A cable splice enclosure comprising: a base having an outlet capable of receiving a cable; and a hollow cover which can be fixed to the base to close at least partially the enclosure such that adjacent external surfaces of the base and cover lie substantially mutually flush; in which the base and the cover have means which can prevent their separation, said means lying substantially flush with or below said adjacent external surfaces.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TO</td>
<td>Chad</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Splice Case for Optical Fibre Cable

The present invention relates to the provision of an environmental seal around a splice in one or more optical fibre or other cables.

Optical fibre cables comprise a bundle of optical fibres surrounded by a protective jacket. Since such cables are manufactured in finite lengths, any installation will in general require separate lengths of cable to be spliced together. A problem arises at the splice, not only in forming fibre splices of low light attenuation, but also in replacing the protective jacket which has to be removed in the region of the splice to expose the fibres. It is with this second problem that the present invention is concerned.

Splicing an optical fibre is a difficult business, requiring use of a machine for proper alignment of pairs of fibres before a permanent splice is made between each pair. The machine will of necessity be some short distance away from the ends of the intact portions of the cables to be joined, i.e. some distance from the ends of each cable jacket. The jacket of each cable to be joined may be stripped back a distance of, say, 1.5m thereby exposing 1.5m of optical fibres. It can be seen, therefore, that there is a further problem, namely the accommodation of a significant length of optical fibres within the environmental housing which is to replace the removed portions of cable jacket. Optical fibres are easily broken by being bent around too sharp a radius, and the housing must therefore provide some way of organizing the fibres along an acceptable path.

There are some further considerations. It will generally be desirable that any chosen fibre within the
housing be accessible, and therefore the fibres, which may number hundreds, should be organized within the housing in a regular fashion. Also, some means of identifying each fibre is desirable, and such means may have to be by way of its location within the housing since colour coding of the fibre itself is difficult.

Various suggestions have been proposed for an optical fibre splice case which organizes the slack lengths of fibres and provides an environmentally sealed housing around them.

In European patent publication 0043570 there is proposed an optical fibre splice case through one side of which one cable enters and through an opposite side of which another cable enters. The ingoing cables are sealed to inlets of the case by shrinkable sleeves. Within the case is a series of plates, each with projections thereon around which are wound the spliced fibres, thereby storing the slack lengths in a path which does not result in damage to the fibres. Such a splice case is known as an in-line splice case (as opposed to a butt splice case) since the cables enter the case from opposite ends, or at least from widely spaced positions.

European patent publication 0159859 (Raychem) discloses an enclosure capable of enclosing a butt splice between at least two optical fibres, which comprises:

- a base having at least two mutually adjacent outlets capable of receiving respective cables;
- at least one optical fibre organizer attachable to the base and capable of storing a plurality of optical fibres in a path from one of the outlets to another of the outlets, said path having a minimum radius of curvature no smaller than the minimum bend radius of said optical fibre; and
a hollow cover, preferably dome-shaped, which can surround the organizer and which can be fixed to the base to close the enclosure.

DE2131830 (Rose), DE3125044 (Rose), US3557299 (Dienes), FR2158526 (Reliable), US3728467 (Klagum), US3725581 (Gillemot) and EP094848 (Raychem) also disclose cable enclosures having a base and a generally dome-shaped cover, but principally for connecting copper cables. An advantage of these designs is that they allow ready access to the cable splice simply by removing the cover from the base.

We have discovered an improvement to such designs allowing, where desired, improved mechanical connection between the two parts, and easier environmental sealing. In particular the present invention provides interlocking between base and cover, simple means for securing the parts in a locked configuration, and smooth, generally cylindrical outer surfaces at the point, preferably entirely convex, especially circular in cross-section, over which a shrinkable sleeve (for example a narrow band) can be shrunk to form an environmental seal.

Thus, the present invention provides a cable splice enclosure comprising:

- a base having an outlet capable of receiving a cable;

and

- a hollow cover which can be fixed to the base to close at least partially the enclosure such that adjacent external surfaces of the base and cover lie substantially mutually flush;

in which the base and the cover have means which can prevent their separation, said means lying substantially flush with or below said adjacent external surfaces.
The invention further provides a joining device which comprises a first hollow part having a generally cylindrical portion comprising first axially-extending projections, the projections having generally circumferentially-extending first recesses in external surfaces thereof;

a second hollow part having a generally cylindrical portion comprising second axially-extending projections, the projections having generally circumferentially-extending second recesses in external surfaces thereof; the first hollow part being capable of being fixed to the second hollow part with the first and second projections mated in interdigitated fashion, with the first an second recesses lying on a common circle; and

a ring that can be positioned in the first and second recesses to prevent axial separation of the first and second parts.

An enclosure of this design can be made easy to re-enter because an end (ie the cover), rather than a middle portion, of the assembly can be removed. This is because the cables to be spliced enter the assembly from one end. The assembly can be of substantially tubular design of small diameter and length, the design of the internal organizer can be simplified, and a temporary seal (eg over night during a lengthy installation) around the organizer can be made using the cover rather than a wrap-around sheet. Furthermore, the assembly can be easily removed from a manhole or pole. This is because sufficient free cable will be available due to one of the ingoing cables having been bent in a curve in order to enter the assembly. (Imagine two horizontal cables to be spliced; one enters the assembly directly, and the other will curve through a semi-circle to enter the same end of the assembly.) If an in-line cable splice is used, there is either no cable slack at all and
the splice cannot be moved; or the cable needs to curve at both ends requiring a larger man-hole or more extensive cable pole fixings.

The base preferably comprises a plate having two or more outlets, either as simple apertures or as tubular projections, and the cover preferably is generally cylindrical with one closed end, for example dome-shaped. The base plate mates with the open end of the dome to provide the hollow article.

The base is preferably so constructed to allow core blocking of the cables that pass through it. This may be done by providing a reservoir or means for constructing a reservoir into which an encapsulant can be poured or pumped. A portion of each cable stripped of its outer jacket passes through the reservoir such that introduction of an encapsulant, which may cure or otherwise solidify, provides core blocking or further seals the cable outlet, or screens the spliced fibres from any metal work present.

The outlets are preferably in the form of tubes protruding from the base (or other part) of the hollow article, and means is preferably provided for environmentally sealing the outlets to the cables that pass through them. For example, a clamp, such as a hose clamp, could be used around the tubular outlets. A second possibly is to provide an adhesive, a mastic, or other sealing material between the cables and the outlets. We prefer, however, that the outlets be heat-shrinkable or otherwise recoverable since a tight seal can thus be made between any given outlet and a wide variety of sizes of cables. Heat-recoverability may of course be used in conjunction with a sealing material such as a heat-activatable adhesive.
In general, the two or more outlets may be provided in two basic ways. Firstly they may be independent in the sense that the base (or other part) of the hollow article is moulded or otherwise formed with tubular outlets projecting therefrom at two or more separate positions. In a second technique one (or more) large outlet is provided on the hollow article, which is subsequently divided into the requisite number of smaller outlets; or, what may amount to the same thing, means is provided to obviate the re-entrant gaps that would otherwise provide leak paths between the two or more cables and the large conduit that carries them. This may be done either by providing a flexible seal around the two or more cables to change their combined re-entrant cross-sectional shape into a generally circular shape compatible with that of the outlet, or by using a branch-off clip (such as that disclosed in GB 1604981 or 1604985) to deform the outlet to match the cross-sectional shape of the cables. (These techniques are illustrated in the drawings.)

Whether or not independent conduits or a divided large conduit is used, a seal is preferably made or enhanced by the conduits or conduit being recovered into engagement with the cable or cables. Recovery is preferably brought about by heat. Heat may be supplied by a torch or a hot-air gun although neither of them can supply heat sufficiently locally to recover easily one only of several independant conduits. We prefer therefore to provide self-contained heating means.

The self-contained heating means preferably comprises an electrical heating means such as a resistive heating wire or a conductive polymer composition. We prefer that the electrical heating means is self-regulating with respect to temperature, and this may be achieved by using as the heater
a polymeric composition loaded with a filler such as carbon to give a positive temperature coefficient of resistance. The heater may be a discrete heater in thermal contact with the recoverable outlets, or it may be integral with the outlets. Additionally or alternatively, the heater may have the function of activating a heat-activatable sealing material such as a hot-melt adhesive for further environmental sealing or engagement.

A preferred design of the optical fibre organizer will now be considered. The organizer preferably comprises one or more trays on each of which may be stored a length of one or more optical fibres. For example, an organizer may have 5 to 10, preferably about 8 or 10, trays, and each tray may store 5-24, preferably about 10 or 12, optical fibres. An optical fibre cable enters the assembly through one outlet, intermediate lengths of the fibres it contains are stored on the trays, and the cable leaves the assembly through another of the outlets. Since the primary function of the assembly is to house a cable splice, each tray will also hold the fibre splices themselves. A fibre splice may be made in a small transparent tube into each end of which is inserted one of the two fibres to be spliced. The tube contains a curable composition, which is caused to set once the fibres have been correctly aligned therein. The trays may be provided with means such as recesses or clips to hold these fibre splice tubes. The assembly of the invention may also be used to house an intermediate section of a cable, where the jacket has been removed for testing or access, and where no fibre splices are present.

The trays are preferably stacked one on top of another and attached in that configuration to a carrier which may be attached to or integral with the base or other part of the
enclosure. The attachment should be such that any chosen tray may be removed or exposed in order to attend to an optical fibre it carries.

We prefer that the trays are rectangular and are attached by means of a short side to a base of the enclosure. The trays may be hinged in order that they can be rotated away from the splice closure axis. The series of hinges preferably follows a stepped pattern, i.e. lies along a line that is oblique to the planes in which the trays normally lie (this is illustrated in the drawings). In particular they may be hinged along an edge, preferably a short edge, so as to be moveable to expose an underlying tray. The trays then extend lengthways away from the base and are covered by the cover.

The invention is further illustrated with reference to the accompanying drawings, in which:

Figure 1 shows a partially dismantled prior art butt splice case in which base and cover simply abut;
Figure 2 shows bases for an optical fibre splice case;
Figure 3 shows electrical connections to the base of Figure 2;
Figure 4 shows a part of a prior art base for holding trays;
Figure 5 shows a butt splice case employing branch-off clips and a junction box;
Figure 6 shows a butt splice case employing branch-off clips;
Figure 7 shows the use of a flexible seal in a butt splice case;
Figure 8 shows a base and cover or joining device of the invention;
Figures 9 and 10 show a base and cover sealed together;
Figure 11 shows an installed splice case of the invention.

The parts illustrated in figures 1-7 may be used in the present invention by combining any one or more of their features with any of the features of the interlocking parts shown in Figures 8-11.

Figure 1 shows a prior art base plate 1 and a dome-shaped cover 2 which together form an enclosure for use as a butt splice case for optical fibre cables. The base 1 is preferably manufactured by moulding from a glass-fibre filled high density polyethylene. Outlets 3 are provided in the base through which the cables pass. On a new installation, some only of the outlets 3 may be required, and some may therefore be temporarily blocked as shown at 4. Such blocking may be by any suitable means, but we prefer that the outlets be made with closed ends which are simply cut off as required. The dome-shaped cover may be blow-moulded and incorporate a moisture-vapour barrier such as a metal foil.

The hollow article contains an optical fibre organizer which comprises a series of trays 5. Each tray preferably includes means 6 for accommodating splice tubes which house the fibre splices. The trays are preferably held in an orderly fashion on a carrier 7 which is fixed to the base 1. The trays are shown hinged along their short edges, but other hinging for example pivoting for rotation eg. about one corner in the plane of the trays could be provided. The hinging allows chosen trays to be exposed for installation of the splices or for repair etc. Means is preferably also provided for locking the trays in their hinged position.
The assembly of the invention may be used as follows. Firstly, pass the two cables to be spliced in the direction of the arrows through two of the outlets 3 such that, say 1.5m of each cable protrudes into the splice case. The cable jackets are then removed back to the base 1 to expose 1.5m of fibres. The strength core of each cable is then cut back, leaving enough remaining for it to be fastened into respective fastening holes 8. Each fibre of one cable is then spliced to the correct fibre of the other cable. Groups of say ten or twelve spliced fibres are then stored on each tray. When one tray is filled it is moved by hinging at 9 to expose another tray. Each tray preferably has a rim 10 to ensure a sufficient separation between adjacent trays and/or to prevent fibre slippage from each tray.

In Figure 1 the outlets 3 are shown as independent tubular projections, which are preferably produced by moulding integrally with the base. The outlets are preferably heat-shrinkable in order that seals can be made to the cables they carry.

The base 1 shown in Figure 2a has some additional or alternative features to that shown in Figure 1. This base 1 comprises a moulded or otherwise formed part 11 to which is attached a carrier 7 to which trays may be hinged at positions 9. Cables enter the base through outlets 3. Provision is made for connecting (mechanically and/or electrically) a central core of the cable and/or a cable shield or outer strength member (for example a braid or tape wrap): the central strength member can be attached to connections 8 and the outer strength member (or shield) to connections 12. A connection 8 and connection 12 may be provided for each cable.

The base is so constructed that core blocking of the cables can be provided. A certain length of cable jacket is
removed so that, when the cable is inserted through an outlet 3, the cable core is exposed over at least part of the distance X shown in the Figure.

A reservoir may be provided by plates or other means 13 which can be attached, for example by positioning in grooves on the base. An encapsulant may then be poured or forced into the reservoir to block the cable or to form a further seal at the cable outlet (ie in addition to the sleeves 3) or to protect the interior of the splice case from any metal work present (metal may cause liberation of hydrogen which can damage optical fibres).

A further variation is shown in Figure 2b, which shows several partially drawn trays 5 attached to a base 1 comprising a moulded part 11 and a carrier 7. In this embodiment connectors 8 for cable shielding or for outer strength members are attached to the moulded part. This can provide easy cable installation and easy fibre access. The dotted lines between connectors 8 indicate an electrically conductive strip between them that can be severed for example where it is shown pleated to isolate the two connectors at the left from the two at the right.

The tray partially shown, is of a design that allows the tray size to be minimized. Such trays can preferably hold splices of, say, 7.2mm in width. Bend radii of at least 4.4 cm can easily be accommodated, allowing storage of monomode fibres.

In Figure 2b a single means 13 provides reservoirs for encapsulant for all of the cables simultaneously. Such means may be an integrally moulded part of the base.

A termination system is provided to aid branching of fibres or groups of fibres from the incoming cable to
respective trays. The termination system illustrated comprises a series of tubes into which fibres can be fed running from the base to respective trays. The tubes may be held in groups (of say four) on a part of the base by a clip as shown.

The bases of Figures 2a and 2b may be used in in-line splice cases.

Figure 3 shows an underneath view of the bases shown in Figure 2. Electrical connections are shown to the sets of contacts 14 and 15. The connections are made such that selective cutting of them can result in any of the following: all cable central conductors and shields connected to the same point (or points); central conductors plus shields of respective cables to different points 3; and all central conductors to one point, and all shields to another point.

Figure 4 shows a design of carrier 7 made from sheet material.

An alternative technique from that of Figure 1 of sealing the cables at their points of entry is shown in Figure 5. A series of branch-off clips 16 is used in conjunction with a junction box 17 to deform the outlet 3 to conform to the cables 18. The junction box is positioned within the outlet 3 and the cables pass between the box and the outlet. The branch-off clips cause the outlet to be deformed around the cables into proximity with the box. The outlet is again preferably heat-shrinkable. Figure 5 shows a further preferred feature which may be used in any of the embodiments; the outlet 3 is shrinkable by self-contained heating means, particularly by an electrical heater which is shown powered via conductors 19. Also shown is a band which
joins together base and dome portions of the splice case. This band, which may also be electrically heat-shrinkable, is provided with self-contained cutting means for re-entry into the splice case. A disadvantage of the use of one outlet 3 which is subdivided is that all cables are preferably installed in that outlet before recovery can be used to seal any of them. The independant outlets illustrated in Figure 1 allow independant sealing of each cable, and therefore an initial partial installation, followed by addition of further cables at a later date. The embodiment of Figure 5 could, however, be modified to allow for this by the use of blank plugs.

Figures 6 and 7 show alternative ways of using one large outlet to seal several cables. In Figure 6 a four legged branch-off clip or clips 16 is used, and in Figure 7 a flexible seal 20 (such as that disclosed in GB 2124439) is used around the cables to change their combined re-entrant cross-sectional shape into a circular shape compatible with the circular shape of the outlet 3. As before, the outlets 3 are preferably heat-shrinkable, especially by electrical power.

Discrete electrically shrinkable outlets may be used, shrunk into engagement with the cables and projections on the base. The outlets in this case may be pre-shrunk onto such projections, leaving only shrinkage onto the cables to be performed in the field. Alternatively, the entire installation of the outlets could be performed in the field.

Figure 8 shows an enclosure or joining device of the invention, which can be incorporated into the designs of figures 1-7.

First and second hollow parts 21, 22 are joined together through first and second projections 23, 24 that
mate in interdigitated fashion. The projections need not extend all around the circumference of the parts. The projections have recesses 25 therein, into which can be positioned some means 26 for preventing their separation. Such means 26 preferably comprises a ring, preferably a split ring, and preferably one that is resiliently deformable so that it can be snapped into the recesses 25. The ring may comprise any suitable material, including metal and plastics. The external surfaces of the parts 21, 22 that are adjacent are preferably substantially mutually flush, and the ring 26 preferably is flush with them or recessed.

The projections may prevent relative rotation of the parts 21, 22, and the ring 26 may prevent axial separation.

Figures 8A and 8B show sections along lines AA and BB respectively of figure 8. Part 21 can be seen to have a projection 27 such as a lip or flap that underlies part 22, and this may give the structure more stability where desired.

Figure 9 shows a temporary seal 28 placed over any gap between parts 21 or 22, and comprising for example an elastomeric, for example rubber, sleeve which may be corrugated.

A more permanent seal may be provided using a dimensionally-recoverable sleeve 29 as shown in figure 10. Such a sleeve is preferably heat-shrinkable and may be coated on its internal surface with a heat-activatable adhesive. The sleeve may be electrically heat-shrinkable, and comprise for example a conductive polymer.

Figure 11 shows a cable splice enclosure, of butt design, particularly for optical fibre cables, and embodying the invention.
Here, the base of the enclosure comprises the first part 21, outlets 31 being integral with projection 23. Similarly, the cover which is preferably blind at one end, and especially is dome-shaped, is integral with projections 24. Each part 21, 22 may, however, comprise more than one component. Sealing sleeves 29 and 30 are shown in cross-section sealing the parts 21, 22 together and sealing cables 32 to the outlets 31.

For the avoidance of doubt it is noted that the invention provides a cable splice enclosure and a joining device and a method of sealing. Any of the features of shape, techniques of interconnection, internal components such as organizers disclosed herein may be selected for combination.
Claims:

1. A cable splice enclosure comprising:
a base having an outlet capable of receiving a cable;
and
a hollow cover which can be fixed to the base to
close at least partially the enclosure such that adjacent
external surfaces of the base and cover lie substantially
mutually flush;
in which the base and the cover have means which can
prevent their separation, said means lying substantially
flush with or below said adjacent external surfaces.

2. An enclosure according to claim 1, in which a part of
the base which has the outlet is integral with a part of the
base which has one of said external adjacent surfaces.

3. An enclosure according to claim 1 or 2, in which a
part of the cover which has one of said external adjacent
surfaces is integral with a part that is substantially tubu-
lar and blind at one end.

4. An enclosure according to any preceding claim, in
which said outlet comprises a dimensionally-recoverable
sleeve.

5. An enclosure according to any preceding claim, addi-
tionally comprising an optical fibre splice organizer.

6. An enclosure according to any preceding claim, addi-
tionally comprising sealing means for sealing any gap bet-
tween said adjacent external surfaces.

7. An enclosure according to claim 6, in which said means
for sealing comprises a dimensionally-recoverable sleeve.
8. An enclosure according to any preceding claim, in which the cover and the base have projections that can mate in interdigitated fashion.

9. An enclosure according to claim 8, in which at least one said projection of the base and at least one said projection of the cover have means for receiving said means which can prevent.

10. An enclosure according to any preceding claim in which said means that can prevent comprises a ring, and the base and cover have generally cylindrical portions having one or more generally circumferentially-extending recesses therein, the ring being receivable in the one or more recesses.

11. A cable splice case enclosed by an enclosure according to any preceding claim.

12. A method of environmentally protecting a cable splice case by means of an enclosure according to any preceding claim, which comprises:
 positioning a cable in the outlet of the base; and
 fixing the cover on the base.

13. A joining device which comprises a first hollow part having a generally cylindrical portion comprising first axially-extending projections, the projections having generally circumferentially-extending first recesses in external surfaces thereof;
 a second hollow part having a generally cylindrical portion comprising second axially-extending projections, the projections having generally circumferentially-extending second recesses in external surfaces thereof; the first hollow part being capable of being fixed to the second
hollow part with the first and second projections mated in interdigitated fashion, with the first and second recesses lying on a common circle; and a ring that can be positioned in the first and second recesses to prevent axial separation of the first and second parts.
INTERNATIONAL SEARCH REPORT

International Application No: PCT/GB 90/00070

I. CLASSIFICATION OF SUBJECT MATTER
According to International Patent Classification (IPC) or to both National Classification and IPC

- **IPC5:** G 02 B 6/36; H 02 G 15/18

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC5</td>
<td>G 02 B, H 02 G</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP, A2, 0159857 (N.V. RAYCHEM S.A.) 30 October 1985, see the whole document</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>EP, A2, 0094848 (N.V. RAYCHEM S.A.) 23 November 1983, see page 9, line 28 - line 34; page 10, line 20 - line 30; figure 5</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 2176024 (TELEPHONE CABLES LIMITED) 10 December 1986, see page 1, line 43 - line 90; figure 1</td>
<td>1-6</td>
</tr>
</tbody>
</table>

IV. CERTIFICATION

- Date of the Actual Completion of the International Search: 4th April 1990
- Date of Mailing of this International Search Report: 23.04.90

International Searching Authority: EUROPEAN PATENT OFFICE

Signature of Authorized Officer: M. PEIS
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE, A1, 3125044 (WALTER ROSE GMBH & CO KG) 5 January 1983, see page 8, line 19 - line 27; figure 5</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>--</td>
<td>5-13</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4761052 (BUCKERS ET AL) 2 August 1988, see column 3, line 58 - line 60; abstract</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>EP, A3, 0068781 (RAYCHEM LIMITED) 5 January 1983, see page 13, line 13 - line 21; page 14, line 20 - page 15, line 12; figure 2</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3557299 (ZOLTAN B. DIENES) 19 January 1971, see abstract; figures 1,2</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>DE, B, 2131830 (WALTER ROSE KG) 28 December 1972, see figure 3</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>DE, A1, 3706518 (PHILIPS PATENTVERWALTUNG GMBH) 8 September 1988, see figure 8</td>
<td>1-13</td>
</tr>
</tbody>
</table>
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. PCT/GB 90/00070

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDOC file on 28/02/90. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU-D- 1464383</td>
<td>24/11/83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1232347</td>
<td>02/02/88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3377702</td>
<td>22/09/88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A-B- 2120468</td>
<td>30/11/83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 5821878</td>
<td>20/12/83</td>
</tr>
<tr>
<td>DE-A1- 3125044</td>
<td>05/01/83</td>
<td>GB-A-B- 2100940</td>
<td>06/01/83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62196605</td>
<td>31/08/87</td>
</tr>
<tr>
<td>EP-A3- 0068781</td>
<td>05/01/83</td>
<td>GB-A-B- 2104313</td>
<td>02/03/83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 58004276</td>
<td>11/01/83</td>
</tr>
<tr>
<td>US-A- 3557299</td>
<td>19/01/71</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE-B- 2131830</td>
<td>28/12/72</td>
<td>GB-A- 1334919</td>
<td>24/10/73</td>
</tr>
<tr>
<td>DE-A1- 3706518</td>
<td>08/09/88</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82