Title: DEVICE AND METHOD FOR CORRECTING STRAY RADIATION IN PROJECTION RADIOGRAPHY, IN PARTICULAR, MAMMOGRAPHY

Abstract: The invention relates to a device (1) for projection radiography, which is set up for correcting stray radiation. Said device comprises an evaluation unit (12) which evaluates the distribution of stray radiation, which is arranged in a tabular manner in a data memory, for correcting stray radiation, said distribution being initially determined with the aid of Monte-Carlo-Simulation which takes into account multiple interactions of the photons with the object (6) which is to be analysed.

Zeichenung: VORRICHTUNG UND VERFAHREN FÜR DIE STREUSTRAHLUNGSKORREKTUR IN DER PROJEKTIONS-RADIOGRAPHIE, INSBESONDERE DER MAMMOGRAPHIE

Zusammenfassung: Eine Vorrichtung (1) für die Projektionsradiographie, die für eine Streustrahlungskorrektur eingerichtet ist, weist eine Auswerteinheit (12) auf, die für die Streustrahlungskorrektur tabellarisch in einem Datenspeicher abgelegte Streustrahlungsverteilungen auswertet, die vorab mit Hilfe einer Monte-Carlo-Simulation ermittelt worden sind, die mehrfache Interaktionen der Photonen mit dem zu untersuchenden Objekt (6) berücksichtigt.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Beschreibung

Vorrichtung und Verfahren für die Streustrahlungskorrektur in der Projektionsradiographie, insbesondere der Mammographie

Die Erfindung betrifft eine Vorrichtung für die Projektionsradiographie mit einer Strahlungsquelle, einem Detektor und einer dem Detektor nachgeordneten Auswerteeinheit, die anhand der vom Detektor gelieferten Projektionsdaten die Streumaterialverteilung des zu untersuchenden Objekts näherungsweise bestimmt und die in Abhängigkeit von der Streumaterialverteilung aus einem Datenspeicher Streuinformation ausliest und auf der Grundlage der Streuinformation die Projektionsdaten im Hinblick auf den Streustrahlungsanteil korrigiert.

Die Erfindung betrifft ferner ein Verfahren mit Streustrahlungskorrektur für die Projektionsradiographie sowie ein Verfahren zur Gewinnung von Streuinformationen.

Eine derartige Vorrichtung sowie derartige Verfahren sind aus der US 6,104,777 A bekannt.

Die im Aufnahmeobjekt (Mamma) erzeugte Streustrahlung, deren Intensität in der Mammographie fast die Größenordnung der bildgebenden ungestreuten direkten Primärstrahlung erreichen kann, führt zu einer Verschlechterung der Bildqualität, durch Verminderung des Kontrasts, durch Erhöhung des Rauschens, und schließlich hinsichtlich der Qualität von Bildnachverarbeitungsverfahren, mit denen eine Differenzierung verschiedener Gewebearten, insbesondere dem Drüsen- und Fettgewebe in der Mamma, in der Bildgebung erzielt wird. Für die Differenzierung nach zwei Gewebearten sind in der Mammographie Techniken mit einem einzigen Energiespektrum, also mit einer einzigen Spannung der Röntgenröhre, oder die Dual-Energie-Methode mit zwei Spannungswerten bekannt. In beiden Fällen ist die Kom- pensation der Streustrahlung erforderlich; bei der Dual-Ener-
gie-Methode auch deshalb, weil der Anteil der Streustrahlung bei beiden Energieströmen unterschiedlich ist.

schätzt werden. Das analytische Modell zur Berechnung des Streustrahlungsbeitrags nur erster Ordnung erfordert für jedes Detektorpixel 4-dimensionale numerische Integrationen (3 Raumkoordinaten + Energiespektrum), ist also rechenaufwendig. Näherungen sind daher erforderlich, um den Rechenaufwand zu reduzieren. Aufgrund des hohen Rechenaufwands wird vorgeschlagen, die Rechnungen vorab durchzuführen und die Ergebnisse zu tabellieren.

Ausgehend von diesem Stand der Technik liegt der Erfindung daher die Aufgabe zugrunde, eine Vorrichtung und Verfahren anzugeben, mit denen eine im Vergleich zum Stand der Technik verbesserte Streustrahlungskorrektur durchgeführt werden kann.

Diese Aufgabe wird durch eine Vorrichtung und die Verfahren mit den in den unabhängigen Ansprüchen angegebenen Merkmalen gelöst. In davon abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen angegeben.

werden. Wesentlich dabei ist, dass die aus dem Datenspeicher ausgelesenen Streuinformationen vorab durch eine Monte-Carlo-Simulation ermittelt worden sind, die mehrfache Interaktion der Photonen mit dem zu untersuchenden Objekt berücksichtigt.

Die Grundlage für die hier beschriebene Lösung ist die möglichst korrekte physikalische Modellierung. Im Gegensatz zum Stand der Technik ist eine Modellierung möglich, die eine wesentliche größere Anzahl von Details berücksichtigt und zwar in folgender Hinsicht: das Auftreten von Mehrfachstreuung und die Polychromasie und die geometrischen Verhältnisse, insbesondere die Besonderheiten der Streuverteilung an den Rändern des Objekts können nachgebildet werden. Während der Streustrahlungskorrektur selbst ist lediglich ein Tabellenzugriff, gegebenenfalls mit nachfolgender Interpolation erforderlich und die Berechnung der Streustrahlungsverteilung in der Detektorzelle reduziert sich auf 2-dimensionale Integrationen über die Detektorzelle. Trotz der verhältnismäßig einfachen Durchführung der Streustrahlungskorrektur ist die Vorgehensweise nicht auf Spezialfälle beschränkt und setzt keine einschneidenden Vereinfachungen oder Approximationen voraus, wie zum Beispiel eine vereinfachte Akquisitionsgeometrie, Monochromatik der Strahlung, Vereinfachungen des physikalischen Modells oder eine Taylor-Entwicklung nach Approximationsordnungen oder Ähnliches.

Bei einer weiteren bevorzugten Ausführungsform werden im Bereich der Objektränder des zu untersuchenden Objekts Streuinformationen zur Streustrahlungskorrektur verwendet, die die besonderen geometrischen Verhältnisse im Bereich des Objektrands berücksichtigen.

Die Streuinformationen werden vorzugsweise unter der Annahme gewonnen, dass die Streumaterialverteilung längs der Strahlungsrichtung homogen ist. Insbesondere im Rahmen der Mammographie führt eine derartige Annahme nur zu geringen Abweichungen von der tatsächlichen Streustrahlungsverteilung.

Die Berechnung der spezifischen, einem Bildbereich zugeordneten Streuinformationen kann weiterhin unter der Annahme erfolgen, dass das zu untersuchende Objekt auch in Querrichtung zum Strahl homogen strukturiert ist. Dadurch wird die Berechnung der Streuinformationen vereinfacht.

Falls jedoch eine besondere hohe Genauigkeit bei der Berechnung der Streuinformation gewünscht wird, kann auch eine Inhomogenität quer zur Strahlrichtung berücksichtigt werden.

Bei einer bevorzugten Ausführungsform wird die Streumaterialverteilung bestimmt, indem das Verhältnis von einfallender Strahlungsintensität zu der ungestreuten Primärstrahlung in einem Bildbereich ausgewertet wird, wobei die Werte für die Primärstrahlung durch eine Streustrahlungskorrektur ermittelt werden, die auf Streuinformationen beruhen, die einer charakteristischen homogenen Streumaterialverteilung zugeordnet sind.

Die von der Auswerteeinheit durchgeführten Verarbeitungsschritte können auch iterativ ausgeführt werden. Dabei dienen die errechneten Primärstrahlungsanteile dazu, die näherungsweise Berechnung der Streustrahlungsanteile zu verfeinern und auf diese Weise zu verbesserten Werten für die Primärstrahlung zu gelangen.

Weitere Vorteile und Ausgestaltungen der Erfindung gehen aus der nachfolgenden Beschreibung hervor, in der Ausführungsbeispiele der Erfindung im Einzelnen anhand der beigefügten Zeichnung erläutert werden. Es zeigen:

Figur 1 den Aufbau eines Mammographiegeräts, bei dem eine Mamma zwischen zwei Kompressionsplatten komprimiert und mit Röntgenstrahlung durchleuchtet wird;

Figur 2 eine Darstellung einer für die Berechnung der Streustrahlungskorrektur angenommene, vereinfachte Struktur der zu untersuchenden Mamma;

Figur 3 ein Ablaufdiagramm eines für die Streustrahlungskorrektur durchgeführten Verfahrens;

Figur 4 eine Darstellung der für die Berechnung einer einfachen Streustrahlungsausbreitungsfunktion angenommenen Gewebeverteilung einer Mamma; und

Figur 5 eine Darstellung der für die Berechnung einer genauen Streustrahlungsausbreitungsfunktion angenommenen Struktur der zu untersuchenden Mamma.

Figur 1 zeigt den Aufbau eines Mammographiegeräts 1, bei dem mit Hilfe einer Strahlungsquelle 2 Röntgenstrahlung 3 erzeugt wird. Die Divergenz der Röntgenstrahlung 3 wird gegebenenfalls mit Hilfe eines Kollimators 4 beschränkt, der in Figur 1 durch eine einzelne Strahlblende angedeutet ist. Der Kolli-
mator 4 kann jedoch auch so beschaffen sein, dass eine Vielzahl von nahezu parallel nebeneinander verlaufenden Röntgenstrahlen erzeugt wird. Ein derartiger Kollimator 4 kann beispielsweise als Lochblende ausgebildet sein.

Das Mammographiegerät 1 verfügt ferner über Kompressionsplatten 5, zwischen denen eine Mamma 6 komprimiert ist. Die Röntgenstrahlung 3 tritt durch die Kompressionsplatten 5 und die Mamma 6 hindurch und durchquert im Allgemeinen einen Luftspalt 7, bevor die Röntgenstrahlung 3 auf einen Röntgendetektor 8 trifft, der eine Vielzahl von einzelnen Detektorelementen 9, den so genannten Detektormatrixen 10 umfasst.

Der ohne Interaktion mit der Mamma 6 durch die Mamma 6 hindurchtretende Anteil der Röntgenstrahlung 3 wird auch als Primärstrahlung 10 bezeichnet. Die Anteile der Röntgenstrahlung 3, die nach wenigstens einer Streuung innerhalb der Mamma 6 auf den Röntgendetektor 8 treffen, werden dagegen Sekundärstrahlung 11 genannt.

Es sei darauf hingewiesen, dass unter dem Begriff Streuung jede Art von Interaktion zwischen der Röntgenstrahlung 3 und der Materie der Mamma 6 verstanden werden soll, durch die eine Änderung der Ausbreitungsrichtung der Photonen der Röntgenstrahlung 3 bewirkt wird.

Da wie eingangs ausgeführt, die Sekundärstrahlung 11 die von der Primärstrahlung 10 abgebildete Struktur der Mamma 6 erheblich verfälschen kann, ist es von Vorteil, wenn die Sekundärstrahlung 11 aus den vom Röntgendetektor 8 aufgenommenen Projektionsbildern der Mamma 6 entfernt werden kann. Zu diesem Zweck führt eine dem Röntgendetektor 8 nachgeschaltete Auswerteeinheit 12 eine Streustrahlungskorrektur aus. Um die Streustrahlungskorrektur ausführen zu können, werden Modellannahmen über die Struktur der Mamma 6 getroffen, die in Figur 2 dargestellt sind. Insbesondere wird angenommen, dass die Gewebestruktur der Mamma 6, die sich im Wesentlichen aus
Drüsen- und Fettgewebe zusammensetzt, durch eine längs der Ausbreitungsrichtung der Röntgenstrahlung 3 homogene Gewebeverteilung beschrieben werden kann. Dementsprechend sind in Figur 2 in die Mamma 6 verschiedene Mammabereiche 13, 14 und 15 eingezeichnet, deren unterschiedlich ausgeführte Schraffierung unterschiedliche Anteile an Fett- und Drüsenengewebe entlang der Ausbreitungsrichtung der Röntgenstrahlung 3 veranschaulichen soll. Im Rahmen der Projektionsradiographie stellt dies eine Vereinfachung dar, die nicht zu schwerwiegenden Abweichungen von der tatsächlichen Streuverteilung führt.

Auf der Grundlage dieser Modellannahme kann nun eine Streustrahlungskorrektur durchgeführt werden, deren Ablauf in Figur 3 dargestellt ist.

Im Folgenden sei nun die Voraussetzung für die hier beschriebene Strahlungskorrektur und die dabei auszuführenden Verarbeitungsschritte im Einzelnen beschrieben:

Voraussetzungen:

Zum einen wird vorausgesetzt, dass das für die Bildgebung maßgebende Empfindlichkeitsspektrum \(N(E) \) bekannt ist:

die Strahlung der Röntgenröhren ist polychromatisch, wobei das Energiespektrum \(Q_d(E) \) der als Bremsstrahlung an der Anode emittierten Photonen von der angelegten Hochspannung \(U \) abhängt, mit der die Elektronen von der Kathode zur Anode beschleunigt werden; die maximale Photonenenergie ist dann \(E_{\text{max}}(U) = U(\text{keV}/\text{kV}) = eU \); für die Bildgebung ist aber nicht allein das Emissionsspektrum maßgebend, sondern auch die Transparenz verwendeter spektraler Filter \(W(E) \) und die spektrale Ansprehempfindlichkeit \(\eta_d(E) \) des Detektors 8. Die resultierende (normierte) Spektralverteilung ist definiert durch:

\[
N_d(E) = Q_d(E) W(E) \eta_d(E)/c_U. \tag{1}
\]

Mit dem Normierfaktor

\[
c_U = \int_0^U Q_d(E) W(E) \eta_d(E) dE
\]
wird

\[\int_{0}^{\varepsilon} N_{\nu}(E) \, dE = 1 \] \hspace{1cm} (#1a)

Es wird zweitens vorausgesetzt, dass – bei gegebener resultierender Spektralverteilung \(N_{\nu}(E) \) und gegebener Mamma-Schichtdicke \(H \), die durch den Abstand der Kompressionsplatten 5 festgelegt wird – die Schwächung des Detektorsignals (von primärer Röntgenstrahlung, ohne Streustrahlung) in Abhängigkeit vom Gewebeanteil von Drüsen- bzw. Fettgewebe (glandular tissue, fat tissue) vorausberechnet (gegebenenfalls durch Messungen validiert) vorliegt, das heißt, die folgende Funktion ist in Tabellenform gegeben:

\[F_{H}(\alpha) = F(\alpha; H, \varepsilon) = \int_{0}^{\varepsilon} \exp(-\mu_{G}(E)x_{G} - \mu_{F}(E)x_{F}) \, N_{\nu}(E) \, dE \]

\[= \int_{0}^{\varepsilon} \exp\{-\mu_{G}H(\alpha + \beta(E)(1-\alpha))\} \, N_{\nu}(E) \, dE \] \hspace{1cm} (#2)

mit

\(H \) Schichtdicke der Mamma 6
\(x_{G} \) Schichtdicke Drüsengewebe /cm
\(x_{F} = H - x_{G} \) Schichtdicke Fettgewebe /cm
\(\rho_{G}, \rho_{F} \) Dichte Drüsen- bzw. Fettgewebe [g/cm³]
\(b_{G} = \rho_{G}x_{G} \) Massenbelegung Drüsengewebe [g/cm³]
\(b_{F} = \rho_{F}x_{F} \) Massenbelegung Fettgewebe
\(\mu_{G}(E) \) linearer Schwächungskoeffizient Drüsengewebe /cm⁻¹
\(\mu_{F}(E) \) linearer Schwächungskoeffizient Fettgewebe /cm⁻¹
\(\alpha = x_{G}/H = b_{G}/(\rho_{G}H) \) \hspace{1cm} (#2a)
\(1-\alpha = x_{F}/H = b_{F}/(\rho_{F}H) \) \hspace{1cm} (#2b)
\(\beta(E) = \mu_{F}(E)/\mu_{G}(E) \) \hspace{1cm} (#2c)

Dabei wird vorausgesetzt, dass die komprimierte Mamma 6 die Schichtdicke \(H \) zwischen den Kompressionsplatten 5 voll ausfüllt. Diese Bedingung ist gemäß Figur 4 im Bereich von wenigen cm nahe einer Brustspitze 26 und außerhalb im Bereich un-
geschwächter Strahlung nicht mehr erfüllt. Diese Bildfeldbe-
reiche müssen im Rahmen einer Vorkorrektur, wie nachfolgend
noch im Einzelnen erläutert werden wird, gesondert behandelt
werden, zum Beispiel durch geeignete Extrapolation der Ge-
webe-Schichtdicke \(H \) gegen 0.

Aus rechnerischen Gründen ist das logarithmierte Schwächungs-
signal zweckmäßiger als die nicht logarithmierte Schwächungs-
funktion \(F \) in Gleichung (\# 2):

\[
f_H(\alpha) = -\log (F_H(\alpha)) = -\log \left(\int_0^\infty \exp\left[-\mu_gH(\alpha + \beta(E)(1-\alpha))\right] N_{\nu}(E)dE \right) \quad (\#3)
\]

Die Funktion \(f_H \) ist monoton und stetig und folglich inver-
tierbar, zum Beispiel durch inverse Interpolation. Daher kann
vorausgesetzt werden, dass auch die Umkehrfunktion

\[
f_H^{-1}
\]

(\#4) tabelliert zur Verfügung steht.

Drittens wird vorausgesetzt, dass der so genannte Mamma-SBSF-
Atlas 19 vorhanden ist, denn das hier beschriebene Verfahren
basiert auf der Kenntnis der jeweiligen SBSFs 20 (= Scatter-
Beam-Spread-Functions), die auch als Streustrahlabsbreitungs-
funktionen bezeichnet werden. Eine SBSF 20 beschreibt jeweils
die räumliche Intensitätsverteilung der Streustrahlung auf
dem als Flächendetektor ausgebildeten Röntgendetektor 8 für
einen dünnen Röntgenstrahl (Beam) der Röntgenstrahlung, der
das Streuobjekt (Mamma) entsprechend Figur 1 an einem vorge-
gegebenen Ort durchdringt. Die SBSF 20 hängt von Aufnahmepara-
metern und von Objektparametern ab.

Aufnahmeparameter sind zum Beispiel die Röhrenspannung, die
das Photonenemissionsspektrum beeinflusst, das außerdem auch
vom Anodenmaterial abhängt, die Vorfilterung, der Luftspalt,
die so genannte SID (= source-image distance), die Kollimie-
rung (Detektoreinblendung), die spektrale Ansprechempfind-
lichkeit des Röntgendetektors 8 sowie das Vorhandensein oder
das Fehlen eines Streustrahlenrasters.

Objektparameter ist einerseits die Schichtdicke \(H \) der Mamma 6
und andererseits der unterschiedliche Anteil von Fett- und
Drüsengewebe längs der Ausbreitungsrichtung der Röntgenstrah-
lung 3.

Es wird vorausgesetzt, dass die SBSFs 20 für die wichtigsten
vorkommenden Aufnahme- und Objektparameter verfügbar sind,
das heißt, dass ein im Voraus erstelltes Tabellenwerk, der so
genannte Mamma-SBSF-Atlas 19, vorliegt, mit dessen Hilfe es
möglich ist, für die spezifisch gegebenen Aufnahmebedingungen
für jedes Anteilsverhältnis von Fett- und Drüsengewebe
(Streumaterialverteilung) längs eines Röntgenstrahls die zu-
gehörige SBSF 20 hinreichend genau zu bestimmen, zum Beispiel
durch Interpolation im Mamma-SBSF-Atlas 19 oder durch halb
empirische Umrechnungen bei Parametern, von denen die SBSF
nur schwach abhängt oder für die funktionale Abhängigkeiten
bekannt sind, wie zum Beispiel beim SID.

Der Mamma-SBSF-Atlas 19 wird im Voraus mittels Monte-Carlo-
Simulationsrechnungen erstellt. Die Monte-Carlo-Simulation
gestattet es, die physikalischen Vorgänge der Absorption und
der Vielfachstreuung (im in der Mammographie niedrigen Ener-
giebereich überwiegend kohärente Streuung) beim Durchgang
durch das Streuobjekt, insbesondere der Mamma 6, unter Be-
rücksichtigung der Aufnahmebedingungen (Anodenmaterial, Fil-
ter, Spannung, Luftspalt, SID, Feldgröße (= field size), ge-
genommen Streustrahlenraster) adäquat zu modellieren.
Dies ist der entscheidende Vorteil der Monte-Carlo-Methode
gegenüber analytischen Simulationsmodellen, die in der Regel
auf Einfachstreuung beschränkt sind und bei denen meistens
noch verschiedene Vereinfachungen und Approximationen eingeführt werden, um den Aufwand zu reduzieren. Die Berechnung
von Streuverteilungen auf der Grundlage einer Monte-Carlo-Si-
mulation ist dem Fachmann bekannt und als solche nicht Gegenstand der Anmeldung.

5 Beschreibung der einzelnen Verfahrensschritte:

Die Streustrahlungskorrektur gliedert sich in die folgenden einzelnen Verfahrensschritte, die in einem iterativen Zyklus wiederholt werden können:

10 0. Leerbild-Kalibrierung und Bestimmung des effektiven Schwächungssignals (wobei schon eine einfache pauschale Streustrahlungs-Vorkorrektur empfehlenswert ist);
 1. Bestimmung des Anteils von Drüsegewebe und Fettgewebe;
 2. Schätzung der Streustrahlungsverteilung (genaueres SBSF-Modell);
 3. Schätzung der Primärstrahlungsverteilung (Streustrahlungs-Korrektur);
 4. iterative Wiederholung ab Schritt 1. oder Ende.

20 Die Schritte 0. und 1. sind für jeden Messstrahl, das heißt für jedes Pixel \((j,k)\) durchzuführen, wobei im Folgenden der Begriff Pixel sowohl für die Detektorpixel als auch für mehrere Detektorpixel umfassende Detektorbereiche verwendet wird.

Verfahrensschritt 0: \(I_0\)-Kalibrierung und Schwächungssignal mit Vorkorrektur

30 \(I_0(j,k)\) sei das Leerbild, das gleich der gemessenen Intensitätsverteilung im Strahlengang ohne Streuobjekt ist, \(I(j,k)\) die gemessene Intensitätsverteilung mit Streuobjekt (Mamma), dann ist das effektive Schwächungssignal für totale Strahlung, das heißt, die Überlagerung von primärer und sekundärer (=gestreuter) Strahlung, gegeben durch:
\[T(j, k) = I(j, k) / I_0(j, k). \] (#5a).

Im Allgemeinen wird es im Hinblick auf Schritt 1. zweckmäßig sein, hier bereits eine Vorkorrektur des Streustrahlungshintergrundes, der mit \(S^{(0)} \) bezeichnet werden soll, vorzunehmen. Verfahren zur Schätzung von \(S^{(0)} \) werden weiter unten nachge- tragen. \(S^{(0)} \) kann ortsabhängig sein, ist aber im einfachsten Fall konstant. Die Vorkorrektur liefert bereits eine Schätzung des Primär-Schwächungssignals (normierte Primärinten-
sität)

\[P^{(0)}(j, k) = T(j, k) \cdot S^{(0)} \] (#5b).

Verfahrensschritt 1: Schätzung spezifischer Gewebeanteile

Wenn man zunächst annimmt, \(P(j, k) \) repräsentiere nur Primärstrahlung ohne Streustrahlung, dann ergibt sich mit Gleichung (#4) und (#3) für den Anteil Drüsengewebe:

\[\alpha = \alpha(j, k) = f_{\beta I} (-\log (P(j, k))) \] (#6)

und die Massenbelegung Drüsengewebe [g/cm²]:

\[b_G = \alpha \rho G H \] (#6a)

sowie die Massenbelegung Fettgewebe:

\[b_F = (1-\alpha) \rho F H \] (#6b)

Da die oben genannte Annahme streng genommen nicht zutrifft, ist eine iterative Vorgehensweise erforderlich. Dies wird im Zusammenhang mit den Ausführungen zu Verfahrensschritt 4 noch näher ausgeführt werden.

Verfahrensschritt 2: Möglichst korrekte Schätzung der Streustrahlungsverteilung über das ganze Projektionsbild
Zu diesem Verfahrensschritt gehören mehrere Teilverfahrensschritte:

2.1 Nachschlagen im Mamma-SBSF-Atlas

Die Erzeugung des SBSF-Atlas 19 wird im Folgenden noch im Einzelnen beschrieben werden.

Zu jedem Strahl, dem ein Pixel \((j,k)\) zugeordnet ist, wurde im Verfahrensschritt 1 \(\alpha(j,k)\) berechnet. Zu dem berechneten Wert von \(\alpha(j,k)\) und \(H\) sowie weiteren Parametern wie Luftspalt (= airgap), Spektrum und weiteren Parametern wird dann die zugehörige SBSF 20 aus dem Mamma-SBSF-Atlas 19 im Allgemeinen durch Interpolation bestimmt:

\[
\text{SBSF(} (\lambda_x, \lambda_y); \alpha; H; \text{ Luftspalt, Spannung, Filter, Detektor,) \text{)}
\]

SBSF ist eine zweidimensionale Funktion oder vielmehr ein zweidimensionales Feld (data array) in Abhängigkeit von den Zeilen- und Spaltenkoordinaten auf dem Röntgendetektor 8. Jede SBSF 20 ist auf ein Zentrum, nämlich den jeweiligen Strahl oder vielmehr auf das betreffende Pixel mit den Koordinaten \((0,0)\) konzentriert und fällt mit Abstand vom Strahlzentrum stark ab. Der Abstand vom Zentrum in beiden Koordinatenrichtungen wird durch ein Indexpaar \((\lambda_x, \lambda_y)\) gekennzeichnet. Die SBSF 20 ist eine Art Punkt- oder Linienbildfunktion, wobei dem Punkt oder der Linie in Wirklichkeit der Strahl entspricht.

Um die Interpolation zu kennzeichnen, verwenden wir die Notation:

\[
\text{SBSF}^I((\lambda_x, \lambda_y); \alpha) \quad \text{mit} \quad \alpha = \alpha(j,k) \quad (\#7a)
\]

Diese \(\text{SBSF}^I\) 20 wird mit ihrem Zentrum \((\lambda_x, \lambda_y) = (0,0)\) an das Pixel \((j,k)\) gewissermaßen angeheftet. Somit erhalten wir für
jeden Strahl oder jedes Pixel \((j,k)\) diejenige SBSF, mit welcher dieser Strahl oder dieses Pixel zur gesamten Streustrahlungsintensitätsverteilung über die Detektorfläche beiträgt; diesen Beitrag bezeichnen wir mit \(\Delta S\):

\[
\Delta S_{i,j,k}\left(\lambda_x, \lambda_y\right) = SBSF \left(\left(\lambda_x, \lambda_y\right), \alpha(j,k)\right)
\]

(7)

2.2 Integration der Streustrahlungsverteilung über den Detektor

Die Beiträge \(\Delta S\) müssen nun über alle Pixel integriert werden.

Die SBSFs 20 sind normiert auf die Schwächung = 1 des betreffenden Strahls (Pixels). Bei der Summation aller Beiträge muss daher mit der tatsächlichen Schwächung multipliziert werden.

Wir halten ein Pixel \((j,k)\) fest und betrachten alle Pixel \((j',k')\) in Bezug auf ihren Beitrag zur gesamten Streustrahlung in \((j,k)\)...Die gewissermaßen an das Pixel \((j',k')\) angeheftete SBSF trägt dann gemäß Gleichung (7) mit dem Beitrag:

\[
\Delta S_{(j',k')}\left(\lambda_x, \lambda_y\right) * P(j',k') \quad \text{mit} \quad \lambda_x = j - j', \lambda_y = k - k'
\]

(8)

an der Stelle \((j,k)\) bei.

Mit (7) bis (8) erhält man für die Streustrahlung am Ort \((j,k)\):

\[
S(j,k) = \sum_{j'} \sum_{k'} \Delta S_{(j',k')} (j - j', k - k') \cdot P(j',k')
\]

(9)

Dies gilt für beliebige Pixels \((j,k)\) und somit ist durch Gleichung (9) die ganze Streustrahlungsverteilung beschrieben.

2.3 Tiefpassfilterung
Die Streustrahlungsverteilung ist wegen der sie erzeugenden vielfachen Streuprozesse im Körper relativ glatt und weist daher ein niederfrequentes Fourier-Spektrum auf. Um eventuell durch die vorausgegangenen Verarbeitungsschritte induzierte hochfrequente Fehleranteile zu eliminieren, ist eine 2-dimensionale Glättung zu empfehlen.

Verfahrensschritt 3: Streustrahlungskorrektur

Tatsächlich sind die zur Verfügung stehenden Daten zunächst unkorrigierte, das heißt, auf der Messung basierende Daten, die die Überlagerung von Primärstrahlung 10 (direkte, ungesteuerte Strahlung) und Sekundärstrahlung 11 (= Streustrahlung) beinhalten.

Nach Normierung gemäß Gleichung (#5a) ist:

\[T = P + S \]

(#10)

mit den Bedeutungen:

- \(T \) gemessene (normierte) Verteilung der totalen Strahlung
- \(P \) zunächst unbekannte, aber gesuchte (normierte) Primärstrahlung 10
- \(S \) unbekannte, aber mit dem vorgeschlagenen Modell geschätzte (normierte) Sekundärstrahlung 11.

Unter Normierung ist die Division durch die Intensitätsverteilung \(I_0(j,k) \) ohne Streuobjekt zu verstehen.

Mit Gleichung (#9) ergibt sich direkt eine subtraktive Streustrahlungskorrektur:

\[P(j,k) = T(j,k) - S(j,k) \]

(#11)

zur Schätzung der Primärstrahlungsverteilung.
Eine andere Korrektur, die sich in Fällen eines relativ großen Anteils an Sekundärstrahlung 11 empfiehlt, ist die multiplikative Streustrahlungskorrektur:

\[P = \frac{T}{(1 + S/P)} \]

(#12)

Man beachte, dass die Korrekturen in Gleichung (#11) und Gleichung (#12) nur approximativ sind und nicht identische Ergebnisse liefern. Für \(S/T \ll 1 \) geht aber (#11) in (#12) über.

Verfahrensschritt 4: Iteration

In Gleichung (#11) und (#12) tritt auf der rechten Seite der Term \(S \) für die Streustrahlung auf, der seinerseits durch Gleichung (#9) zu berechnen ist; Gleichung (#9) aber wird mittels der (unbekannten) Primärstrahlung \(P \) definiert, die ihrerseits auf der linken Seite von Gleichung (#11) und (#12) auftritt und erst durch eine dieser Gleichungen berechnet werden soll. \(P \) tritt also sowohl auf der linken als auch auf der rechten Seite von Gleichung (#11) und (#12) auf. Solche implizite Gleichungen sind iterativ zu lösen. Wir schreiben für \(S \) in Gleichung (#9):

\[S = \bar{S}(P) \]

(#13a)

Gleichung (#11) lautet dann:

\[P = T \cdot \bar{S}(P) \]

(#13b)

Die Iteration erfolgt für das subtraktive Verfahren wie folgt:

Iterationsanfang mit Vorkorrektur, die nachfolgend noch näher beschrieben wird:
\[p^{(0)} = T \cdot S^{(0)} \quad \text{ (#5b) } = \text{ (#14a)} \]

Iterationsschritt:

\[p^{(n+1)} = T - S(p^{(n)}), \quad n+1 > 0; \quad \text{ (#14b)} \]

Für das multiplikative Verfahren wird die Iteration wie folgt durchgeführt:

10 Iterationsanfang mit Vorkorrektur, die nachfolgend noch näher beschreiben wird:

\[p^{(0)} = T \cdot S^{(0)} \quad \text{ (#5b) } = \text{ (#15a)} \]

15 Iterationsschritt:

\[p^{(n+1)} = p^{(n)} T / (p^{(n)} + S(p^{(n)})), \quad n+1 > 0. \quad \text{ (#15b)} \]

Die Folge der Iterationen wird jeweils abgebrochen, wenn sich das Ergebnis zwischen Schritt \(n \) und \(n+1 \) nur noch wenig ändert. In vielen Fällen genügt bereits ein Zyklus \(n=1 \).

SNR-Verbesserung durch statistische Estimation: ML- und Bayes-Methoden

Ein Verfahren auf der Basis des ML-Prinzips hat die Eigenschaft, dass gewöhnlich das SNR (= signal to noise ratio) nach einigen Iterationen verbessert wird, dass aber bei Fortsetzung der Iterationen das Rauschen unkontrolliert zunimmt und das SNR sich wieder verschlechtert. Um diesem Weglaufen des ML-Algorithmus gegenzusteuern, werden Bayes-Estimation-Verfahren empfohlen, bei denen sich Algorithmen ergeben, die sich von Gleichung (#15b) durch einen stabilisierenden zusätzlichen Term auf der rechten Seite unterscheiden. Die Wirkung des Zusatzterms auf Konvergenzgeschwindigkeit, SNR sowie der Kompromiss zwischen Rauschen und Ortsauflösung kann durch Parameter gesteuert werden.

Vorkorrekturen

In den bisherigen Ausführungen zu dem Verfahrensschritt 1 und 2.1, dort Gleichung (#6) und (#7), wurde vorausgesetzt, dass die komprimierte Mamma 6 die Schichtdicke H zwischen den Kompressionsplatten 5 voll ausfüllt und dass die Funktion f_H ausgewertet werden kann. Diese Bedingung ist gemäß Figur 4 im Bereich von wenigen cm nahe einer Brustspitze 26 und außerhalb im Bereich ungeschwächter Röntgenstrahlung 3 nicht mehr erfüllt. Diese Bildfeldbereiche müssen im Rahmen einer Vorkorrektur gesondert behandelt werden. Im Bereich ungeschwächter Röntgenstrahlung 3 außerhalb der Mamma 6 muss das effektive Schwächungssignal gemäß Gleichung (#5a) theoretisch $= 1$ sein, wird aber im Allgemeinen wegen des Vorhandenseins von Streustrahlung > 1 sein. Die Differenz

$$\Delta T(j,k) = I(j,k)/I_0(j,k) - 1 \quad (\text{falls } > 0)$$

muss folglich als eine Streustrahlungs-Vorkorrektur

$$S^{(0)} = \Delta T$$

im Bildbereich außerhalb der Mamma 6 abgezogen werden.
Vom normalen Bildbereich der voll komprimierten Mamma 6 zum Bereich nahe der Brustspitze 26 ist eine geeignete Extrapolation der Gewebeschichtdicke von H gegen 0 durchzuführen. In diesem Bildbereich ist daher in den Gleichungen (#2), (#6) und (#7) im Allgemeinen H als variabel anzunehmen.

Im normalen Bildbereich mit konstanter Gewebeschichtdicke H kann eine Streustrahlungs-Vorkorrektur folgendermaßen aussehen: Da noch keine Auswertung der Gewebeanteile (Drüsen-/Fettgewebe) vorliegt, kann man zunächst 100 % Fett annehmen. Wegen der geringeren Dichte von Fett (0.92 gegen 0.97 g/cm³ bei Drüsegewebe) wird die Streustrahlung dabei zwar unterschätzt, aber für eine Korrektur nullter Ordnung ist diese Schätzung wesentlich besser als überhaupt keine Korrektur. In Gleichung (#7) und den nachfolgenden Gleichungen wird $\alpha = 0$ eingesetzt und damit wird der Streustrahlungskern SBSF ortsunabhängig, insbesondere unabhängig vom Pixelindex (j, k), und Gleichung (#9) reduziert sich auf eine echte Faltung.

Die Gleichungen (#7 - #9) vereinfachen sich dabei wie folgt: Wir lassen bei $\Delta S(j, k)$ den Index weg und schreiben dafür $\Delta S^{(0)}$:

$$\Delta S^{(0)}(\lambda_x, \lambda_y) = \text{SBSF}^{-1}((\lambda_x, \lambda_y); \alpha = 0) \quad (#16a)$$

anstelle von P ist in (#9) T entsprechend Gleichung (#5a) zu setzen:

$$S^{(0)}(j, k) = \sum_{j'} \sum_{k'} \Delta S^{(0)}(j-j', k-k') T(j', k') = \left(\Delta S^{(0)} \ast \ast T\right)(j, k) \quad (#16b)$$

Dabei bedeutet $\ast \ast$ eine 2-dimensionale Faltung.
Die Vorkorrektur liefert dann entsprechend Gleichung (#5b):

\[P^{(0)} = T - S^{(0)} = T - \left(\Delta S^{(0)} ** T \right) \]

(#16c)

Erstellen des Mamma-SBSF-Atlas

Bei dem Konzept der SBSF interessiert man sich für die Verteilung der im Streukörper erzeugten Streustrahlung in der Detektorebene, wenn gemäß Figur 4 der (ungestreute) Primärstrahl (das heißt, ein Ministrahlkegel 27) genau auf ein Detektorpixel 9 fokussiert wird. Macht man das nacheinander für jedes Detektorpixel 9 und summiert alle zugehörigen SBSFs 20 auf, dann erhält man die gesamte Streustrahlungsverteilung für den Fall, dass die gesamte Detektorfläche ausgeleuchtet wird - und nicht nur einzelne Detektorpixel 9.

Der Mamma-SBSF-Atlas 19 der Streu-Strahlausbreitungsfunktionen 20 (= Scatter-Beam-Spread-Functions (= SBSF)) umfasst, wie bereits oben im Zusammenhang mit der dritten Voraussetzung und dem Verfahrensschritt 2 beschrieben, die (auf die Intensität der Primärstrahlung 10 im Detektorpixel 9 normierten) Streustrahlungsintensitätsverteilungen (unter Annahme der Fokussierung des Ministrahlkegels 27 auf genau ein Detektorpixel 9) in Abhängigkeit von einer Vielzahl verschiedener Parameter-Konfigurationen:

\[SBSF(\left(\lambda_0, \lambda_r \right) ; \alpha ; H; Luftspalt, Spannung, Filter, Detektor, ...) \]

(#17)

Im Folgenden sei nun das Erstellen einer SBSF-Serie erläutert:

Zunächst werden die für das zugrunde gelegte Mammographiegerät charakteristischen Parameter festgelegt: SID, Luftpunkt, Anodenmaterial der Röntgenröhre (und zugehörige Emissions-Spektren), Detektormaterial, Vorfilter-Materialien (zum Beispiel Kompressionsplatten), und weitere Parameter. Dann kommt die Kompressionsdicke \(H \), die Spannung, die verwendeten Spektralfilter und weitere Größen, wobei im Allgemeinen zur Optimierung der Bildqualität die Spannung und gegebenenfalls die SpektralfILTER (dicke) in Abhängigkeit von der Kompression
dicke \(H \) modifiziert werden.

Für diese Parameter-Konfiguration wird dann der Parameter \(\alpha \), der die Gewebezusammensetzung nach Gleichung (\#2a) beschreibt, zwischen 0 (nur Fett) und 1 (nur Drüsegewebe) variiert: Die Berechnung mit der bewährten Monte-Carlo-Methode ergibt einen Satz unterschiedlicher SBSFs 20, wobei jedem \(\alpha \)-Wert eine SBSF 20 zugeordnet wird.

Dann wird die Gewebedicke \(H \) zwischen > 0 und bis etwa 10 cm variiert und jeweils für jedes \(H \) wieder ein weiterer Satz von SBSFs 20 berechnet. Ferner können die Spannung und die Spektralfilter variiert werden, wobei die Variation gekoppelt mit \(H \) oder auch unabhängig von \(H \) erfolgt. Im letzteren Fall gibt es allerdings ein Vielfaches an Variationsmöglichkeiten. Im Übrigen kann die Berechnung für alle Parameter-Kombinationen fortgesetzt werden.

Für die Berechnung der SBSFs 20 können Vereinfachungen vorgenommen werden, die sich gut rechtfertigen lassen:

- Vernachlässigung der Divergenz der Strahlen der Röntgenstrahlung 3 auf Grund der Kegelstrahl-Geometrie, indem näherungsweise Parallelstrahlgeometrie angenommen wird; das ist dadurch gerechtfertigt, dass in der Regel SID \(\gg H \)
ist; dadurch erreicht man, dass die SBSF 20 bei gleicher Konfiguration des Strahls orts- und pixelunabhängig bleibt; unter gleicher Konfiguration soll verstanden wer-
den, dass für jedes Pixel die Materialverteilung längs des Ministrahlkegels 27 und in der seitlichen Nachbarschaft gleich ist.

- Zur Verbesserung der Statistik beim Monte-Carlo-Verfahren und zur Verringerung des Rechenaufwands werden für die Be-
rechnung der SBSFs 20 um etwa eine Größenordnung größere Pixel (z.B. 1 x 1 mm² oder 2 x 2 mm²) verwendet als die tatsächlichen Detektorpixel 9 (≤ 0.1 mm); dies ist zu recht fertigen durch das niederfrequente Fourier-Spektrum der räumlichen Streustrahlungsverteilung.

Vorteile

Die hier vorgeschlagene Lösung hat die folgenden Vorteile:

Das Verfahren kann gegebenenfalls in vorhandene Mammographie-
geräte ohne mechanischen Umbau integriert werden.

Ferner handelt es sich um ein Verfahren, das einerseits die Adäquatheit der physikalischen Modellierung mit der Monte-
Carlo-Methode teilt, andererseits aber - weil alle aufwendi-
gen Rechnungen so weit möglich im Voraus durchgeführt werden und die notwendigen Daten in Tabellen abgespeichert werden -
letzlich mit relativ geringem Rechenaufwand für die Streu-
strahlungskorrektur auskommt.

Die Modellgenauigkeit der hier beschriebenen Streustrahlungskorrektur ist prinziell größer als die der bekannten (ana-
lytischen) physikalischen Modelle, da auf eine Reihe von ver-
einfachenden Annahmen und Approximationen verzichtet werden kann.

Die Möglichkeiten der hier vorgeschlagenen Streustrahlungskorrektur gehen über die Möglichkeiten der seit langem be-
kannnten Konvolutions-/Dekonvolutions-Verfahren weit hinaus.Wenn von der konkreten technischen Ausführungsform des Ver-
fahrens abgesehen wird und das Verfahren vom mathematischen
Standpunkt aus betrachtet wird, so kann das Verfahren im ma-
thematischen Sinn als eine Verallgemeinerung des seit langem
bekannten Konvolutions-/Dekonvolutions-Verfahrens angesehen
werden. Daher lässt es sich einerseits, durch Approximationen
und Verzicht auf Genauigkeit, in diese Typenklasse überführen
und teilt dann deren Vorteile, zum Beispiel die Möglichkeit
der Anwendung der so genannten FFT (= schnelle Fourier-Trans-
formation). Andererseits kann das hier beschriebene Verfahren
im Hinblick auf SNR-Verbesserung aber auch erweitert werden,
beispielsweise indem der iterative multiplikative Algorithmus
in Richtung statistischer Bayes-Schätzung erweitert wird.

In diesem Zusammenhang sei nochmals darauf hingewiesen, dass
erst das Vorausberechnen der SBSFs 20 die Durchführung des
hier beschriebenen Verfahrens in voller Allgemeinheit ermög-
licht.

Ausführungsbeispiele

Ausführungsbeispiel 1:

Bei diesem Ausführungsbeispiel erfolgt die Streustrahlungs-
korrektur, wie oben im Zusammenhang mit Gleichungen (#5)–(#9)
und (#13)-(#15) beschrieben, mit homogenen ortsabhängigen Streu-Strahlausbreitungsfunktionen 20 (= SBSF). Beim Erstellen der Streu-Strahlausbreitungsfunktionen 20 wird dabei vereinfachend angenommen, dass sich die Gewebeverteilung, die durch den Anteil \(a(j,k) \) von Drüsengewebe längs des von der Quelle zum Detektorpixel führenden Strahls charakterisiert ist, entsprechend Figur 4 im rechten Winkel zum Strahl, also parallel zu den Kompressionsplatten 5, unverändert homogen fortsetzt. Es wird also bezüglich des Streustrahlungsbeitrags des Strahls im Pixel \((j,k)\) angenommen, dass sich die Gewebezusammensetzung in der seitlichen Nachbarschaft zum Strahl nicht sprunghaft ändert. Dieses ist zwar am Mammarand nicht mehr zutreffend, aber dort könnte man eine Sonderbehandlung vornehmen.

Man beachte aber, dass die tatsächliche ortsabhängige Inhomogenität der Gewebezusammensetzung durch einen für jedes Pixel \((j',k')\) spezifisch anderen Drüsengewebeanteil \(a(j',k') \) und einen davon abhängigen spezifischen Streustrahlungsbeitrag berücksichtigt wird. Die SBSFs 20 sind daher in der Regel für jedes Pixel unterschiedlich.

Ausführungsbeispiel 1a:

Bei diesem Ausführungsbeispiel 1 wird das Verfahren im Wesentlichen wie beim Ausführungsbeispiel 1 ausgeführt.

Es werden jedoch einige Vereinfachungen vorgenommen:

Für jede fest vorgegebene Schichtdicke und die übrigen Parameter, wie zum Beispiel Spannung und Vorfilterung, wird eine gemeinsame SBSF 20 für alle Pixel verwendet. In diesem Fall wird die SBSF 20 somit ortsunabhängig gewählt. Die Auswahl kann beispielsweise durch eine geeignete Mittelung über die vorkommenden Gewebezusammensetzungen erfolgen. \(\Delta S \) in Gleichung (#7) und (#9) wird dann vom Pixelindex \((j,k)\) unabhängig;
der Doppelindex \((j,k)\) kann - ähnlich wie in den Gleichungen (16a) bis (16c) - entfallen.

Wichtig ist, dass das Integral in Gleichung (9) in eine echte Faltung übergeht, die durch FFT (=schnelle Fourier-Transformation) effizient ausgeführt werden kann.

Ausführungsbeispiel 1b:

Bei diesem Ausführungsbeispiel 1 wird das Verfahren im Wesentlichen ebenfalls wie beim Ausführungsbeispiel 1 ausgeführt.

In diesem Fall wird jedoch ein einheitlicher Faltungskern (für alle Schichtdicken) für die Streustrahlungsberechnung verwendet. Dass bei kleiner Schichtdicke relativ weniger Streustrahlung entsteht als bei großer Schichtdicke, muss durch Skalierfaktoren, die von der Schichtdicke und weiteren Parametern, wie zum Beispiel Spannung und Filterung, abhängen, berücksichtigt werden.

Im Vergleich zum Ausführungsbeispiel 1a ist für das Ausführungsbeispiel 1b in etwa der gleiche Rechenaufwand nötig. Damit ist bei diesem Ausführungsbeispiel wesentlich weniger Speicherplatz zum Speichern des Mamma-SBSF-Atlas 19 nötig.

Anmerkungen zu den Ausführungsbeispielen 1a und 1b:

Allgemein teilen die vereinfachten Ausführungsbeispiel 1a und 1b die Eigenschaft, dass die Faltungsmodelle für die Streustrahlung mit Hilfe der Fourier-Transformation invertiert werden können. Dann spricht man von Dekonvolution. Von den herkömmlichen Dekonvolutionsverfahren unterscheidet sich die hier beschriebenen Ausführungsbeispiele durch die Verwendung einer oder mehrerer zuvor mit Hilfe einer Monte-Carlo-Simulation gewonnenen Streu-Strahlaurausbreitungs-funktionen 20.

Ausführungsbeispiel 2

Bei diesem Ausführungsbeispiel wird das Verfahren im Wesentlichen wie bei Ausführungsbeispiel 1 ausgeführt, jedoch wird mit Streu-Strahlausbreitungsfunktionen 20 gearbeitet, die für ein inhomogenes Medium berechnet worden sind.

In Figur 5 ist beispielsweise der Fall dargestellt, dass ein Mammabereich 28 eine andere Zusammensetzung aufweist als ein umgebender Mammabereich 29.

Dadurch kann berücksichtigt werden, dass die SBSF 20 nicht nur von der Gewebezusammensetzung längs des auf das Detektorpixel fokussiert gedachten Ministrahlkegels 27 abhängt, sondern auch von der Gewebezusammensetzung in der seitlichen Nachbarschaft, in die hineinPhotonen gestreut und wieder in Richtung des Pixels weitergestreut werden können. Die Wirkungsreichweite der seitlichen Nachbarschaft ist allerdings wegen der mittleren freien Weglänge <~ 2 cm von Photonen im Mammographie-Energiebereich zwischen etwa 20 und 40 keV nicht sehr groß. Es würde daher genügen, die Gewebezusammensetzung in einem seitlichen Halbraum als homogen anzunehmen, aber im
Allgemeinen unterschiedlich zum Ministrahlkegel 27. Die Berücksichtigung inhomogener SBSFs 20 mit Unterschieden zwischen Strahl und Nachbarschaft dürfte vor allem am Mammarand eine Rolle spielen.

Dieses Ausführungsbeispiel stellt daher eine Verallgemeinerung der vorstehend beschriebenen Ausführungsbeispiele 1, 1a und 1b dar, da in diesem Fall die SBSFs 20 nicht nur von einem Gewebeparameter a, sondern auch von einem neu einfügenden Umgebungsgewebeparameter γ abhängen. In diesem Fall würde der Mamma-SBSF-Atlas 19 somit noch eine zusätzliche Dimension aufweisen.

Der Übersichtlichkeit halber sind in der folgenden Tabelle die unterschiedlichen Eigenschaften der Ausführungsbeispiele 1, 1a, 1b und 2 gegenübergestellt:

<table>
<thead>
<tr>
<th>SBSF</th>
<th>1</th>
<th>1a</th>
<th>1b</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>dickenabhängig</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>orts- (=pixel)abhängig</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>inhomogen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Ausführungsbeispiel 3

Das hier beschriebene Verfahren lässt sich auch auf das dem Fachmann bekannte so genannte Dual-Energie-Verfahren anwenden. Beim so genannten Dual-Energie-Verfahren, das vor allem in der Mammographie oder in der Knochendensitometrie eingesetzt wird, werden zeitlich parallel mit zwei verschiedenen Energiespektren Aufnahmen gemacht. Die Aufnahmen mit verschiedenen Energiespektren werden durch zwei unterschiedliche Spannungen und möglichst auch verschiedene Spektralfilterungen bewerkstelligt, damit die den zwei Messungen effektiv entsprechenden Spektralbereiche sich möglichst wenig überlap-
pen. Durch einen Rechenvorgang, der im Wesentlichen auf der Lösung eines im Allgemeinen nicht-linearen Systems von zwei den beiden Spektren zugeordneten Gleichungen beruht, kann dann eine im Vergleich zu einer Aufnahme mit einem Energie-
spektrum feinere Gewebedifferenzierung erzielt werden. Damit der Rechenvorgang zum Erfolg führt, müssen die Streustrah-
lingsanteile möglichst eliminiert werden, da ansonsten die durch die Streustrahlungsanteile induzierten Artefakte unter Umständen stärker sind als das eigentliche Gewebebild.

Wegen der Unterschiede der Streustrahlung bei beiden Spektren ist eine leistungsfähige Streustrahlungskorrektur daher für die Qualität der Dual-Energie-Methode von entscheidender Be-
deutung.

Das vorgeschlagene Streustrahlungskorrekturverfahren ist auch in diesem Zusammenhang anwendbar. Die geometrischen Parameter sind für beide Aufnahmen gleich, aber die spektralabhängigen Parameter sind unterschiedlich.

Die Korrektur ist für jedes der beiden Aufnahmen nach dem be-
schriebenen Schema durchzuführen, mit dem einzigen Unter-
schied, dass entsprechend den verschiedenen Spektren unter-
schiedliche SBSFs verwendet werden müssen.
Patentansprüche

1. Vorrichtung für die Projektionsradiographie, insbesondere für die Mammographie, mit einer Strahlung (3) emittierenden Strahlungsquelle (2), einem Detektor (8) und einer dem Detektor (8) nachgeordneten Auswerteeinheit (12), die anhand der vom Detektor (8) gelieferten Projektionsdaten (17) eine Streumaterialverteilung eines zu untersuchenden Objekts (6) näherungsweise bestimmt und die in Abhängigkeit von der Streumaterialverteilung aus einem Datenspeicher (19) Streuinformationen (20) ausliest und auf der Grundlage der Streuinformation (20) die Projektionsdaten (17) im Hinblick auf den Streustrahlungsanteil (11) korrigiert, durch gekennzeichnet, dass die Streuinformationen (20) durch Monte-Carlo-Simulationen ermittelt sind, die für verschiedene Streumaterialverteilungen die Interaktionen der Photonen mit jeweils einer Streumaterialverteilung berechnen.

2. Vorrichtung nach Anspruch 1, durch gekennzeichnet, dass die Streuinformationen Streuverteilungen (20) sind, die eine durch Streuung hervorgerufene Verteilung der von der Strahlungsquelle (2) ausgehenden und auf einen bestimmten Bildbereich gerichteten Strahlung (14) auf benachbarte Bildbereiche beschreiben.

3. Vorrichtung nach Anspruch 2, durch gekennzeichnet, dass die Streuverteilungen (20) mit der Intensität der auf den Detektor (8) auftreffenden ungestreuten Primärstrahlung (10) skalierbar sind.

4. Vorrichtung nach einem der Ansprüche 1 bis 3, durch gekennzeichnet, dass die Auswerteeinheit (12) für unterschiedliche Bildbereiche eines Projektionsbildes (17) für die jeweilige Streumaterialverteilung spezifische Streuinformationen (20) auswertet.
5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die AuswerteEinheit (12) eine Streustrahlungsverteilung (11) in einem Bildbereich des Projektionsbilds (17) bestimmt, indem die AuswerteEinheit (12) für jeden Bildbereich die Streustrahlungsbeiträge (11) der umliegenden Bildbereiche berechnet und addiert.

6. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die AuswerteEinheit (12) eine Streustrahlungsverteilung (11) in einem Bildbereich des Projektionsbilds (17) bestimmt, indem die AuswerteEinheit (12) die Primärstrahlungsverteilung mit einer Streuverteilung (20) faltet.

7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die AuswerteEinheit (12) die ungestreute Primärstrahlung (10) durch Lösen der impliziten Gleichung $P + S (P) = T$ bestimmt, wobei P die Ver teilung der ungestreuten Primärstrahlung (10), $S (P)$ die von der ungestreuten Primärstrahlung (10) abhängige Sekundär strahlungsverteilung (11) und T die gemessene gesamte Strahlungsverteilung in den Projektionsbildern (17) ist.

8. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die AuswerteEinheit (12) für eine erste angenäherte Bestimmung der Streumaterialverteilung des zu untersuchenden Objekts (6) den im Projektionsbild (17) enthaltenen Streustrahlungsanteil (11) auf der Grundlage von Streuinformationen schätzt, die einer typischen Streumaterialverteilung zugeordnet sind.

9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die AuswerteEinheit (12) die Verarbeitungsschritte gemäß einem der Ansprüche 1 bis 8 iterativ ausführt.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, d a - d u r c h g e k e n n z e i c h n e t , dass die Streuinformationen (20) unter der Voraussetzung einer in Strahlrichtung homogenen Streumaterialverteilung berechnet sind.

11. Vorrichtung nach einem der Ansprüche 1 bis 10, d a - d u r c h g e k e n n z e i c h n e t , dass die im Datenspeicher (19) Streuinformationen (20) abgelegt sind, die die Außenkontur (26) des zu untersuchenden Objekts (6) berücksichtigen.

12. Vorrichtung nach einem der Ansprüche 1 bis 11, d a - d u r c h g e k e n n z e i c h n e t , dass im Datenspeicher (19) Streuinformationen (20) abgelegt sind, die unter der Annahme einer quer zur Strahlrichtung homogenen Streumaterialverteilung berechnet sind.

13. Vorrichtung nach einem der Ansprüche 1 bis 12, d a - d u r c h g e k e n n z e i c h n e t , dass im Datenspeicher (19) Streuinformationen (20) abgelegt sind, die unter der Berücksichtigung einer quer zur Strahlrichtung inhomogenen Streumaterialverteilung ermittelt sind.

14. Vorrichtung nach einem der Ansprüche 1 bis 13, d a - d u r c h g e k e n n z e i c h n e t , dass im Datenspeicher (19) Streuinformationen in Abhängigkeit von Parametern der Strahlungsquelle (2) abgelegt sind.

15. Vorrichtung nach einem der Ansprüche 1 bis 14, d a - d u r c h g e k e n n z e i c h n e t , dass die Auswerteeinheit (12) die Streustrahlungsanteile (12) an ausgewählten Stützstellen bestimmt und die Korrekturwerte für einzelne Detektorelemente (9) durch Interpolation zwischen den Stützstellen ermittelt.
16. Vorrichtung nach einem der Ansprüche 1 bis 15, durch gekennzeichnet, dass das zu untersuchende Objekt (6) in einer Kompressionsvorrichtung (5) komprimierbar ist und dass die Auswerteeinheit (12) die räumliche Gestaltung der dem zu untersuchenden Objekt (6) zugeordneten Flächen der Kompressionsvorrichtung (5) zur Bestimmung der Weglänge der Strahlung (3) durch das zu untersuchende Objekt heranzieht.

17. Verfahren für die Streustrahlungskorrektur in der Projektionsradiographie, bei dem anhand von mit einem Detektor (8) aufgenommenen Projektionsdaten eine Streumaterialverteilung eines zu untersuchenden Objekts (6) von einer Auswerteeinheit (12) näherungsweise bestimmt wird und bei dem in Abhängigkeit von der Streumaterialverteilung stehende Streuinformation (20) von der Auswerteeinheit (12) aus einem Datenspeicher (19) ausgelesen werden, auf deren Grundlage die Projektionsdaten (17) im Hinblick auf den Streustrahlungsanteil (12) korrigiert werden, durch gekennzeichnet, dass durch eine Monte-Carlo-Simulation ermittelte Streuinformationen (20) verwendet werden, durch die mehrfache Interaktionen zwischen denPhotonen und dem zu untersuchenden Objekt (6) berücksichtigt werden.

18. Verfahren zur Gewinnung von Streuinformation für die Streustrahlungskorrektur, bei dem in einer Monte-Carlo-Simulation der Weg einer Vielzahl von Photonen durch ein zu untersuchendes Objekt (6) verfolgt wird, durch gekennzeichnet, dass eine Vielzahl von Streuverteilungen (20) für verschiedene Parameter der Streumaterialverteilung des zu untersuchenden Objekts (6) und für verschiedene Parameter einer für die Untersuchung des Objekts (6) verwendeten Vorrichtung (1) berechnet und tabellarisch abgespeichert werden.

19. Verfahren nach Anspruch 18, durch gekennzeichnet, dass die Streuverteilungen (20)
für verschiedene Geometrien des zu untersuchenden Objekts (6) berechnet und abgespeichert werden.
FIG 3