发明名称
一种可降解的肥料包裹膜及其制造方法
摘要
本发明提供一种可降解的肥料包裹膜及其制造方法，其特征是肥料包裹膜材料组分及重量比如下：壳聚糖 5~10，聚乙烯醇（PVA）：5~20，氧化淀粉或玉米淀粉 3~10，膨润土或滑石粉或硅藻土或黏土 2~5，甲醛 1~4，明胶 0.5~1.5，N－丁基硫代磷酸三胺（NBPT）或双氮胺（DCD）：0.05~0.5，硫脲或尿素 0.1~0.5，冰乙酸 2~4，蒸馏水：44.5~81.35。具有养分控释效果好，来源广泛，成本低廉，在土壤环境中易于降解等优点。
1. 一种可降解的肥料包膜液，其特征是：肥料包膜液材料组分及重量比如下：

- 壳聚糖：5-10
- 聚乙烯醇（PVA）：5-20
- 氧化淀粉或玉米淀粉：3-10
- 膨润土或滑石粉或硅藻土或黏土：2-5
- 甲醛：1-4
- 明胶：0.5-1.5
- N-丁基硫代磷酰三胺（NBPT）或双氰胺（DCD）：0.05-0.5
- 硫脲或尿素：0.1-0.5
- 冰乙酸：2-4
- 蒸馏水：44.5-81.35。

2. 一种如权利要求1所述可降解的肥料包膜液的制造方法如下：

（1）按包膜液重量比取壳聚糖5-10放入烧杯中，加入重量比2-4的冰乙酸，重量比10-20的蒸馏水，加热，45-55℃下搅拌30-40分钟，制成壳聚糖冰乙酸溶液；

（2）装有搅拌器、冷凝器、温度计的三口烧瓶中先后加入聚合度为1700-1800的重量比5-20的聚乙烯醇（PVA），重量比3-10的氧化淀粉或玉米淀粉，加入重量比31.5-64.35的蒸馏水，在搅拌下加热到88-94℃，完全溶解，放置室温；然后加入壳聚糖冰乙酸溶液，重量比2-5的膨润土或滑石粉。
粉或硅藻土或黏土，重量比 1-4 甲醛，重量 0.5-1.5 明胶，重量比 0.05-0.5N-丁基硫代磷酰三胺（NBPT）或双氟胺（DCD），重量比 0.1-0.5 硫脲或尿素，加热到 80-95℃，高速搅拌 1-2h，即成肥料包膜材料液体。
一种可降解的肥料包膜液及其制造方法

技术领域

本发明涉及一种肥料包膜液及其制造方法。

背景技术

针对当前化学肥料利用率低，肥料损失对生态环境造成污染日益严重等实际问题，提高肥料利用率，减轻或避免由肥料损失造成的环境污染，发展可持续、高效农业已成为各国共同关注的问题。国内外学者为解决上述问题，相继开展了包膜缓释肥料的研制和生产工作。国外有关高分子聚合物包膜肥料的专利很多，例如英国专利（GB2011367 A）公开了一种包膜颗粒肥料及其生产方法，其包膜液是由聚烯烃或乙烯类树脂构成。日本专利（1279683）（1985）特许公开了一种覆膜肥料及其制法，是由聚烯烃或乙烯与乙酸乙烯酯共聚物和滑石粉所组成。美国在聚合物包膜肥料的专利中作为包膜材料的物质主要有：用甲苯和硫酸处理松香所得的蜡状物，乙烯与甲基丙烯酸的共聚物，醇酸树脂与不饱和油酯的共聚物，聚脲氨基甲酸酯和异氰酸酯等。用这些高分子聚合物进行肥料包膜生产过程中又释放出大量的苯类和含氯离子的有害溶剂，不仅污染环境，价格昂贵，生产工艺复杂，而且更为严重的是，此类包膜肥料养分释放殆尽以后，残留在土壤中的高分子聚合物包膜物质降解缓慢甚至不降解，长此下去，会破坏土壤结构对农作物生长造成不利的影响。现在日本学者通过添加光敏剂（主要成分为醋酸铁）的方法，以此加快膜材料在自然环境中的降解速度，但又增加了膜材料的成本。
当前急需一种缓控释效果好，包膜材料来源广泛，价格低廉，环境友好的包膜肥料。

发明内容

本发明的目的是制备一种养分控释效果好，来源广泛，成本低廉，在土壤环境中易于降解的肥料包膜材料。

本发明的技术方案内容如下：

1. 可降解的肥料包膜液材料组分及重量比如下：

 壳聚糖： 5-10

 聚乙烯醇（PVA）： 5-20

 氧化淀粉或玉米淀粉： 3-10

 膨润土或滑石粉或硅藻土或黏土： 2-5

 甲醛： 1-4

 明胶： 0.5-1.5

 N-丁基硫代磷酰三胺（NBPT）或双氰胺（DCD）：0.05-0.5

 硫脲或尿素： 0.1-0.5

 冰乙酸： 2-4

 蒸馏水： 44.5-81.35。

2. 肥料包膜液材料制备方法如下：

 （1）按包膜液重量比取壳聚糖 5-10 放入烧杯中，加入重量比 2-4 的冰乙酸，重量比 10-20 的蒸馏水，加热，45-55℃下搅拌 30-40 分钟，制成壳聚糖冰乙酸溶液；（2）向装有搅拌器、冷凝器、温度计的三口烧瓶中先后加入聚合度为 1700-1800 的重量比 5-20 的聚乙烯醇（PVA），重量比 3-10 的氧化
淀粉或玉米淀粉，加入重量比 31.5-64.35 的蒸馏水，在搅拌下加热到 88-94℃，完全溶解，放置室温；然后加入壳聚糖冰乙酸溶液，重量比 2-5 的膨润土或滑石粉或硅藻土或黏土，重量比 1-4 甲醛，重量 0.5-1.5 明胶，重量比 0.05-0.5N-丁基硫代磷酰三胺（NBPT）或双氰胺（DCD），重量比 0.1-0.5 硫脲或尿素，加热到 80-95℃，高速搅拌 1-2h，即成肥料包膜材料液体。然后利用转鼓将包膜材料覆到颗粒肥料上。

本发明带来的有益效果：

1. 肥料控释效果好，能够抑制养分溶出，减少氮素挥发效果明显，提高肥料利用率为 10-20%。

2. 制作包膜材料的原料来源广泛、成本低。包膜材料与被覆膜肥料的重量按 3-5%比例进行肥料包膜，则每吨肥料包膜材料成本仅为 100-200 元，大大降低包膜肥料的成本。

3. 包膜材料制作工艺简单、包膜材料生产和肥料包膜过程对周围环境无污染；所选用包膜物质在土壤中经过一个生长季后能够自行破碎、降解，包膜材料及其降解产物又是土壤优良的改良剂，不会对土壤环境造成二次污染。

具体实施方式：

实施例 1

按包膜液重量比取壳聚糖 5g 放入烧杯中，加入 2g 冰乙酸，10g 蒸馏水，加热，在 45℃下搅拌 40 分钟，制成壳聚糖冰乙酸溶液；在装有搅拌器、冷凝器、温度计的三口烧瓶中先后加入聚合度为 1700-1800 的聚乙烯醇（PVA）5g，氧化淀粉 3g，加入 64.35g 蒸馏水，在搅拌下加热到 88℃，完全溶解，
放置室温，加入壳聚糖冰乙酸溶液，膨润土 2g，甲醛 1g，明胶 0.5g，N-丁基硫代磷酸三胺（NBPT）0.05g，硫脲 0.1g，加热到 85℃，高速搅拌 2h，即成包膜材料液体。然后将包膜材料利用转鼓工艺包覆到颗粒肥料上。

实施例 2

按包膜液重量比取壳聚糖 8g 放入烧杯中，加入 3g 冰乙酸，15g 蒸馏水，加热，在 45℃下搅拌 40 分钟，制成壳聚糖冰乙酸溶液；在装有搅拌器、冷凝器、温度计的三口烧瓶中先后加入聚合度为 1700-1800 的聚乙烯醇（PVA）15g，氧化淀粉 6g，加入 49.8g 蒸馏水，在搅拌下加热到 90℃，完全溶解，放置室温，加入壳聚糖冰乙酸溶液，硅藻土 3.5g，甲醛 3g，明胶 1.5g，N-丁基硫代磷酸三胺（NBPT）0.2g，硫脲 0.3g，加热到 90℃，高速搅拌 1h，即成包膜材料液体。然后将包膜液覆到颗粒肥料上。

实施例 3

按包膜液重量百分比取壳聚糖 10g 放入烧杯中，加入 4g 冰乙酸，20g 蒸馏水，加热，在 50℃下搅拌 30 分钟，制成壳聚糖冰乙酸溶液；在装有搅拌器、冷凝器、温度计的三口烧瓶中先后加入聚合度为 1700-1800 的聚乙烯醇（PVA）20g，玉米淀粉 10g，加入 31.5g 蒸馏水，在搅拌下加热到 94℃，完全溶解，放置室温，加入壳聚糖冰乙酸溶液，粘土 5g，甲醛 4g，明胶 1.5g，N-丁基硫代磷酸三胺（NBPT）0.5g，硫脲 0.5g，加热到 90℃，高速搅拌 1.5h，即成包膜材料液体。然后将包膜液覆到颗粒肥料上。

实施例 4

按包膜液重量百分比取壳聚糖 10g 放入烧杯中，加入 4g 冰乙酸，20g 蒸馏水，加热，在 45℃下搅拌 40 分钟，制成壳聚糖冰乙酸溶液；在装有搅拌
器、冷凝器、温度计的三口烧瓶中先后加入聚合度为 1700-1800 的聚乙烯醇（PVA）15g，氧化淀粉 10g，加入 34.1g 蒸馏水，在搅拌下加热到 88℃，完全溶解，放置室温，加入壳聚糖冰乙酸溶液，滑石粉 5g，甲醛 4g，明胶 1g，N-丁基硫代磷酰三胺（NBPT）0.4g，硫脲 0.5g，加热到 88℃，高速搅拌 1.25h，即成包膜材料液体。然后将包膜液覆到颗粒肥料上。

实施例 5

按包膜液重量比取壳聚糖 10g 放入烧杯中，加入 4g 冰乙酸，20g 蒸馏水，加热，在 55℃下搅拌 30 分钟，制成壳聚糖冰乙酸溶液；在装有搅拌器、冷凝器、温度计的三口烧瓶中先后加入聚合度为 1700-1800 的聚乙烯醇（PVA）20g，氧化淀粉 8g，加入 32.5g 蒸馏水，在搅拌下加热到 90℃，完全溶解，放置室温，加入壳聚糖冰乙酸溶液，硅藻土 5g，甲醛 1g，明胶 1g，双氰胺（DCD）0.3g，尿素 0.2g，加热到 95℃，高速搅拌 1h，即成包膜材料液体。然后利用转鼓将包膜材料覆到颗粒肥料上。

实施例 6

按包膜液重量比取壳聚糖 9g 放入烧杯中，加入 4g 冰乙酸，20g 蒸馏水，加热，在 55℃下搅拌 30 分钟，制成壳聚糖冰乙酸溶液；在装有搅拌器、冷凝器、温度计的三口烧瓶中先后加入聚合度为 1700-1800 的聚乙烯醇（PVA）20g，玉米淀粉 7g，加入 32.5g 蒸馏水，在搅拌下加热到 90℃，完全溶解，放置室温，加入壳聚糖冰乙酸溶液，黏土 5g，甲醛 1g，明胶 1g，N-丁基硫代磷酰三胺（NBPT）0.3g，硫脲 0.2g，加热到 94℃，高速搅拌 1.5h，即成包膜材料液体。利用转鼓将包膜液覆到颗粒肥料上，烘干即成产品。

施用效果：
1. 水中培养试验

称取等 N 量肥料样品 5 克，浸入 20 倍蒸馏水中，在 30℃下恒温浸泡 7 天后，测定浸出液中 NH₄⁻-N 含量。同时，另取未包膜肥料作为对照。以下式计算养分溶出率，

\[
\text{溶出率 (％) } = \frac{\text{溶出的养分量}}{\text{试样中该养分的含量}} \times 100
\]

用本发明的包膜材料制成的包膜肥 NH₄⁻-N 的溶出数量比 CK 降低了 68.2％，说明该包膜材料对养分的溶出有明显的抑制作用。

2. 辣椒肥效试验

辣椒品种牛角椒 1 号。在沈阳农业大学试验田进行，采用一次性基施，在等养分条件下分为常规处理、包膜肥料处理，田间试验观察，在整个生长期包膜肥料处理，辣椒植株长势良好，未出现脱肥现象，而对照处理到生育中期，明显养分供应不足，植株弱小，叶片变黄，到生育后期脱肥严重，产

3. 早稻肥效试验

早稻品种为白珍珠 1 号。试验在沈阳农业大学玻璃网室内进行盆栽试验，共设了与常规施肥等氮量的包膜尿素，氮量减少 20% 的包膜尿素，常规施肥（未包膜尿素）三个处理，每一处理重复 5 次。田间观察发现，在整个生长期包膜肥料处理，早稻长势良好，未出现脱肥现象；而常规施肥处理道生育中期，明显养分供应不足，植株弱小，叶片变黄，到生育后期脱肥严重，产量明显降低。总产量包膜处理比对照处理高出 20%，肥料用量减少 20% 的处理早稻的产量与常规处理相当，氮素利用率提高了 10%。