(12) 实用新型专利

(10) 授权公告号 CN 20190636 U
(45) 授权公告日 2011.08.24

(21) 申请号 20102625390.9
(22) 申请日 2010.11.23
(73) 专利权人 皮赛荣
 地址 336000 江西省宜春市袁州区平安路
 139号宜工花园A栋2单元301号
(72) 发明人 皮赛荣
(51) Int. Cl.
 B23B 39/16 (2006.01)
 B23B 47/00 (2006.01)
 B23Q 11/00 (2006.01)

(54) 实用新型名称
 多轴多工位数控钻床

(57) 摘要
 本实用新型公开了一种针对鼓式刹车片进行多轴多工件多工位钻孔的多轴多工位数控钻。工
 件装在卧式滚筒上，圆周方向分三排，形成上料、加工、卸料三工位，每排四工件，垂直于滚筒的主
 轴箱设有四个钻轴，分别对应四个工件。多轴多工件同时加工，上料、钻孔、卸料的工时部分重叠，节
 约辅助工时。孔位由编程控制且多轴加工不受最小孔距限制。
1. 一种多轴多工位数控钻，包括设于床身上的分度头，连接于所述分度头的工作台，置于工作台一侧的横、纵向滑台、以及装于所述横、纵向滑台上的主轴箱，其特征是连接于所述分度头的工作台为一卧式工作台，该卧式工作台上有设置分别在轴向方向上呈排、径向方向上呈列的若干夹具。

2. 根据权利要求1所述多轴多工位数控钻，其特征是所述主轴箱上连接有分别与所述卧式工作台上的相应的呈列的若干夹具相对应的、沿纵向分布排列的若干钻具。

3. 根据权利要求2所述多轴多工位数控钻，其特征是所述若干夹具分别对应于卧式工作台上呈排设置的若干夹具相对应呈纵向分布连接于所述主轴箱上。

4. 根据权利要求2或3所述多轴多工位数控钻，其特征是所述主轴箱上呈纵向分布设置的钻具个数与滚筒上设置的夹具的列数相对应。

5. 根据权利要求1所述多轴多工件数控钻，其特征是所述滚筒上的各排夹具均匀分布于滚筒圆周上，每列的各夹具位于同一径向平面上。

6. 根据权利要求1、2或5所述多轴多工件数控钻，其特征是所述卧式工作台为与所述纵向滑台相对应、呈纵向连接于所述分度头上的滚筒，所述若干夹具沿滚筒圆周方向成若干排、沿滚筒轴向呈若干列排列设置于所述滚筒上，所述主轴箱上连接有分别与所述滚筒上呈排分布的若干夹具相对应的、沿纵向分布排列的若干钻具。

7. 根据权利要求6所述多轴多工位数控钻，其特征是所述若干夹具沿滚筒圆周方向成三排、沿滚筒轴线方向成四列分布连接于所述滚筒上；所述主轴箱上呈纵向分布连接有与滚筒上的呈排分布的四套夹具分别相对应的四个钻具。
多轴多工位数控钻床

0001 技术领域：本实用新型涉及一种数控机械加工设备，尤其涉及一种多轴多工位数控钻床。

0002 背景技术：目前驱动工具片式结构，其形状和结构，品种多（宽度、孔距变化大），钻孔多采用台钻加手动回转夹具，人力进给钻孔，劳动强度大。也有人采用动力头驱动式，排液进给钻孔，解决了劳动强度问题，但孔距的变化时要手工调整动力头排列角度，且受动力头大小限制，最小钻杆夹角必大于11度。有一种日本进口的采用滑台式组合机，滑台自动改变孔位，但同样受钻杆直径限制，最小孔距小于57毫米时仍要分开单轴钻孔，不能多轴同步钻，影响效率，而且工件手工夹紧在立式回转台，在高度方向不能安装多片工件，更影响效率的进一步提高。

0003 实用新型内容：本实用新型的目的是针对上述现有技术存在的不足提供一种多轴多工位数控钻床，该数控钻床能够对多个工件同时进行加工，并且在刀具不作任何位置和角度的调整的情况下对多个工件同时进行多孔连续加工，还可以在工件加工的过程中同时进行工件的装夹和卸夹；加工效率高、加工精度高、加工范围大、加工成本低。在一定程度上可节约生产成本、降低能源消耗。

0004 本实用新型的技术方案包括设于床身上的分度头，连接于所述分度头的工作台，置于工作台一侧的横向钻台和横向滑移台；以及装于所述横向钻台的主轴箱，连接于所述分度头的工作台为一卧式工作台，该卧式工作台上设有分别在轴向方向上呈排、径向方向上呈列的若干夹具。

0005 所述主轴箱上连接有分别与所述卧式工作台上的相应的呈列的若干夹具相对应的、沿纵向方向分布排列的若干钻具。

0006 所述若干钻具分别对应于卧式工作台呈排设置的若干夹具相对应呈纵向分布连接于所述主轴箱上。

0007 所述主轴箱上呈纵向分布设置的钻具个数与卧式工作台上设置的夹具的列数相对应。

0008 本实用新型的实施例所述卧式工作台为与所述纵向滑台相对应、呈纵向连接于所述分度头上的滚筒，所述滚筒上的各排夹具均匀分布于滚筒圆周上、每列的各夹具位于同一径向平面上。

0009 所述若干夹具沿滚筒圆周方向成若干排、沿滚筒轴向成若干列排列分布设置于所述滚筒上；所述主轴箱上连接有分别与所述滚筒上呈排分布的若干夹具相对应的、沿纵向分布排列的若干钻具。

0010 所述若干夹具沿滚筒圆周方向成三排、沿滚筒轴向方向成四列排列分布连接于所述滚筒上；所述主轴箱上呈纵向分布连接有与滚筒上的呈排分布的四套夹具分别相对应的四个钻具。

0011 本实用新型改变机床工件布局，改变传统加工方法，不是按常规多轴加工一工件，而是多轴分别加工多工件，没有最小孔距限制且效率又高。多轴装在同一主轴箱上，由数控滑台移位，孔位调整是数控保证的，且误差修正快而方便。减轻劳动强度、提高加工效率，可
比日本进口机提高效率 2 倍，比普通台钻提高 4 倍。一机多工件，减少机床台数，节约工厂占地面积，减少操作工，节约人力成本，提高钻孔定位精度，保证产品质量。结构上还采用密封除尘，避免粉尘污染。

[0012] 螺纹丝杆：图 1 是本实用新型的结构示意图，图 2 为图 1 的滚筒径向剖视图。

[0013] 具体实施方式下面通过实施例并结合附图对本实用新型作进一步说明。如图 1 和 2 所示：设于滚筒 11 上的夹具 13 在滚筒的圆周表面展开图上轴向成排、径向成列分布，沿滚筒 11 轴向呈四列分布的夹具列与列之间的距离相等，绕滚筒 11 周向分布的三排夹具排与排之间互成 120 度夹角。

[0014] 呈卧式布局的滚筒 11 支承在分度头 10 与尾架 14 之间，并一起座落在床身 1 上。工件 12 分三排四列，用气缸自动夹紧在滚筒 11 上，分度头伺服电机 9 通过蜗杆蜗轮带动分度头 10，进而带动滚筒做圆周运动。与四列工件间距相等的四个钻头 6，其轴线与滚筒轴线垂直，钻床安装在主轴箱 4 上，主轴箱座落在横进滑台 3 上，横进滑台 3 座落在纵进滑台 2 上，横进滑台由横进伺服电机 5 驱动，完成工件钻进运动，纵进滑台由纵进伺服电机 8 驱动完成钻轴移位运动。该移位运动与滚筒圆周运动配合作，使钻头可以在刀片上钻出不同孔位的孔。各伺服电机由数控系统 19 控制，使多轴多工件同时加工。

[0015] 滚筒 11 从径向剖开见图 2，可见圆周向三个工位的工件，装夹位工件 16，准备加工位工件 17，卸料位工件 18，上料装夹、加工钻孔、卸料三个工步有部分工时可重叠，节约辅助工时，提高效率。

[0016] 孔距不同品种，只要圆弧半径相同（相近），只需更换预定程序而不必调整机床，半径变化小的由夹具垫片解决，半径变化大的工件则整体调换滚筒。而且程序可随时修定，既提高效率又提高定位精度。当工件的弧形展角较大（65～150 度），圆周方向则只排 2 排工件，只有装夹卸料位和加工位二工位。由于是数控编程控制，同样不必调整机床，只要更换相应夹具。

[0017] 操作工只需要在装夹位放上四个工件，按气动夹紧开关夹紧工件，按数控起动按钮，程序将完成分度运动（分度伺服电机完成）、纵向定位运动（纵向伺服电机完成）、钻头的进给运动（由纵向伺服电机完成），钻头的旋转则是主轴箱配的电机经齿轮驱动完成。当加工完成后，分度头旋转到该排工件处于最低位置，程序控制气缸松开，工件卸下。四轴是同步加工的，因此程序只需针对一个轴，不易产生编程错误。各工件加工程序事先存于系统中，换工件品种只须调用相应程序即可。

[0018] 机床设有吸尘罩 7，减少钻孔时粉尘污染对工人的危害。