
CHAVEZ M L. TREATMENT OF HEPATITIS C WITH MILK THISTLE?.《JOURNAL OF HERBAL PHARMACOTHERAPY》.2001, 第1卷（第3期）, 79-90.

VAILATI A ET AL. Randomized open study of the dose-effect relationship of a short course of IDE 1016 in patients with viral or alcoholic hepatitis.《FITOTERAPIA》.1993, 第64卷（第3期）, 219-228.

GENDAULT J L ET AL. Effect of a water-soluble derivative of silymarin on morphological and functional alterations of mouse hepatocytes induced by frog virus 3 (author's transl).《ARZNEIMITTEL-FORSCHUNG》.1979, 第29卷（第5期）, 786-791.

用于治疗肝炎的水飞蓟宾组分

摘要

本发明涉及水飞蓟宾组分在制成用于治疗病毒性肝炎、优选乙型肝炎或丙型肝炎、特别是用于减少病毒载量的药物中的应用，所述药物适合于非肠道给药。该药物优选不含水飞蓟宾和 / 或不含水飞蓟亭和 / 或不含天然水飞蓟宾。
1. 水飞蓟素组分在制备用于治疗病毒性肝炎的药物中的应用，所述药物被制备用于非肠道给药，其中所述病毒性肝炎是丙型肝炎，其中所述水飞蓟素组分是水飞蓟素 C-2’，3- 二 (琥珀酸单酯) 或其生理学可接受的盐。

2. 权利要求1的应用，其中基于药物的总重量，药物含有低于1.0重量％的水飞蓟素和 / 或含有低于1.0重量％的水飞蓟素和 / 或含有低于1.0重量％的异水飞蓟素。

3. 权利要求1的应用，其中药物被制备用于注射或输注。

4. 权利要求1的应用，其中药物被制备用于静脉内给药。

5. 权利要求1的应用，其中药物除了包含水飞蓟素组分以外不含水飞蓟素的其它组分。

6. 权利要求1的应用，其中药物包含，基于水飞蓟素，剂量为至少50mg的水飞蓟素组分。

7. 权利要求1的应用，其中药物除了包含水飞蓟素组分以外还包含其它的药物。

8. 权利要求7的应用，其中其它的药物选自精氨酸谷氨酸，西替洛酮，依泊二醇，鸟氨酸氨戊二酸，噻二西酸精氨酸，肌醇，蛋氨酸和 N-乙酰蛋氨酸，胆碱，鸟氨酸天冬氨酸，西阿尼醇，硫普罗宁，甜菜碱，维生素 B12，亮氨酸，果糖，阿昔洛韦，磺胺，阿糖腺苷，利巴韦林，更昔洛韦，泛昔洛韦，伐昔洛韦，西多福韦，喷昔洛韦，缬更昔洛韦，溴夫定，干扰素 α，干扰素 β，干扰素 γ，干扰素 α-n1，干扰素 alfacon-1，聚乙二醇化干扰素 α-2b，聚乙二醇化干扰素 α-2a 和干扰素 γ 1b。

9. 权利要求8的应用，其中干扰素 α 选自干扰素 α -2a 和干扰素 α -2b。

10. 权利要求8的应用，其中干扰素 β 选自干扰素 β-1a 和干扰素 β-1b。

11. 权利要求1的应用，用于降低肝炎患者的病毒载量。

12. 权利要求1的应用，用于治疗要经历或已经经历肝移植的患者的病毒性肝炎。

13. 权利要求1的应用，用于治疗对利巴韦林 / 干扰素治疗无应答的患者的病毒性肝炎。

14. 权利要求1的应用，用于使用选自以下的药物进行的病毒性肝炎的支持性和 / 或预防性治疗：精氨酸谷氨酸，水飞蓟素，西替洛酮，依泊二醇，鸟氨酸氨戊二酸，噻二西酸精氨酸，肌醇，蛋氨酸和 N- 乙酰蛋氨酸，胆碱，鸟氨酸天冬氨酸，西阿尼醇，硫普罗宁，甜菜碱，维生素 B12，亮氨酸，果糖，阿昔洛韦，磺胺，阿糖腺苷，利巴韦林，更昔洛韦，泛昔洛韦，伐昔洛韦，西多福韦，喷昔洛韦，缬更昔洛韦，溴夫定，干扰素 α，干扰素 β，干扰素 γ，干扰素 α-n1，干扰素 alfacon-1，聚乙二醇化干扰素 α-2b，聚乙二醇化干扰素 α-2a 和干扰素 γ 1b。

15. 权利要求14的应用，其中干扰素 α 选自干扰素 α -2a 和干扰素 α -2b。

16. 权利要求14的应用，其中干扰素 β 选自干扰素 β-1a 和干扰素 β-1b。

17. 权利要求1的应用，其中在用所述药物治疗病毒性肝炎之后，用另外的药物治疗病毒性肝炎。

18. 权利要求1的应用，其中所述药物被制备为连续治疗的构成部分，最初给予所述药物历时第一时段，随后给予另外的药物历时第二时段。

19. 权利要求18的应用，其中第一时段包括至少2天。

20. 权利要求17的应用，其中其它的药物是一种或多种选自以下的药物：精氨酸谷
氨基酸，水飞蓟素，西替洛酮，依泊二醇，鸟氨酸，戊二酸，二胺二酸，精氨酸，肌醇，蛋氨酸
和 N-乙酰蛋氨酸，胆碱，鸟氨酸，天冬氨酸，西阿尼醇，硫普罗宁，甜菜碱，维生素 B12，亮氨酸，果糖，阿昔洛韦，碘苷，阿糖腺苷，利巴韦林，更昔洛韦，泛昔洛韦，伐昔洛韦，西多福韦，
喷昔洛韦，缬更昔洛韦，溴夫定，干扰素 α，干扰素 β，干扰素 γ，干扰素 α-1，干扰素
alfacon-1，聚乙二醇化干扰素 α-2b，聚乙二醇化干扰素 α-2a 和干扰素 γ 1b。

21. 权利要求 20 的应用，其中干扰素 α 选自干扰素 α-2a 和干扰素 α-2b。

22. 权利要求 20 的应用，其中干扰素 β 选自干扰素 β-1a 和干扰素 β-1b。

23. 权利要求 17 的应用，其中另外的药物被配制用于口服给药。
用于治疗肝炎的水飞蓟宾组分

[0001] 本发明涉及水飞蓟宾组分在制备用于治疗病毒性肝炎、优选是治疗乙型肝炎或重型肝炎、特别是减少病毒载量的药物中的应用。所述药物优选适用于非肠道给药。所述水飞蓟宾组分优选是水飞蓟宾酯。

[0002] 水飞蓟宾 [3,5,7-三羟基-2-[(3-羟基-4-甲氧基-苯基)-2-(羟基甲基)-2,3-二氢苯并[b][1,4]-二噁英-6-基 (dioxin-6-y1)] 色滴-4-酮；或者根据欧洲药典 (Ph. Eur.) 被称作 (2R,3R)-3,5,7-三羟基-2-[(2R,3R)-3-(4-羟基-3-甲氧基苯基)-2-(羟基甲基)-2,3-二氢-1,4-苯并-二噁英-6-基]-2,3-二氢-4H-1-苯并吡喃-4-酮是水飞蓟素的主要成分并且是从乳蓟 (水飞蓟 (Silybum marianum Gaertneri)) 中提取出的主要的类黄酮化合物。

[0003] 水飞蓟宾的结构如下所示：

[0004] ![水飞蓟宾](image)

[0005] 非对映体水飞蓟宾 A 和水飞蓟宾 B 在文献中被区分。

[0006] ![水飞蓟宾A和水飞蓟宾B](image)

[0007] 水飞蓟宾是水飞蓟素的主要成分（为水飞蓟素 A 和水飞蓟素 B 的 50 : 50 的混合物的形式）。其它的组分包括异水飞蓟宾（异水飞蓟素 A 和异水飞蓟素 B）,水飞蓟苷, 水飞蓟醇, 异水飞蓟醇, 黄杉素及其他。水飞蓟宾的分离方法是现有技术中已知的（例如，US 4,871,763）。

[0009] 水飞蓟 (Silybum marianum) 作为药用植物具有几乎 2000 年的历史。水飞蓟素, 作为乳蓟的种子的提取物，在古代是用于治疗包括肝炎、肝硬化在内的肝脏和胆囊的一系列病症的草药，和作为抗野生蘑菇、酒精、化学品和环境毒素的肝保护剂。水飞蓟素具有不同的作用方式。在二十世纪七十年代进行的最大的随机对照试验指示, 使用水飞蓟素进行长
期治疗可降低肝硬化患者的死亡率（P Ferenci等，J Hepatol 1989，9，105-13）。然而，该药物用于治疗肝病的作用仍存在争议（S Verma等，Clinical Gastroenterology and Hepatology 2007，5，408-16；F Rainone，AmFam Phys 2005，72（7），1285-8）。这一不确定性部分地是因为关于其药代动力学和最佳剂量给药方案存在有限的数据。水飞蓟素的水溶性差并且口服制剂具有有限的生物利用度。

【0011】水飞蓟素的作为输注溶液，例如在德意志联邦共和国中以名称Legalon®SIL上市。

【0012】病毒性肝炎是指影响肝脏并由病毒所引起的感染。其是全世界的重大公共卫生问题。病毒性肝炎不仅具有高的发病率，而且还使医药资源紧张，并且可导致严重的经济后果。所有的病毒性肝炎病例中的大部分是可预防的。

【0013】病毒性肝炎包括由至少五种不同的病毒所引起的多种不同的病毒。甲型肝炎和乙型肝炎（特别是传染性肝炎和血清肝炎）是不同的疾病，二者都可以通过特定的血清学试验被诊断。丙型肝炎和戊型肝炎构成第三类，各自属于不同的类型，丙型肝炎经非肠道传播，戊型肝炎经肠道传播。丁型肝炎或δ肝炎是依赖于乙型肝炎感染的另一种不同的病毒。该形式的肝炎可在乙型肝炎携带者中作为重叠（super-）感染存在或者在罹患急性乙型肝炎的个体中作为协同感染存在。

【0014】丙型肝炎是由丙型肝炎病毒（HCV）所引起的人类传染病。HCV感染在其病程中可导致严重的肝损伤，例如肝实质炎症，肝纤维化，肝硬化和肝癌。在超过80%的被感染的患者中，HCV感染变为慢性的。HCV的传播通常以非肠道的经血液方式进行。

【0015】据估计，全世界约1亿7千万人感染有丙型肝炎病毒（HCV）。被感染的患者在数十年内无症状，直到发展成肝硬化和/或最终发展成肝细胞癌被发现。在美国，大约40-50%的肝移植患者可能HCV感染。HCV感染的传播途径有输血、针刺或使用未经消毒的注射器、母婴传播以及不安全性行为。与HCV感染有关的慢性肝炎、肝硬化和原发性肝癌的发病率较高。

信号转导突变（D Di Bona等人，J Hepatol. 2006, 45, 271-9）。

HCV 感染根据 ICD10（WHO, 2007 版）被分为急性丙型肝炎（B17.1）和慢性丙型肝炎（B18.2）。

HCV 是导致急性或慢性肝炎发展的最重要的原因之一。然而，该病的临床过程可能非常不同并且经历高变异性。因此不可能讨论该病的典型过程，因为 HCV 感染实质上表现为无症状、即，表现为不定的症状，不同的临床现象和不定的肝脏和肝脏外的继发性疾病。

在大约 20% 的急性肝炎患者中，肝的炎症由 HCV 感染所致。然而，在急性期，丙型肝炎通常无症状地进行，因此在大约 85% 的病例中未被诊断。在一些情况下，仅发生推定的流感样综合征的非特异性症状。通常，该感染在急性期期间不表现。

正在开发新的治疗，包括使目前的使用聚乙二醇化干扰素 + 利巴韦林的标准治疗最佳化，针对 HCV 的特异性靶向抗病毒治疗，新型的免疫调节剂和目的是减少纤维化的治疗（参见，R. E. Stauber 等人，Drugs 2008, 68(10), 1347）。

迄今为止，没有获得针对 HCV 的疫苗。医学标准疗法非常昂贵，在控制 HCV 感染中只显示微小的成功，且有时引起相当多的副作用（S. L. Tan 等人，Nature Reviews, Drug Discovery 2002, 1, 867；R. Bartenschlager，同前 911）。

需要用于治疗病毒性肝炎，特别是乙型肝炎和丙型肝炎的药物。
本发明的目的是获得用于治疗病毒性肝炎，特别是乙型肝炎或丙型肝炎的药物，其具有可与现有技术的药物相媲美的优点。该药物如果可能的话没有副作用或只有轻微的副作用，并且在例如对采用PEG干扰素/利巴韦林的常规联合治疗的应答不充分的丙型肝炎患者中是有效的。另外，该药物应具有显著的抗病毒性质，因此应持久地减少病毒载量。

这比通过本申请的权利要求书要求保护的技术主题所实现。

令人惊讶地发现水飞蓟素，其药学可耐受的盐和/或衍生物适于治疗甲型、病毒性肝病，特别适于治疗丙型肝炎。因此，在对免疫调节/抗病毒联合治疗诸如PEG干扰素/利巴韦林无应答的丙型肝炎患者，即所谓的“无应答者”中，该联合治疗代表了目前用于丙型肝炎的参考疗法，通过给药、优选通过非肠道给药水飞蓟素组分可以实现病毒载量的明显减少。另外，用水飞蓟素组分进行预处理似乎改善了患者对随后给予的干扰素和利巴韦林的应答。

US2005/0123628特别地涉及包含甘草甜素、五味子、抗坏血酸、L-谷胱甘肽、水飞蓟素、硫辛酸和D-α-生育酚的组合物的制剂和口服给药。这些组合物据说可用于降低氧化应激和脂质过氧化，以及治疗慢性肝病，慢性丙型肝炎病毒感染和非酒精性脂肪性肝炎。大量的研究已报道说水飞蓟素具有对抗多种毒素的肝保护效果，所述毒素包括对乙酰氨基酚，乙醇，四氯化碳和D-软骨糖胺，以及具有对抗缺血性损伤，辐射和铁中毒的肝保护效果。关于开放标记、非随机、单中心临床试验的前20周，对受试者每天三次口服给予总共1,000mg的甘草甜素；每天三次口服给予总共1,500mg的五味子提取物；每天三次口服给予总共6,000mg的抗坏血酸；每天两次口服给予总共300mg的L-谷胱甘肽；每天三次口服给予总共750mg的硫辛酸；和每天一次口服给予总共800IU的D-α-生育酚。关于该研究的前十周，对受试者每周两次静脉内（iv）注
四种不同的、都不含水飞蓟素的非肠道组合物。在10周后有12.0%的受试者以及在20周后有24.0%的受试者显示病毒载量下降一个log值。在US2005/0123628中没有暗示水飞蓟素，甚至不用，其也没有暗示水飞蓟素，可能负责病毒载量的这一相当轻微的降低。

[0033] 目前令人惊讶地发现，给药，特别是非肠道给药优选纯的水飞蓟素组分，减少病毒性肝炎患者体内的病毒载量。因此，水飞蓟素组分能够减少病毒载量。这一发现使得，在缺乏水飞蓟素的可引起不希望的副作用的其它组分的条件下，将水飞蓟素的剂量最佳化。

[0035] M Torres等人报道了其中年龄为21-65岁，被诊断为慢性丙型肝炎，未使用抗病毒治疗的患者被要求参加的临床试验。34名患者被随机分配为口服160mg水飞蓟每周三次历时四周进行治疗或被分配为无治疗（对照）。该试验揭示了水飞蓟没有抗病毒剂的作用。

[0036] MD Tanamly等人报道了临床试验，其中177名带毒性慢性丙型肝炎病毒患者被随机分配为接受口服水飞蓟素或多种维生素增补剂。该试验揭示了推荐剂量的水飞蓟素对丙型肝炎病毒病毒性血症没有影响。

[0037] A Gordon等人报道了临床试验，其中24名慢性丙型肝炎受试者入选参见随机、双盲、安慰剂对照、交叉研究。受试者接受12周的水飞蓟（600mg/天或者1200mg/天）和安慰剂。进行了一系列生化试验、病毒学试验、心理学试验和生活质量试验。17名患者完成了该试验。该试验揭示了水飞蓟的受试者与安慰剂的受试者相比，前者的HCV核糖核酸滴度的平均变化没有显著差异。

[0038] E. Gabbay等人报道了临床试验，其中100名干扰素失败的慢性HCV感染患者入选并被随机分配以接受7种不同的抗氧化剂，其中有水飞蓟素胶囊，250mg，每天三次。
要终点是肝脏酶、HCV-RNA水平和组织学。该试验揭示了抗氧化剂治疗对病毒载量没有治疗效果。LB Seeff等人报道了丙型肝炎抗病毒长期治疗抗肝硬化（HALT-C）试验，包括了晚期慢性丙型肝炎人群，对先前的抗病毒治疗无应答但已愿意参加长期的聚乙二醇化干扰素治疗的无应答者。没有发现水飞蓟素对丙型肝炎病毒（HCV）核酸核酸水平有有益的效果。总之，水飞蓟素的使用者和未使用者都具有类似的HCV水平。另外，已经令人惊讶地发现，给药，特别是非肠道给药水飞蓟素组分，支持了采用聚乙二醇化干扰素/利巴韦林的常规治疗。发现水飞蓟素组分（再）激活患者对采用聚乙二醇化干扰素/利巴韦林的常规治疗的敏感性和/或增强采用聚乙二醇化干扰素/利巴韦林的常规治疗的抗病毒效果。

附图说明：
图1：实施例1，研究1：在4小时内输注10mg/kg水飞蓟素组分期间和之后的氧化应激的参数。(d-ROMs试验＝反应性氧代谢物衍生物的化合物，BAP试验＝生物抗氧化剂效能）
图2：实施例1，研究1：在iv 10mg/kg水飞蓟素组分/天之前（第1天）和7天后，HCV-RNA（log IU/ml，平均数±SD）。
图3：实施例1，研究1：在iv给药10mg/kg/天的水飞蓟素组分7天后，使用聚乙二醇化干扰素α2a/利巴韦林和140mg水飞蓟素每天三次进行联合治疗之后，HCV-RNA的变化。
图4：实施例1，研究2：在iv给药不同剂量的水飞蓟素组分历时14天，然后在第8天使用聚乙二醇化干扰素α2a/利巴韦林的联合治疗的期间，HCV-RNA的变化。
图5：实施例1，研究2：在不同剂量下在iv给药水飞蓟素组分单一治疗7天和iv给药水飞蓟素组分与聚乙二醇化干扰素α2a/利巴韦林的组合7天期间，HCV-RNA的平均（±SD）降低。
图6：实施例1，研究2：在14名接受15或20mg/kg/天的患者中iv水飞蓟素（2周）结束之后HCV-RNA的变化。在第8天开始采用聚乙二醇化干扰素α2a/利巴韦林的联合治疗以及在第15天开始采用280mg的水飞蓟素每天三次。
图7：实施例2，单独的患者，在使用180μg的聚乙二醇化干扰素α2a/利巴韦林进行持续的联合治疗历时60周期间，两个包括14个连续日的给药间隔期间，在iv给药20mg/kg/天的水飞蓟素组分之后HCV-RNA的变化，所述第一个iv给药间隔在第24周内开始，以及第二个给药间隔在第35周内开始。
图8：实施例2，单独的患者，在使用180μg的聚乙二醇化干扰素α2a/利巴韦林进行持续的联合治疗历时60周期间，包括14个连续日的给药间隔期间，在iv给药20mg/kg/天的水飞蓟素组分之后HCV-RNA的变化，所述给药间隔在第32周内开始。
图9：实施例2，单独的患者，在使用180μg的聚乙二醇化干扰素α2a/利巴韦林进行持续的联合治疗历时80周期间，包括14个连续日的给药间隔期间，在iv给药20mg/kg/天的水飞蓟素组分之后HCV-RNA的变化，所述给药间隔在第72周内开始。
图10用图示方式显示了利巴韦林和/或聚乙二醇化干扰素α与包含水飞蓟素组
分的药物的共同给药的不同方式。
[0051] 图 11 显示了从水飞蓟素的六种经纯化的组分的体外 NS5B 抑制研究获得的数据。
[0052] 图 12 显示了从水飞蓟素（琥珀酸氯化醑）的体外 NS5B 抑制研究获得的数据。
[0053] 本发明涉及水飞蓟素组分在制备用于治疗病毒性肝炎、特别是乙型肝炎或丙型肝炎、优选慢性或急性丙型肝炎病毒感染的优选抑制病毒药物或抗病毒药物、更优选减少病毒复制的药物中的应用，所述药物优选通过非肠道给药。
[0054] 为了说明的目的，术语“药物”优选与“医药”同义。
[0055] 在优选实施方案中，本发明涉及水飞蓟素组分在制备用于治疗病毒性肝炎、优选乙型肝炎或丙型肝炎的药物中的应用，该药物基本上不含水飞蓟素和 / 或不含水飞蓟素和 / 或不含水飞蓟素。
[0056] 在本发明的优选实施方案中，病毒性肝炎、特别是乙型肝炎或丙型肝炎的治疗通过减少病毒载量来进行。已经发现，水飞蓟素组分能够减少乙型肝炎或丙型肝炎患者的病毒载量。这是特别令人惊讶的，因为在现有技术中没有证据来证明水飞蓟素（该混合物含有一定量的水飞蓟素）在乙型肝炎或丙型肝炎中影响病毒载量或改善肝脏组织学（参见，K.E. Mayer 等人，Journal of Viral Hepatitis, 2005, 12, 559–67）。
[0057] 在本发明的另一个优选实施方案中，病毒性肝炎，特别是乙型肝炎或丙型肝炎的治疗在将要经历或已经肝移植的患者中进行。因患病毒性肝炎已经肝移植的患者处于新移植的肝中再患病毒性肝炎的风险。通常，当通过手术摘除被感染的肝时，病毒不完全被从有机体中除去，并且保留在有机体内的其余的病毒可以使新移植的肝再感染。在慢性丙型肝炎感染患者中在肝移植后在 100% 的病例中发生再感染。因为已经令人惊讶地发现水飞蓟素能够减少病毒载量，因此通过给药、优选非肠道给药水飞蓟素组分可以实质上降低肝移植后再感染的风险。
[0058] 病毒性肝炎的形式是本领域技术人员已知的。
[0059] 在病毒性肝炎中，目前明确已知至少六种不同形式：甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎和庚型肝炎。这些感染的致病有机体是亲肝的病毒。它们在每种情况下属于不同的病毒家族并且具有 DNA 或 RNA 基因组。传播通过食物或通过体液诸如精液和血液交换进行。在病程和疾病严重性方面，在不同形式之间也观察到存在差异。尽管甲型肝炎和戊型肝炎基本上以急性形式发生，但乙型肝炎，丙型肝炎和丁型肝炎可以导致慢性病程，有时候还导致严重的并发症。
[0060] 为了描述的目的，术语“病毒性肝炎”优选包括乙型肝炎和丙型肝炎。
[0061] 在优选实施方案中，所述治疗通过减少一种或多种选自但不限于以下基因型的病毒的病毒载量来进行：HCV1, HCV2, HCV3, HCV4, HCV5 和 HCV6, 优选 HCV1。
[0062] 如果所关心的基因型是 HCV1，则优选亚型 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k 和 11。如果所关心的基因型是 HCV2，则优选亚型 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n, 2o, 2p 和 2q。如果所关心的基因型是 HCV3，则优选亚型 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j 和 3k。如果所关心的基因型是 HCV4，则优选亚型 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k, 4l, 4m, 4n, 4o, 4p, 4q, 4r 和 4t。如果所关心的基因型是 HCV5，则优选亚型 5a。如果所关心的基因型是 HCV6，则优选亚型 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h, 6i, 6j, 6k, 6l, 6m, 6n, 6o, 6p 和 6q。关于丙型肝炎病毒基因型和亚型的命名法，例如可以参见 P. Simmonds 等人，

【0063】在优选实施方案中，本发明涉及水飞蓟宾组分在制备在患者中用于治疗病毒性肝炎、优选丙型肝炎的、优选适合于非肠道给药的药物中的应用，所述患者对常规的免疫调节/抗病毒联合治疗诸如利巴韦林/干扰素治疗无应答（“无应答者”）和/或所述患者对常规的免疫调节/抗病毒联合治疗诸如利巴韦林/干扰素治疗部分应答者（“部分应答者”）和/或所述患者在治疗期间或之后表现出强的初始应答, 然后表现出病毒滴度的反弹 (“复发者”)。

【0064】本发明还涉及借助于水飞蓟宾组分进行病毒性丙型肝炎的治疗，该治疗位于采用利巴韦林/干扰素进行的常规联合治疗之后。优选地，通过给药水飞蓟宾组分的治疗在利巴韦林/干扰素治疗失败（即最初失败或在某一治疗时段之后失败）之后开始。

【0065】关于通过给药利巴韦林/干扰素进行的常规丙型肝炎治疗，术语“无应答者”, “部分应答者”和 “复发者”是本领域技术人员已知的。目前，用于丙型肝炎病毒的聚乙二醇化干扰素 + 利巴韦林治疗在大约一半的基因型1患者中失败。治疗失败的发生表现为无应答（病毒滴度有最小下降）或复发（在治疗期间或之后在强的最初应答之后出现病毒滴度的反弹）。

【0066】为了说明目的，无应答者优选被认为是这样的患者，即患者中给予利巴韦林/干扰素（通常是聚乙二醇化干扰素 a）时，优选历时 12 周，不显示病毒载量发生<2 个 \(\log_{10}\) IU/mL（即，指数 100）的降低。在优选实施方案中，无应答者具有≤2.1 个 \(\log_{10}\) IU/mL 的病毒滴度下降和在最低点具有≥4.62 个 \(\log_{10}\) IU/mL 的绝对滴度。

【0067】为了说明目的，部分应答者优选被认为是这样的患者，即患者在第 12 周不显示病毒载量降低达到 2 个 \(\log_{10}\) IU/mL，在第 24 周显示可检测的 HCV RNA。

【0068】为了说明目的，复发者优选被认为是这样的患者，即患者具有≥2.8 个 \(\log_{10}\) 的病毒滴度下降并且其绝对滴度瞬间下降到检测极限以下 (2.78 个 \(\log_{10}\) IU/mL)。

【0069】为了说明目的，术语“药物”优选与“给药方式”或与“剂量单位”同义。例如，如果涉及口服给药用药物，例如片剂形式，该片剂优选是待给药的剂量单位，其包含计划用于治疗方案中的各个的给药时间的一定剂量的水飞蓟宾组分。如果该剂量单位包含单一片剂，则该剂量单位相当于给药形式。然而，该剂量单位还可能被分成许多个给药形式，例如，被分成许多个片剂，其在每种情况下只包含一部分的剂量，但是整体来说包含全部剂量的水飞蓟宾组分，其计划用于治疗方案中的各个的给药时间（然后该剂量单位的这些片剂计划用于基本上同时给药）。

【0070】为了说明目的，术语“水飞蓟宾组分”优选是指水飞蓟宾，包括其全部的立体异构体，例如水飞蓟宾 A 和水飞蓟宾 B，其药学可耐受的盐和 / 或衍生物，特别是酯。优选的酯衍生物来自无机酸，诸如磷酸或硫酸；或衍生物来自有机酸，诸如甲酸、乙酸、丙酸、柠檬酸、苹果酸、扁桃酸等。

【0071】二羧酸的半酯是特别优选的，所述二羧酸例如是丙二酸、戊二酸、琥珀酸、己二酸、辛二酸、壬二酸、癸二酸、富马酸、马来酸、衣康酸、邻苯二甲酸、对苯二甲酸、间苯二甲酸等。优选的半酯是二半琥珀酸酯，其可以作为游离酸，或作为盐例如作为钠盐、钾盐或铵盐存在。水飞蓟宾的一个或多个羟基可被酯化。优选水飞蓟宾的 1,2,3,4 四个或全部的羟基被酯化。
在优选实施方案中，水飞蓟宾组分是水飞蓟宾 C-2'，3'-二（琥珀酸氢酯）或其生理学可接受的盐，诸如钠盐，钾盐，铵盐等，及其混合物。特别优选的盐是二钠盐。适当的酯还有葡萄酸 (gluconic acid) 酯。

优选水飞蓟宾组分是以下通式 (I) 的化合物或其药学可耐受的盐：

![化合物](image)

其中

R₁，R₂，R₃，R₄ 和 R₅ 彼此独立地选自 -H，-SO₂H，-PO₃H₂，-CO-C₈-C₈ 亚烷基-OM，-CO-C₈-C₈ 亚烷基-CO₂H，-CO-C₈-C₈ 亚烷基-SO₃H，-CO-C₈-C₈ 亚烷基-OP₀₃H，-CO-C₈-C₈ 亚烷基-PO₃H₂，其中 n = 1-20 的 -(C₈-C₈ 亚烷基-PO₃H₂) -H，-CO-C₈-C₈ 亚烷基-N(C₈-C₈ 亚烷基)₃X，其中 X 是药学可耐受的阴离子。优选 R₁，R₂ 和 R₅ 是 -H。

更优选通式 (I) 的水飞蓟宾组分具有以下通式 (I-A) 或 (I-B) 的立体化学：

![立体化学](image)

在优选实施方案中，通式 (I-A) 的化合物与通式 (I-B) 的化合物以任何的相对重量比如50 ± 5 : 50 ± 5 混合。然而，在优选实施方案中，通式 (I-A) 的化合物的非对映体过量为至少 50% de, 更优选至少 75% de, 更优选至少 90% de, 仍更优选至少 95% de, 最优选至少 98% de 和特别是至少 99% de。在另一个优选实施方案中，通式 (I-B) 的化合物的非对映体过量为至少 50% de, 更优选至少 75% de, 还更优选至少 90% de, 仍更优选至少 95% de, 最优选至少 98% de 和特别是至少 99% de。

其它优选的水飞蓟宾组分描述于WO 03/090741 中，其全文作为参考。

优选地，所述水飞蓟宾组分在室温下的纯水中比水飞蓟宾本身具有更好的溶解度。

在优选实施方案中，本发明涉及水飞蓟宾酯在制备优选被配制用于非肠道给药或口服给药用来治疗病毒性肝炎，特别是乙型肝炎或丙型肝炎的药物中的应用。优选该药物基本上不含水飞蓟宾和 / 或不含水飞蓟苷和 / 或不含水飞蓟苷。

在优选实施方案中，所述药物被配制用于非肠道给药。非肠道给药可以例如以下述的方式进行：皮下，静脉内，肌肉，动脉内，腹膜内，皮内，关节内，鞘内，心脏内，玻璃体内，眼球后，肺内和骨内。
[0085] 特别优选所述药物被配制用于注射或输注给药,特别用于静脉内或动脉内给药。
[0087] 适于注射给药的药物通常是无菌溶液,乳剂或悬浮剂,其通过将活性物质和选任的其它的赋形剂溶解、乳化或悬浮在水、适当的如经判断不需无菌的非水性液体、或这些介质的混合物中。
[0088] 适于输注给药的药物通常是无菌的水性溶液或含有水作为连续相的乳剂。
[0089] 注射或输注用药物可以任选包含其它的赋形剂。这类赋形剂优选是增溶剂诸如例如卵磷脂和泊洛沙姆188,等渗调节物质诸如例如氯化钠、葡萄糖和甘露醇。缓冲剂诸如例如乙酸盐、磷酸盐和柠檬酸盐缓冲剂，抗氧化剂诸如例如抗坏血酸、偏亚硫酸氢钠、亚硫酸钠和亚硫酸氢钠，螯合剂诸如例如乙二胺四乙酸二钠，防腐剂诸如例如对羟基苯甲酸酯、苯甲醇和氯甲酚,以及乳化剂诸如例如卵磷脂、脂肪醇、丙醇、山梨糖醇酯脂肪酸酯、聚氧化乙烯山梨糖醇酯脂肪酸酯、聚氧乙烯脂肪酸甘油酯、聚氧乙烯脂肪酸酯、聚氧化乙烯脂肪醇醚、甘油脂肪酸酯和泊洛沙姆。
[0090] 特别优选的药物是用于制备输注溶液的粉剂,其包含水飞蓟素C-2’,3-二(琥珀酸氢酯)、优选二钠盐,和任选的作为赋形剂的菊粉。适于制备输注溶液的包含598.5mg的水飞蓟素C-2’,3-二(琥珀酸氢酯)二钠盐的粉末和菊粉的容器在德国以商标Legalon®SIL上市。在优选实施方案中,本发明的药物与该制剂是生物等效的。
[0091] 在另一个优选实施方案中，所述药物被被配制用于口服给药。优选所述药物是选自片剂、胶囊、糖包衣片剂、小球和小袋的口服给药形式。
[0092] 当通过口服途径给予水飞蓟素组分时,必须确保得自口服剂量形式的水飞蓟素组分的生物利用度足够高。在这一方面的限制因素是水飞蓟素的显著的亲脂性。
[0093] 在特别优选的实施方案中,本发明涉及水飞蓟素组分在制备用于治疗病毒性肝炎、优选乙型肝炎或丙型肝炎的药物中的应用，所述药物被配制用于口服给药并且基本上不含水飞蓟素和/或不含水飞蓟素和/或不含水飞蓟素。

[0098] 口服给药形式优选选自片剂、粉剂、小球、粒剂、糖包衣片剂、糖浆剂、液汁剂（juice）、溶液剂、泡腾粉剂、泡腾粒剂、泡腾片剂、冻干剂和胶囊。特别优选口服给药形式是片剂、糖包衣片剂、粒剂、小球或粉剂，特别优选片剂。

[0099] 用于配制口服给药形式的适当的赋形剂是本领域技术人员已知的。关于这一点，可参考例如，H.P. Fiedler, Lexikon der Hilfstoffe für Pharmazie, Kosmetik und angrenzende Gebiete[Encyclopedia of excipients for pharmacy, cosmetics and related areas], Editio Cantor Aulendorf, 2001。

[0100] 片剂可以例如以下述的方式获得，即将水飞蓟宾组分与已知的赋形剂例如惰性稀释剂诸如碳酸钙、磷酸钙或乳糖、崩解剂诸如玉米淀粉或藻酸、粘合剂诸如淀粉或明胶、润滑剂诸如硬脂酸镁或滑石、和/或实现储库效果的试剂诸如羧甲基纤维素、乙酸邻苯二甲酸纤维素或聚乙酸乙烯酯混合。片剂还可包括多层。除了上述的介质以外，片剂还可包含添加剂诸如例如柠檬酸钠、碳酸钙和磷酸二钙，以及多种附加物质诸如淀粉、优选可作为填充剂的矿物质如碳酸锌。另外，也可将助流剂诸如硬脂酸镁、十二烷基硫酸钠和滑石用于制片。

[0101] 糖包衣片剂可以例如以下述的方式获得，即将类似于片剂所制造的核心用在糖包衣片剂包衣中常用的试剂例如三甲基多烷基或虫胶、阿拉伯树胶、滑石、二氧化硅或糖进行包衣。为了避免储库效果或为了避免不相容性，核心还可包括多个层。糖包衣片剂包衣还可包括用于实现储库效果的多个层，在片剂的情况下有可能使用上述的赋形剂。

[0102] 用于口服给药的液汁剂、糖浆剂、乳剂、悬浮剂和溶液剂还可另外包含甜味剂诸如糖精、环己氨基磺酸钠、甘油或糖、和增味剂例如调味剂诸如香草醛或橙提取物。它们可另外包含助悬剂或增稠剂诸如羧甲基纤维素钠，润湿剂例如脂肪醇与环氧乙烷的缩合产物，或防腐剂诸如对羟基苯甲酸酯。
【0103】胶囊可以例如通过将水飞蓟果分组与惰性载体诸如乳糖或山梨醇混合并装入明胶胶囊中来制备。可提及的赋形剂例如是水，药学可接受的有机溶剂诸如链烷烃（例如石油馏分），植物来源的油（例如花生油或芝麻油），单官能醇或双官能醇（例如乙醇或甘油），介体诸如例如经研磨的天然矿物质（例如高岭土，粘土，滑石，白垩），经研磨的合成矿物质（例如高分散硅酸和硅酸盐），糖（例如蔗糖，乳糖和葡萄糖），乳化剂（例如木糖素，亚硫酸盐废液，甲基纤维素，淀粉和聚乙烯吡咯烷酮）和助流剂（例如硬脂酸镁，滑石，硬脂酸和十二烷基硫酸钠）。

【0105】用于活性化合物的受控释放的适当的方法是本领域技术人员已知的。如果药物是口服给药方式，例如片剂，可以通过例如将水飞蓟果组分包埋在聚合物基质中和/或用薄膜对口服给药方式进行薄膜包衣来实现延迟释放。

【0106】根据本发明，可以使用具有受控释放行为的固体、半固体或液体药物。固体药物优选诸如例如口服渗透体系（OROS），包衣片，骨架片，多层片，外壳片（jacketed tablets），外壳糖包衣片，扩散小球，吸附剂和储库软明胶胶囊。具有活性化合物的受控释放的口服药物特别优选是包衣片，外壳片或骨架片，其特殊优选骨架片。

【0107】具有活性化合物的受控释放的药物可以包含溶解、悬浮的形式和/或固体、无定形或结晶形式的水飞蓟果组分。

【0108】为了制备具有活性化合物的受控释放的本发明的药物，水飞蓟果组分可以多种粒子大小被使用，例如微研磨的、研磨的或微粉化形式使用。

【0109】在具有活性化合物受控释放的的药物中，水飞蓟果组分优选存在于包含活性物质的粒子诸如例如小球、粒剂、微胶囊、片剂、挤出物或结晶形式中，其用控制扩散的薄膜进行包衣。

【0110】这些控制扩散的药物优选是多粒子形式，即它们优选由多个包衣核心诸如例如中性小球组成，在所述小球上施加了水飞蓟果组分与常规的粘合剂和增稠剂，以及任选的与常规的赋形剂和介质一起，然后用扩散膜、增塑剂和其它赋形剂进行包衣。本发明的控制扩散的药物可以另外包含含有水飞蓟果组分的均质核心，其例如通过造粒、旋转造粒、流化床团聚、制片、湿法挤出或熔体挤出（任选地成球化）并用可以包含增塑剂和其它赋形剂的扩散膜进行包衣来制备。

【0111】包含水飞蓟果组分的粒子可包含赋形剂诸如例如酸或缓冲物质，其调节pH，并从而有助于降低水飞蓟果组分释放对释放介质的pH的依赖性。
[0112] 控制扩散的薄膜可以另外包含其它的赋形剂，这些赋形剂由于它们的依赖于 pH 的溶解性而影响所述薄膜在不同 pH 下的透明性并从而有助于使水飞蓟组分的释放的 pH 依赖性最小化。

[0113] 用于制备有包衣的中性小球的粘合剂和增稠剂优选是羟甲基丙基纤维素 (HPMC) 和聚乙烯吡咯烷酮 (PVP)。同样地，可以使用其它的天然的、合成的或部分合成的聚合物诸如例如甲基纤维素 (MC)，羟丙基纤维素 (HPC)，其它的羟基烷基纤维素和羟基烷基纤维素和羟基烷基纤维素，羧甲基纤维素及其盐，聚丙烯酸，聚甲基丙烯酸酯，明胶，淀粉或淀粉衍生物。

[0114] 为了制备包含水飞蓟组分的小球，粒子和（迷你）片剂，优选采用纤维素，微晶纤维素，纤维素衍生物诸如例如 HPMC，HPC 和低取代的羟丙基纤维素 (L-HPC)、磷酸二钙、乳糖、PVP 和蔗糖作为粘合剂和填充剂，借助于造粒、流化床聚和湿法挤出、制片等方式实现。

[0115] 挤出小球通过将水飞蓟组分包埋在热塑性赋形剂中来制备。适当的热塑性赋形剂优选是 HPC，HPMC，乙基纤维素，乙酸琥珀酸羟甲基丙基纤维素 (HPMCAS)，PVP，乙烯基吡咯烷酮 / 乙酸乙烯酯共聚物，聚乙二醇，聚环氧乙烷，聚丙基烯酸酯，聚乙烯醇 (PVA)，部分水解的聚乙酸乙烯酯 (PVA)，多糖例如藻酸、藻酸盐、半乳甘露聚糖，蜡，脂肪和脂肪酸衍生物。

[0116] 在包含水飞蓟组分的粒子中，另外可用并入 pH 调节物质，诸如例如酸、碱和缓冲物质。借助于这些物质的加入，有可能显著降低水飞蓟组分及其盐、水合物、溶剂化合物的释放的 pH 依赖性。

[0117] 用于调节包含水飞蓟组分的核心内 pH 的赋形剂例如是己二酸，苹果酸，L- 精氨酸，抗坏血酸，门冬氨酸，苯磺酸，苯甲酸，琥珀酸，柠檬酸，乙磺酸，2- 羟基乙磺酸，富马酸，葡萄糖酸，葡萄酸，谷氨酸，酒石酸氢钾，马来酸，丙二酸，甲磺酸，甲苯磺酸，氯丁三醇，酒石酸。优选使用柠檬酸，琥珀酸，酒石酸和酒石酸氢钾。

[0118] 为了制备扩散凝胶，乙基纤维素（例如，Aquacoat® 或 Surelease®）和聚甲基丙烯酸酯（例如，Eudragit® NE，Eudragit® RS 和 RL）优选是适当的。然而，也可使用其它材料诸如例如乙酸纤维素和乙酸丁酸纤维素作为控制扩散的成膜聚合物。

[0119] 除了控制扩散的聚合物以外，扩散凝胶还可包含其它的具有依赖于 pH 的溶解性的赋形剂，诸如例如肠溶聚合物诸如邻苯二甲酸纤维素，特别是乙酸邻苯二甲酸纤维素和邻苯二甲酸羟基丙基纤维素，琥珀酸纤维素，特别是乙酸琥珀酸纤维素和乙酸琥珀酸羟基丙基纤维素或聚甲基烯酸酯（例如，Eudragit® L1）。通过这些物质的加入，有可能降低水飞蓟组分的释放的 pH 依赖性。

[0120] 使用的增塑剂例如是柠檬酸衍生物，邻苯二甲酸衍生物，苯甲酸和苯甲酸酯，其它的芳族羧酸酯，脂肪二羧酸酯，甘油二乙酸酯，甘油三乙酸酯或甘油二乙酸酯，多元醇，脂肪酸及其衍生物，乙酰化脂肪酸甘油酯，蓖麻油和其它天然的油，miglyol 和脂肪酸醇。

[0121] 为了防止包衣粒子在制备期间和在成品中的粘附，可以向漆膜中加入防粘剂诸如例如滑石，硬脂酸镁，单硬脂酸甘油酯和 Aerosil。

[0122] 释放速度通过漆膜组成和漆膜层的厚度进行控制。增加漆膜的渗透率的添加剂是成孔剂，可将成孔剂加入到漆膜中或加入到待包衣的包含水飞蓟组分的粒子中。使用
的成孔剂是可溶性聚合物如例如聚乙二醇，PVP，PVA，HPMC，HPC，羟基乙基纤维素（HEC），MC，羧甲基纤维素或其盐，糊精，麦芽糖糊精，环糊精，右旋糖酐或其它的可溶性物质诸如例如脲，氯化钠，氯化钾，氯化铵，蔗糖，乳糖，葡萄糖，果糖，麦芽糖，甘露醇，山梨醇，木糖醇和拉克替醇。

[0123] 具有依赖于pH的溶解性的赋形剂，其可作为扩散薄膜的构成组分，是例如肠溶聚合物例如遮苯二甲酸纤维素，特别是乙酸遮苯二甲酸纤维素和邻苯二甲酸羟基丙基甲基纤维素，琥珀酸纤维素，特别是乙酸琥珀酸纤维素和乙酸琥珀酸羟基丙基甲基纤维素和聚丙基烯酸酯（例如，Eudragit® L）。

[0124] 另外，具有水飞蓟素成分的受控释放的药物可以是被包衣的给药形式，该形式包含一种或多种可溶胀性赋形剂，该赋形剂在液体渗透通过薄膜时强烈溶胀并由于溶胀和体积扩大而导致包衣撕裂。由于包衣撕裂，使得药物有可能从药物中释放（脉冲释放）。作为可溶胀性赋形剂，这些药物优选包含聚乙烯吡咯烷酮，交聚维酮，交联的羧甲基纤维素钠，交联的羧甲基淀粉钠，聚氧化乙烯，聚甲基丙烯酸酯，低取代的羟丙基甲基纤维素（L-HPC）。适当的包衣材料优选是乙酸纤维素，乙基纤维素和聚甲基丙烯酸酯。

[0125] 所述的包衣的控制扩散的或脉动药物可以作为药物形式被直接地且无变化地使用。然而，它们也可经历进一步的加工，任选加入赋形剂，以获得最终的给药形式（例如，胶囊，片剂，小袋）。为了实现所需的释放特性，还可将多种包衣粒子彼此组合为药物形式，并且可通过例如与迅速释放粒子例如无包衣的小球、颗粒或粉末组合而进行首次剂量的给药。

[0126] 可以使用的受控释放药物还可是在基质中包含水飞蓟素成分的制剂。这些基质制剂通过扩散和/或侵蚀释放水飞蓟素成分。优选这些药物以片剂的形式或以可以例如被囊封的许多片剂的形式存在。该片剂可具有包衣或膜层。这种药物通过例如将组分混合并直接压片或通过干法或湿法造粒并随后压片来制备。

[0127] 使用的基质形成剂可以是水溶性物质，水可溶胀性物质或水不溶性物质。优选药物包含一种或多种可溶胀性聚合物。

[0128] 使用的水溶性或水可溶胀性基质形成聚合物优选是羟丙基甲基纤维素（HPMC），羟基乙基甲基纤维素，羟基丙基纤维素（HPC），羟基乙基纤维素，甲基纤维素（MC），乙基纤维素，其它的烷基-纤维素，羟基烷基纤维素和羟基烷基－甲基纤维素，羧甲基纤维素钠(NaCMC)，藻酸盐，半乳甘露聚糖诸如例如瓜尔豆胶和酸豆粉，黄原胶，聚环氧乙烷，聚丙烯酸，聚甲基丙烯酸，聚甲基丙烯酸衍生物，聚乙烯醇（PVA），部分水解的聚乙烯醇（PVA），聚乙烯吡咯烷酮（PVP），琼脂，果胶，阿拉伯树胶，黄蓍胶，明胶，淀粉或淀粉衍生物，以及这些物质的混合物。HPMC 的使用是特别优选的。

[0129] 另外，可使用水不溶性物质作为结构形成剂，例如不饱和的或饱和的（氢化）脂肪酸及其盐，酯或酰胺，脂肪酸的一甘油酯，二甘油酯或甘油三酯，蜡，烃类酰胺，胆固醇衍生物，以及这些物质的混合物。

[0130] 所述药物进一步包含常规的制片用赋形剂，优选高分散二氧化硅（Aerosil®），硬脂酸镁，滑石，PVP，乳糖或微晶纤维素。

[0131] 另外，可以将控制基质中的pH的物质并入到基质中。通过加入这种调节pH的赋形剂和/或通过加入随着pH值增加而溶解或从基质中溶出并从而增加基质的孔隙率或渗
透率和 / 或促进基质的侵蚀的物质，本发明的这些优选实施方案有可能实现几乎不依赖于
pH 的释放。
[0132] 包含水飞蓟宾组分的基质还可以特定的几何形式存在，该特定的几何形式中的
释放受到特定的几何形状和基质表面的影响。例如可以通过压缩以提供特定的样式（例
如，环形片剂）和 / 或通过局部包衣或借助于多层压片或加障板层来控制基质表面和释放
表面。
[0133] 具有不同释放性质的制剂可优选被组合，以提供多层片剂或外壳 - 核心片剂形式
的药物。例如，借助于包括迅速释放层的多层片剂或具有迅速释放外壳的外壳 - 核心片剂，
实现了具有高的水飞蓟宾组分初始释放的本发明的受控释放，而借助于具有迅速释放核心
的外壳 - 核心片剂，可以实现在终点被加速的释放。
[0134] 具有水飞蓟宾组分的受控释放的另外的药物是其中借助于熔体加工方法将水飞
蓟宾组分包埋在由一种或多种生物学可接受的赋形剂组成的基质中的药物。水飞蓟宾组分
从这些“熔体挤出物”中的释放通过扩散和 / 或侵蚀进行。优选这些具有水飞蓟宾组分的
受控释放的制剂以颗粒、小球或片剂的形式存在。通过熔体挤出获得的制备，特别是小球和
颗粒，可经过加工以提供其它的药物形式，诸如例如通过颗粒或片剂，任选地加入其它的药
学常规赋形剂。另外，本发明的熔体挤出物可经过研磨以及随后以这种被粉碎的形式用于
制备其它的药物诸如例如骨架片。进一步的加工还包括将具有不同药物释放的制剂诸如例
如延迟释放粒子和迅速释放粒子组合，从而提供药物。
[0135] 熔体挤出物和 / 或从熔体挤出物制备的药物形式可具有包衣或涂膜。熔体挤出物
优选如下制备：将水飞蓟宾组分与至少一种可熔的生物学可接受的赋形剂（载体）和任选
的其它常规的添加物质物质混合，在 50 至 250°C、优选 60 至 200°C 的温度下熔融、注射成
型或挤出并成形。在该过程中，组分的混合可以在熔融之前进行或在熔融期间进行，或者一些
组分熔融并将其它组分加入到该熔体中。介质、水飞蓟宾组分和任选存在的添加物质的混
合物是可塑性可变型的，并因此可被挤出。许多方法促成了它们自身用于混合物的成形，例如
热造粒，冷造粒，压延，仍是塑性胶线的挤出和变性或研磨。
[0136] 使用的优选的在生物性介质中可溶胀或可溶的热塑性载体优选是：聚乙烯吡咯烷
酮（PVP），N- 烷基吡咯烷酮（NVP）和乙烯基酯特别是乙酸乙烯酯的共聚物。乙酸乙烯酯
和聚丙烯酸的共聚物，部分水解的聚乙酸乙烯酯，聚乙烯醇，乙酸纤维素，纤维素醚，特别是甲基
纤维素和乙基纤维素，羟基烷基纤维素，特别是羟基丙基甲基纤维素，羟基烷基甲基纤维素，特
别是羟基丙基甲基纤维素，和羟基乙基甲基纤维素，羧甲基纤维素，邻苯二甲酸纤维素，特
别是乙酸邻苯二甲酸纤维素和邻苯二甲酸羟基丙基甲基纤维素，琥珀酸纤维素，特别是乙
酸琥珀酸纤维素和乙酸琥珀酸羟基丙基甲基纤维素，聚丙烯酸羟基烷基酯，聚丙烯酸羟基烷基酯，
聚丙烯酸羟基烷基酯，聚丙烯酸酯和聚甲基丙烯酸酯（Eudragit ®），甲基丙烯酸甲酯和丙烯酸的共
聚物，聚交酯，聚乙二醇，聚环氧乙烷和多糖例如半乳甘露聚糖和海藻酸及其碱金属盐和铵
盐。
[0137] 用于制备具有水飞蓟宾组分的受控释放的药物的优选的热塑性赋形剂是 HPC,
PVP，乙烯吡咯烷酮 / 乙酸乙烯酯共聚物，甲基丙烯酸酯，特别是 Eudragit ® L, HPMCAS,
聚乙二醇，聚环氧乙烷，和它们的混合物。可被用来降低混合物的玻璃化转变温度的增塑赋
形剂是例如丙二醇，甘油，三乙二醇，丁二醇，戊醇，例如五氯醇醇，已醇，长链醇，聚乙二
醇，聚丙二醇，聚乙二醇，聚丙二醇，硅油烷，邻苯二甲酸衍生物（例如，邻苯二甲酸二甲酯，邻苯二甲酸二乙酯，邻苯二甲酸二丁酯），苯甲酸和苯甲酸酯，其它的芳族羧酸酯（例如，偏苯三酸酯），柠檬酸衍生物（例如，柠檬酸三乙酯，柠檬酸三丁酯，乙酰基柠檬酸三乙酯），脂肪二羧酸酯（例如，己二酸二乙酯，癸二酸酯特别是癸二酸二乙酯，石蜡酸酯），甘油一乙酸酯，甘油一乙酸酯或甘油三乙酸酯，脂肪酸和衍生物（例如，单硬脂酸甘油酯，乙酰化脂肪酸甘油酯，蓖麻油和其它天然油，miglyol），脂肪酸醇（例如，鲸蜡醇，鲸蜡硬脂醇），糖，糖醇和糖衍生物（例如，赤藓糖醇，异麦芽糖醇，拉克替醇，甘露醇，麦芽糖醇，麦芽糖醇，木糖醇）。

[0138] 除了水飞蓟宾组分，载体和任选的增塑剂以外，可挤出的混合物还可包含其它的药学常规的附加物质，例如润滑剂和脱模剂，助流剂和流动助剂，添加剂和吸收剂，稳定剂，自由基捕获剂，络合剂，抗氧化剂，光稳定剂，发射剂，表面活性剂，防腐剂，着色剂，甜味剂和调味剂。

[0139] 润滑剂和脱模剂可以例如硬脂酸和硬脂酸盐，特别是硬脂酸铝，硬脂酸钙和硬脂酸镁，山嵛酸钙，硬脂基富马酸钠，滑石，硅藻土，蜡，以及一，二和三甘油酯诸如例如单硬脂酸甘油酯，二硬脂酸甘油酯，二山嵛酸甘油酯，单油酸甘油酯，硬脂酸棕榈酸甘油酯。

[0140] 使用的流动助剂优选是动物脂肪和植物脂肪，优选为氢化形式并具有至少50℃的熔点，蜡（例如，棕榈蜡），甘油一酯，甘油二酯和甘油三酯（例如，单硬脂酸甘油酯，二硬脂酸甘油酯，二山嵛酸甘油酯，单油酸甘油酯，硬脂酸棕榈酸甘油酯），磷脂，特别是卵磷脂。

[0141] 使用的填料优选是例如二氧化钛，氧化铝，氧化镁，硅酸和硅酸盐，硬脂酸和硬脂酸盐，纤维素衍生物（例如，甲基纤维素），淀粉和淀粉衍生物，糖，糖醇和糖衍生物的物质。

[0142] 具有水飞蓟宾组分的受控释放的药物还可是包含具有pH调节性和/或具有依赖于pH的溶解性的赋形剂的熔体挤出物。借助于这些赋形剂（例如先前所述的酸，碱，缓冲物质和肠溶聚合物），有可能使得水飞蓟宾组分的释放的pH依赖性最小化。

[0143] 在熔体挤出物的制备中，可能形成“固体溶液”，其中水飞蓟宾组分以分子分散形式存在于基质中。

[0144] 具有水飞蓟宾组分的受控释放的药物还可是渗透药物释放系统。原则上，这类渗透系统是本领域已知的。因此，药物从该药物形式中的释放一般基于作为驱动力的渗透压力。

[0145] 渗透系统优选包括核心和包衣，所述核心包含水飞蓟宾组分，任选的亲水性溶胀剂和任选的用于诱导渗透的水溶性物质和任选的其它的药学可接受的赋形剂，所述包衣由核心组分不能渗透的水可渗透性材料组成并具有至少一个开孔，存在于核心中的组分可以通过该开孔被释放。

[0146] 形成本发明的这些具有水飞蓟宾组分的受控释放性能的药物的包衣的材料是半透性的，即可渗透水，水性介质和生物流体，而不可渗透或非常有限地渗透核心中的组分，并适于成膜。选择性的半渗透性外壳材料在体液中不溶，不腐蚀，在胃肠道中不降解并且无变化地被排泄，或者其只在朝向释放时段的末期显示生物侵蚀。

[0147] 用于制备渗透系统的包衣的典型的材料优选是羧化纤维素衍生物（纤维素酯），其被乙酰基1-3取代或被乙酰基和其它不是乙酰基的酰基1-2取代，例如乙酸纤维素，三乙酸纤维素，乙酸/乙基氨基甲酸纤维素，乙酸苯二甲酸纤维素，乙酸甲基氨基甲酸纤维素。
素，乙酸琥珀酸纤维素，乙酸二甲基氨基乙酸纤维素，乙酸二乙基氨基乙酸纤维素，乙酸乙基琥珀酸纤维素，乙酸乙基磺酸纤维素，乙酸乙基羧酸纤维素，乙酸乙基碱性纤维素，乙酸乙基磺酸纤维素，乙酸乙基酸性纤维素，乙酸乙基酯酸纤维素，乙酸乙基酯酸纤维素，乙酸乙基酯酸纤维素，和其它的乙酸纤维素衍生物，以及乙酸佛脂和乙酸直链淀粉。

[0148] 漏渗系统的适当的半透性膜材料进一步是乙基纤维素，氧化铝和烷基缩甘油醋的共聚物，高分子氧化物，聚乙二醇和聚乳酸衍生物。另外，可以使用水不溶性的丙烯酸酯本身的混合物，例如丙烯酸乙酯和甲基丙烯酸甲酯的混合物。

[0149] 如有必要，渗透系统的包衣还可包含增塑剂诸如例如先前提到的增塑物质，和其它的附加物质诸如例如成孔剂。如果需要，可将光保护性漆膜施加于半透性包衣上，其可由例如HPMC或HPC以及适当的增塑剂（例如，聚乙二醇）和颜料（例如，二氧化钛，铁氧化物）组成。

[0150] 为了能够给予首次剂量的水飞蓟杯组分，渗透系统还可被提供有包含水飞蓟杯组分的包衣，在水飞蓟杯组分从核心开始进行渗透性受控释放之前，水飞蓟杯组分在接触释放介质时优选从所述包衣迅速地释放。

[0151] 可以存在于渗透系统的核心中的适当的水可溶性性聚合物优选是聚环氧乙烷（例如，Polyox®），黄原胶，乙基聚磷酸酯和乙酸乙基酯的共聚物，聚乙烯吡咯烷酮，交联聚醚，交联的羧基甲基纤维素钠，交联的羧甲基淀粉钠，低取代的羟基丙基甲基纤维素（L-HPC），聚（甲基丙烯酸羟基烷基酯），磷酸盐和半乳甘露聚糖以及其它的亲水性聚合物性溶胀剂，和它们的混合物。

[0152] 可被加入到核心中用于诱导渗透的适当的渗透活性物质是无机酸和有机酸的水溶性盐或具有高的水溶解度的非离子性有机物质，诸如，例如，碳水化合物，特别是糖，或氨基酸。例如，可分别地或作为混合物被并入渗透系统的核心中用于诱导渗透的几种物质是；无机盐诸如碱金属和碱土金属诸如钠，锂，钾，钙或镁的氯化物，硫酸盐，亚硫酸盐，碳酸盐，磷酸盐，硫酸氢盐和磷酸二氢盐，有机酸诸如己二酸，抗坏血酸，丁二酸，柠檬酸，富马酸，马来酸，酒石酸，苯甲酸和它们的碱金属或碱土金属的盐，乙酸盐，戊糖诸如例如阿糖，核糖或木糖，己糖诸如例如葡萄糖，果糖，半乳糖或乳糖，二糖诸如例如蔗糖，麦芽糖或乳糖，三糖诸如例如棉子糖，糖醇诸如例如甘露醇，山梨醇，麦芽糖醇，木糖醇或肌醇，和乙醇。特别优选使用氯化钠和磷酸钠。

[0153] 另外，渗透系统可以包含其它药学常规的附加物质，诸如，例如，润滑剂和脱模剂，助流剂，粘合剂，有色颜料，增稠剂，保护性胶体，稳定剂和表面活性剂。

[0154] 渗透释放系统的生产优选借助于标准技术诸如例如湿法造粒或干法造粒，压片和随后的有机包衣来进行。

[0155] 渗透系统的包衣具有至少一个出口开孔，通过该开孔，水飞蓟杯组分和任选与核心的其它组分一起被释放。开孔可以多种方式被引入到包衣中，例如通过穿孔器，机械打孔或借助于激光钻孔。术语“开孔”还包括生物可侵蚀性材料，其在给予本发明的药物时从包衣中溶出，并从而导致在原地形成出口开孔。

[0156] 在用于水飞蓟杯组分的受控释放的另一个实施方案中，水飞蓟杯组分还可作为离子交换复合物（被吸收物）存在。

[0157] 优选所述药物被配置用于每天一次（q. d.），每天两次（bid.），每天三次（t. i. d.）
或每三天四次给药。

[0158] 在优选实施方案中，最初包含的水飞蓟素组分的0.5到75重量%在体外条件下在1小时之后，从所述药物被释放。用于测定活性物质的体外释放的条件是本领域技术人员已知的。关于这一点，可参考例如，欧洲药典。优选地，释放的测定借助于在人工胃液（缓冲液pH 1.2）或人工肠液（缓冲液pH 7.6）中的往浆搅拌器装置进行。可以例如借助于HPLC和UV检测来分析被释放的水飞蓟素组分的量。

[0159] 优选的释放曲线A至A在下表中被概括：

<table>
<thead>
<tr>
<th>其它 [h]</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>5.0-34</td>
<td>6.0-33</td>
<td>7.0-32</td>
<td>9.0-31</td>
<td>11-30</td>
<td>13-30</td>
<td>15-29</td>
<td>17-28</td>
</tr>
<tr>
<td>2</td>
<td>25-74</td>
<td>27-71</td>
<td>29-68</td>
<td>31-65</td>
<td>33-62</td>
<td>35-60</td>
<td>38-58</td>
<td>42-56</td>
</tr>
<tr>
<td>3</td>
<td>33-85</td>
<td>36-82</td>
<td>39-79</td>
<td>42-76</td>
<td>45-73</td>
<td>48-71</td>
<td>50-69</td>
<td>52-67</td>
</tr>
<tr>
<td>4</td>
<td>41-92</td>
<td>44-89</td>
<td>47-86</td>
<td>50-83</td>
<td>53-81</td>
<td>55-79</td>
<td>58-77</td>
<td>60-75</td>
</tr>
<tr>
<td>6</td>
<td>52-98</td>
<td>55-97</td>
<td>58-96</td>
<td>60-94</td>
<td>63-92</td>
<td>65-90</td>
<td>69-88</td>
<td>72-86</td>
</tr>
<tr>
<td>12</td>
<td>>62</td>
<td>>65</td>
<td>>68</td>
<td>71-99</td>
<td>74-98</td>
<td>76-98</td>
<td>78-97</td>
<td>80-97</td>
</tr>
</tbody>
</table>

[0160] 除了水飞蓟素组分以及，药物可以包含一种或多种粘质。借助于粘质的作用，可以总体上改善吸收条件和吸收过程，从而改善吸收。粘质可以是天然的或合成的油和/或它们的类粘质组分，为纯物质或这些纯物质的混合物或衍生物的形式。在粘质中，特别提及的有鼠香草油、松叶油，松针油，松针油，玉树油，豆科葱，薄荷油，草本油和迷迭香油，优选鼠香草油。对于还意在包括粘质物质的物质的粘质，可特别提及的有木栓质如例如异戊二烯，α-甲基巴豆酸，当归酸，异戊酸；单萜，包括非环单萜诸如例如2，6-二甲基辛烷，α-香叶烯，(E)-对-罗勒烯，紫苏烯，芳樟醇，香叶醇，(S)-(+)香茅醇和环单环单萜诸如例如环丙烷单萜和环丁烷单萜诸如如菊酸或junione。环戊烷单萜诸如例如环戊烯酸或二聚内酯或(-)-二聚丁酮或(-)-洋麦苦，环己烷单萜诸如如α-薄荷烷，顺式或反式对甲烷，(R)-(+)，虹烯，萜烯醇，(-)-薄荷脑，(+)-润滑油，(-)-薄荷酮或(-)-香芹酮，环单环单萜诸如如氧油接萜烯1,4-桉树脑，1,8-桉树脑，或香脂等；环丙烷二环烯和二环烯烃烷烯，环丁烷二环烯烷和环己烷烷烃烷烯，倍半萜烯诸如如金合欢烯，没药烯，吉马烷烷烯，和蛇麻烯。特别优选的粘质是麝香酸，薄荷脑，桉树脑，冰片，香芹酮，茯稀和氯烯，通常优选麝香酸。

[0161] 所述药物包含水飞蓟素组分。水飞蓟素是水飞蓟素的构成组分。优选地，除了水飞蓟素或水飞蓟素组分以外，所述药物不含水飞蓟素的其它组分。如果水飞蓟素组分是水飞蓟素自身，则所述药物优选不含水飞蓟素的其它组分。如果水飞蓟素组分不是水飞蓟素本
声明书

身体，而例如是水飞蓟成分，则所述药物优选根本不含水飞蓟素的组分，即也不含水飞蓟成分。

优选地，选自以下的物质中的一种或多种不被包含在所述药物中，即，所述药物优选基本上不含一种上述的物质：水飞蓟素，水飞蓟素，黄杉素，异水飞蓟素，silimonin，水飞蓟兰君，silithermin 和 neosilithermin。在这一点上，“基本上不含”是指，基于药物的总重量，所关心的物质的残余含量优选低于 2.0 重量%，更优选低于 1.0 重量%，甚至更优选低于 0.5 重量%，最优选低于 0.1 重量%，和特别优选低于 0.05 重量%。用于测定这些物质的残余含量的分析方法是本领域技术人员已知的，例如 HPLC。

已经发现水飞蓟素的单独的组分在它们的化学及物理特性方面有差异并且对水飞蓟素的药理学活性的贡献达到很不同的程度，从而使得给予作为水飞蓟素的唯一构成组分即单独的水飞蓟素或其衍生物和/或盐是有利的。这样看来可以同时改善效力和患者的依从性这两方面。

另外，已经令人惊讶地发现水飞蓟素的多种组分的耐受性彼此有差异并且蓟素（silibin）比水飞蓟素（即，比除了包含水飞蓟素以外还包含其它化合物的混合物）更耐受，特别是毒性较低。

在优选实施方案中，本发明涉及水飞蓟素组分在制备用于治疗病毒性肝炎，特别是乙型肝炎或丙型肝炎的药物中的应用，所述药物优选被配制用于非肠道给药或口服给药并且除了包含水飞蓟素组分以外不含水飞蓟素的其它组分。

适合于水飞蓟素组分的口服给药的特别优选的药物在下文中进行描述。所有这些口服剂量形式的共同处是它们优选包含基本上纯形式的水飞蓟素组分，即，优选不含水飞蓟素的其它组分，特别是不含异水飞蓟素和/或水飞蓟素和/或水飞蓟素。

口服剂量形式优选是直接释放剂型，即水飞蓟素组分从其被迅速释放，从而导致药物在肠道内的迅速起效。在优选实施方案中，口服剂量形式给药之后 30 分钟，至少 75 重量%，更优选至少 80 重量%，更优选至少 85 重量%，最优选至少 90 重量%，特别是至少 95 重量%的最初包含的水飞蓟素组分被释放。

在优选实施方案中，所述药物作为固体溶液被提供。所述固体溶液优选通过将分子分散形式的水飞蓟素组分包埋在高度可溶的、优选具有大的比表面积的无定形聚合物基质中来实现。水飞蓟素组分应当以分子分散形式存在，即，既不是微晶形式也不是细晶形式。当从水飞蓟素提取物中提取水飞蓟素或水飞蓟素组分时，高度可溶的无定形状态可能已经被通过采用高度可溶的固体聚合物溶液剂来实现。这种专业药物制剂增加了水飞蓟素组分的溶解度及其溶出速率。

这种固体溶液的实例包括水飞蓟素组分、适当的聚合物（例如，聚乙烯吡咯烷酮（PVP）或聚乙烯吡咯烷酮共聚物，诸如 Kollolid® 25），以及任选的赋形剂（例如，麦芽糖糊精）。制剂可包括其它的赋形剂，诸如 aerosil 和/或滑石粉（talkum）。

固体溶液的优选实施方案 B1 至 B6 在下表中示出：

<table>
<thead>
<tr>
<th></th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>B6</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt.-%</td>
<td>1.0-50</td>
<td>2.5-20</td>
<td>8.0±5.0</td>
<td>8.0±4.0</td>
<td>8.0±3.0</td>
<td>8.0±2.0</td>
</tr>
</tbody>
</table>
说明书

<table>
<thead>
<tr>
<th></th>
<th>PVP</th>
<th>1.0~97</th>
<th>10~80</th>
<th>64±15</th>
<th>64±12</th>
<th>64±10</th>
<th>64±7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0~70</td>
<td>5.0~50</td>
<td>22.8±20</td>
<td>22.8±15</td>
<td>22.8±10</td>
<td>22.8±7.0</td>
<td></td>
</tr>
<tr>
<td>aerosil</td>
<td>0~10</td>
<td>0~7.5</td>
<td>4.0±3.0</td>
<td>4.0±2.5</td>
<td>4.0±2.0</td>
<td>4.0±1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0~5.0</td>
<td>0~2.5</td>
<td>1.2±1.0</td>
<td>1.2±0.7</td>
<td>1.2±0.5</td>
<td>1.2±0.3</td>
<td></td>
</tr>
</tbody>
</table>

【0176】所述制剂可例如在硬明胶胶囊中被提供。

【0177】在另一个优选实施方式中，所述药物作为自乳化微乳剂被提供。自乳化脂质系统可被用作载体并且可导致其中所包含的药物的高的生物利用度。脂质系统具有胶体性质并且这使得可进行微粒子的重吸收，特别是具有胶体大小的微粒子的重吸收，还通过胃肠道中的淋巴系统进行重吸收。通常，溶出的药物被饱和但是不发生重结晶。当每次口服给药亲脂性药物，例如水飞蓟素组分的亲脂性药物时，微乳剂首先用作增强溶出的药物或高度分散药物在吸收位置处的溶出速率的最佳介质。换句话说，脂质系统充当吸收增强剂。

【0178】这种脂质系统的实例包括水飞蓟素组分，适当的第一乳化剂（例如，月桂酸基聚乙二醇甘油酯，诸如Gelucire Gelucire® 44/14），和任选的适当的第二乳化剂（例如，辛酸癸酸（caprylocapryl）聚乙二醇甘油酯，诸如Labrasol®）。所述制剂可包含其它的赋形剂，诸如聚山梨醇酯。

【0179】固体溶液的优选实施方案C1至C6在下表中示出：

<table>
<thead>
<tr>
<th>wt.-%</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>水飞蓟素组分</td>
<td>0.1~50</td>
<td>0.5~20</td>
<td>4.0±3.5</td>
<td>4.0±3.0</td>
<td>4.0±2.5</td>
<td>4.0±2.0</td>
</tr>
<tr>
<td>第一乳化剂</td>
<td>1.0~99</td>
<td>5~97</td>
<td>54±15</td>
<td>54±12</td>
<td>54±10</td>
<td>54±7.0</td>
</tr>
<tr>
<td>第二乳化剂</td>
<td>0~70</td>
<td>0~70</td>
<td>41±20</td>
<td>41±15</td>
<td>41±10</td>
<td>41±7.0</td>
</tr>
<tr>
<td>聚山梨醇酯</td>
<td>0~10</td>
<td>0~7.5</td>
<td>1.5±1.0</td>
<td>1.5±0.7</td>
<td>1.5±0.5</td>
<td>1.5±0.3</td>
</tr>
</tbody>
</table>

【0180】可为固体或优选半液体的制剂可在例如硬明胶胶囊中被提供或作为软明胶胶囊被提供。

【0182】在另一个优选实施方式中，药物作为纳米技术制剂被提供。纳米粒子的平均粒度优选小于1μm。纳米粒子能够通过细胞结构的生物膜。水飞蓟素组分优选被吸附到所述纳米粒子的表面上。所述纳米粒子优选选自无机纳米粒子和有机纳米粒子。

【0183】无机纳米粒子包括自矿物来源的结晶硅酸盐或人工硅酸盐，诸如金属硅酸盐，例如铝硅酸盐（例如，沸石）。这些无机纳米粒子优选经过化学改性从而使得它们携带静电荷。硅酸盐是被磨得极细的纳米粒子并且水飞蓟素组分被结合到（吸附到）纳米粒子的微孔性表面上。

【0184】有机纳米粒子包括小蛋白质或寡肽或脂质的簇集或团块。适当的蛋白质载体是例
如鱼精蛋白。

[0185] 制备纳米粒子的方法是本领域技术人员已知的。例如，胶体纳米粒子作为用于口服药物释放的载体，可以通过将药物即水飞蓟宾组分与适当的载体材料一起在压力下在例如60°C下喷射通过装备有多孔滤管（基块）的喷嘴进入强烈制冷的塔中来制备。自发冷却形成纳米粒子组成的无定形相。

[0186] 固体脂质纳米粒子可例如通过该高压-均化和随后的喷雾冷却来制备。所述药物即水飞蓟宾组分优选作为在适当的溶剂中的溶液或以亚微粒子的形式被使用。水飞蓟宾组分可与脂质介质和表面活性剂在例如60°C以混合物的形式分别进行喷雾和加压均化。在任选地添加填充剂材料作为外相以及添加助流剂和其它的表面活性剂之后，如此获得的制剂可被填充到硬明胶囊中。

[0187] 这种固体脂质纳米粒子的实例包括水飞蓟宾组分、适当的第一乳化剂（例如，硬脂酰聚乙二醇甘油酯，诸如Gelucire® 50/13）和任选的适当的大分子非离子型表面活性剂（例如，泊洛沙姆）的核心。制剂优选另外包含外相（包衣），其包括第一表面活性剂（例如，吐温 20），aerosil 和第二表面活性剂（例如，硬脂酸棕榈酸甘油酯，诸如 Percirol®）。

[0188] 固体溶液的优选实施方案 D1 至 D6 在下表中示出：

<table>
<thead>
<tr>
<th>wt-%</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
</tr>
</thead>
<tbody>
<tr>
<td>水飞蓟宾组分</td>
<td>0.1-30</td>
<td>0.5-20</td>
<td>4.5±3.0</td>
<td>4.5±2.5</td>
<td>4.5±2.0</td>
<td>4.5±1.5</td>
</tr>
<tr>
<td>第一乳化剂</td>
<td>10-99</td>
<td>20-95</td>
<td>7.5±20</td>
<td>7.5±15</td>
<td>7.5±10</td>
<td>7.5±7.5</td>
</tr>
<tr>
<td>大分子非离子型表面活性剂</td>
<td>0-50</td>
<td>0-40</td>
<td>15±10</td>
<td>15±7.5</td>
<td>15±5</td>
<td>15±2.5</td>
</tr>
<tr>
<td>第一表面活性剂</td>
<td>0-10</td>
<td>0-7.5</td>
<td>1.5±0.7</td>
<td>1.5±0.5</td>
<td>1.5±0.3</td>
<td>1.5±0.2</td>
</tr>
<tr>
<td>aerosil</td>
<td>0-10</td>
<td>0-7.5</td>
<td>3.0±2.0</td>
<td>3.0±1.5</td>
<td>3.0±1.0</td>
<td>3.0±0.7</td>
</tr>
<tr>
<td>第二表面活性剂</td>
<td>0-10</td>
<td>0-7.5</td>
<td>1.5±0.7</td>
<td>1.5±0.5</td>
<td>1.5±0.3</td>
<td>1.5±0.2</td>
</tr>
</tbody>
</table>

[0190] 装载药物的纳米粒子实现了实质上更快的药物起效。

[0191] 所述药物包含的水飞蓟宾组分的优选剂量为：至少10mg，至少15mg，至少20mg，至少25mg，至少50mg，至少75mg，至少100mg，至少125mg，至少150mg，至少175mg或至少200mg；更优选至少225mg，至少250mg，至少275mg，至少300mg，至少325mg，至少350mg，至少375mg或至少400mg；甚至更优选至少425mg，至少450mg，至少475mg，至少500mg，至少525mg，至少550mg，至少575mg或至少600mg；最优选至少625mg，至少650mg，至少675mg，至少700mg，至少725mg，至少750mg，至少775mg或至少800mg；并且特别是至少825mg，至少850mg，至少875mg，至少900mg，至少925mg，至少950mg，至少975mg，或至少1000mg；在每种情况下，作为基于水飞蓟宾的等效剂量。

[0192] 所述药物包含的水飞蓟宾组分的优选剂量为：至少1.0mg/kg，更优选至少2.5mg/kg，甚至更优选至少5.0mg/kg，最优选至少7.5mg/kg，以及特别是至少10mg/kg，至少12.5mg/kg，至少15mg/kg，至少17.5mg/kg，至少20mg/kg，至少22.5mg/kg，至少25mg/kg，至少27.5mg/kg，至少30mg/kg，基于患者的体重并且在每种情况下作为基于水飞蓟宾的等效剂量。所述剂量优选是日剂量。因此，当药物适用于例如每天给药两次时，各自的日剂量被分成等量的两份。类似的，当药物适用于每天给药三次时，各自的日剂量被分成等量的三份。

[0193] 在优选实施方案中，水飞蓟宾组分的日剂量为至少5mg/kg体重，更优选至少
10mg/kg体重，还优选至少15mg/kg体重。最优选至少20mg/kg体重，基于水飞蓟宾的等效重量。

[0194] 在优选实施方案中，水飞蓟宾组分的日剂量量是20mg/kg体重。基于水飞蓟宾的等效重量。因此，当所述药物适合于每天给药一次时，其优选包含全部量的水飞蓟宾组分，例如1400mg的水飞蓟宾用于体重为70kg的患者。当所述药物适合于每天给药二次时，其优选包含一半量的水飞蓟宾组分，例如，700mg的水飞蓟宾用于体重为70kg的患者。当所述药物适合于每天给药三次时，其优选包含三分之一量的水飞蓟宾组分，例如，467mg的水飞蓟宾用于体重为70kg的患者。当所述药物适合于每天给药四次时，其优选包含四分之一量的水飞蓟宾组分，例如，350mg的水飞蓟宾用于体重为70kg的患者。

[0195] 当所述药物用于非肠道给药，优选适用于输注时，优选的治疗方案包括每次持续2小时的4次输注。优选地，在4小时之后重复相同的输注。从而使得每24小时给予全部4次输注。这种方案可用图示方式缩写为“2-4-2-4-2-4-2-4”，其中每个数字表示小时数，加上划线的数字表示输注的持续时间，而未加下划线的数字表示在两次输注间隔之间的停滯期。优选地，治疗方案是平均的，即，每24小时的全部输注在相同的时段内进行相同的剂量给药并且在相邻的输注之间的停滯期也相同。

[0196] 根据上述的表示，优选的非肠道给药方案在下表中被概括：

每天一次	0.5-5.0	1.0-5.5	1.5-7.5	2.0-10.5	3.0-13.5	4.0-16.5	5.0-19.5
每天两次	0.5-2.5	1.0-5.0	1.5-7.5	2.0-10.5	3.0-13.5	4.0-16.5	5.0-19.5
每天三次	0.5-1.5	1.0-3.0	1.5-4.5	2.0-6.0	3.0-7.5	4.0-9.0	5.0-10.5
每天四次	0.5-0.5	1.0-1.5	1.5-2.5	2.0-3.5	3.0-4.5	4.0-5.5	5.0-6.5

[0197] 在优选实施方案中，所述药物适合于每天给药一次、两次、三次或四次，从而使得当所述药物以规定方式给予时，给予的全部日剂量量合计为至少300mg，至少325mg，至少350mg，至少375mg或至少400mg；优选至少425mg，至少450mg，至少475mg，至少500mg，至少525mg，至少550mg，至少575mg或至少600mg；优选至少625mg，至少650mg，至少675mg，至少700mg，至少725mg，至少750mg，至少775mg或至少800mg，还优选至少825mg，至少850mg，至少875mg，至少900mg，至少925mg，至少950mg，至少975mg，至少1000mg；最优选至少1050mg，至少1100mg，至少1150mg，至少1200mg，至少1250mg；以及特别是至少1300mg，至少1350mg，至少1400mg，至少1450mg或至少1500mg；在每种情况下，表示为基于水飞蓟宾的等效剂量。

[0199] 优选的药代动力学参数AUC0-τ，AUCτ-∞，AUC0-∞和AUC1-∞（校正）（优选在几次输注之后，例如在11次输注之后；单剂：12.5mg/kg；日剂量：4次输注；总剂量：11次输注）作为实施方案E1到E8在下表中被概括：
AUC_{0.1}	333±200	333±150	333±125	333±100	333±80	333±60	333±40	333±20
E_{1}	yg h/ml							
E_{2}	yg h/ml							
E_{3}	yg h/ml							
E_{4}	yg h/ml							
E_{5}	yg h/ml							
E_{6}	yg h/ml							
E_{7}	yg h/ml							
E_{8}	yg h/ml							

[0201] 在本发明的实施方案中，包含水飞蓟素组分的药物适用于辅助治疗，优选辅助免疫调节/抗病毒联合治疗。涉及到干扰素/利巴韦林。

[0202] 在优选实施方案中，除了水飞蓟素组分以外，所述药物还包括其它的药物，所述的其它的药物优选适于治疗炎性肝病，特别优选适于治疗病毒性肝病，特别适于治疗乙型肝炎或丙型肝炎。

[0203] 所述的其它的药物优选选自：肝治疗药；抗脂肪肝剂[05B]；核苷酸；核苷酸和逆转录酶的独占抑制剂[05B]；干扰素[203]和HBV（乙型肝炎病毒）的单克隆抗体。在方括号中的注释涉及ATC索引，优选2007年德国版本中的ATC索引。

[0204] 特别优选地，所述的其它的药物选自精氨酸谷氨酸，西替洛酮，利泊二醇，鸟氨酸，鸟氨酸氯代，噻西酸精氨酸(tidiacarginine)，肌醇，蛋氨酸和N-乙酰谷氨酸，胆碱，鸟氨酸，天冬氨酸，西阿尼酚，硫普罗宁，甜菜碱，维生素B12，亮氨酸，左旋糖，阿昔洛韦，碘苷，阿糖腺苷，利巴韦林，更昔洛韦，泛昔洛韦，伐昔洛韦，西多福韦，喷昔洛韦，缬更昔洛韦，溴夫定，干扰素α，干扰素β，干扰素γ，干扰素α-2a，干扰素α-2b，干扰素α-1b，干扰素β-1b，干扰素α-1b，聚乙醇二醇化干扰素α-2b，聚乙醇二醇化干扰素α-2b和干扰素α-1b。

[0205] 在优选实施方案中，使用水飞蓟素组分对患者进行的治疗为病毒性肝炎，特别是乙型肝炎或丙型肝炎的治疗提供了支持和/或制剂，在该治疗后，使用其它的药物，所述的其它的药物优选选自精氨酸谷氨酸，水飞蓟素，西替洛酮，依泊二醇，鸟氨酸，氯代，噻西酸精氨酸，肌醇，蛋氨酸和N-乙酰谷氨酸，胆碱，鸟氨酸，天冬氨酸，西阿尼酚，硫普罗宁，甜菜碱，维生素B12，亮氨酸，左旋糖，阿昔洛韦，碘苷，阿糖腺苷，利巴韦林，更昔洛韦，泛昔洛韦，伐昔洛韦，西多福韦，喷昔洛韦，溴夫定，干扰素α，干扰素β，干扰素γ，干扰素α-2a，干扰素α-2b，干扰素α-1b，干扰素β-1b，干扰素α-1b，聚乙醇二醇化干扰素α-2b，聚乙醇二醇化干扰素α-2b和干扰素α-1b。

[0206] 因此，优选在采用包含水飞蓟素组分的药物治疗病毒性肝炎，特别是乙型肝炎或丙型肝炎的治疗之后，采用其它的药物治疗病毒性肝炎，特别是乙型肝炎或丙型肝炎。

[0207] 在优选实施方案中，所述药物被配置为连续治疗的组成部分，最初给予所述药物，历时第一时段，优选非肠道给药，随后给予其它的药物历时第二时段。第一时段优选包括至少2天，更优选至少3天，更优选至少4天，优选至少5天，特别是至少6天。第二时段优选比第一时段包括更多的天数。第二时段优选包括至少2天，更优选至少3天，更优选至少4天，更优选至少5天，特别是至少6天。在特别优选实施方案中，第二药物包含利巴韦林和聚乙二醇化干扰素α的组合并且第二时段包括24-48周。

[0208] 所述的其它的药物优选包括一种或多种选自以下的药物：精氨酸谷氨酸，水飞蓟素，西替洛酮，依泊二醇，鸟氨酸氯代，噻西酸精氨酸，肌醇，蛋氨酸和N-乙酰谷氨酸，胆碱，鸟氨酸，天冬氨酸，西阿尼酚，硫普罗宁，甜菜碱，维生素B12，亮氨酸，左旋糖，阿昔
洛韦，碘苷，阿糖腺苷，利巴韦林，更昔洛韦，泛昔洛韦，伐昔洛韦，西多福韦，喷昔洛韦，缬
更昔洛韦，溴夫定，干扰素 α，干扰素 β，干扰素 γ，干扰素 α-2a，干扰素 α-2b，干扰素
α-n1，干扰素 β-1a，干扰素 β-1b，干扰素 alfacon-1，聚乙二醇化干扰素 α-2b，聚乙二醇
化干扰素 α-2a，干扰素 γ 1b 和 HBV 的单克隆抗体，特别优选干扰素和 / 或利巴韦林和 / 或
水飞蓟素。如果所述的其它的药物包含干扰素，干扰素优选是聚乙二醇化干扰素 α（聚乙
二醇化干扰素 α-2a 或聚乙二醇化干扰素 α-2b）。

【0209】在特别优选实施方案中，所述其它的药物包含一种或多种选自以下的药物：水
飞蓟素，水飞蓟宁，水飞蓟亭，黄杉素，异水飞蓟亭，silimonin，水飞蓟兰君，silihermin 和
neosilihermin，更优选所述中的仅仅一种药物。所述的其它的药物优选包含与在第一时
段被给予的上述药物有关的所定义的水飞蓟素组分，并且优选基本上不含至少一种所述物
质，优选基本上不含全部的上述物质。在这一点上，“基本上不含”是指所关心的物质的残
余含量，基于药物的总重量，优选小于 2.0 重量％，更优选小于 1.0 重量％，甚至更优选小于
0.5 重量％，最优选小于 0.1 重量％，特别是小于 0.05 重量％。

【0210】所述的其它的药物在原则上可以被配制用于非肠道给药或口服给药。根据本发
明，优选将其配制用于与第一时段的药物给药途径不同的另一种给药途径。所述的其它的
药物特别优选被配制用于口服给药。在本发明的特别优选实施方案中，在第一时段内被给
予的药物适用于非肠道给药，优选静脉给药，并且在第一时段之后的第二时段内被给予
的所述的其它的药物适用于口服给药。

【0211】在优选实施方案中，本发明的治疗方案包括彼此连续的两个时期，即，第一时段
和第二时段。优选地，在第一时段期间，优选通过非肠道途径给予包含水飞蓟芬组分的药物，
但是不同时给予具有肝效果的其它的药物。在第二时段期间，给予优选包括利巴韦林和 / 或
聚乙二醇化干扰素 α 的另一种药物。在优选实施方案中，包含水飞蓟芬组分的药物也在
第二时段内优选通过非肠道途径被给予。在另一个优选实施方案中，包含水飞蓟芬组分的
药物在第二时段内不被给予，即，只给予所述的其它的药物。

【0212】双时期治疗方案的优选实施方案 F1 到 F15 在下表中被概括：

【0213】
在另一个优选实施方案中，本发明的治疗方案包括先分别连续的三个时段。优选地，在第一时段期间，优选通过非肠道途径给予包含水飞

<table>
<thead>
<tr>
<th>天数</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>F_4</th>
<th>F_5</th>
<th>F_6</th>
<th>F_7</th>
<th>F_8</th>
<th>F_9</th>
<th>F_10</th>
<th>F_11</th>
<th>F_12</th>
<th>F_13</th>
<th>F_14</th>
<th>F_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一时段</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 2</td>
<td>≥ 2</td>
<td>≥ 3</td>
<td>≥ 3</td>
<td>≥ 4</td>
<td>≥ 3</td>
<td>≥ 4</td>
<td>≥ 4</td>
<td>≥ 5</td>
<td>≥ 5</td>
<td>≥ 7</td>
<td>≥ 7</td>
<td></td>
</tr>
<tr>
<td>第二时段</td>
<td>≥ 1</td>
<td>≥ 2</td>
<td>≥ 1</td>
<td>≥ 2</td>
<td>≥ 3</td>
<td>≥ 2</td>
<td>≥ 3</td>
<td>≥ 4</td>
<td>≥ 4</td>
<td>≥ 5</td>
<td>≥ 5</td>
<td>≥ 7</td>
<td>≥ 7</td>
<td>≥ 14</td>
<td></td>
</tr>
</tbody>
</table>
含利巴韦林和/或聚乙二醇化干扰素α的另一种药物，并且在第二时段期间还给予包含水飞蓟宾组分的药物，优选通过非肠道途径给予。优选地，在第三时段期间，给予优选包含利巴韦林和/或聚乙二醇化干扰素α的所述的其它药物，但是在第三时段期间不给予包含水飞蓟宾组分的药物，即，只给予所述的其它的药物。

三时期治疗方案的优选实施方案G₁到G₁₆在下表中被概括：

<table>
<thead>
<tr>
<th>天数</th>
<th>第一段</th>
<th>第二段</th>
<th>第三段</th>
</tr>
</thead>
<tbody>
<tr>
<td>G₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₂</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>G₃</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>G₄</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₅</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₆</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₇</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₈</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₉</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₁₀</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₁₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₁₂</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₁₃</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₁₄</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₁₅</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G₁₆</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
[0217] 在又一个的优选实施方案中，本发明的治疗方案包括彼此连续的三个时期，即第一时段、第二时段和第三时段。优选地，在第一时段期间，给予优选包含利巴韦林和/或聚乙二醇化干扰素α的另一种药物，但是在第一时段期间不给予包含水飞蓟宾组分的药物。在第二时段期间，也给予优选包含利巴韦林和/或聚乙二醇化干扰素α的另一种药物，并且在第二时段期间还给予包含水飞蓟宾组分的药物（共同给予），优选通过非肠道途径给予。优选地，在第三时段期间，给予优选包含利巴韦林和/或聚乙二醇化干扰素α的所述的其它的药物，但是在第三时段期间不给予包含水飞蓟宾组分的药物，即，只给予所述的其它的药物。换句话说，根据该优选实施方案，所述的优选包含利巴韦林和/或聚乙二醇化干扰素α的其它的药物被连续地给予，并且在中期时期（第二时段）期间，优选通过非肠道途径共同给予包含水飞蓟宾组分的药物。

[0218] 三时期治疗方案的优选实施方案H1到H15在下表中被概括：

[0219]
图 10 显示了利巴韦林和 / 或聚乙二醇化干扰素 a 和包含水飞蓟宾组分的药物的共同给药的不同方式（实施方案 a_i 到 m_j）。每个条形图是指给药时段。例如，根据实施方案 f_i)，给药从利巴韦林 / 聚乙二醇化干扰素 a 开始并继续进行。在中间时期，共同给药...
水飞蓟宾组分。
[0221] 本发明的其它的方面涉及用于治疗如上所述的病毒性肝炎的如上所述的药物，该药物优选适合于非肠道给药。
[0222] 本发明的又一个方面涉及药剂盒，该药剂盒包含至少一种本发明的包含水飞蓟宾组分的药物以及至少一种其它的药物。本发明的包含水飞蓟宾组分的药物以及其它的药物如上所述，从而使得全部的优选实施方案也同样适用于本发明的药剂盒。
[0223] 在优选实施方案中，所述药剂盒包含根据需要的药物的多少（单独的剂量单位）从而进行连续的治疗，包含水飞蓟宾组分的药物被首次给药，历时间段，随后其它的药物被给药，历时第二时段。优选地，第一时段包括至少2天，更优选至少3天，甚至更优选至少4天，最优选至少5天和特别是至少6天。优选地，第二时段比第一时段包括更多的天数。优选地，第二时段包括至少2天，更优选至少3天，甚至更优选至少4天，最优选至少5天和特别是至少6天。
[0224] 在特别优选实施方案中，本发明涉及水飞蓟宾组分、优选水飞蓟宾酯在制备对利巴韦林 / 干扰素治疗的无应答者中用于治疗病毒性丙型肝炎的药物中的应用，所述药物被配制用于非肠道给药，所述无应答者是对免疫调节 / 抗病毒联合治疗诸如利巴韦林 / 干扰素治疗无应答的患者。
[0225] 本发明的另外的方面涉及水飞蓟宾组分、优选水飞蓟宾酯，其优选用于非肠道给药，用于治疗病毒性肝炎、优选用于治疗丙型肝炎。本发明的该方面的优选实施方案从上面关于本发明的其它方面的优选实施方案的描述而变得明显，并因此不再重复。
[0226] 本发明的另外的方面涉及病毒性肝炎、优选丙型肝炎的治疗，包括对有需要的受试者给药，优选非肠道给药，优选有有效量的水飞蓟宾组分、优选水飞蓟宾酯。本发明的该方面的优选实施方案从上面关于本发明的其它方面的优选实施方案的描述而变得明显，并因此不再重复。
[0227] 以下的实施例进一步说明了本发明，而不被认为限制了本发明的范围。
[0228] 实施例1：
[0229] 水飞蓟宾组分以水飞蓟宾 C-2’,3-二（琥珀酸单酯）（Legalon Sil®, Madaus, Köln）的形式（以下简称“水飞蓟宾”）进行非肠道给药。
[0230] 患者和方法：

<table>
<thead>
<tr>
<th>患者</th>
<th>规格1</th>
<th>规格2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (男 / 女)</td>
<td>16 (14/2)</td>
<td>20 (17/3)</td>
</tr>
<tr>
<td>平均年龄 (岁 ±SD)</td>
<td>49.9 ±9.7</td>
<td>52.7 ±12.8</td>
</tr>
<tr>
<td>基因型 (1/2/4)</td>
<td>15/1/1</td>
<td>17/1/2</td>
</tr>
<tr>
<td>纤维化阶段</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3-4</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>未获得</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>在先治疗*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEG-干扰素-α 2a/RBV</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>PEG-干扰素-α 2b/RBV</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

在先治疗 12 周期时的 Log 下降

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>>2**</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1-2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td><1</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>未获得</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

*一些患者具有超过一个的治疗周期
**在 24 周全部呈阳性

选择了先前对全剂量的聚乙二醇化干扰素 / 利巴韦林联合治疗无应答的患者用于这些研究。无应答被定义为在治疗 12 周之后缺少 > 2 个 log 值的病毒载量下降和 / 或未实现治疗应答终点。要求患者在参加该研究之前的 2 年内进行肝活组织检查 (biopsy)。实施了用于聚乙二醇化干扰素 / 利巴韦林治疗的标准纳入 / 排除标准。

研究规程:

在研究的第一剂量之前 35 天内的筛选阶段期间，根据纳入 / 排除标准建立了患者的药物合格性。所有的患者在筛选阶段之前 6 个月内具有至少一次定量的 HCV-RNA 检验。

规程 1: 患者首先接受每日 10mg/kg 水飞蓟素 (Legalon Sil®, Madaus, Köln)。在 4 小时内被输注，历时 7 个连续日。在第一天抽血用于测定基线时的氧化应激参数，再输注期间的每 30 分钟和在输注结束后 2 小时进行抽血。在第 8 天，换成 140mg 水飞蓟素 (Legalon®, Madaus, Köln)，每天三次。口服 (os)，并结合 180μg/ 周的 PegIFNa-2a (PEGASYS®; Roche, Basel) 和 1-1.2g/ 天的利巴韦林 (COPEGUS®; Roche, Basel)。

规程 2: 在获得第一个规程的结果之后，用水飞蓟素治疗延长 2 周，并且给予不同剂量的水飞蓟素。患者首先接受每日 5,10,15 或 20mg/kg 的水飞蓟素，在 4 小时内被输注，历时 14 个连续日。在第 8 天，开始使用 180μg/ 周的 PegIFNa-2a 和 1-1.2g/ 天的利巴韦林。在第 14 天后，患者接受 280mg 水飞蓟素 (Legalon®, Madaus, Köln)，每天三次。口服
给药。在 14 天输注期间，每日抽血用于测定病毒载量。
[0239] 在两个规程中，当出现对 PEG-IFN α 2a 或利巴韦林不耐受时，使用标准的剂量调整指南。给予抗病毒联合治疗总共 24 周（在第 12 周时未出现 > 2 个 log 值下降的患者中，可以选择停止治疗）；在第 24 周提供病毒学应答者以继续另外 48 周的治疗。在输注时段结束之后，在 2.4 周后对患者进行检验，每月对患者进行检验，直到第 24 周治疗结束为止。
[0240] 该规程由维也纳医科大学的道德委员会批准。研究的细节向患者解释并且所有患者都签署了书面知情同意书。
[0241] 方法：
[0242] 通过 TaqMan PCR 试验测定血清 HCV RNA 水平 (CobasAmpliprep/Cobas TaqMan HCV Test；limit of detection, 15 IU/mL, RocheDiagnostics).
[0243] 在水飞蓟实输注之前、输注期间每 30 分钟（在第 1 天）和输注之后 2 小时，并且使用便携式自由基测定系统 (FRAS 4, SEAC, Calenzano, Italy)，通过 d-ROMs 试验测量血中的反应性氧化代谢物 (Reactive OxygenMetabolites derived compounds; Diacron, Grosseto, Italy)，通过 BAP 试验测定氧化剂的量。d-ROM 试验通过酸性缓冲液测量了从血浆蛋白质释放的反应性氧化代谢物（主要是氧过氧化物），其在铁存在下根据 Fenton’s 反应生成羟基和过氧化氢基团。这些自由基又能够氧化被羟基取代的芳香胺 (N,N- 二乙烯基对苯二胺)，从而使生成在 505nm 下可进行光度法定量的粉色衍生物。反应性氧化代谢物的结果表示为 Caratelli 单位 (Um/μL) ; standard : 250~300, 1Um Carr = 0.08 μg 过氧化氢 /dl)。BAP 试验测量了由被加入的血浆样品所引起的与硫氰酸盐衍生物混合的氯化铁溶液在 505nm 下通过光度法定量的脱色强度，其与血浆中抗氧化剂的量 (一般 > 2200 μM) 使三价铁离子还原的能力成正比。厂商的试验说明没有具体明确实际测量了哪种物质。
[0244] 统计学：
[0245] 最初，主要的结果变量是病毒学应答，其被解释为是在治疗结束 (24 周) 时呈 PCR 阴性的患者的百分数。次要的效力变量是在第 12 周的病毒学应答率，使用 PEG-IFN/ 利巴韦林 / 水飞蓟素治疗时的安全性和耐受性，在基线、第 24 周、第 48 周、第 72 周时的生命质量 (SF-36, 疲劳严重等级) 以及在水飞蓟素输注之后的氧化状态。由于在水飞蓟素输注 7 天之后的意想不到的强的病毒学应答，停止招募并且根据病毒学应答参数使用更长的输注时期和更高剂量的水飞蓟素对研究进行重新设计。对于最初的研究，根据 Gehan’s 双阶段设计来估计样本量。根据先前的研究，＞ 10% 的应答率似为确保了对治疗方案的进一步的研究。因此在第一阶段必须招募 29 名患者 (误差概率 β = 5%)。
[0246] 结果：
[0247] 规程 1：
[0248] 纳入了 16 名血统明白的无应答者（细节参见上表）。所有的患者接受全剂量的聚乙二醇化干扰素（12 名聚乙二醇化干扰素 α 2a, 2 名聚乙二醇化干扰素 α 2b）和利巴韦林（1000-1200mg/ 天）的治疗，历时至少 12 周。测量的氧化应激参数在水飞蓟素输注期间无变化（图 1）。
[0249] 在所有的 iv 水飞蓟素单一治疗的患者中，血清 HCV RNA 下降 (图 2)（基线：6.59 ± 0.53, 第 8 天 : 5.26 ± 0.81 log IU/mL，平均数 ± SD, p < 0.001），在一周内，平均
log下降为1.32±0.55。平行地，ALT从162±133下降到118±107U/l (p = 0.004)。在全部患者中，在PegIFN/RBV治疗的开始时，HCV RNA保持可被检测到。三名患者在PEGIFN/RBV联合治疗时下降。在剩余的13名患者中，11名患者中在水飞蓟素输注结束之后HCV-RNA仍再增加，尽管开始了PegIFN/RBV。在第12周，全部的患者仍呈HCV-RNA阳性，但是5名患者具有>2的log值下降并且继续治疗（图3）。他们在第24周都没有变成HCV-RNA阴性，一名患者具有5.5个log值的下降并且根据自己希望继续治疗。

【0250】程 2：

【0251】纳入了20名血统明白的无应答者（详情参见上表）。所有的患者接受全剂量的聚乙二醇化干扰素（18名聚乙二醇化干扰素 α 2a, 4名聚乙二醇化干扰素 α 2b；2名患者接受2个疗程）和利巴韦林（1000–1200mg/天）的治疗，历时至少12周。

【0252】图4显示在这些患者中的病毒动力学。病毒载量持续下降。在水飞蓟素单一治疗7天之后，5mg/kg剂量最低限度地有效 (n = 3, log下降为0.55±0.5), 而10mg/kg(n = 19[包括程1中的患者], log下降为1.41±0.59), 15mg/kg(n = 5, log下降为2.11±1.15)和20mg/天的剂量 (n = 9, 3.02±1.01) 导致病毒载量的高度显著的下降 (p < 0.001)。

【0253】在水飞蓟素与聚乙二醇化干扰素 / 利巴韦林治疗组合1周后，病毒载量进一步下降 (log下降: 5mg/kg: 1.63±0.78; 10mg/kg: 4.16±1.28; 15mg/kg: 3.69±1.29; 20mg/kg: 4.8±0.89; 所有组相对于基线的 p < 0.0001) (图5)。在15mg/kg组中5名患者中有两名患者以及在20mg/kg组中9名患者中有4名患者在第15天时具有HCV RNA < 151U。在PEGIFN/RBV开始之后，在第4周（研究程规的第5周）有8名患者和在第12周（研究程规的第13周）有7名患者的HCV-RNA分别是<151U/ml。对于所有患者继续使用抗病毒联合治疗（图6）。

【0254】安全 性：

【0255】水飞蓟素大体上被充分地耐受。5名患者抱怨轻微的胃肠系统症状（腹痛 ;5, 腹泻 ;1, 恶心1）, 两名头痛和一名关节痛。所有这些症状经患者评价都是轻微的, 并且在输注结束之后消退; 不要求改变剂量给药方案。在15和20mg/kg组中的全部患者当开始输注时都注意到有热感, 无需治疗在30分钟内消失。没有发生SAE。在单一治疗中，观察到血红蛋白，白血球，血小板和肌酸酐无变化。观察到抗病毒联合治疗的典型的副作用（包括一名患者由于溶血性贫血和病毒诱导的肺炎所导致的不断增加的呼吸困难，在8周后要求终止聚乙二醇化干扰素 / 利巴韦林治疗）。

【0256】该实施例证明水飞蓟素 (C=2’, 3-二(琥珀酸单酯)) 的非肠道给药具有显著对抗丙型肝炎病毒的抗病毒活性。这些观察证明该药物具有用于治疗慢性丙型肝炎的潜力，特别是在无应答者中。

【0257】已经令人惊讶地发现iv水飞蓟素 (C=2’, 3-二(琥珀酸单酯)) 在对标准抗病毒联合治疗无应答的慢性丙型肝炎患者中是有效的抗病毒剂。静脉内水飞蓟素被充分耐受, 未观察到严重的副作用。最常报告的副作用是暂时性的热感。抗病毒效果是剂量依赖性的, 但是在输注结束之后不能通过水飞蓟素的口服给药得以保持。

【0258】比较起来，口服相似量的水飞蓟素对HCV载量没有影响(A Gordon等人, J Gastroenterol Hepatol. 2006, 21, 275–80) 反映了在水飞蓟素的生物利用度和新陈代谢方式
面的差异，导致远远更低的血浆水平。在口服给药水飞蓟素之后，黄酮木脂素迅速地发生葡萄糖醛酸化并以短的半衰期被迅速地消除 (Z Wen 等人, Drug Metab Dispos. 2008, 36(1), 65–72)。

实施例 2：

患者继续用 180 μg 乙二醇化干扰素 α 2a 和以重量计的利巴韦林进行治疗。尽管进行这一治疗，五名患者在治疗 24 周之后 HCV-RNA 仍呈阳性：三名男性患者和两名女性患者；四名患者具有 HCV 基因型 1；一名患者具有 HCV 基因型 3a；三名患者具有肝硬化。

四名患者可被认为未经历实验 (naive), 而一名患者可被认为是与两个先前治疗 (24 周和 48 周) 有关的复发者。

在正在进行的 180 μg 乙二醇化干扰素 α 2a 和以重量计的利巴韦林进行的疗程期间，全部的患者使用 20mg/kg/天的水飞蓟素静脉内历时 14 个连续日的治疗至少一次。在该期间，继续使用聚乙二醇化干扰素 / 利巴韦林的联合治疗。

图 7 显示了单独的患者 55 岁）的结果。从图 7 可看出，在 24 周之后，聚乙二醇化干扰素 / 利巴韦林只引起病毒载量从约 1log 7IU/mL 下降到约 1log 4.5IU/mL。然而，与 20mg/kg/ 天 i.v. 水飞蓟素二（琥珀酸单酯）历时 14 天的共同治疗导致病毒载量从约 1log 4.5IU/mL 剧烈地下降到低于检测极限的值。在非肠道给药水飞蓟素二（琥珀酸单酯）的第一个给药间隔之后，病毒载量再次增加到约 2IU/mL。然而，通过与 20mg/kg/ 天 i.v. 水飞蓟素二（琥珀酸单酯）历时 14 天的第二个共同治疗而被永久地抑制到低于检测极限。

图 8 显示了另一名单独的患者（女性，44 岁）的结果。从图 8 可看出，在 30 周之后，聚乙二醇化干扰素 / 利巴韦林只引起病毒载量从约 1log 7IU/mL 下降到约 1log 5IU/mL。然而，在 30 周之后，与 20mg/kg/ 天 i.v. 水飞蓟素二（琥珀酸单酯）历时 14 天的共同治疗导致病毒载量从约 1log 4IU/mL 剧烈地和永久地下降到低于检测极限的值。

图 9 显示了单独的患者（男性，52 岁）的结果。从图 9 可看出，聚乙二醇化干扰素 / 利巴韦林引起病毒载量从约 1log 5IU/mL 有效地下降到接近于检测极限 < 15IU/mL 的值。在 72 周之后，与 20mg/kg/ 天 i.v. 水飞蓟素二（琥珀酸单酯）历时 14 天的共同治疗导致病毒载量进一步下降到远低于检测极限。

这些临床试验结果证明使用水飞蓟素组进行非肠道治疗历时相对较短的时间间隔支持并显著改善了使用聚乙二醇化干扰素 / 利巴韦林的常规治疗。看来水飞蓟素组的非肠道给药（再）激活了患者对聚乙二醇化干扰素 / 利巴韦林常规治疗的敏感性（图 7 和图 8）和 / 或增强了聚乙二醇化干扰素 / 利巴韦林常规治疗的抗病毒效果（图 9）。

实施例 3：

进行了体内实验以表征水飞蓟素在 8 名慢性丙型肝炎患者中的血浆浓度 / 时间曲面，所述患者接受 20mg 水飞蓟素 /kg 体重 (Legalon® SLL) 的 7 天 i.v. 输注治疗。对于多个剂量的 20mg/kg 体重, 在第 1 天 (= 单剂量条件) 已经观察了游离和总的水飞蓟素的血浆浓度 / 时间曲面和 PK 参数并且与第 7 天时的数据进行比较 (= 被预期的稳态条件)。

分析过程：

使用经验证的 HPLC-UV 方法对研究样品进行分析。在分析期间，每次分析通过两个校正曲线验证了该分析过程。对校正曲线和质量对照品所提供的数据进行的色谱检查
指出，用于该研究的总的和游离的水飞蓟素 A 和水飞蓟素 B 浓度的测量结果是可靠的。

PK 特征在下表中被概括:

<table>
<thead>
<tr>
<th>总的水飞蓟素</th>
<th>第一天</th>
<th>第七天</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水飞蓟素 A</td>
<td>水飞蓟素 B</td>
</tr>
<tr>
<td>AUC(0-∞) [h ng/ml]</td>
<td>61733 ± 27489</td>
<td>13745 ± 76040</td>
</tr>
<tr>
<td>AUC(0-t) [h ng/ml]</td>
<td>50019 ± 20048</td>
<td>106038 ± 51342</td>
</tr>
<tr>
<td>AUCss [h ng/ml]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cmin [h ng/ml]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cmax [ng/ml]</td>
<td>4550 ± 928</td>
<td>9539 ± 2843</td>
</tr>
<tr>
<td>Cpe [ng/ml]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>t1/2 [h]</td>
<td>8.30 ± 2.26</td>
<td>8.29 ± 2.98</td>
</tr>
<tr>
<td>MRT [h]</td>
<td>13.17 ± 3.74</td>
<td>13.44 ± 4.39</td>
</tr>
<tr>
<td>CL [ml/(h kg)]</td>
<td>0.435 ± 0.336</td>
<td>0.233 ± 0.237</td>
</tr>
<tr>
<td>Vz [ml/kg]</td>
<td>4.7 ± 1.3</td>
<td>2.4 ± 1.1</td>
</tr>
<tr>
<td>tmax [h]</td>
<td>4.14 ± 0.18</td>
<td>4.17 ± 0.18</td>
</tr>
<tr>
<td>%PTF [%]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

游离的水飞蓟素

<table>
<thead>
<tr>
<th>第一天</th>
<th>第七天</th>
</tr>
</thead>
<tbody>
<tr>
<td>水飞蓟素 A</td>
<td>水飞蓟素 B</td>
</tr>
<tr>
<td>AUC(0-∞) [h ng/ml]</td>
<td>3614 ± 1648</td>
</tr>
<tr>
<td>AUC(0-t) [h ng/ml]</td>
<td>3302 ± 1551</td>
</tr>
<tr>
<td>AUCss [h ng/ml]</td>
<td>-</td>
</tr>
<tr>
<td>Cmin [h ng/ml]</td>
<td>-</td>
</tr>
<tr>
<td>Cmax [ng/ml]</td>
<td>316 ± 108</td>
</tr>
<tr>
<td>Cpe [ng/ml]</td>
<td>-</td>
</tr>
<tr>
<td>t1/2 [ng/ml]</td>
<td>4.58 ± 1.35</td>
</tr>
</tbody>
</table>

HVD [h] 10.12 ± 4.29 6.09 ± 2.14 11.87 ± 2.64 7.17 ± 1.63

MRT [h] 8.49 ± 2.64 8.81 ± 6.12 9.88 ± 1.86 6.27 ± 2.39

CL [ml/(h kg)] 7.0 ± 4.2 44.8 ± 42.5 5.9 ± 2.9 26.8 ± 16.7

Vz [ml/kg] 51.4 ± 12.7 285.8 ± 163.9 55.3 ± 18.5 140.4 ± 49.0

tmax [h] 3.73 ± 1.22 4.03 ± 0.04 - -

% PTF [%] - - 164.00 ± 45.33 305.24 ± 80.46

实施例 4:

借助于 XTT 试验，使用小鼠细胞系 L929，进行体外研究以评价水飞蓟素、水飞蓟素、水飞蓟素二（琥珀酸单酯）二钠盐和琥珀酸的细胞毒性效力（参见，D.A.Scudiero

[0278] 试验了供试样品的以下浓度：9.77, 19.53, 39.06, 78.13, 156.25, 312.5, 625, 1250 μg/mL。使用完全培养基（包含 10% (v/v) FCS 的 RPMI1640）作为阴性对照。用于供试样品的溶剂对照是包含 10% (v/v) FCS 和 1% DMSO 的 RPMI 1640 培养基。用于阳性对照的溶剂对照是 RPMI1640 培养基，其包含 10% (v/v) FCS 和 10.0% (v/v) 去离子水。使用 SDS 作为阳性对照。采用了以下浓度：3.125, 6.25, 12.5, 25, 50, 100, 125, 250 μg/mL。温育时间是在 37 ± 1.5 °C 历时 24 小时。

[0279] 阴性对照和溶剂对照显示细胞生存能力未降低。阳性对照 (SDS) 诱导了细胞生存能力的不同的剂量相关性降低。

[0280] 在用从 39.06 μg/mL 直到最高供试浓度 (1250 μg/mL) 下的水飞蓟素温育后观察到毒性效果。XTT0 计算值是 35.2 μg/mL。

[0281] 在用从 78.13 μg/mL 直到最高供试浓度 (1250 μg/mL) 下的水飞蓟素温育后观察到毒性效果。XTT0 计算值是 67.5 μg/mL。

[0282] 在直达高达最高浓度 (1250 μg/mL) 下的水飞蓟素 - 二琥珀酸单酯钠盐温育后未观察到相关的细胞毒效果。由于缺乏细胞毒性，不能计算出 XTT0 值。

[0283] 在直达高达最高浓度 (1250 μg/mL) 下的琥珀酸温育后未观察到相关的细胞毒效果。由于缺乏细胞毒性，不能计算出 XTT0 值。

[0284] 这些实验揭示了，在给定的条件下，水飞蓟素的细胞毒性潜力比水飞蓟素的细胞毒潜力几乎高 100%。因此，可预期到，水飞蓟素可以比水飞蓟素更高的剂量被给药，而不引起严重的不良作用。

[0285] 实施例 5：

[0287] 制备了化合物在 100% DMSO 中的储备溶液 (100mM)。在所有反应中 DMSO 的浓度在 5% 保持不变。研究的目标酶是 HCV NS5B A1 21 聚合酶基因型 J4 (1b)。

[0288] 图 11 显示了由水飞蓟素的六种经过纯化的组分（即，水飞蓟素 A，水飞蓟素 B，异水飞蓟素 A，异水飞蓟素 B，水飞蓟素和水飞蓟素）生成的数据。图 12 显示了水飞蓟素酯的单独的数据。水飞蓟素酯显示最有效。

[0289] 从两次测量的剂量反应曲线测定水飞蓟素酯的 IC50 值。IC50 测定值是 47 ± 14 μM。使用 SigmaPlot 8.0 软件，将曲线配合到数据点并且从得到的曲线内插 IC50 值。
图 1
图2

图示显示了log HCV RNA (IU/mL) 在基线和水飞蓟素/7天后的变化情况。
图 3
图 4
* 包括在研究1中的患者

图5
图6
图 7
20 mg/kg
SIL/d iv

180 μg PegIFNα2a+RBV

TM,f,44a

图8
图 9

HN, m, 52a

180 μg PegIFNα2a+RBV

20 mg/kg

SIL/c/d iv

<15 IU/ml

不可检测

周数

log HCV-RNA IU/ml

0 20 40 60 80

6 5 4 3 2 1 0
图 10
图10（续）
图11
图11（续）