
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0212625 A1

Nakagawa et al.

US 20060212625A1

(43) Pub. Date: Sep. 21, 2006

(54) STORAGE SYSTEM Publication Classification

(51) Int. Cl.
(76) Inventors: Yutaka Nakagawa, Yokohama (JP); G06F 3/2 (2006.01)

Masahiro Arai, Kawasaki (JP) (52) U.S. Cl. .. 710/68

(57) ABSTRACT
Correspondence Address:
ANTONELLI, TERRY, STOUT & KRAUS, Data transfer is performed to and from a host computer using
LLP a first block as the minimum unit. Data transfer is performed
13OO NORTH SEVENTEENTH STREET to and from a storage area using a second block as the
SUTE 18OO minimum unit. A second block set of the storage area stores
ARLINGTON, VA 22209-3873 (US)

(21) Appl. No.: 11/129,552

data obtained from performing data conversion processes
that change the size of the data itself, with a first block set
as the unit. Here a correspondence relationship is generated
between the first block set and the second block set. In

(22) Filed: May 16, 2005 response to a read request from the host computer, a second
block set, which corresponds to the first block set that

(30) Foreign Application Priority Data includes the first block that is requested, is read, a reverse
conversion process is performed, and the data is sent to the

Mar. 16, 2005 (JP)...................................... 2005-074375 host computer.

Storage System

Disk Array Control Unit
310 390 340

Memory Unit 342
320

Circuit

330
Data Decompression

Circuit

110 20

Control Terminal

210
Control Host Interface

344

230 Disk Interface

Disk Array

Patent Application Publication Sep. 21, 2006 Sheet 1 of 20 US 2006/0212625 A1

Fig.1

110 120

Control Terminal

Storage System
2O

Host Interface

Disk Array Control Unit

Interface

390 340 31 O
Memory Unit 342

320

Circuit

330
344

230

Data Decompression
Circuit

Disk Interface

Disk Array

Patent Application Publication Sep. 21, 2006 Sheet 2 of 20 US 2006/0212625 A1

Fig.2

- 10

Host Computer

Data Relay
Module

UNF1
LBAF.

Local Memory
500

Compressed LBA
Contro Table

Logical Volume Control Table

250

Patent Application Publication Sep. 21, 2006 Sheet 3 of 20 US 2006/0212625 A1

Fig.3

Compression/Encryption Settings X
LDEVN. Current Status Process Option
0 V CompressionV LHA IV

2462

(0 || 1S) EEEEE-EEEEEEEEEE
US 2006/0212625 A1 Patent Application Publication Sep. 21, 2006 Sheet 4 of 20

Patent Application Publication Sep. 21, 2006 Sheet 5 of 20 US 2006/0212625 A1

Fig.5

Compression Process

SOC
Read the original data using
the next compression unit

Area
to be compressed

No

S140

areas completed

S30 Y eS

Update volume status control table

S13

Update logical volume control table

Patent Application Publication Sep. 21, 2006 Sheet 6 of 20 US 2006/0212625 A1

Fig.6(A)
Compressed LBA Control Table 500

Pre-migration Post-migration
(Pre-compression) (Post-compression)

Compressed (C)
Non-compressed (N)

Fig.6(B) Fig.6(C)
Volume Status Control Table 520

| 0 | Disabled Disabled -
enabled Disabled HA

2 Enabled Disabled ZIP

Patent Application Publication Sep. 21, 2006 Sheet 7 of 20 US 2006/0212625 A1

Fig.7

Read Process

Refer the compressed LBA
control table to lool up the storage

location of the data to be read

Compressed area?

S240

Read data

Send the data to
the host computer

All
areas completed

US 2006/0212625 A1 Patent Application Publication Sep. 21, 2006 Sheet 8 of 20

Fig.8
To the host computer 110

S230 UNEO
LBA-0005--0009

DBS1

DDDDDDDDD

S240

DOODDDD

DDDDDDDDD

Decompress
(S225)

DBS5

DDDDDDDDDD

S230 (SN ?) LBAE7990 N-7994

To the host computer 110

A11

A13

Patent Application Publication Sep. 21, 2006 Sheet 9 of 20 US 2006/0212625 A1

Fig.9

S300

Write an entire
compression unit

Yes

S30

Refer the compressed LBA
control table to look up the storage
location of the data to be written

S310-Yes
Read to the old data in
the compression unit
S31

Decompress the old data

S320
Combine the old data with the new

write data to generate the write data
for the compression unit

S32

Compress the new write data
S330

Write the compressed data
S33

Update the compressed LBA control table

S340
All No areas completed

S34 Yes

Completion response to the host computer

Patent Application Publication Sep. 21, 2006 Sheet 10 of 20 US 2006/0212625 A1

Fig.10
BS11 DDDDDD

DDDDDDDDD
A11

BS12

BS3c

DBS15uc

D

Compression Decompression
(S325) S320 (S315)

333333). Dif r OOOOOOOff xx & & & &) DDDDDDDDDD

DULB
LUNEO

From the host computer (Esso-os)

Fig.11
Compressed LBA Control Table 500

Pre-migration Post-migration
(Pre-compression)
Starting
LBA

BS1-1S> OOOO

BS3-1s 3010
BS4-1s 3020

BS5N1S)

10

BS2-1s 3000 10
10
10

10

Patent Application Publication Sep. 21, 2006 Sheet 11 of 20 US 2006/0212625 A1

Fig. 12

Compression Restore Process

Refer the compressed LBA
control table to look up the storage

location of the data to be read

Compressed area?

S210

Read using compressed units

S22

Data decompression

S25C

Write the data to the
decompression destination area

S25

No All
areas completed

S240

S260 Yes

Update the volume status control table
S26

Update the logical volume control table

Patent Application Publication Sep. 21, 2006 Sheet 12 of 20 US 2006/0212625 A1

Fig.13
110

Host Computer

LUNEO
LBAF.

Write Data

0 || 0

520

530

540
Generation/

Compression Control Table

Backup
and

Compress

Post-update Pre-update
data data

Data Relay
Module

Patent Application Publication Sep. 21, 2006 Sheet 14 of 20 US 2006/0212625 A1

Fig.15

O

Read the old data by
the compression unit

Completion response to the host computer 110

Patent Application Publication Sep. 21, 2006 Sheet 15 of 20 US 2006/0212625 A1

Fig.16

Step S2

UNEO
LBA=OOOOOM 00050(h) From the host computer 110 (

DBS200

DDDDDDDDD
Compressed

S405

DULB100

DBS2OOC

BS1 OO BS2OOC

::::DDDDDD
OOOOOOOOOO! OOOOOOOOOO

DOD D OOOOOOOOOD
DEVO SO SG

Fig.17

Update Status Control Table 530

Starting Ending
LBA (h) LBA (h) Information
00000 000FF Pointer

Step S2

BSOO-1S

Generation/Compression Control Table 540

e LBA (h) LBA (h) information

0 1 00000 00050 None BS200c -1S)

Patent Application Publication Sep. 21, 2006 Sheet 16 of 20 US 2006/0212625 A1

Fig.18
Step S5

s LUNEO

From the host computer 10 (Soo-oooo..)

DBS210

& 8 & 8 DDDDD
Compressed

(S410)

S405

DULB110

DBS21 Oc

BSOO BS200c

ZZZ8DDDDDD
DDDDDDDDO O. OOOOOOOOOO
DDDDDDDDDD OOOOOOOOOO
LDEVO SQ SG LDEV1

Fig.19
Update Status Control Table 530

Starting Ending Backup
LBA (h) LBA (h) Information
00000 OOOFF

E

Step S5

BSOON-1S

Generation/Compression Control Table 540

Generation Starting Ending Other generation
LBA (h) LBA (h)

0 00000 00050 pointer BS2OOc-1Se
BS2 Oc N-1 Se

Patent Application Publication Sep. 21, 2006 Sheet 17 of 20 US 2006/0212625 A1

Fig.20

Write to Point-In-Time Copy Process

Data backed No a acKed up

Yes S50

Compress and store the new data

S513
< Update status control table X

Set the Pointer to the backup information

S516
{ Generation/compression control table X

Add data for specified generation

Data shared
with other generations

?

Yes

No

C B

S52C Compress and store the new data
Compress and store the new data S53 -

S52 < Generation/compression control table X
Delete the specified generation from

the shared generations and add
the data for the specified generation

< Generation/compression control table X
Update the LBAs for the data for the

specified generation

O End D

Patent Application Publication Sep. 21, 2006 Sheet 18 of 20 US 2006/0212625 A1

Fig.21
Case A (Step S7)

Update Status Control Table 530 Generation/Compression Control Table 540

Other
generation
information

Fig.22
Case B (Update the second generation '00300 after step S7

Update Status Control Table 530

Starting Ending Backup
LBA (h) LBA (h) Information

Generation/Compression Control Table 540

s Other

E5 E85 generation information
2 0030003A5. None

-asiao -Bs20
Fig.23
Case C (Update the first generation 00100 after step S7

Update Status Control Table 530

Starting Ending Backup
LBA (h) LBA (h) Information
OO 100 OOFF

Generation/Compression Control Table 540

BS1 30- Generation Starting Endig Cition LBA (h) LBA (h) | information
BS220c --1S) 0K2 00130 001AO Pointer
BS250c -1Se- 1 0051A 00590 None

Patent Application Publication Sep. 21, 2006 Sheet 19 of 20 US 2006/0212625 A1

Fig.24
10

Host Computer

LUNEO
LBAF.

Write data

Storage System 300c

Disk Array Control Unit -344
Local Memory

500
Compressed LBA
Control Table

510

Data Relay Logical Volume Control Table
LUN

Module

520

Volume Status Control Table

Compression/
migration

N Pre-update
data

Log Post-update
information data

Patent Application Publication Sep. 21, 2006 Sheet 20 of 20 US 2006/0212625 A1

Fig.25

BS111- DDDDDDDD
A11

BS121 -OD DDDDD
BS13c 1 - D D

8 O O. O. O. O. BS14c - A12

- - - - - - ODO DON-BS15c
BS300c ZZZZZxxxDO

A13 DDD doo DDD
LDEV1

BSD300c
DBS300c

XXX

DLOG300

DULB300c
Pre-Compression LBA : 7990-7995 s
Date and Time E. Compression DULB300
Actual LBA : 5813-5815

xx xxxx

From the Host Computer 110
LUN=0
LBA-7990-N-7995

US 2006/0212625 A1

STORAGE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application claims the priority based
on Japanese Patent Application No. 2005-74375 filed on
Mar. 16, 2005, the disclosure of which is hereby incorpo
rated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

0002)
0003. The present invention relates to storage systems
that provide data storage areas to host computers.
0004 2. Description of the Related Art
0005. In recent years storage systems that provide data
storage areas to host computers have become more common.
When this type of Storage system is used, the host computer
does not merely store the application data to the storage
system. But rather the host computer additionally performs
a variety of data processes. For example, the host computer
additionally performs compressing the data, storing the
compressed data to the storage system, and controlling the
compressed data. In another example, the host computer
performs storing backup data to the storage system, and
controlling the backup data that has been stored. (See, for
example, U.S. Pat. No. 5,649,152, U.S. Pat. No. 5,555,389,
and JP7-72981A)
0006. However, sometimes performing these processes
increases the load on the host computer. In particular, when
compressing data files for storage or controlling the loca
tions of the compressed data, the increase in the overhead on
the host computer has been remarkable.

1. Field of the Invention

0007) Note that this type of problem is not limited to
cases wherein data compression processes are performed,
but rather the problem is the same in cases wherein, for
example, data encryption processes are performed, or when
data processes are performed when the size of the data itself
is changed.

SUMMARY OF THE INVENTION

0008 An object of the present invention is to provide a
technology to reduce the overhead on the host computer
through the use of a storage system that stores data after data
processing that changes the size of the data.
0009. In an aspect of the present invention, there is
provided a storage system for providing a storage area that
stores data to a host computer. The storage system has a data
storage unit having a storage area for storing data, and a
control unit configured to control data transfer between the
host computer and the storage area. The control unit per
forms: receiving data from and sending data to the host
computer according to a logical storage location expressed
in units of first blocks of a specific size, the logical storage
location being specified by the host computer, and storing
data to and reading data from the storage area in units of
second blocks of a specific size. And the control unit has a
conversion storage mode for performing a data conversion
process on data of interest for each first block set in the
data-of interest to generate a second block set corresponding
to each first block set, and storing the second block set in the

Sep. 21, 2006

storage area, the data conversion process changing size of
the data of interest, the first block set including N first blocks
where N is an integer greater than or equal to 1, the second
block set including one or more second blocks. And wherein
the storage system further has a correspondence relationship
memory unit configured to store a block correspondence
relationship that indicates correspondence relationship
between a plurality of the first block sets and a plurality of
the second block sets. When the control unit has received a
data read request for a specific first block from the host
computer, the control unit executes: referencing the block
correspondence relationship to identify a second block set to
be read associated with a particular first block set that
includes the requested first block; reading out the second
block set to be read; performing a reverse conversion
process of the data conversion process on the readout second
block set; and sending data of the requested first block to the
host computer.
0010 Given this storage system, the correspondence rela
tionship memory unit stores the block correspondence rela
tionships that indicate the correspondence relationships of
the block sets before and after the data conversion process
ing, and the control unit, in response to a read request from
the host computer, references the block correspondence
relationships to read out the data from after the conversion
processing from the storage area, and performs the reverse
conversion process for the data that has been read out, and
sends the requested data to the host computer, using the data
that has been obtained, thus making it possible to reduce the
load on the host computer through the use of a storage
system that stores the data after the data processing that
changes the size of the data itself has been performed.
0011 Note that the present invention may be imple
mented in a variety of forms; for example, embodied in the
form of a method and a device that provide a storage area,
embodied in the form of a computer program for executing
the functions of such method and device, embodied in the
form of a recording medium on which is recorded this
computer program, or embodied in a form of a data signal
embodied in a carrier wave that includes this computer
programs.

0012. These and other objects, features, aspects, and
advantages of the present invention will become more
apparent from the following detailed description of the
preferred embodiments with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1 is a drawing of the structure of a storage
system as a first embodiment according to the present
invention;
0014 FIG. 2 is a schematic diagram showing the internal
structure of a local memory 344;
0015 FIG. 3 is a figure showing one example of a set up
screen displayed on a control terminal 120;
0016 FIG. 4 is a drawing showing the overview of the
compression/migration process;
0017 FIG. 5 is a flowchart showing the procedures for
the compression/migration process;
0018 FIGS. 6(A)-6(C) are drawings showing one
example of tables 500, 510, and 520;

US 2006/0212625 A1

0019 FIG. 7 is a flowchart showing the procedures for
the data read process for the storage system 200;
0020 FIG. 8 is a drawing showing an overview of the
read process;
0021 FIG. 9 is a flow chart showing the procedures for
the data write process for the storage system 200;
0022 FIG. 10 is a drawing showing an overview of the
write process;
0023 FIG. 11 is a drawing showing one example of the
post-update compressed LBA control table 500;
0024 FIG. 12 is a flowchart showing the procedures for
the compression restore process;
0.025 FIG. 13 is a drawing showing the structure of the
storage system 200b in a second embodiment;
0026 FIG. 14 is a drawing showing an example of the
update status control table 530 and the generation/compres
sion control table 540:
0027 FIG. 15 is a flowchart showing the procedures for
the data write process;
0028 FIG. 16 is a drawing showing an overview of the
write process in Step S2:
0029 FIG. 17 is a drawing showing an example of the
update status control table 530 and the generation/compres
sion control table 540 in the write process in Step S2;
0030 FIG. 18 is a drawing showing an overview of the
write process in Step S5:
0031 FIG. 19 is a drawing showing an example of the
update status control table 530 and the generation/compres
sion control table 540 in the write process in Step S5:
0032 FIG. 20 is a flowchart showing the procedures for
the write process for data to past generation;
0033 FIG. 21 is a drawing showing an example of the
update status control table 530 and the generation/compres
sion control table 540 in Case A;
0034 FIG. 22 is a drawing showing an example of the
update status control table 530 and the generation/compres
sion control table 540 in Case B;
0035 FIG. 23 is a drawing showing an example of the
update status control table 530 and the generation/compres
sion control table 540 in Case C:
0.036 FIG. 24 is a drawing showing the structure of a
storage system 200c in a third embodiment; and
0037 FIG. 25 is a drawing showing an overview of the
write process in the third embodiment.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

0038 Next, embodiments of the present invention will be
explained based on examples in the following sequence:
A. First embodiment

B. Second embodiment

C. Third embodiment

D. Variants

Sep. 21, 2006

A. First Embodiment

A1. Structure of the Device

0039 FIG. 1 is a drawing showing the structure of a
storage system as a first embodiment according to the
present invention. This storage system 200 has a host
interface 210, a control interface 220, a disk interface 230,
a disk array control unit 300 connected to each of the
interfaces 210, 220, and 230, and a disk array 250 that is
connected to the disk interface 230. The disk array 250 has
a plurality of disk devices.
0040. The host interface 210 is connected to a host
computer 110. This host computer 110 uses the data storage
area provided by the storage system 200, and achieves
specific functions. As functions of the host computer 110.
there are, for example, functions as a file server to provide
data files to a client device (not shown), and functions as a
database server to control a variety of data.
0041. The control interface 220 is connected to a control
terminal 120. An administrator (operator) of the storage
system 200 can control operational settings of the storage
system 200 by operating this control terminal 120.
0042. The disk array control unit 300 has a CPU 310, a
data compression circuit 320, a data decompression circuit
330, and a memory unit 340. All of the structural elements
are connected to each other through a bus 390. Moreover, the
memory unit 340 has a cache memory 342 and a local
memory344. The cache memory 342 stores, temporarily, the
data that is sent between the disk array 250 and the host
computer 110. Moreover, the local memory 344 stores the
data and programs used when the CPU 310 performs a
variety of data processes (described below).
0043 FIG. 2 is a schematic diagram showing the internal
structure of the local memory 344. The local memory 344
has a compressed LBA control table 500, a logical volume
control table 310, a volume status control table 520, and a
data relay module 600. The data relay module 600 has a
function that relays data transmissions between the host
computer 110 and the disk array 250 (described in detail
below). The functions of the data relay module 600 are
achieved by a computer program executed by the CPU 310
(FIG. 1).
0044) Moreover, the data relay module 600 configures a
RAID (Redundant Array of Inexpensive Disks) system that
uses the disk array 250. In FIG. 2, the data relay module 600
forms five logical volumes LDEVO through LDEV4 by
configuring a RAID System.

0045. Here a logical volume is a data storage area that
includes a plurality of logical blocks. A logical block is the
Smallest unit for data transmission to or from the logical
volume. In the first embodiment, the data sizes in the logical
blocks are identical for each of the logical volumes LDEVO
through LDEV4. A logical block within one logical volume
is identified by a unique logical block address (hereinafter
termed “LBA) for each of the logical blocks. In the first
embodiment, serial numbers, starting with “0” are used for
the LBAs. The data relay module 600 specifies a logical
block to be accessed by using the LBA. In the below, a
logical volume may be referred to as a “logical device,” or
simple a “volume.” Moreover, a logical block may be
referred to simply as a “block.” Moreover, the data relay

US 2006/0212625 A1

module 600, in order to identify each of the logical volumes,
assigns a unique number (hereinafter termed the “LDEVN)
to each of the logical volumes (logical devices). In FIG. 2,
each of the five logical Volumes are assigned numbers 0
through 4, respectively.

0046) Moreover, the data relay module 600 selectively
causes the logical Volumes to be used by the host computer
110. In FIG. 2, the data relay module 600 provides two
logical volumes LDEVO and LDEV4 to the host computer
110. The logical volumes that can be used by the host
computer 110 in this way are termed the “logical units.” The
data relay module 600 assigns a unique logical unit number
(hereinafter termed “LUN”) to each of the logical units. In
the example shown in FIG. 2, the 0th logical volume
LDVE0 is assigned “No. 0, and the fourth logical volume
LDEV4 is assigned “No. 1.” This type of correspondence
relationship between the LUNs and the LDEVNs is stored in
the logical volume control table 510.

0047. In the first embodiment, the minimum unit for data
transfer between the host computer 110 and the data relay
module 600 is the logical block, which is the same as the
minimum unit (the logical block) for data transfer between
the data relay module 600 and the logical volume. The host
computer 110 requests data transfer to/from a logical unit by
specifying the LUN and the LBA. The data relay module
600 relays the data transfer for a logical volume according
to a request from the host computer 110. However, as will
be explained below, in the first embodiment, the data to be
stored in multiple logical blocks is gathered together, com
pressed, and stored in Smaller logical blocks. Consequently,
there are cases wherein the LBA specified by the host
computer 110 will be different from the LBA of the actual
logical block that is used in the data transfer. In this way, the
correspondence relationship between the specified LBA and
the actual LBA is stored in the compressed LBA control
table 500 (explained in detail below). The LBA specified by
the host computer 110 is called the “specified LBA.”

A2. Compression Process

0.048 FIG. 3 is an explanatory figure showing one
example of a setup screen displayed on a control terminal
120. This setup screen is a setup screen for performing the
compression/migration of the logical volume. “Compres
sion/migration” refers to the process for compressing the
data that has been stored on a logical volume, and then
re-storing. In the first embodiment, all of the data for a first
logical Volume is compressed, and migrated to another
logical volume. The operator, by operating the setup screen
shown in FIG.3, is able to select the logical volume that will
be processed (the migration origin), the contents to be
processed, and the processing algorithm. In FIG. 3, the “Oth
logical volume LDEVO is selected. “Compression' is
selected as the process to be performed at the time of
migration, and “LHA' is selected as the algorithm for the
compression process. "Encryption' may also be selected
instead of “compression' as the process to be performed at
the time migration, and described below. “ZIP can also be
selected instead of “LHA' as the algorithm for the com
pression process. When the operator activates the “OK”
button, the disk array control unit 300 (FIG. 1) commences
the compression/migration process. Note that the data relay
module 600 selects automatically an empty logical volume
to be the logical volume for the migration destination. In

Sep. 21, 2006

FIG. 3, the first logical volume LDEV1 is selected as the
migration destination. Note also that this selection may be
made by the operator.
0049 FIG. 4 is a diagram showing an overview of the
compression/migration process. FIG. 4 shows the 0th logi
cal volume LDEVO and the first logical volume LDEV1.
Each of these logical volumes LDEVO and LDEV1 has a
plurality of logical blocks LB.
0050. The 0th logical volume LDEVO is partitioned into
a non-compressed area A1 and a compressed area A2. These
partitions are set up in advance. Moreover, the correspon
dence relationship between each of the logical blocks and
each area is stored in advance in the local memory 344. For
example, when a file system is structured in a logical
Volume, the logical volume may be partitioned into a data
area, wherein data files are stored, and a control area,
wherein information for controlling the data files (such as
the correspondence relationships between the file names and
the LBAS) is stored. In such a case, the control area is set up
in the non-compressed area A1, and the data area is set up
in the compressed area A2. Typically the part of the area
wherein is stored data that is accessed relatively frequently
should be used as the non-compressed area A1, and the part
of the area wherein is stored data that is accessed relatively
infrequently should be used as the compressed area A2.
Additionally, all areas of a logical Volume may be used as
compressed areas. Note that the operator may set up Such
aaS.

0051 FIG. 5 is a flow chart showing the procedures for
the compression/migration process. The data relay module
600 (FIG. 2) migrates data, in compression units, sequen
tially from the front (from the side wherein the LBA is the
lowest). In the first embodiment, the compression unit is a
block set comprising ten logical blocks with sequential
LBAs. The logical volume LDEVO is partitioned into mul
tiple block sets.
0052 First the procedures will be explained for the case
wherein data is migrated within the non-compressed area
A1. In Step S100, the data relay module 600 reads out the
data from one block set within the migration origin logical
volume LDEV0. In the example shown at the top of FIG. 4,
the data relay module 600 reads out the data DBS1 from the
first block set BS1 within the non-compressed area A1.
0053. In the next Step S105, the data relay module 600
determines whether or not the read origin block set is within
the compressed area A2. In the example at the top of FIG.
4, the first block set BS1 is in the non-compressed area A1.
Consequently, the data relay module 600 moves to Step
S140. In Step S140, the data relay module 600 stores as is
the data that has been read out, storing this data to the
migration destination logical volume LDEV1. Here the
“stores as is means that the contents of the data are stored
without modification. At this time, the data relay module 600
selects the migration destination logical blocks sequentially
from the front (from the side wherein the LBA is the lowest).
In FIG.4, the data DBS1 is stored to the first block set BS11.
Each block set BS1 and BS11 has the same number of
logical blocks.

0054) In the next step, S120, the data relay module 600
updates the compressed LBA control table 500. FIG. 6 (A)
is a figure showing an example of the compressed LBA

US 2006/0212625 A1

control table 500. The compressed LBA control table 500
stores the correspondence relationships between the pairs of
block sets before and after migration, and information
regarding whether or not compression was performed at the
time of migration. In the example in FIG. 6 (A), the block
set is specified by a combination of the starting LBA and the
size (number of blocks). The data relay module 600 stores in
the compressed LBA control table 500 the correspondence
relationship between the first block set BS1 prior to migra
tion and the first block set BS11 after migration. In FIG. 6
(A), the starting LBA for the first block set BS1 is "0000.”
and the size is “10.” The starting LBA is "0000 for the
block set BS11 after migration as well, and the size is also
“10.

0055. Note that the information stored in the compressed
LBA control table 500 is not limited to combinations of
starting LBAS and sizes, but rather can also use any given
information that can be used for specifying the block set. For
example, combinations of the starting LBAS and the ending
LBAs may be used instead.
0056. In the next step, S125, the data relay module 600
determines whether or not migration has been completed for
all of the data. If not completed, then the data relay module
600 returns to Step S100.
0057 Next, the procedure will be explained for the case
when data is migrated within the compressed area A2. In the
example at the bottom of FIG. 4, the data relay module 600
reads out the data DBS5 from the 5th block set BSS in the
compressed area A2 (Step S100).
0058. Once Step S100 has been completed, the data relay
module 600 moves to Step S105. Because the 5th block set
BS5 is within the compressed area A2, the data relay module
600 moves to Step S110.

0059. In Step S110, the data relay module 600 com
presses the read out data in the data compression circuit 320
(FIG. 1). At this time, the algorithm set in the set up screen
in FIG. 3 is used. In FIG. 4, the data compression circuit
320 generates the data DBS15c through compressing the
data DBS5. The size of the data DBS15c after compression
is five blocks.

0060. In the next step, S115, the data relay module 600
stores the post-compression data into the migration destina
tion logical volume LDEV1. At this time, the data relay
module 600 selects the migration destination blocks sequen
tially from the front (the side wherein the LBA is the
smallest). In FIG. 4, the data DBS15c is stored in the 5th
block set BS15c. The size of this block set BS15C is five
blocks.

0061. In the next step, S120, the data relay module 600
stores into the compressed LBA control table 500 the
correspondence relationship between the pre-migration and
post-migration block sets BS5 and BS15c. In FIG. 6 (A), the
starting LBA for the pre-migration 5th block set BS5 is
“7990, and the size is “10.” For the post-migration 5th
block set BS15c, the starting LBA is “5808,” and the size is
“5.

0062) The same migration process is performed for the
other block sets as well. In FIG. 4, the second block set BS2
is migrated to the second block set BS12, and the third block
set BS3, after compression, is migrated to the third block set

Sep. 21, 2006

BS13c, and the 4th block set BS4, after compression, is
migrated to the 4th block set BS14c. Note that although, in
FIG. 5, the series of processes from Step S100 to Step S125
are performed for each individual block set, but instead, this
series of processes can be performed for each plurality of
block sets.

0063. Once the migration has been completed in this way
for all of the data, then, in the next step, S130, the data relay
module 600 updates the volume status control table 520.
FIG. 6 (B) is a diagram showing an example of a volume
status control table 520. The volume status control table 520
stores the correspondence relationships of the LDEVNs,
whether or not the data is compressed, whether or not the
data is encrypted, and the algorithm used. The data relay
module 600 stores, as information regarding the migration
destination logical volume LDEV1, “Compression: enabled,
"Encryption: disabled, and “Algorithm: LHA.”

0064. In the next step, S135, the data relay module 600
updates the logical volume control table 510. FIG. 6 (C) is
a drawing showing an example of a logical Volume control
table 510. The data relay module 600 updates the LDEVN
corresponding to the 0th logical unit LU0 from “0” to “1.”
0065. Once the processes described above have been
completed, then the disk array control unit 300 terminates
the compression/migration process. The result is that a
non-compressed area A11, a compressed area A12 and an
open area A13 are formed in the migration destination
logical volume LDEV1.
A3. Read Process

0066 FIG. 7 is a flowchart showing the procedures for
the process for reading data from the storage system 200. As
described above, a LUN and a LBA are specified by the host
computer 110 to the storage system 200 to request that the
data be read. The explanation below will assume that the first
logical volume LDEV1 (LUN=0) has been specified.

0067 FIG. 8 is a drawing showing an overview of the
read process. In FIG. 8, the top shows the case of reading
data from the non-compressed area A11, and the bottom
shows the case of reading data from the compressed area
A12.

0068 The procedure in the case of reading data from the
non-compressed area A11 will be explained first. In Step
S200 (FIG. 7) the data relay module 600 looks up from the
compressed LBA control table 500 (FIG. 6 (A)) the com
bination of pre-migration block set and post-migration block
set that includes the specified logical block. In the example
at the top of FIG. 8, the specified LBAs are “0005” through
“0009. In this case, a combination of the first block set BS1
and the first block set BS11 is looked up.

0069. In the next step, S205, the data relay module 600
determines whether or not the looked up block set has been
Subjected to a compression process. This determination is
performed by referencing the compressed LBA control table
500. In the example at the top of FIG. 8, the decision is “no.”

0070). In the next step, S240, the data relay module 600
reads the data from the post-migration block set looked up
in Step S200, within the first logical volume LDEV1. In the
example at the top of FIG. 8, the data DBS1 is read from the
first block set BS11.

US 2006/0212625 A1

0071. In the next step, S230, the data relay module 600
obtains, from the data that has been read, the data associated
with the specified LBA, and transfers this data to the host
computer 110. In the example at the top of FIG. 8, from the
10 blocks worth of data included in data DBS1, the 5th
through 9th blocks are the data for the logical blocks for
“LBA=0005” through “LBA=0009.”

0072. In the next step, S235, the data relay module 600
determines whether or not the transfer of data has been
completed for all of the specified LBAs. If not complete,
then the data relay module 600 returns to the Step S200, and
iterates the series of steps from S200 through S230 for the
specified LBAs for which data transfer has not yet been
completed. This series of processes is performed for each
individual block set. However, this series of processes may
be performed for each plurality of block sets instead.

0073. The procedures will be explained next for the case
wherein data is read from the compressed area A12. The
bottom part of FIG. 8 shows the case wherein the specified
LBAs are “7990 through “7994.” In this case, the data relay
module 600 looks up the combination of the 5th block set
BS5 and the 5th block set BS15c in Step 200. (FIG. 6 (A))
0074. Once Step S200 has been completed, the data relay
module 600 moves to the next step, S205. In the example at
the bottom of FIG. 8, the decision is “yes.”

0075). In the next step, S210, the data relay module 600
reads the data from the post-migration block set specified in
Step S200. In the example at the bottom of FIG. 8, data
DBS15c is read from the 5th block set BS15C associated
with the 5th block set BS5.

0076) Note that the pre-migration 5th block set BS5 that
includes the specified LBAs corresponds to the “first block
set in the present invention. Moreover, the post-migration
5th block set BS15c corresponds to the “second block set”
in the present invention. Moreover, the LUN, pre-compres
sion starting LBA, and pre-compression size, as a whole,
correspond to information indicating the “first block set
logical storage location' in the present invention. In addi
tion, the LDEVN, the post-compression starting LBA, and
post-compression size, as a whole, correspond to the infor
mation indicating the 'second block set physical storage
location' in the present invention.

0077. In the next step, S225, the data relay module 600
decompresses, in the data decompression circuit 330 (FIG.
1), the data that has been read. This decompression process
is the reverse conversion process of the compression process
that had been performed by the data compression circuit
320. The data decompression circuit 330 references the
volume status control table 520 (FIG. 6 (B)) to select a
decompression process with the appropriate algorithm. In
the example at the bottom of FIG. 8, the data decompression
circuit 330 produces data DBS5 through decompressing the
data DBS15c.

0078. In the next step, S230, the data relay module 600
obtains, from this data that has been generated, the data
associated with the specified LBAs, and transfers this data to
the host computer 110. In the example at the bottom of FIG.
8, of the 10 blocks of data included in the data DBS5, the
data for the 0th to 4th blocks are the data for each block from
“LBA=7990 through “LBA=7994.”

Sep. 21, 2006

0079) When all of the data for the specified LBAs has
been transferred in this way, the disk array control unit 300
terminates the data read process.
0080. In the read process, described above, the storage
system 200 has a compressed LBA control table 500, and the
data relay module 600 reads and decompresses the data by
referencing this compressed LBA control table 500, and
sends to the host computer 110 the data for the requested
logical blocks. Consequently, even when data is compressed
and stored in the storage system 200, the host computer 110
controls neither the decompression process nor the com
pressed data, and can read data through the specification of
the pre-compression LBA.
A4. Write Process:

0081 FIG. 9 is a flow chart showing the procedures for
the process of writing data to the storage system 200. As
with the read process, the host computer 110 specifies the
LUN and the LBA to the storage system 200 in order to
request that data be written. The explanation below will
assume that the first logical volume LDEV1 (LUN=0) is
specified.

0082 FIG. 10 is a drawing showing an overview of the
write process. FIG. 10 shows an overview of the process in
the case of writing data to the compressed area A12. First,
in Step S300 (FIG.9), the data relay module 600 determines
whether or not the specified LBAs include all of the logical
blocks in a single compressed unit (block set). This decision
is made by referencing the compressed LBA control table
500 (FIG. 6 (A)). FIG. 10 shows the case where the
specified LBAs are from “7990 through “7995.” The speci
fied blocks are the logical blocks for only a portion (6 logical
blocks) of the 5th block set BS5. As a result, in this case, the
data relay module 600 decides “no.”
0083) Note that the specified LBAs may contain blocks
from a plurality of compressed unit (block sets). In such a
case, the data relay module 600 performs the series of
processes, for each block set, following Step S300
(explained below).
0084. In each Step S305, the data relay module 600
references the compressed LBA control table 500 (FIG. 6
(A)) to look up the combination of pre-migration block set
and post-migration block set that includes the specified
logical blocks. This process is the same as the process in
Step S200 in FIG. 7. In FIG. 10, the combination of the 5th
block set BS5 and the 5th block set BS15c is looked up.
0085. In the next step, S310, the data relay module 600
reads the data from the post-migration block set looked up
in Step S305. In FIG. 10, the data DBS15c is read from the
5th block set BS15c.

0086). In the next step S315, the data relay module 600
decompresses, in data decompression circuit 330 (FIG. 1),
the data that has been read. This process is the same as in
Step S225 in FIG. 7. In FIG. 10, the data compression
circuit 330 generates the data DBS5 through decompressing
the data DBS15c. The data that is generated in this way is
used as the pre-update data for the block set to be updated.
0087. In the next step S320, the data relay module 600
overwrites the pre-update data with the data for which the
host computer 110 has requested writing, thereby generating
the data to be written to the compressed unit. In FIG. 10, the

US 2006/0212625 A1

data relay module 600 generates the post-update data
DBS5u by overwriting the data in the 0th through 5th block
of the pre-update data DBS5 with the update data DULB
obtained from the host computer 110.
0088. In the next step S325, the data relay module 600
compresses the post-update data in the data compression
circuit 320 (FIG. 1). This process is the same as the process
in Step S110 in FIG. 5. In FIG. 10, the data compression
circuit 320 generates the post-compression data DBS15uc
by compressing the post-update data DBS5u. The size of this
new post-compression data DBS15uc is six blocks.
0089) Note that the processes in Steps S305 through S320
are omitted if updating the data in all of the blocks in a single
compressed unit (block set). In this case, the single-block set
worth of data requested to be written is compressed as
post-update data.

0090. In the next step, S330, the data relay module 600
stores the post-compression data to an open area A13 of the
first logical volume LDEV1. In this case, the data relay
module 600 selects the storage destination logical blocks
sequentially from the front (the side where the LBA is the
smallest). In FIG. 10, the data DBS15uc is stored in the 5th
block set BS15uc.

0091. In this step S330, the data relay module 600 selects
a logical block in an unused area of the open area A13. Any
given method may be used for the method of discriminating
between the used area and the unused area of the open area
A13. For example, a method can be employed, in which the
data relay module 600 stores in the local memory 344 an
LBA that indicates the boundary between the used area and
the unused area, and performs referencing and updating the
LBA as appropriate.

0092. In the next step, S335, the data relay module 600
updates the compressed LBA control table 500. FIG. 11 is
a drawing showing an example of a post-update compressed
LBA control table 500. The data relay module 600 updates
the information for the post-migration block set associated
with the 5th block set BS5, doing so from the old 5th block
set BS15c to the new 5th block set BS15uc. In FIG. 11, the
starting LBA is “5813,” and the size is “6.” When, after this,
the data relay module 600 receives a read request for the 5th
block set BS5, the data is read from the new 5th block set
BS15uc. After this point, the data in the old 5th block set
BS15c is not used.

0093. In the next step, S340, the data relay module 600
determines whether or not the write process has been
completed for all of the specified LBAs. If not complete, the
data relay module 600 returns to Step S300, and repeats the
series of processes from Step S300 through Step S335 for
those specified LBAs for which the writing has not been
completed. This series of processes is repeated for each
individual block set. But instead, this series of processes
may be performed for each plurality of block sets.
0094. Once writing has been completed for the data for

all of the specified LBAs in this way, then in the next step,
S345, the data relay module 600 sends to the host computer
110 a notification that the writing of the data has been
completed.

0.095. In the write processes described above, the data
relay module 600 compresses and stores data when the data

Sep. 21, 2006

relay module 600 has received a data write request from the
host computer 110, and also write, to the compressed LBA
control table 500, a new correspondence relationship
between the pre-compression and post-compressing (pre
migration and post-migration) block sets. Consequently,
even when the storage system 200 compresses and stores the
data, the host computer 110 can write the data through
specifying the pre-compression LBAS without performing
the compression process and without controlling the com
pressed data.

0096. Moreover, when there is not a request to update all
of the blocks in the pre-compression block set that includes
the specified LBAs, the data relay module 600 overwrite the
pre-update data within the block set with the requested data
to perform the compression process using the block set as
the unit. This makes it possible to prevent the control of the
post-compression data from becoming excessively complex.

0097. Note that the post-update post-compression data
may be stored in a logical volume that is different from the
logical volume in which the pre-update post-compression
data was stored. Doing so makes it possible to write the
post-update data to a logical Volume that has a recording
area larger than the open area A13, and makes it possible to
accommodate the updating of large amounts of data. In Such
a case, the LDEVN that includes the post-migration block
set may be added to the correspondence relationships for the
pre-compression and post-compression (pre-migration and
post-migration) block sets in the compressed LBA control
500 (FIG. 6 (A)).
0098. Moreover, if the post-update compressed data is
Smaller than the pre-update compressed data, then the post
update compressed data may be stored in the logical block
wherein the pre-update compressed data had been stored.
Doing so makes it possible to increase the efficiency with
which the logical blocks are used.
A5. Compression Restore Process

0099 FIG. 12 is a flowchart for the procedures for the
compression restore processes. The "compression restore
processes are the processes that decompress and re-store
the compressed data stored in a logical volume. In the first
embodiment, a single logical Volume's worth of data is
migrated to another logical Volume while decompressing.
The compression restore process is performed by the disk
array control unit 300 following instructions from the con
trol terminal 120 (FIG. 1). In the below, the explanation will
be of migrating a first logical volume LDEV1 to a second
logical volume LDEV2. Note that, for the decompression
destination (the migration destination) logical volume, the
data relay module 600 automatically selects from among the
open logical volumes. Note that this selection may instead
be done by an operator.

0.100 The disk array control unit 300 reads out data for
each block set and further decompresses the read-out data as
appropriate, in the same manner as the read process shown
in FIG. 7. However, there are three differences from the read
process in FIG. 7. The first difference is that a single logical
volume's worth of data is read, instead of the data specified
by the host computer 110. The second difference is that a
process is performed (in Step S250) to write to the decom
pression-destination (migration-destination) logical Volume
instead of a process to transfer the read-out data to the host

US 2006/0212625 A1

computer 11 (FIG. 7: Step S230). The third difference is
that, when the migration has been completed, the Volume
status control table 520 (FIG. 6 (B)) and the logical volume
control table 510 (FIG. 6 (C)) are updated (in Steps S260
and S265).
0101 The processes from Steps S200 through S250 are
the same as the read processes in FIG. 7.
0102) In Step 250, the data relay module 600 stores the
read data in the decompression-destination (migration-des
tination) logical volume. In the first embodiment, the data
relay module 600 selects the decompression-destination
logical blocks so that the decompression-destination logical
block LBA is the same as the pre-compression logical block
LBA.

0103) In the next step, S255, the data relay module 600
determines whether or not data migration has been com
pleted for all of the pre-compression LBAs. If not complete,
then the data relay module 600 returns to Step S200, and
repeats the processes in the series of steps from S200
through S250 for the block sets for which data transfer is not
complete. This series of processes is performed for each
single block set. However, this series of processes may be
performed for each plurality of block sets.
0104. After the data transfer has been completed, then in
the next step, S260, the data relay module 600 updates the
information regarding the decompression-destination logi
cal volume in the volume status control table 520 (FIG. 6
(B)). For example, “Compression: Disabled.'"Encryption:
Disabled, and “Algorithm: None.” are set for the decom
pression-destination second logical volume LDEV2.

0105. In the next step, S265, the data relay module 600
switches the LDEVN in the logical volume control table
510. For example, the data relay module 600 changes the
LDEVN corresponding to the 0th logical unit LU0 from “1”
to “2.” Note that the switching of the LDEVN may be
performed with timing according to an instruction from the
control terminal 120.

0106 After this, when the data relay module 600 receives
a data transfer request (such as a read request or a write
request) for the 0th logical unit LU0, the data transfer is
performed regarding the new second logical Volume
LDEV2. At this time, the specified LBA (the pre-compres
sion LBA) is used as is for the LBA for the logical volume.
0107. In the compression restore process described
above, the disk array control unit 300 performs the data
decompression without placing an additional load on the
host computer 110. Moreover, the data relay module 600
selects logical blocks for storing the post-decompression
data so that the pre-compression LBAS are the same as the
decompression-destination LBAS. Consequently, even when
the storage system 200 has decompressed the compressed
data, the host computer 110 is able to perform data transfer
requests through specifying the pre-compression LBAS,
without having to control the decompression process or the
decompressed data.

0108) Note that it is not necessary for the LBAs for the
decompression-destination logical blocks to match the
LBAS of the pre-compression logical blocks. In this case, the
correspondence relationships between the pre-compression
LBAs and the post-decompression LBAs should be stored in

Sep. 21, 2006

the storage system 200. Doing so makes it possible to have
appropriate data transfer, through referencing these types of
correspondence relationships when the data relay module
600 receives a data transfer request.
0.109 Given the first embodiment, explained above, the
disk array control unit 300 (FIG. 1) performs the compres
sion/migration process independently from the host com
puter 110, making it possible to economize the storage area
without putting an additional load on the host computer 110.
0110 Moreover, in the first embodiment, the logical
volume data is split between multiple block sets and com
pressed. Consequently, when compared to the case wherein
the entire logical volume is compressed as a single data, it
is possible for the speed of the data transfer process on
partial areas of the logical volume to prevent excessive
delays.

0.111 Furthermore, in the first embodiment, the storage
system 200 not only stores control data regarding the
correspondence relationships of the pre-compression and
post-compression block sets (the compressed LBA control
table 500, the logical volume control table 510, and the
volume status control table 520), but also performs data
compression and decompression, and updating of control
data, independently from the host computer 110. Conse
quently, it is possible to perform the data compression and
decompression without placing an additional load on the
host computer 110.
0.112. In particular, in the first embodiment, the storage
system 200 has a compressed LBA control table 500 that
stores the correspondence relationship between the LBA
specified by the host computer 110 (the pre-compression
LBA) and the actual LBA (the post-compression LBA). As
a result, the disk array control unit 300 is able to receive a
data transfer request that specified the pre-compression LBA
from the host computer 110 in a consistent manner regard
less of the data compression status (i.e., regardless of
whether or not the data is compressed, and regardless of
whether or not there have been changes in the LBAs in the
blocks wherein the data is stored). In other words, the disk
array control unit 300 can hide the data compression status
from the host computer 110. This makes it possible for the
host computer 110 to request a data transfer using a specific
pre-compression LBA without having to control the data
compression status.
0113. In addition, even when the data that is stored in the
storage system 200 is shared by a plurality of host comput
ers, each computer is able to perform data transfer requests
using the shared pre-compression LBA regardless of the data
compression status. In this way, the storage system 200 in
the first embodiment makes it possible to provide storage
areas without constraining the host computers, regardless of
the data compression status. This ability to operate without
constraints on the host computers will be termed “host
transparent,” below.
0.114) Note that in the first embodiment, the compressed
LBA control table 500 and the logical volume control table
510, as a whole, correspond to the “block correspondence
relationships' in the present invention.

B. Second Embodiment

0115 FIG. 13 is a drawing showing the structure of a
storage system 200b in a second embodiment. The differ

US 2006/0212625 A1

ences from the storage system 200 shown in FIG. 1 are in
that the data relay module 600b not only stores a data update
history, but also performs generation control of the update
history. Moreover, the local memory 344b stores an update
status control table 530 and a generation/compression con
trol table 540 instead of the compressed LBA control table
500. These tables 530 and 540 are used in generation
control. The other structures are the same as in the storage
system 200 of FIG. 1 and FIG.2. Note that in FIG. 13, only
the local memory 344b of the disk array control unit 300b is
shown as a structural element of the storage system 200b,
and the other structural elements are omitted in the draw
1ngS.

0116. In the second embodiment, the 0th logical unit LU0
is assigned as corresponding to the 0th logical volume
LDEVO (FIG. 13: Logical volume control table 510). More
over, the data of the 0th logical volume LDEVO is not
compressed. Given this, the data relay module 600b uses the
specified LBA as is as the LBA corresponding to the 0th
logical volume LDEV0.

0117 Moreover, the data relay module 600b holds the
update history of the data in the 0th logical volume LDEV0.
and performs generation control on the update history. This
makes it possible to provide to the host computer 110 not
just the most recent data, but also data for the 0th logical
volume LDEV0 from some point in the past. This data
backup for Some point in the past is called a "point-in-time
copy” or a “snapshot(trademark of Network Appliance,
Inc.).”
0118. The data relay module 600b receives an instruction,
from the host computer 110, from the control terminal 120,
etc. to create a "point-in-time copy.” In response, the data
relay module 600b stores backup data to make it possible to
provide, later, the data of any given logical block from the
point in time at which the instruction was received (herein
after termed “point in time of the instruction'). At this time,
the data relay module 600b stores the pre-update data of only
those partial areas that are updated after the point in time of
the instruction as the backup data. A process that copies only
the updated part (the modified part) is known as "copy-on
write.” Note that the data relay module 600b stores the
backup data into a first logical volume LDEV1 that is
different from the origin 0th logical volume LDEV0. At this
time, the backup data is compressed and stored (as will be
described in detail below).
B1. Write Process (Update Process):
0119 FIG. 14 is a drawing showing an update status
control table 530 and a generation/compression control table
540. These tables 530 and 540 are examples showing the
case wherein data updating is performed following the
procedures in Steps S1 through S7 shown at the bottom of
FIG. 14.

0120) The update status control table 530 stores the
correspondence relationships between the block sets in the
Oth logical volume LDEVO and whether or not there is
backup data. In the second embodiment, the data relay
module 600b partitions the 0th logical volume LDEVO into
a plurality of block sets. Furthermore, the data relay module
600b performs storing and generation controlling of the
update history by using the block set as the processing unit.
In FIG. 14, the processing unit is the block set comprising

Sep. 21, 2006

100 (hexadecimal) logical blocks with continuous LBAs. In
the update status control table 530, the block sets are
identified by a combination of starting LBAS and ending
LBAs. In FIG. 14, four block sets BS100 through BS130 are
shown for illustration. On the other hand, a pointer that
references information (described in detail below) that indi
cates the backup status of the pre-update data is used as the
backup information. Pointers are not set up for block sets
wherein the data has not been updated.
0121 Note that the symbol “(h)” that is added to the LBA
indicates that the LBA is written in hexadecimal notation. In
the below, LBAs with the additional symbol "(h)’ will
indicate that the LBAs are written in hexadecimal notation,
where LBAs without the additional symbol are written in
decimal notation.

0.122 On the other hand, the generation/compression
control table 540 stores the backup status of the pre-update
data. Specifically, this table stores the correspondence rela
tionships between the block sets that store the pre-update
data, the generation numbers of the pre-update data, and the
pointers that reference the information for pre-update data of
other generations. The pointers that reference the informa
tion for other generations reference one other correspon
dence relationship in the generation/compression control
table 540. Moreover, the “pointer” in the update status
control table 530, described above, references one corre
spondence relationship within this generation/compression
control table 540. The “generation number” will be
described below.

0123 First, in the first step S1, the control terminal 120
sends to the disk array control unit 300b an instruction to
create a point-in-time copy. This type of instruction is sent
in response to an operation by the operator. Note that the
disk array control unit 300b or the control terminal 120 may
instead generate the instruction automatically with a timing
that is set up in advance, or may generate the instruction
automatically following some other set of conditions.

0.124. In the second embodiment, the disk array control
unit 300b can generate multiple point-in-time copies at
different points in time. The point-in-time copy is identified
by a unique generation number for each individual point
in-time copy. In the second embodiment, serial numbers,
beginning with “0” are used as the generation numbers. In
FIG. 14, the data relay module 600b assigns “0” to the
point-in-time copy indicated in Step S1. Note that the
generation (point in time) corresponds to the “version' in the
present invention.
0.125 Next, in Step S2, the host computer 110 requests
that data be written to the storage system 200b. Here the
specified LBAs are assumed to be "00000(h) through
“00050(h).
0.126 FIG. 15 is a flowchart showing the procedures for
the data write process. In the first step, S400, the data relay
module 600b determines whether or not a data backup is
necessary. The writing to the block set that includes the
specified LBAs (hereinafter termed the “specified block
set') is determined to “require backup' when it is the first
writing of the specified block set since the most recent
specified point in time, or in other words, if no data has been
written to the specified block set since the most recent
specified point in time. The decision is “backup not

US 2006/0212625 A1

required if the data in the specified block set has already
been backed up since the most recent specified point in time.
In the write process in Step S2 (FIG. 14), the decision is
“backup required.”

0127. Note that the specified LBAs may include blocks in
a plurality of processing units (block sets). In such a case,
the data relay module 600b performs a series of processes
(described below) following Step S400 for each of the block
SetS.

0128. In the next step, S405 (FIG. 15), the data relay
module 600b reads out the data from the specified block set
within the 0th logical volume LDEV0. FIG. 16 is a drawing
showing an overview of the write process in Step S2 (FIG.
14). In FIG. 16, the data relay module 600b reads out the
data DBS200 from the first block set BS100 including the
specified LBAs. Here the data that is read out is pre-update
data of the specified block set. Note that in FIG. 16, one
square symbol SQ does not indicate one block, but rather the
number of square symbols SQ provides a rough represen
tation of the number of blocks.

0129. In the next step, S410 (FIG. 15), the data relay
module 600b compresses, in the data compression circuit
320 (FIG. 1) the pre-update data that has been read out. In
FIG. 16, the data compression circuit 320 generates post
compression pre-update data DBS200c through compress
ing the pre-update data DBS200. The number of blocks in
this post-compression data DBS200c is less than the number
of blocks in the pre-compression data DBS200.
0130. In the next step, S415, the data relay module 600b
stores the post-compression pre-update data into the first
logical volume LDEV1. In FIG. 16, the post-compression
pre-update data DBS200c is stored into the first block set
BS200.

0131). In the next step, S420, the data relay module 600b
adds, to the generation/compression control table 540, infor
mation about the block set in which the pre-update data is
stored. FIG. 17 is a drawing showing the update status
control table 540 and the generation/compression control
table 540 in the write process in Step S2 (FIG. 14).
Information regarding the first block set BS200c is added to
the generation/compression control table 540. The genera
tion is “0” the starting LBA is "00000(h), and the ending
LBA is “00050(h), where the other generation information
is “none.” The fact that the “generation' is “0” is because
the pre-update data DBS200c is the 0th generation data.
0132) In the next step, S425, the data relay module 600b
updates the backup information for the update status control
table 530. According to FIG. 17, a pointer is added to the
backup information for the first block set BS100. This
pointer is data that references information regarding the first
block set BS200c in the generation/compression control
table 540.

0133). In the next step, S430, the data relay module 600b
determines whether or not the data backup process has been
completed for all of the specified LBAs. If not complete, the
data relay module 600b returns to Step S400, and repeats the
procedures from Step S400 through Step S425 for the
specified LBAs that have not been completed. Note that the
data relay module 600b omits the processes from Steps S405
through S425, not backing up the data, for block sets for
which the decision is “backup not required in Step S400.

Sep. 21, 2006

0134) In the next step, S435, the data relay module 600b
writes to the logical volume the data requested by the host
computer 110. At this time, the specified LBAs are used as
is. According to FIG. 16, the data relay module 600b writes
the new data DUBL100, received from the host computer
110, to the blocks of the specified LBAs (00000 through
00050(h)) of the 0th logical volume LDEVO. Note that the
process of Step S435 may be performed, instead, prior to
Step S430 after the completion of the data backup. For
example, the writing of data to the block set may be
performed each time the block set is backed up.
0135). Once the writing of the data for all of the LBAs has
been completed in this way, then, in the next step, S440, the
data relay module 600b sends a notification to the host
computer 110 that the data writing has been completed.
0.136. After this, in response to a read request from the
host computer 110, the data relay module 600b will send the
newest data that is stored in the 0th logical volume LDEV0.
0.137. On the other hand, in response to a read request
wherein the generation is specified, the data relay module
600h will reference the update status control table 530 and
the generation/compression control table 540 to read data
from the block set wherein is stored the data associated with
the specified generation in order to send the requested data.
For example, an explanation will be given regarding the
transmission of data for a read request that specifies the 0th
generation first block set BS100. The data relay module
600b first reads out the post-compression pre-update data
DBS200c from the 0th generation block set BS200. The data
that has been read out is then decompressed in the data
decompression circuits 330 (FIG. 1). At this time, the data
decompression circuit 330 generates the pre-compression
pre-update data DBS200. The data relay module 600b uses
the pre-update data DBS200 that has been generated to send
the data for the specified LBAs to the host computer 110.
When there is no information regarding the specified gen
eration in the generation/compression control table 540, the
data stored in the 0th logical volume LDEVO is sent as is.
0.138. Once Step S2 (FIG. 14) has been completed, then
in the next step, S3, the control terminal 120 sends to the
disk array control unit 300b a new instruction to generate a
point-in-time copy. The generation number of this point-in
time copy will be “1. In the next step, S4, the control
terminal 120 sends to the disk control unit 300b another
instruction to create a point-in-time copy. The generation
number of this point-in-time copy will be “2.)
0.139. In the next step, S5, the host computer 110 per
forms a data read request on the storage system 200b. Here
the specified LBAs are "00000 through 00040(h),” where
the specified block set is the first block set BS100, the same
as in Step S1, described above.
0140 FIG. 18 is a drawing showing an overview of the
write process in Step S5. The details of the write process are
the same as in Step S2 according to FIG. 16. However, the
data relay module 600b stores the pre-update data of the first
block set BS100 into an open second block set BS210c that
is different from the earlier block set BS200c. Note that one
square symbol SQ does not indicate one block, but rather the
number of the square symbols SQ provides a rough repre
sentation of the number of blocks.

0.141 Specifically, the data relay module 600b reads out
the pre-update data DBS210 of the first block set BS100 in

US 2006/0212625 A1

Step 405 (FIG. 15). In Step S410, the data compression
circuit 320 (FIG. 1) compresses the pre-update data
DBS210 to generate the post-compression pre-update data
DBS210c. In Step S415 the data relay module 600b stores
the post-compression pre-update data DBS210c into the
second block set BS210c of the first logical volume LDEV1.
In Step S435, the data relay module 600b writes the new data
DULB110, received from the host computer 110, to the
blocks of the specified LBAs of the 0th logical volume
LDEVO. The result is that the two block sets BS200c and
BS210c each store different generations of the past data for
the first blocks set BS100.

0142 FIG. 19 is a figure showing an example of the
update status control table 530 and the generation/compres
sion control table 540 in the write process of Step S5. The
difference from the example shown in FIG. 17 is the
addition of information regarding the second block set
BS210c to the generation/compression control table 540.
Regarding this second block set BS210c, the generation is
“1, 2 and the starting LBA is “00051(h) and the ending
LBA is "000BF(h), and the generation information is
“none.” Moreover, a pointer to the other generation data of
the first block set BS200c is also added. This pointer
references information regarding the second block set
BS210c.

0143. In the next step, Step S6 (FIG. 14) the host
computer 110 performs a data write request on the storage
system 200b. The data relay module 600b performs a write
process following the flow chart in FIG. 15, in the same
manner as in Steps S2 and S5, described above. According
to FIG. 14, the specified LBAs are “00100 through
00120(h).” The information for the block set in which the
pre-update data is stored is added to the generation/com
pression control table 540 (FIG. 14).
B2. Update Process With Specified Generation
0144. In Step S7, the host computer 110 performs a data
write request on the storage system 200b. The difference
from Steps S2, S5, and S6, described above, is that the write
request is performed specifying a past generation.
0145 FIG. 20 is a flowchart showing the procedures for
the data update process for a past generation. According to
FIG. 20, the process on the specified block set is performed
divided into the three cases. A through C, described below.
Note that when the specified LBAs include blocks in a
plurality of block sets, this division into cases is performed
for each individual block set:

Case A: When data for the specified generation is not backed
up.

Case B: When data for the specified generation has been
backed up, and the backed up data is not shared with another
generation.
Case C. When data for the specified generation has been
backed up, and the backed up data is data that is shared with
another generation.
B3. Case A

0146 FIG. 21 is a drawing showing an example of the
update status control table 530 and the generation/compres
sion control table 540 in Case A. In FIG. 21, a part of the
content of tables 530 and 540 is shown after Step S7 in FIG.
14.

Sep. 21, 2006

0147 In Step S510 (FIG. 20), the data relay module 600b
uses the new data obtained from the host computer 110 to
generate compressed data for the specified block set. In this
case, the data for all blocks in a single specified block set is
obtained in the same way as in the procedures in Steps S300
through S325 in FIG. 9. After obtaining the data for all of
the blocks, the data relay module 600b compresses the data
in the data compression circuit 310 (FIG. 1) and stores
(backups) the compressed data in the first logical volume
LDEV1. According to FIG. 21, the post-compression data is
stored in block set BS230c. At this time, the original data in
the 0th logical volume LDEVO is not updated.
0.148. In the next step, S513, the data relay module 600b
adds, to the generation/compression control table 540, data
regarding the backup destination block set BS230c in which
the new post-compression data has been stored. According
to FIG. 21, the generation is “2, the starting LBA is
“001C0(h), the ending LBA is “0022F(h) and the other
generation information is “none.” The generation is set to
the generation specified by the host computer 110.
0149. In the next step, S516, the data generation module
600b updates the update status control table 530. Specifi
cally, a pointer is added to the specified block set backup
information. This pointer references information pertaining
to the backup destination block set in the generation/com
pression control table 540.
0.150 Once the processes described above have been
completed, the data relay module 600b has completed the
process of writing to an earlier generation in Case A.
B4. Case B

0151 FIG. 22 is a drawing showing an example of the
update status control table 530 and the generation/compres
sion control table 540 in Case B. FIG. 22 shows an example
of the case wherein, following Step S7 in FIG. 14, the host
computer 110 performs a write request, for the same speci
fied generation, of the same specified block set, as in Step
S7.

0152. In Step S520 (FIG. 20) the data relay module 600b
generates the data for the specified generation using the new
data obtained from the host computer 110, and stores (backs
up) the data for the specified generation to the first logical
volume LDEV1. This process is the same as the process in
Step S510, described above. However, the data for the
blocks that are not specified, within the specified block set,
are readout from the backup-destination block set in the first
logical volume LDEV1, rather than the 0th logical volume
LDEV0. This backup-destination block set is the block set
associated with the specified generation. The data relay
module 600b obtains the backup-destination block set by
referencing the pre-update generation/compression control
table 540.

0153. Moreover, the data relay module 600b selects, from
the open logical blocks in the first logical volume LDEV1,
the logical block wherein to store the new post-compression
data for the specified generation. According to FIG. 22, the
block set BS240c is selected. However, if the new post
compression data for the specified generation is Smaller than
the old (previously backed up) post-compression data for the
specified generation, then it is preferable to store the new
data for the specified generation to the logical block wherein
the old data for the specified generation had been stored.

US 2006/0212625 A1

0154) In the next step, S525, the data relay module 600b
updates the generation/compression control table 540. Spe
cifically, the information for the backup-destination block
set is replaced with the information for the block set wherein
the new post-compression data is stored. According to FIG.
22, the starting LBA is updated to "00310(h), and the
ending LBA is updated to “003A5(h).”

0155 Once the processes described above have been
completed, then the data relay module 600b has completed
the process of writing to a previous generation in Case B.
B5. Case C

0156 FIG. 23 is a drawing showing an example of the
update status control table 530 and the generation/compres
sion control table 540 in Case C. FIG. 23 shows an example
of the case wherein, following Step S7 in FIG. 14, the host
computer 110 then performs a write request for the first
generation LBA “00100(h).” As is shown in tables 530 and
540 in FIG. 14, backups have already been completed for
the data for generations 0 through 2, in the block set BS220c,
for the block set BS110, which includes "00100(h).”
According to FIG. 23, a host computer 110 requests the
writing of new data to only the first generation.

0157. In Step S530 (FIG. 20), the data relay module 600b
generates the data for the specified generation using the new
data obtained from the host computer 110, and then stores
(backs up) the data for the specified generation to the first
volume LDEV1. This process is the same as the process in
Step S520, described above. However, the new data is
written to the open logical blocks while maintaining the data
in the block set for which the backup has already been
completed. According to FIG. 23, the new post-compression
data is stored to the open block set BS250c while maintain
ing the data in the block set BS220c for which the backup
has already been completed.

0158. In the next step, S535, the data relay module 600b
updates the generation/compression control table 540. Spe
cifically, the specified generation is deleted from the infor
mation for the block for which the backup has already been
completed, and information is added regarding the backup
destination block set wherein the new post-compression data
is stored. According to FIG. 23, the specified generation (1)
is deleted from the generation information for the block set
BS220c, and information is added regarding the new block
set BS250c. The generation is the same as the specified
generation, (1) where the starting LBA is “0051A(h), and
the ending LBA is “00590(h).” Moreover, a pointer is added
to the other generation information of the block set for which
the backup has been completed. This pointer references
information regarding the block set BS250c.

0159. Once the processes described above have been
completed, then the data relay module 600b has completed
the write process to a past generation in Case C.

0160 In the second embodiment, described above, the
storage system 200b stores the post-update data while back
ing up the pre-update data, So it is possible to provide easily
both the most recent data and the data for a specified point
in time. Moreover, the disk array control unit 300b (FIG. 13)
performs this backup process independently from the host
computer 110, making it possible to perform the backup
without applying a load to the host computer 110.

Sep. 21, 2006

0.161 Furthermore, in the second embodiment, the data
for the logical volume is divided over a plurality of block
sets, and the pre-update data is backed up only for those
block sets that are updated. The result is that it is possible to
conserve the storage area, when compared to the case
wherein the entirety of the logical volume is copied. More
over, because the pre-update data is compressed and then
stored, it is possible to conserve the storage area even
further.

0162 Furthermore, in the second embodiment, the stor
age system 200b not only stores the control data regarding
the correspondence relationships between the pre-compres
sion (pre-backup) and post-compression (post-backup) (i.e.,
the logical volume control table 510, the volume status
control table 520, the update status control table 530, and the
generation/compression control table 540), but also per
forms data compression and decompression, and updating of
the control data, independently from the host computer 110.
As a result, it is possible to perform the compression and
decompression of the data without applying a load to the
host computer 110.
0163. In particular, in the second embodiment, the cor
respondence relationships between the pre-compression and
post-compression block sets (the pre-backup and post
backup block sets) are defined by a combination of the
update status control table 530 and the generation/compres
sion control table 540. The result is that the disk array
control unit 300b is able to receive a data transfer request,
from the host computer 110, specifying pre-compression
(pre-backup) LBAS in a consistent manner. Moreover, even
when data is shared by a plurality of host computers, the disk
array control unit 300b is able to receive data transfer
requests using shared pre-compression (pre-backup) LBAS.
In other words, the storage system 200b is “host transpar
ent.’

0164. Furthermore, in the second embodiment, the disk
array control unit 300b stores the correspondence relation
ship between the block sets and the generations in the
generation/compression control table 540. Consequently, the
disk array control unit 300b is able to receive, from the host
computer 110, data transfer requests that specify the gen
eration.

0.165. Furthermore, in the second embodiment, the stor
age system 200b stores the newest data without compres
Sion, making it possible to suppress any decrease in pro
cessing speed when the newest data is read out.
0166 Note that in the second embodiment, the logical
volume control table 510, the update status control table
530, and the generation/compression control table 540, as a
whole, correspond to the “block correspondence relation
ships' in the present invention.

C. Third Embodiment

0.167 FIG. 24 is a drawing showing the structure of a
storage system 200c in a third embodiment. The difference
from the storage system 200 shown in FIG. 1 is that the data
relay module 600c controls data updating after the compres
sion/migration process by using a log method. The other
structures are the same as for the storage system 200 shown
in FIG. 1 and FIG. 2. Note that in FIG. 24, only the local
memory 344c of the disk array control unit 300c is shown as

US 2006/0212625 A1

a structural element of the storage system 200c, and the
other structural elements are omitted from the figure.
0168 The data relay module 600c performs a compres
sion/migration process. The details of the compression/
migration process are the same as in the first embodiment,
shown in FIGS. 3 through 6.
C1. Write Process

0169 FIG. 25 is a drawing showing an overview of the
write process in the third embodiment. This write process is
a process following the compression/migration. Here the
specified LBAs are “7990 through “7995.”

0170 The data relay module 600c compresses the new
data DULB300, obtained from the host computer 110, in the
data compression circuit 320 (FIG. 1). The data compres
sion circuit 320 generates the post-compression data
DULB300c through compressing the new data DULB300.

0171 Moreover, the data relay module 600c generates
log information DLOG300 associated with the post-com
pression (post-update) data DULB300c. This log informa
tion DLOG300 includes the pre-compression LBAs (speci
fied LBAs), the actual LBAs that identify the block set
wherein the post-compression data DULB300c is stored,
and the date and time on which the data was written.

0172 Next the data relay module 600c stores the log
information DLOG300 and the post-compression data
DULB300c into an unused area in the open area A13. In this
way, the log information DLOG300 is stored in the logical
Volume in the same manner as is the data. However, as the
method of storing the log information, a method is
employed, wherein it is possible to distinguish between the
block storing the log information DLOG300 and other
blocks. A variety of well-known methods may be used as
this type of storage method. For example, a method may be
used wherein data that would not be found in other blocks
is stored at the beginning block and end block for the log
information DLOG300.

0173) Note that the log information DLOG300 and the
post-compression data DULB300c may be stored in differ
ent logical Volumes.

0174) Note that According to FIG. 25, the data DBS300c,
together with the log information DLOG300 and the post
compression data DULB300c is stored in the block set
BS300c. The post-compression data DULB300c is stored in
the data block set BSD300C, within the block set BS300c.
The actual LBAs for the log information DLOG300 show
the LBAs for this data block set BSD300c.

0.175. In this way, the data relay module 600c adds
post-update data and log information to the open area A13
each time a write request is received from the host computer
110.

0176) Note that the block set identified by the actual
LBAs (the post-compression block set) includes the data of
each of the blocks in the block set identified by the pre
compression LBAS (the pre-compression block set). Conse
quently, the post-compression block set can be said to be
associated with each of the blocks of the pre-compression
LBAs. This point is similar for the other examples of
embodiments as well. Moreover, in the third embodiment

Sep. 21, 2006

the number of blocks in the pre-compression block set is a
number that varies according to the write request from the
host computer 110.

C2. Read Process

0177. The data relay module 600c performs data transfers
in the same manner as in the first embodiment in FIGS. 7
and 8, in response to a read request from the host computer
110. However, the data relay module 600c looks up, from the
log information in the open area A13, the log information
containing the specified LBA (hereinafter termed the “speci
fied log information'). After the specified log information is
found, the data relay module 600c reads the data from the
block set indicated by the actual LBAs in the specified log
information, and decompresses the data that has been read in
the data decompression circuit 330 (FIG. 1). The data relay
module 600c uses the data that has been generated by the
decompression to send the data for the specified LBAs to the
host computer 110.

0.178 Note that the data relay module 600c uses the log
information with the most recent write date and time when
a plurality of specified log information has been found.
Moreover, the data relay module 600c can receive, from the
host computer 110, read requests specifying a past date and
time. In this case, the newest specified log information at the
specified date and time is used. In other words, from all of
the log information since the specified date and time, the log
information that is the newest is looked up. In this way, the
“date and time” corresponds to the “a version' in the present
invention.

0179 Given the third embodiment, described above, the
storage system 200c stores the post-update data while still
leaving the pre-update data behind, thus making it possible
to provide easily the newest data and the pre-update data.
Moreover, because the post-update data is compressed and
stored, it is possible to conserve the storage area.

0180 Furthermore, in the third embodiment, the disk
array control unit 300c not only stores log information
regarding the updating and compression of data, but also
performs the data compression and decompression indepen
dently from the host computer 110. Consequently, it is
possible to perform the data compression and decompres
sion without putting a load on the host computer 110.

0181. In particular, in the third embodiment, the corre
spondence relationship between the pre-update and post
update block sets is established by the log information. As
a result, the disk array control unit 300c is able to receive,
in a consistent manner, data transfer requests from the host
computer 110 specifying the pre-update (pre-compression)
LBAS.

0.182) Note that in the third embodiment, the compressed
LBA control table 500, the logical volume control table 510,
and the log information, as a whole, corresponds to the
“block correspondence relationships” in the present inven
tion. Moreover, the local memory 344c wherein this infor
mation is stored, and the migration-destination logical Vol
ume LDEV1 (or in other words, the disk array 250), as a
whole, correspond to the “correspondence relationship
memory unit' in the present invention.

US 2006/0212625 A1

D. Variants

0183 Note that the present invention is not limited to the
examples of embodiments or forms of embodiments
described above, but rather can be embodied in a variety of
forms in a range that does not deviate from the spirit of the
present invention, and, for example, the following alterna
tive forms are also possible.
Variant 1:

0184. In the compression/migration processes shown in
FIGS. 3 through 6, the logical volume for the migration
destination may be the same as the logical volume for the
migration origin. In this case, the post-compression data
may overwrite the logical blocks wherein the pre-compres
sion data has been stored.

Variant 2:

0185. In the first embodiment shown in FIG. 4 and FIG.
8, the reading and writing of data is preformed using the
block set as the unit for the non-compressed area A11 as
well; however, the reading and writing may be performed
using a single logical block as the unit. This is also true for
the other processes and other examples of embodiments as
well.

Variant 3:

0186. In the first embodiment as shown in FIG. 6, the
size of the unit for the compression process is fixed at “10
blocks.” Consequently, it is possible to identify the block set
by identifying the starting LBA for a pre-compression block
set. Given this, the pre-compression size data may be
omitted in the compressed LBA control table 500. Further
more, when it comes to the non-compressed area A1 (or the
non-compressed area A11), the pre-compression (pre-migra
tion)LBAS and the post-compression (post-migration) LBAS
are identical, and so data regarding the non-compressed area
A1 (non-compressed area A11) in the compressed LBA
control table 500 may be omitted. On the other hand, even
in the second embodiment according to FIG. 14, the size of
the compression processing unit is fixed at “100 (h) blocks.
Consequently, the ending LBA data may be omitted from the
update status control table 530. Note that when it comes to
post-compression block set, the size is variable, and so the
size data or the ending LBA data should be used, without
omission.

0187 Moreover, in the first embodiment and in the
second embodiment, the sizes of the units for the compres
sion processing may be variable. For example, the size of the
compression processing unit may vary depending on the
location within the storage area.
0188 Moreover. According to FIG. 6 (B), the enabling/
disabling of compression and the compression algorithm is
set for each logical Volume; however, any unit desired can
be used as a unit for setting up the enabling/disabling of the
compression or setting up the compression algorithm. For
example, the compression and the algorithm may be set up
for each individual logical block, may be set up for each
individual RAID group, or the same settings may be used for
the storage system as a whole. In any case, a settings
memory unit (such as a memory unit 340 or the disk array
250) should be provided in the storage system, and the
details of the settings should be stored in advance for each
of the set up units. This is not limited to the case wherein
compression processing is performed, but is also true for
cases wherein other processes (such as encryption pro
cesses) are performed.

Sep. 21, 2006

Variant 4:

0189 In the second embodiment, described above, the
pre-update data is compressed and backed up (stored);
however, the post-update data may be compressed and
backed up (stored) instead. In this case, the information
about the block set wherein the post-update data has been
stored may be stored in the compression control table 540,
in the same manner as according to FIG. 14.
Variant 5:

0190. In the third embodiment, shown in FIG. 24 and
FIG. 25, a compression/migration process is performed;
however, this process need not be performed. Even in this
case, the post-update data may be compressed and stored
along with the log information. In this case, the post-update
data and the log information may be stored to a logical
volume that is different from the logical volume for the
original data.

0191) Furthermore, even in the third embodiment, the
compressing and storing of the post-update data may be
performed for each block set of a specific size, in the same
manner as is done in the second embodiment.

0.192 Furthermore, even in the third embodiment, a
point-in-time copy may be saved. For example, only the
post-update data immediately prior to the specified point in
time may be saved as the post-update data for each pre
compression LBA, while the other post-compression data
may be destroyed.
Variant 6:

0193 In each of the examples of embodiments described
above, when data is read to the host computer 110 from the
storage system 200, 200b, or 200c, the data for the specified
LBAs, read out from the logical volume, may be stored
temporarily in a cache memory 342, and then later gathered
and sent to the host computer 110. Similarly, when writing
data from the host computer 110 to the storage system 200,
200b, or 200c, the data sent from the host computer 110 may
be stored temporarily in the cache memory 342, and then,
after a notification of data writing completion has been sent
to the host computer 110, actually be written to the logical
Volume.

Variant 7:

0194 In each of the examples of embodiments described
above, the LBAS specified by the host computer (i.e., the
“specified LBAs), and the LBAs (hereinafter termed “the
physical LBAs) on the logical volume prior to compression
(or prior to migration or prior to backup) are identical;
however, they need not be identical. In Such a case, a settings
memory unit (for example, a memory unit 340 or disk array
250) should be provided in the storage system, and the LBA
correspondence relationships between the specified LBAs
and the physical LBAs should be stored in the settings
memory unit.
0.195 Moreover, in each of the examples of embodiments
described above, the sizes of the minimum units for data
transfer between the disk array control units 300, 300b, or
300c and the host computer 110 (hereinafter termed the
“host blocks”) is the same as the sizes of the minimum units
for data transfer within the logical volumes (hereinafter
termed the “volume blocks”). However, the size of the host
blocks may be different from the size of the volume blocks.
For example, the size of the volume blocks may be set to a
value that is smaller than the size of the host blocks (for

US 2006/0212625 A1

example, 1/L times the size of the host blocks, where L is an
integer equal or greater than 2). Doing so makes it possible
to prevent the storage area used in storing data from becom
ing excessively large when the size of the data is changed by
the data conversion process, because a single host block is
represented by multiple volume blocks.
0196) Note that in this case, the structural information
that indicates the correspondence relationships between the
host blocks and the volume blocks should be stored in the
settings memory unit of the storage system. Doing so makes
it possible for the disk array control unit to reference the
structural information in order to restructure the host blocks
from the volume blocks. The correspondence relationships,
for example, between the host block LBAs and the LBAs of
the volume blocks that structure those host blocks, may be
used as structural information.

0197) Note that this type of LBA correspondence rela
tionship, the structural information, and the tables 500, 510,
520, 530, and 540, described above, may be stored in any
given memory unit in the storage system. For example, these
may be stored in the local memory (for example, the local
memory 344 (FIG. 1)) or a cache memory (for example, the
cache memory 342), or may be stored in a disk array (for
example, the disk array 250).
Variant 8:

0198 In each of the examples of embodiments described
above, the storage system 200, 200b or 200c may provide
logical Volumes to a plurality of host computers. In Such a
case, a logical volume control table 510 (FIG. 6 (C)) should
be provided for each host computer. Here data transfer
should be prohibited between a host computer and any
logical Volume not recorded in the logical volume control
table 510 used by that host computer. Doing so makes it
possible to prevent data transfer with an unintended host
computer.

Variant 9:

0199 Although in each of the examples of embodiments
described above, a method that uses the RAID system is
used as the method for forming a logical volume; however,
other methods may be used instead. For example, the storage
area provided by a single disk device may be used as is as
a single logical volume.

0200 Furthermore, the storage area is not limited to that
uses a disk device, but any other storage area may be used
instead. For example, a storage area that uses semiconductor
memory may be used.
Variant 10:

0201 In each of the examples of embodiments described
above, a data compression process is performed; however,
the data conversion process may use any given process that
converts the size of the data itself. For example, an encryp
tion process may be used instead. As the encryption process,
any of a variety of well-known processes, such as DES
encryption processing, may be used. Moreover, when using
a password-protected encryption process, the password
should be specified by the control terminal 120 or by the host
computer 110. Furthermore, both compression processing
and encryption processing may be performed.
Variant 11:

0202) In each of the examples of embodiments described
above, a portion of structures embodied in software may be

Sep. 21, 2006

replaced into hardware, and, conversely, a portion of the
structure that is embodied in hardware may be replaced by
Software. For example, the functions of the data compres
sion unit 320 (FIG. 1) and the data decompression unit 330
may be embodied in a program.
0203 Although the present invention has been described
and illustrated in detail, it is clearly understood that the same
is by way of illustration and example only and is not to be
taken by way of limitation, the spirit and scope of the present
invention being limited only by the terms of the appended
claims.

What is claimed is:
1. A storage system for providing a storage area that stores

data to a host computer, comprising:
a data storage unit having a storage area for storing data;

and

a control unit configured to control data transfer between
the host computer and the storage area, wherein

the control unit performs:
receiving data from and sending data to the host

computer according to a logical storage location
expressed in units of first blocks of a specific size,
the logical storage location being specified by the
host computer, and

storing data to and reading data from the storage area
in units of second blocks of a specific size, and

the control unit has a conversion storage mode for per
forming a data conversion process on data of interest
for each first block set in the data-of interest to generate
a second block set corresponding to each first block set,
and storing the second block set in the storage area, the
data conversion process changing size of the data of
interest, the first block set including N first blocks
where N is an integer greater than or equal to 1, the
second block set including one or more second blocks,
and wherein,

the storage system further comprises:
a correspondence relationship memory unit configured to

store a block correspondence relationship that indicates
correspondence relationship between a plurality of the
first block sets and a plurality of the second block sets,
and wherein

when the control unit has received a data read request for
a specific first block from the host computer, the control
unit executes:

referencing the block correspondence relationship to
identify a second block set to be read associated with
a particular first block set that includes the requested
first block;

reading out the second block set to be read;
performing a reverse conversion process of the data

conversion process on the readout second block set;
and

sending data of the requested first block to the host
computer.

US 2006/0212625 A1

2. A storage system according to claim 1, wherein
the control unit further performs an update process for a

first block set to be updated including a specific first
block when the control unit has received a data update
storage request regarding the specific first block from
the host computer, wherein

in the update process, the control unit references the block
correspondence relationship to determine whether or
not updating has been requested for all of the first
blocks included in the first block set to be updated,
wherein

when the updating is not requested for all of the first
blocks in the first block set to be updated, the control
unit performs:
reading a second block set associated with the first

block set to be updated,
performing the reverse conversion process on the sec
ond block set that has been read,

overwriting the requested first block on the data that is
reverse-converted from the second block set, thereby
generating an updated first block set,

generating an updated second block set by performing
the conversion process on the updated first block set,
and

storing the updated second block set in the storage area,
and

the control unit writes the correspondence relationship
between the first block set to be updated and the
updated second block set to the block correspondence
relationship.

3. A storage system according to claim 1, wherein:
the storage area is capable of storing a plurality of

different-version second block sets, the plurality of
different-version second block sets being associated
with a common first block set with an identical logical
storage location; wherein

the block correspondence relationships include corre
spondence relationships between a logical storage loca
tion of the first block set associated with the plurality of
different-version second block sets, and physical stor
age locations and versions of the plurality of different
version second block sets; wherein

the control unit performs a version readout process when
the control unit has received a request for reading data
regarding a specific first block and a specific version
from the host computer, the version readout process
including:
referencing the block correspondence relationship to

identify a second block set associated with both a
first block set that contains the requested first block
and the requested version,

reading out the identified second block set,
performing the reverse conversion process on the iden

tified second block set, and
sending data of the requested first block to the host

computer.

15
Sep. 21, 2006

4. A storage system according to claim 3, wherein:
the control unit has a non-conversion storage mode for

generating a non-converted block set comprising one or
more second blocks from a first block set without
performing the data conversion process, and storing the
non-converted block set in the storage area; wherein

the control unit performs a conversion update process
when the control unit has received a data update request
regarding a specific first block from the host computer
after storing the non-converted block set, the conver
sion update process including:
(i) storing updated data concerning a particular first

block set including the requested first block in the
storage area according to a selected one of the
conversion storage mode and the non-conversion
storage mode; and

(ii) reading out a non-converted block set that is
equivalent to the particular first block set before the
updating, and performing the data conversion pro
cess on the non-converted block set to generate a
non-updated second block set, then storing the non
updated second block set to the storage area, and
adding in the block correspondence relationship a
three-way correspondence relationship between the
particular first block set, the non-updated second
block set, and a version of the non-updated second
block set established according to specific rules.

5. A storage system according to claim 4; wherein
in the conversion update process, the control unit gener

ates a post-update non-converted block set including
one or more second blocks without performing the data
conversion process on the updated data of the particular
first block set, and stores the post-update non-converted
block set in the storage area, and

when the control unit has received a data read request
without version specification from the host computer,
the control unit reads out the post-update non-con
verted block set and sends requested first block data to
the host computer.

6. A storage system according to claim 1; wherein
the storage area is capable of storing a plurality of

different-version second block sets, the plurality of
different-version second block sets being associated
with a common first block with an identical logical
storage location, wherein

the block correspondence relationships include corre
spondence relationships between a logical storage loca
tion of a first block set including the first block asso
ciated with the plurality of different-version second
block sets, and a physical storage location and a version
of a different-version second block set, for each of the
plurality of different-version second block sets;
wherein,

the control unit performs a log update process when the
control unit has received a data update request regard
ing one or more specific first blocks from the host
computer, the log update process including:
performing the data conversion process on updated data

of a first block set to be updated structured from the
requested first blocks thereby generating a updated
second block set;

US 2006/0212625 A1

storing the a updated second block set in the storage
area; and

adding in the block correspondence relationship a
three-way correspondence relationship between the
first block set to be updated, the updated second
block set, and a version of the updated second block
set established according to specific rules, wherein

the control unit performs a version readout process when
the control unit has received a data readout request
regarding a specific first block and a specific version
from the host computer, the version readout process
including:
referencing the block correspondence relationship to

identify a second block set associated with both a
first block set that includes the requested first block
and the requested version;

reading out the identified second block set;
performing the reverse conversion process on the sec
ond block set that has been read; and

sending data of the requested first block to the host
computer.

7. A storage system according to claim 1, wherein
the first block set block number N is a variable value.
8. A storage system according to claims 1, wherein
the data size of the second block is smaller than the data

size of the first block.
9. A method of providing a storage area that stores data to

a host computer, the storage area which a storage system has,
comprising the steps of

(A) receiving data and sending data between the host
computer and the storage system according to a logical
storage location expressed in units of first blocks of a
specific size, the logical storage location being speci
fied by the host computer; and

(B) storing data to and reading data from the storage area
in units of second blocks of a specific size, and

the step (B) includes the steps of
performing a process of a conversion storage mode for

performing a data conversion process on data of inter
est for each first block set in the data-of interest to
generate a second block set corresponding to each first
block set, and storing the second block set in the
storage area, the data conversion process changing size
of the data of interest, the first block set including N
first blocks where N is an integer greater than or equal
to 1, the second block set including one or more second
blocks, and wherein,

the providing method further comprises the step of
(C) generating a block correspondence relationship that

indicates correspondence relationship between a plu
rality of the first block sets and a plurality of the second
block sets, and wherein

the step (B) includes the steps of
responsive to a data read request for a specific first block

from the host computer:

Sep. 21, 2006

referencing the block correspondence relationship to
identify a second block set to be read associated with
a particular first block set that includes the requested
first block;

reading out the second block set to be read;
performing a reverse conversion process of the data

conversion process on the readout second block set;
and

sending data of the requested first block to the host
computer.

10. A providing method according to claim 9, wherein
the step (B) includes the step of
performing an update process for a first block set to be

updated including a specific first block responsive to a
data update storage request regarding the specific first
block from the host computer, the update process
including:
referencing the block correspondence relationship to

determine whether or not updating has been
requested for all of the first blocks included in the
first block set to be updated;

when the updating is not requested for all of the first
blocks in the first block set to be updated:
reading a second block set associated with the first

block set to be updated,
performing the reverse conversion process on the

second block set that has been read,
overwriting the requested first block on the data that

is reverse-converted from the second block set,
thereby generating an updated first block set,

generating an updated second block set by perform
ing the conversion process on the updated first
block set,

storing the updated second block set in the storage
area, and

writing the correspondence relationship between the
first block set to be updated and the updated
second block set to the block correspondence
relationship.

11. A providing method according to claim 9, wherein
the storage area is capable of storing a plurality of

different-version second block sets, the plurality of
different-version second block sets being associated
with a common first block set with an identical logical
storage location; wherein

the block correspondence relationships include corre
spondence relationships between a logical storage loca
tion of the first block set associated with the plurality of
different-version second block sets, and physical stor
age locations and versions of the plurality of different
version second block sets; wherein

the step (B) includes the step of performing a version
readout process responsive to a request for reading data
regarding a specific first block and a specific version
from the host computer, the version readout process
including:

US 2006/0212625 A1

referencing the block correspondence relationship to
identify a second block set associated with both a
first block set that contains the requested first block
and the requested version,

reading out the identified second block set,
performing the reverse conversion process on the iden

tified second block set, and
sending data of the requested first block to the host

computer.
12. A providing method according to claim 11, wherein:
the step (B) includes the steps of

performing a process of a non-conversion storage mode
for generating a non-converted block set comprising
one or more second blocks from a first block set
without performing the data conversion process, and
storing the non-converted block set in the storage
area; and

performing a conversion update process responsive to
a data update request regarding a specific first block
from the host computer after storing the non-con
verted block set, the conversion update process
including:
(i) storing updated data concerning a particular first

block set including the requested first block in the
storage area according to a selected one of the
conversion storage mode and the non-conversion
storage mode; and

(ii) reading out a non-converted block set that is
equivalent to the particular first block set before
the updating, and performing the data conversion
process on the non-converted block set to generate
a non-updated second block set, then storing the
non-updated second block set to the storage area,
and adding in the block correspondence relation
ship a three-way correspondence relationship
between the particular first block set, the non
updated second block set, and a version of the
non-updated second block set established accord
ing to specific rules.

13. A providing method according to claim 12, wherein
the conversion update process includes the steps of:

generating a post-update non-converted block set
including one or more second blocks without per
forming the data conversion process on the updated
data of the particular first block set; and

storing the post-update non-converted block set in the
storage area, and

the step (B) includes the steps of
responsive to a data read request without version speci

fication from the host computer:
reading out the post-update non-converted block set,

and

sending requested first block data to the host com
puter.

Sep. 21, 2006

14. A providing method according to claim 9, wherein
the storage area is capable of storing a plurality of

different-version second block sets, the plurality of
different-version second block sets being associated
with a common first block with an identical logical
storage location, wherein

the block correspondence relationships include corre
spondence relationships between a logical storage loca
tion of a first block set including the first block asso
ciated with the plurality of different-version second
block sets, and a physical storage location and a version
of a different-version second block set, for each of the
plurality of different-version second block sets;
wherein,

the step (B) includes the step of
performing a log update process responsive to a data

update request regarding one or more specific first
blocks from the host computer, the log update pro
cess including:
performing the data conversion process on updated

data of a first block set to be updated structured
from the requested first blocks, thereby generating
a updated second block set;

storing the a updated second block set in the storage
area; and

adding in the block correspondence relationship a
three-way correspondence relationship between
the first block set to be updated, the updated
second block set, and a version of the updated
second block set established according to specific
rules, wherein

the step (B) includes the step of
performing a version readout process responsive to a

data readout request regarding a specific first block
and a specific version from the host computer, the
version readout process including:
referencing the block correspondence relationship to

identify a second block set associated with both a
first block set that includes the requested first
block and the requested version;

reading out the identified second block set;
performing the reverse conversion process on the

second block set that has been read; and

sending data of the requested first block to the host
computer.

15. A providing method according to claim 9, wherein
the first block set block number N is a variable value.

16. A providing method according to claim 9, wherein
the data size of the second block is smaller than the data

size of the first block.

