 128 also form part of the web page content
124 of the web page 322 and can therefore set the initial attributes (size, z-order, position) of the
application-output windows 326. The initial orientation, size, position, and z-order of each of the

application-output windows 326 displayed on the web page 322 can be modified, as described

10

15

20

WO 03/067568 PCT/US03/03647

-9-

below, so that the application-output windows 326 exhibit different orientations, sizes, positions,
and z-orders relative to the web page 322 and/or relative to the client desktop 310.

[0025] The application objects 128 can be any data constructs which indicate to the browser
122 displaying the web page content 124 that an application-output window 326 should be
displayed at a particular location in the web page 322. The application objects 128 may include
additional information, such as the height, width, border style, background color or pattern in the
application-output window 326, along with indicia of which applications 130 may be displayed
in the window 326, how often the o.utput display should be updated, or any other additional
information that is useful to enhance the display of the application output.

[0026] In one illustrative embodiment, the application objects 128 are window tags that are

embedded in an HTML file, examples of such tags are delineated below.

ActiveX tag

<object classid="“clsid:238f6f83-b8b4-11cf-8771-00a024541ee3”
data="“/ica/direct.ica” CODEBASE=“/cab/wfica.cab”
width=436 height=295>
<param name="‘Start” value="Auto”>
<param name="Border” value=“On”>

</object>

Netscape Plugin tag

<embed src="http://www.citrix.com/ica/direct.ica”
pluginspage="http://www.citrix.com/plugin.htmI”
height=295 width=436 Start=Auto Border=On>

<embed>

10

15

20

25

30

WO 03/067568 ' PCT/US03/03647 .
-10 -
JAVA tag

<applet code=JICA.class width=436 height=295>

<param name=Address value=“128.4.1.64">
<param name=InitialProgram value=Microsoft Word 7.0>
<param name=Start value=Auto>
<param name=Border value=On>

</applet>

[0027] In each case above, the tag indicates that an application-output window 326 having a '
height of 295 pixels and a width of 436 pixels should be drawn to receive output data from the
application program 130. Each tag also specifies that the application program 130 should
automatically start execution and that the application-output window 326 in which the
application output is displayed should be drawn with a border. The ActiveX and Netscape
Plugin tags have the properties of the remote application 130 specified in the file “direct.ica”
located in the directory “/ica.” The JAVA tag specifies the properties of the remote application
130 directly. In the example above, the address of the server 114 hosting the application program
130 is specified as well as the name of the application program 130 to be executed.

[0028] In one embodiment, the application program 130 executes substantially at the same time
as the display of the Web’page 322. In another embodiment, the application program 130
executes when instructed to do so by the server agent 114, as part of providing web page content
124 to the web server 112. In yet another embodiment, the application program executes in
response to a signal, such as a user-specified input (e.g., selecting an application icon 324 on the
web page 322. Once execution of the application program 130 is commenced, the browser 122
instantiates a client agent 136 on the client device 110 (step 220). Alternatively, the client agent
136 is instantiated substantially at the same time as the display of the web page 322 or in
response to user-specified inputs.

[0029] The client agent 136 comprises one or more software processes, which execute on the
client device 110 and which are configured to interact with the server agent 134, browser 122,
application-output window 326, and/or web server 112. In one embodiment, the client agent 136

is spawned as a child process of the browser 122. In other embodiments, the client agent 136 is 2

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-11 -

peer process of the browser 122 or a dynamically linked library associated with the browser 122.
In one embodiment, a client agent 136 is instantiated for each application-output window 326 -
displayed in the web page 322. In another embodiment, a single client agent 136 is instantiated
for one or more application-output windows 326 associated with a particular one of the
application programs 130 in fhe application set 126. In yet another embodiment, a single client
agent 136 is instantiated for each server agent 134, which contributed to the web page content
124. In yet another embodiment, a single client agent 136 is instantiated for the entire
application set 126.

[0030] The browser 122 passes the properties of the application objects 128 relating to
particular application programs 130 in the application set 126 to the client agent 136 associated
with those same application programs 126. Additionally, the browser 122 may pass a handle for
an application-output window 326 to the client agent 136 or the client agent 136 may query the
browser 122 to retrieve the handle for the application-output window 326. Application
properties, which are not specified by either the browser 122 or the application objects 128, may
be set to default values. The client agent 136 may also have certain property defaults hard-coded,
or the client agent 136 may access a file which contains property defaults.

[0031] The client agent 136 uses the name of the application program 130 and the address of
the application execution server 114, which are both provided as part of the properties of the
application objects 128, to establish a communications link and initiate a client-server session
with the server agent 134 associated with the server 114 and application program 130 (step 222).
The client agent 136 passes some or all of the properties of the application objects 128 to the
server agent 134 along with any necessary default values. Alternatively, the server agent 134
may have already received some or all of the properties of the application objects 128 from the
web server 112 prior to contributing to the web page content 124, which was subsequently
displayed in the web page 322. If a particular property is not passed to the server agent 134, the
server agent 134 may request it from the client agent 136 if it is a necessary property to which it
has no default value (e.g., user ID) or the server agent 134 may provide its own default value for
the property (e.g., execution priority).)
[0032] The server agent 134 uses the properties received from the ciient agenf 136 to
authenticate the client agent 136 and to execute the desired application program 130 if it has not
previously been started. Once the application program 130 is executing and the client agent 136

has been authenticated, the application program 130 communicates through the server agent 130

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-12-

directly with the client agent 136, without intervention of the browser 122 or web server 112.
The client agent 136 receives output data from the application program 130 and displays the
output data in the appropriate application-output window 326 in the web page 322. The client
agent 136 also detects input events, such as mouse clicks and keyboard inputs, associated with
the application-output window 130 and forwards any such input events to the application
program 130 via the server agent 134. This type of client-server session is repeated for each
application program 130 in the application set 126 that is selected by the user and thus enables
the user to interact with all of the resources in the application set 126 (step 224).

[0033] The data exchanged between the client agent 136 and server agent 134 duﬁng the client-
server session includes not only input events and the graphical output data of the application
program 130, but also window attribute information (e.g., window position, z-order, size, style,
color, etc.). The window attribute information of the application-output windows 326 is initially
specified by the application objects 128 embedded in the web page 322. For example, the
application objects 128 can include an ActiveX control, which specifies and controls the window
attributes of the application-output windows 326 during the client-server session. In one
embodiment, the application-output windows 326 exhibit the same dimensions as the
corresponding ActiveX controls.

[0034] The client agent 136 communicates the initial window attributes of the local
application-output windows 130 to the server agent 134 along with information relating to the
client desktop 310 (e.g., size, resolution, etc.). The server agent 134 responds by conforming the
size of its server desktop to that of the client desktop 310 and by conforming the window
attributes of local server windows to those of the application-output windows 326 on the client
desktop 310. The application-output windows 326 on the client desktop 310 and the server
windows on the server desktop thus exhibit the same window attributes and display the same
graphical output data that is generated by the application 130. Note that the server desktop can
correspond to either an offscreen surface contained within the server’s video memory or to an
onscreen surface displayed on a display device coupled to the server 114.

[0035] The user of the client device 110 can move, resize, and/or alter the z-order or other
initial window attributes of the application-output windows 326 during the client-server session,
by entering an input event that is detected by the client agent 136 and then communicated to the
server agent 134. The server agent.134 conforms its desktop and/or windows to be consistent .

with the input event and then transmits updated graphical output data and window attribute

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-13 -

information, corresponding to the input event, to the client agent 136 with inst,ructions to update
the application-output windows 326 so that they match the windows on the server 114.

[0036] For example, if the user of the client device 110 resizes one of the application-output
windows 326 from that originally specified by the application objects 128 (such as by clicking
with the mouse and dragging the border of the application-output window 326 to the desired
location/size), the client agent 136 detects the input event generated by the mouse action and
communicates it to the server agent 134, which effects the same resize event in the on or
offscreen surfaces of the server 114. The server agent 134 then sends repaint and resize
command messages to the client agent 136 along with updated graphical output data and window
attribute information. In response, the client agent 136 modifies the appropriate application
object 128 affected by the resize event (e.g., the ActiveX control discussed above) so that the
corresponding application-output window 326 is resized and the updated graphical output data is
painted within the borders of the application-output window 326.

[0037] The invention thus enables the window attributes of the application-output window 326
to be modified so that the application-output window 326 can be moved, resized, etc., within the
boundaries of the browser window 320. With reference to FIG. 4 and by way of nonlimiting
example, application-output window B’ 410 can be resized using the methodology described
above to form application-output window B”’ 420, which overlaps (thus exhibiting a different z-
order from) application-output window F 430. Alternatively, the application-output window 326
can be moved or resized to extend beyond or be entirely outside of the browser window 320. By
way of nonlimiting example and with reference to FIG. 5, application-output window J 510 lies
within the boundaries of the browser window 320, while application-output window K 520
extends beyond the boundaries of the browser window 320 and application-output window L 530
is entirely outside the browser window 320. Note that the application-output windows can
exhibit varying z-orders with respect to other elements in the client desktop 310. For example,
local window 540 exhibits a z-order between that of the browser window 320 and application-
output window L 530. In this embodiment, the client agent 136 instructs the operating system of
the client device 110 to draw the desired application-output window 326 in response to command
messages received from the server agent 134, without having to first modify the properties of the
application objects 128 embedded in the web page 322, which initially established the window

attributes of the application-output window 326.

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-14 -

[0038] In one embodiment, each input event affecting the application-output window 326 is
transferred to and processed by the server agent 114, which then instructs the client agent 136 to
effect corresponding changes in the application-output window 326. In another embodiment, one
or more input event types (e.g., click and drag mouse actions directed at moving the application-
output window 326 to another grid location on the web page 322) are processed entirely by the
client agent 136 and not reported to the server agent 134, where the graphical output data
displayed within the application-output window 326 remains unchanged.

[0039] In more detail and with reference to FIG. 6, the client agent 136 comprises a monitor
process 610, a command process 620, a message receiving process 630, and a message
transmission process 640. In one embodiment, each process 610, 620, 630, 640 is a separately
functioning code segment that operates independently of the other processes. For example, the
message receiving process 630 and the command process 620 can be implemented as separate
threads, which communicate with each other via a named pipe or shared memory. Use of a
common data set allows the message receiving process 630 and the message transmission
process 640 to be synchronized.

[0040] The message receivi.ng process 630 receives graphical data, window attribute
information, and commands from the server agent 134 via the communications link that provides
the connectivity between the client agent 136 and server agent 134 during the client-server
session. The communications link preferably includes a first virtual channel 660 and a second
virtual channel 670. Command, event, and window attribute information is passed between the
client agent 136 and the server agent 134 via the first virtual channel 660, while graphical data
corresponding to the graphical contents of the application-output windows 326 is passed via the
second virtual channel 670. The message receiving process 630 informs the command process
620 of the commands, window attributes, and graphical data received from the server agent 134
and the command process 620 further processes this data.

[0041] In one embodiment, the command process 620 processes the commands received from
the server agent 134 by instructing the client operating system 650 to form and/or modify
affected application—outplﬁ windows 326 in accordance with the window attributes specified by
the server agent 134. The command process 620 also instructs the client operating Vsystem 650 to
display the graphical data provided by the server agent 134 in the appropriate application-output
windows 326. In one embodiment, the command process 620 implements changes to the

application-output windows 326 in the client desktop 310 by issuing GDI commands. In other

10

15

20

25

30

WO 03/067568 PCT/US03/03647

-15-
embodiments, the command process 620 issues commands directly to an associated graphics
subsystem or via graphics API commands.
[0042] The command process 620 also instructs the monitor process 610 to periodically
monitor the client desktop 310 in order to detect changes affecting the application-output
windows 326. In one embodiment, the monitor process 610 instructs the client operating system
650 to return information relating to the client desktop 310 at predetermined polling intervals. In
other embodiments, the monitor process 610 monitors the message queue maintained by the
client operating system 650 in order to detect changes affecting the application-output windows.
The monitor process 610 communicates some or all of the detected desktop changes to the
command process 620 for further processing.
[0043] In one embodiment, the command process 620 instructs the message transmission
process 640 to transmit all of the changes detected by the monitor process 610 to the server agent
134 via the first virtual channel. In another embodiment, the command process 620 instructs the
message transmission process 640 to transmit a subset of the detected changes, such as changes
which only affect the graphical data and/or window attributes of the application-output windows
326. The server agent 134 receives the detected changes along with any commands from the
command process 620 and any input events made by the user of the client device 110 that
triggered the detected changes. The server agent 134 then modifies its local desktop to
accommodate the detected changes and transmits associated commands, window attributes, and
graphical data back to the client’s message receiving process 630. In this manner, fhe present
invention ensures that desktop elements, such as the application-output windows 326, that are
common in the client and server desktops remain in lock step.
[0044] The command process 620 of the client agent 136 ensures that analogous/common
elements in the client and server desktops remain in lock step by maintaining a common window
list. The common window list includes the window attribute information for each window in the
client desktop 310 and for each corresponding window in the server desktop. In embodiments, in
which a plurality of client agents are executing on the client device 110, the command process
620 of a single client agent 136 has primary responsibility for maintaining the common window
list. If the single client agent 136 terminates, while other client agents remain in operation, thq
remaining client agents will elect another primary client agent to maintain the common window

list.

10

15

20

WO 03/067568 PCT/US03/03647

- 16 -

[0045] The present invention also enhances the performance of the client-server session by
preferably using the techniques described in co-owned, International Patent Publication No. WO
01/92973, which is incorporated herein by reference, to reduce the amount of graphical data
transmitted between the client and server agents. In one embodiment, the invention encodes the
data into relatively small representations that repeat within the protocol stream transmitted
between the client agent 136 and the server agent 134. In this manner, the invention minimizes
the size of each discrete data element that must be transmitted and increases the repeatability of
the data within the protocol stream so that compression algorithms that operate more efficiently
on repetitive encoded data can realize a greater degree of compression efficiency. The invention
uses a number of techniques to realize this enhanced compression, including the following:
scanning a command queue for later-issued commands which supercede earlier—issﬁed
commands; disk-caching techniques that improve compression of data that has been previously
encountered during a client-server session; transmission of relative coordinates using quantized
regions to avoid sending both endpoints and/or the angle of an associated strip (i.e., series of
consecutive pixels exhibiting a common angle); and manipulation of off-screen surfaces to
enhance performance during the client-server session. The invention also reduces the frequency
of overscroll problems encountered when there is a performance mismatch between a fast server
and a relatively slow network or client device.

[0046] Having described certain embodiments of the invention, it will now become apparent to
one of skill in the art that other embodiments incorporating the concepts of the invention may be
used. Therefore, the invention should not be limited to certain embodiments, but rather should

be limited only by the spirit and scope of the following claims.

O 0 N N U R N

—_ = = s
W N - O

WO 03/067568 PCT/US03/03647

-17 -

What is claimed is:

L. A method of displaying application-output data in a web browser, the method comprising
the steps of:

providing a web browser window;

providing at least one application-output window positioned within the web browser
window;

receiving window attribute information corresponding to the application-output window
via a first virtual channel coupled to the application-output window, the window attribute
information being modifiable independently of the web browser;

receiving the application-output data via a second virtual channel coupled to the
application-output window;

displaying the application-output window in accordance with the window attribute
information; and

displaying the application-output data in the application-output window.

2. The method of claim 1 further comprising the step of providing a client agent monitoring
and responding to events associated with the application-output window, independently of the

web browser.

3. The method of claim 2 further comprising the step of resizing, by the client agent, the

application-output window in response to an input received by the client agent.

4. The method of claim 1 further comprising the step of establishing, independently of the

web browser, the first and second virtual channels.

5. The method of claim 1 further comprising the step of receiving application-output data

generated by an unmodified application program.

6. The method of claim 1 further comprising the step of executing a client agent in response
to an application object embedded in a web page displayed in the web browser window, the

client agent establishing the first and second virtual channels independently of the web browser.

W 0 NN N R W

—
(=]

WO 03/067568 o e et e e . PCT/US03/03647

-18 -

7. The method of claim 6 further comprising the step of using the received window attribute
information to modify at least one property of the application object, the modified property of the

application object triggering a corresponding change in the application-output window.

8. The method of claim 1 further comprising the step of executing a client agent in response
to an ActiveX control embedded in a web page displayed in the web browser window, the client

agent establishing the first and second virtual channels independently of the web browser.

9. The method of claim 1 further comprising the step of providing a plurality of application-

output windows positioned within the web browser window, each of the application-output

windows displaying application-output data received from a different application server.

10. A system for displaying application-output data in a web browser, the system comprising:

a web browser window;

at least one application-output window displaying the application-output data and
positioned within the web browser window;

a first virtual channel receiving window attribute information corresponding to the
application-output window, the window attribute information being modifiable independently of
the web browser; and ‘

a second virtual channel receiving the application-output data, wherein the application-
output data is displayed in the application-output window in accordance with the window

attribute information.

11. The system of claim 10 further comprising a client agent monitoring and responding to

events associated with the application-output window.

12. The system of claim 11 wherein the client agent resizes the application-output window in

response to an input received by the client agent.

13. The system of claim 11 wherein the client agent forms the first and second virtual

channels independently of the web browser.

14. The system of claim 10 further comprising an unmodified application program generating

the application-output data.

o N, T N VN

© 0 1 N R W N -

—_— =
No= O

WO 03/067568 o e v PCT/US03/03647

-19 -

15. The system of claim 10 further comprising:

an application object embedded in a web page displayed in the web browser window, the
application object including at least one property affecting the application-output window; and

a client agent instantiated in response to the application object and capable of modifying
the property of the application object upon receipt of the window attribute information from the

second virtual channel.
16. The system of claim 15 wherein the application object is an ActiveX control.

17. The system of claim 10 wherein the application-output window is a child window of the

web browser window.

18. The system of claim 10 further comprising a plurality of application-output windows
positioned within the web browser window, each of the application-output windows displaying

application-output data received from a different application server.

19. A method of displaying application-output data, generated by an application program
executing on a remote server, in a local desktop, the method comprising the steps of:

transmitting & request to access at least one application program via a web browser;

providing at least one application-output window for displaying application-output data
generated by the application program;

receiving window attribute information corresponding to the application-output window
via a first channel coupled tolthe application-output window;

receiving the application-output data via a second channel coupled to the application-
output window; and

displaying the application-output data received via the second channel in the application-
output window in accordance with the window attribute information received via the first

channel.

20. The method of claim 19 further comprising the step of providing a client agent
monitoring and responding to events associated with the application-output window,

independently of the web browser.

— AL N

N N v R LN

WO 03/067568 PCT/US03/03647

-20 -

21. The method of claim 20 further comprising the step of resizing, by the client agent, the

application-output window in response to an input received by the client agent.

22. The method of claim 19 further comprising the step of establishing the first and second

channels independently of the web browser.

23. The method of claim 19 wherein the application program generating the application-

output data corresponds to an unmodified application program.

24. The method of claim 19 further comprising the step of executing a client agent in
response to an application object embedded in a web page displayed by the web browser, the ’

client agent establishing the first and second channels independently of the web browser.

25. The method of claim 24 further comprising the step of using the received window
attribute information to modify at least one property of the application object, the modified
property of the application object triggering a corresponding change in the application-output

window.

26. The method of claim 19 further comprising the step of executing a client agent in
response to an ActiveX control embedded in a web page displayed by the web browser, the client

agent establishing the first and second channels independently of the web browser.

27. The method of claim 19 further comprising the step of providing a plurality of
application-output windows positioned within a web browser window, at least some of the
application-output windows displaying application-output data generated by application

programs executing on different remote servers.

28. A system for displayiﬁg application-output data, generated by an application program
executing on a remote server, in a local desktop, the system comprising:

a web browser requesting access to at least one application program;

a first channel receiving window attribute information associated with the application
program;

a second channel receiving application-output data generated by the application program;

and

WO 03/067568 PCT/US03/03647

-21 -
at least one application-output window displaying the application-output data received via
the second channel in accordance with the window attribute information received via the first

channel.

29. The system of claim 28 further comprising a client agent monitoring and responding to

events associated with the application-output window.

30. The system of claim 29 wherein the client agent resizes the application-output window in

response to an input received by the client agent.

31. The system of claim 29 wherein the client agent forms the first and second channels

independently of the web browser.

32. The system of claim 28 further comprising an unmodified application program generating

the application-output data.

33. The system of claim 28 further comprising:
an application object embedded in a web page displayed by the web browser, the

application object including at least one property affecting the application-output window; and

a client agent instantiated in response to the application object and capable of modifying
the property of the application object upon receipt of the window attribute information from the

first channel.
34. The system of claim 33 wherein the application object is an ActiveX control.

35. The system of claim 28 wherein the application-output window is a child window of the

web browser.

36. The system of claim 28 further comprising a plurality of application-output windows
positioned within a web browser window, at least some of the application-output windows
displaying application-output data generated by application programs executing on different

remote servers.

37. The method of claim 19 wherein the first and second channels correspond to virtual

channels in a communications link.

I TR

SN W AR W N

WO 03/067568 PCT/US03/03647

-22-

38. The method of claim 19 further comprising the steps of:
forming a web browser window; and
relocatably positioning the application-output window within the boundaries of the web

browser window.

39. The method of claim 19 further comprising the steps of:

forming a web browsér window;

forming the application-output window within the boundaries of the web browser
window; and

relocating the application-output window beyond the boundaries of the web browser

window in response to an input received by a client agent executing in the local desktop.

40. The method of claim 39 wherein the application-output window is relocated

independently of the web browser.

41. A method of displaying graphical data, generated on a remote computing device, in a
local desktop, the method comprising the steps of:
displaying the graphical data in an {output window formed by a browser, the output
window being located within the boundaries of a browser window in the local desktop; and
relocating the output _Vindow beyond the boundaries of the browser window

independently of the browser.

42. The system of claim 28 wherein the first and second channels correspond to virtual

channels in a communications link.

43. The system of claim 28 further comprising a web browser window formed by the web
browser, wherein the application-output window is relocatably positioned within the boundaries

of the web browser window.

44. The system of claim 43 further comprising a client agent instantiated by the web browser,
the client agent relocating the application-output window beyond the boundaries of the web

browser window in response to an input received by the client agent.

WO 03/067568 PCT/US03/03647

-23-

1 45. The system of claim 44 wherein the application-output window is relocated

2 independently of the web browser.

*_

WO 03/067568

1/6

PCT/US03/03647

CLIENT DEVICE 110 WEB SERVER 112
BROWSER 122 |—£--=------ APPLICATION OBJECTS 128
\NETWORK
CLIENT AGENT 136 |~ S 120 - WEB PAGE CONTENT 124
oy oy FREWAUL 118
100 —" | === dooodoenoceos /116

SERVER1 114
SERVERAGENT 134

APPLICATION 1
NN
APPLICATION P

SERVERN 114
SERVERAGENT 134

v — v —— -

-~

e - e

WO 03/067568 . PCT/US03/03647

™ 2/6
CLIENT SIDE ! SERVER SIDE
210, — ! E—
1
REQUEST ACCESS TO APPLICATION| !
SET VIAA WEB PAGE i
i 212
N AUTHENTICATE USER
| TO SERVER FARM
g | 214
! OBTAIN APPLICATION SET
| | INFORMATION FROM SERVER FARM
I
| ' 216
i FORMAT APPLICATION SET
|| INFORMATION INTO WEB PAGE CONTENT
218 E
DISPLAY WEB PAGE .
CONTENT |
1
220, | :
1
LAUNCH CLIENT AGENT |
|
I
222, Y i
INITIATE SESSION WITH SERVER | !
AGENT(S) IN SERVER FARM i
|
|

224

> INTERACT WITH APPLICATION SET

FIG. 2

WO 03/067568 PCT/US03/03647

1 3/6
CLIENT DESKTOP /310
— ‘312 MENU
LOCAL WINDOW 314
BROWSER WINDOW 320
'\ ;
APPLICATION APPLICATION | |]
OUTPUT |,..] OUTPUT -
WINDOW WINDOW > WEB PAGE
APPL A X CONTENT
ICON 124
N
N 3267
WEB PAGE 322 =

FIG. 3

WO 03/067568 PCT/US03/03647

T 4/6

CLIENT DESKTOP 310

BROWSER WINDOW 320
E“ —————————— i
; APPL. OUTPUT WINDOW -
BH

i 420
I
I 1
|APPL. OUTPUT! |APPL. OUTPUT
| WINDOW 1 | WINDOW
: B' I F
— 7 —] /

WEB PAGE 322 410 430 —

FIG. 4

WO 03/067568 : PCT/US03/03647

™ 5/6

CLIENT DESKTOP 310

-~ LOCAL

APPLICATION OUTPUT WINDOWL | 1 WINDOW
530 540

BROWSER WINDOW 320

|

WEB PAGE 322

APPL. OUTPUT =

WINDOW J
APPL. OUTPUT 510
WINDOW K
520

4

FIG. 5

WO 03/067568

,};

6/6

CLIENT DEVICE 110

CLIENT OPERATING SYSTEM 650
AA

CLIENT AGENT 136
MONITOR PROCESS 610

TT

A h*

COMMAND PROCESS 620

A

PCT/US03/03647

SECOND VIRTUAL
CHANNEL
670

GRAPHICAL DATA \m
SERVER

L

MSG RX PROCESS 630

A

WINDOW ATTRIBUTES, VY
COMMANDS AGENT
134

\

COMMANDS & EVENTS

MSG TX PROCESS 640

FIRST VIRTUAL
CHANNEL
660

FIG. 6

INTERNATIONAL SEARCH REPORT International application No.

PCT/US03/03647
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) v GO9G 5/00
USCL T 345/744

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 345/744, 737, 740, 742, 748, 798-807

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 6,272,493 B1 (PASQUALI) 07 August 2001, column 3, lines 54-column 12, lines 67 41

¥ 140, 4245

Y US 6,292,827 B1 (RAZ) 18 September 2001, column 11, lines 5-64 1-40, 42-45

A US 5,913,920 A (ADAMS et al.) 22 June 1999, see the entire document 1-45

A US 5,978,847 A (KISOR et al) 02 November 1999, see the entire document 1-45

A US 5,874,960 A (MAIRS et al) 23 February 1999, see the entire document 1-45

A Remote Desktop Environments Reflected in Local Windows, IBM Technical Disclosure 1-45

Builetin, March 1993, Vol. 36, Issue number 3, Page 421-426.

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T» later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A" document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X" document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step
when the document is taken alone
“L" document whichi may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as “Y” document of particular relevarce; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“p" document published prior to the international filing date but later than the “&” document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
04 April 2003 (04.04.2003)

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

