b

oy

o

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4.

(11) International Publication Number:

WO 89/ 00734

(43) International Publication Date: 26 January 1989 (26.01.89)

GOGF 15/16 Al
1@ Interﬁational Application Number: PCT/US88/02304
(22) International Filing Date: 8 July 1988 (08.07.88)
(31) Priority Application Number: 076,116

(71) Applicant: STELLAR COMPUTER INC. [US/US]; 75

(32) Priority Date: 21 July 1987 (21.07.87)

(33) Priority Country: : . - US

Wells Avenue, Newton, MA 02159 (US).

(72) Inventors: TEIXEIRA, Thomas, J. ; 89 Woodside Road,
Harvard, MA 01451 (US). SMITH, Maxim, G. ; 31
Ridge Avenue, Natick, MA 01760 (US).

(74) Agent: FEIGENBAUM, David, L.; Fish & Richardson,
One . Financial Center, Suite 2500, Boston, MA
02111-2658 (US).

(81) Designated States: AT (European patent), AU, BB, BE
(European patent), BG, BJ (OAPI patent), BR, CF
(OAPI patent), CG (OAPI patent), CH (European pa-
tent), CM (OAPI patent), DE (European patent), DK,
FI, FR (European patent), GA (OAPI patent), GB
(European patent), HU, IT (European patent), JP,
KP, KR, LK, LU (European patent), MC, MG, ML
(OAPI patent), MR (OAPI patent), MW, NL (Euro-
pean patent), NO, RO, SD, SE (European patent),
SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI
patent).

Published
With international search report.

(54) Title: DETECTING MULTIPLE PROCESSOR DEADLOCK

R 40
" :
MACHINE || 14 25
IsTRucTioMT | Processor [HLPSW REGISTER B |
SEQUENCE 16 8 2%%?&0.5
SHARED
MEMORY pROCESSOR|1PSW REGISTER ¢ | | REGDTER
c : I
PROCESSOR —{PSW REGISTER D _|

/

o

(57) Abstract.

The simultaneous work of multiple processors (12) at different places in a machine instruction sequence (14) (of a
kind which includes points at each of which processing may need to wait for occurrence of a predetermined event) is con-

trolled by marking each point by a conditional branch which,

the processor (12) executing the branch to enter and repeat a

when the predetermined event has not yet occurred, causes
loop including the conditional branch; and causes the pro-

cessing to continue outside the loop only when the event has occurred; a processor (12) is determined to be waiting when it
is executing such a conditional branch. In other aspects, there are a plurality of different types of events that may be op-
erated on by the conditional instruction; and an idle (unassigned) waiting condition of a processor (12) is detected separ-

ately from a non-idle waiting condition.

FOR THE PURPOSES OF INFORMATION ONLY

Codes_used toidentify States party to thé PCT on the front pages of pamphlets publishing international appli-
cations under the PCT. : :)

AT Austra ' . FR France - : ML Mali .
AU Australia - ° GA Gabon - MR™ Mauritania
BB Barbados GB United Kingdom MW Malawi

BE Belgium . ' HU Hungary NL Netherlands
BG Bulgaria . IT Taly : NO - Norway

BJ Benin L JP Japan ~ RO Romania

BR Brazil . ‘KP Democratic People’s Republic SD Sudan

.CF Central African Republic ’ of Korea - SE Sweden

CG - Congo -~ . KR Republic of Korea . SN Senegal

CH Switzerland Co- LI Liechtenstein SU Soviet Union
CM Cameroon . LK Srilanka N . TD Chad

DE Germany, Federal Republic of LU Luxembourg . TG - Togo

DK Denmark o MC Monaco S - US United States of America

FI Finland R MG Madagascar

wh)

4

WO 89/00734

10

20

25

30

Detecting Multiple Processor Deadlock
Background of the Invention
This invention relates to detecting deadlocks
between multiple processors that are simultaneously
executing one or morerdifferent parts of a machine

instruction sequence.

One of the processors may reach a point in
execution where it must wait until the occurrence of
some condition, for example the completion of a
calculation of a data value by another processor. It is
known to cause the processor to wait by having the
compiler insert at that point in the instruction
sequence a special purpose "wait" instruction which has
the effect of preventing the processor from proceeding
until the needed déta value is calculated. One way to

_indicate'to the waiting processor when it may proceed is

to have the other processor clear a bit in memory when
it has completed the needed calculation; the waiting
processor tests the bit and if it finds the bit set,

‘waits until it becomes clear; when the bit becomes

clear, the waiting process proceeds to the next portion
of the instruction segquence.

A situation in which every processor is waiting
for a condition to be satisfied and there is no other
work available to be done within the instruction
sequence is called a hard deadlock, and reflects an
error in the algorithm underlying the machine
instruction sequence. Such hard deadlocks cannot be
resolved.

By contrast, a so-called soft deadlock, in
which other available work remains to be done elsewhere
in the insctruction sequence, may be resoived by having

one of the waiting processcrs proceed tToO that other WOorK.

PCT/US88/02304

WO 89/00734

10

15

20

25

30

-2 -

In one known scheme for detecting the existence

of'a soft deadlock, the computer includes special
purpose logic hardware that can detect when a number of.

: processors are 51multaneously waltlng and then can

1nterrupt the operatlng system, which deals with the
deadlock ' '
Summary of the Invention

A general feature of the invention prov1des a

" method for controlling the,51mu1taneous work of multiple -

processors at different places in a machine instruction

- sequence of the kind which includes points at each of

which processing may need to wait for the occurrence of
a predetermined event; a conditional branch is included

~at each such 901nt in the 1nstructlon sequence which,

when the event has not yet occurred, causes the

- processor executing the branch to enter and repeat a

loop ;ncludlng the conditional branch, and causes the
processing to oontinue outside the loop only when the
event has occurred; a processor is identified as waiting

at one of the points when it is executing such a

condltlonal ‘branch. , , i ,
Another general feature of the 1nventlon is

that a plurallty of different types of events (e.g.,

including the setting or clearlng of a bit) may be

operated on by the conditional instruction.

Preferred embodiments include the follow1no
features. The conditional branch has a single
conditional branch 1nstructwon that branches to itself
as long as the predetermlned event has not occurred.

-The cond1t10na1 branch instruction is of the kind that
is also used as part of the macnlne lnSLEUCthH seo”erce’
~for purposes other than to indicate that the orocessor

is wa;tlnc. Wnen a grouo cf processors whose Droces=5"c
activities are curren 1tly interrelated are all identified

PCT/US88/02304

&)

w)

WO 89/00734

10

15

20

25

30

- 3 -

as waiting, at least one of the waiting processors is
reassigned to another place in the machine instruction
sequence. The group of processors may include fewer
than all of the multiple processors, for example all
processors working on a single process. The machine
instruction sequence includes an operating system

‘capable of interrupting the activities of each processor

from time to time to reassign it to another place in the
machine instruction seguence; processors that are
waiting are interrupted'before processors that are not
waiting. The step of identifying when a group of
processors are all waiting is performed by an individual

“processor, so that the identifying and reassigning may

not require interruption of other processors.

An other general feature of the invention is a
method.for determining the status of one of a plurality
of processors simultaneously working on a machine
instruction sequence, which includes separately

‘detecting (i) a first condition in which a processcr has

been assigned to work at a location within sald machine

instruction sequence but is waiting to proceed until the

_occurrence of a predetermined event, and (ii) a second

condition in which an idle processor has not been
assigned to work at any location within said machine
instruction sequence.

Preferred embodiments include the following features. A

value is stored corresponding to each processor

“indicating whether it is assigned to work at any

location, and the first and second conditions are
detected based on the value. The operating system
interrupts a processor in the second condition before
interrupting any processor in the first condition.
. The invention provides a simple, versatile,
is

effective methed for indicating that a Processcr

PCT/US88/02304

WO 89/00734

10

15

20

25

30

waltlnq, or detectlng deadlocks among processors "No

special new instruction needs to be added to the machine

'1nstructlon set executable by the processors. Each

processor determines immediately when the condltlon on
which it is wa;tlng has been satisfied. ;Only a single
instruction, rather than several instructions, needs to

jbe'execoted in order to maintain the processor in the
waiting condition. The same instruction performs the

functions of both causing the processor to wait, and

providing the indication to the processor hardware that

a waiting condition exists. Deadlocks can be determined
on the basis of only some group of.therprocessors being
in a waiting'condition},for example processors working:
on a single process. Idle p:ooessors,can'be,identified
ahd'treated differently-ftom non-idle waiting | '

processors. A wide variety of conditions can be used to

trlgge* the waiting condition.
Other advantages and Features w;ll become

apparent from the follow1ng descrlptlon of the following

emoodlmen and from the clalms
Descrlptlon of the Preferred Embodlmenc

We first briefly describe the draw1ngs.
Fig. 1 is a block diagram of a multiple

- processor computer.

Fig. 2 is a diagram of parallel regions and
blocks in a machine 1nstructlon sequence. '
' Fig. 3 is a dlagram of shared register sets.

Fig. ¢ is a diagram of a portion of a program

“status word.

Fig. 5 is a conditional branch instruction.

Figs. 6, 7 are block diagrams cf portions of

th

the circuitry of one of the processors.

rrj

ig. 8 is a block diagram c¢f deadlock detecticn

logic.

PCT/US88/02304

»

w

WO 89/00734 , PCT/US88/02304

10

15

20

25

30

Fig. 9 is an example of a portion of a machine
instruction sequence.
Structure and Operation

Referring to Fig. 1, in one example of a
multiple processor computer 10, four processors 12
(labeled respectively A, B, C, D) are available to
execute the machine instruction sequence 14 held in a

shared memory 16.

Referring to Fig. 2, machine instruction
sequence 14 may include one or more parallel regions 18
of machine instructions (representative parallel regions
are labeled respectively W, X, ¥, Z). A given parallel
region X has 2 or more blocks 20 of machine instructions
(representative blocks are labeled Q, R, S, T) which are
independent in the sense that the same result is
obtained whether one processor executes all blocks in
the parallel region; or different processors execute
different blocks (e.g., processor A executes block Q, C
executes R, and D executes S and T).

Computer system 10 (Fig. 1) can execute from
one to four processes simultaneously. (A process, as
commonly defined, is a sequence of machine instructions

‘together with information about the state of 1its

execution). Each prqcess may be capable of being split
up for execution among more than one of the processors;
the portion of a process executing on a given processor
at a given time may be called a thread. Threads enter
and leave parallel regions from time to time. A means
(e.g., one of the processors) for executing the
instructions in a thread is called a stream.

It may be necessary at various points within a
thread to pause until another thread completes a
calculation before proceeding. A thread is said to e

waiting when it reaches such a point and the other

10

15

20

25

30

‘wos9073d | - PCT/US88/02304

thread has not yet completed the calculation. A stream
(processor) is said to be waiting if it is currently
executing instructions of a thread which is waiting. A

deadlock occurs when a set of streams (processors) are

eXecuting interrelated threads which are all waiting.

'The invention provides a technique (desctibed later) for
detecting such a deadlock.

Referring again to Fig 1, in order to regulate

the work of the four processors within the machine

1nstruct10n sequence 14, computer -system 10 includes (as
a shared resource) a pool 22 of high speed reglster sets

'shared in common by the four processors.

" Referring to Fig. 3, pool 22 1ncludes as many

regiSter'sets 24 as there are processors (in this case

four, labeled respectively 0, 1, 2, 3). All of the

'7regiéter sets 24 have the same number (e.g, two_in this

example) of'32-bit'tegister5126} The two registers in a .
sét,areroalled concurreﬁcyrregisters 0 and 1, i.e., CRO
and CRI. Any of the four register sets can be
dynamically assigned to a processor as it enters a
parailel'reqion 18, as explained below. ,

» 'VAsra processot'ente:s a parallel region it is
aséigned either a ourrently unused réqister set (if no

processor is actively working in the region) or the

register set already assigned to processors working in
thé:regionobeing‘entered, As a processor leaVes a
region the assignment of the register set to it is
ter mlnated As long as at least one processor is 7
actively worxing in a oarallel reolon; the regwster set

assigned to that processor is, of course;, unavallable

£or reassignment. Howev,o, when N0 Pprocessor "s

currently active within a region, the rea ster set

previously asscciated with that regicn is free toc b

~

'oynamlca ly reassigned for use by other D Drocessors.

@

WO 89/00734 PCT/US8$8/02304

The assignment and reassignment of register
sets to processors is accomplished dynamically by the
processors themselves in the course of (and without
interrupting) the normal execution of the machine

5 instruction sequence. To accomplish this, the compiler
inserts assignment instructions at appropriate locations
in the machine instruction sequence.

There are several types of assignment
instructions. One type of assignment instruction

10 enables a processor to find an available currently
unused register set and assign that set to itself, or to
assign itself to the same register set currently in use
by another processor so that those two processors can
share the information in the register set. Another

15 allocation instruction causés a processor to terminate
‘the assignment of a register set to that processor.
When all processors to which a register set had been
assigned terminate the assignment, the register set
becomes freed for reassignment. Because all of the

20 register sets have the same configuration it is
irrelevant which particular register set becomes
assigned to the processors working in a region at a
given time. The dynamic assignment and reassignment
reduces overhead cost and permits a relatively small

25 number of register sets to be used. The dynamic
assignment of shared register sets and the use of
parallel regions is described more fully in United
States Patent Applications S.N. 034,084 and S.N.
034,166, filed April 2, 1987, and assigned to the same

300 assignee as this application.

Referring again to Fig. 1, each processcr has
an associated non-shared PSW register 40 which holds a
program status word (PSW). The PSW includes information

pertinent to the thread currently executing on the

»>

WO 89/00734 - s o PCT/US88/02304

ass001atea processor ;
Referring to Fig. 4, the PSW 42 has both a
protected (unaccessible to the user) portion 44 and an
'unprotected portion 46. The protected portion 44
5 includes: a one-bit parallel region valid (PRV) field
48 (which is set when the CRI and PID fields, described
below, are valid); a two-bit concurrency register
indicator (CRI) field 50 which identifies the register
- set (0, 1, 2, or 3) assigned to this processor (CRI is
10 valid only if PRV is set); a two-bit process identifier
 (PID) field 52 (which identifies the process on which
‘the processor is workiﬁg); and a WAIT bit 53 (indicating
‘whether the processor is currently‘waltlng)
Each of the four (or fewer) processes whlch may
15 be executlng concurrently on computer system 10 1is
- assigned a unique PID. The PSWs of all streams:
presently executing on behalf of a given process contaln
the PID of that process. A wide variety of possible
combinations of processes and threads executing in
20 parallel regions may occor. | '
, The invention makes use of the conctents of the
PSWs for detecting deadlocks
) "Two- steps are required to detect a deadlock
condltlon The flrst 1s to determlne when a glven
25 processor is waiting. ‘The second is to determine
“whether the waiting cond;tlon of one or more DProcessors
1nd1cates a deadlock. ' |
' - At each place in the machine instruct Lon
seqﬁence where processing snould wait unt_-rsome
30 condition is met,,thercompiler inserts one of the
aiailable standard conditional branch instructions :her
are part of the ser'of machioe instructions which are

- rormally used to defirne the computacional algerilchm, and

are executable by each processor 12. The inserted

WO 89/00734 PCT/US88/02304

10

15

20

25

30

conditional branch instruction is arranged in such a way
that it both causes the processor that executes it to
wait and enables detection of the waiting condition.
Referring to Fig. 5, suppose the conditional
branch instruction 88 that is inserted in the machine
instruction sequence is identified by an instruction
number 90 (denoted xx) in the instruction sequence.
Execution of the conditional branch instruction 88 by a
processor involves, in a conventional manner, first
testing whether a certain condition Y is met. But,
unlike the typical use of a conditional branch as part
of a computational algorithm, if the condition is met

(89), the processor is directed back to and reexecutes
‘the same conditional branch instruction xx. Thus the

processor enters a tight (one instruction) loop where it
(in effect) waits until condition Y is no longer met.
When condition Y is not met, the processor falls out of
the loop by proceeding (90) to the next inmstruction in
the machine instruction sequence 14.

Referring to Fig. 6, each processor 12 has

‘circuitry for detecting the waiting condition of that

processor, including a detector 92 which receives
signals representative of every instruction 94 to be
executed by processor 12. Detector 92 identifies any
conditionalrbranch instrﬁction that branches to itself
in response to the existence of a given condition. When
such a wait condition (conditional branch instruction)

is identified, detector 92 signals a circuit 95 to set

the WAIT bit 53 in the associated processor’'s PSW 40,

indicating that the processor is waiting.
Once the PSW 40 WAIT bit has been set, 1t is
cleared again as soon as detector 92 detects the

execution of an instruction other than a conditional

‘branch that branches to itseif. This could occur, for

WO 89/00734 S PCT/US88/03304

10

15 .

20

25

30

'p*ocessors E and E waliz, no deadlock condition 1

- assigned to process ?, is

- 10 -

example,. if the condition causing the waiting is
satisfied, or if (afte: a deadlock is detected)

'processor 12 is'reassigned to another place in the

machine instruction sequence , ,
The detectors 92 for all processors 12 together

~ assure that, at any given time, the WAIT bits 53 of the

four PSWs 40 indicate the waiting status of 311 fourr
prccessers. 'Deadlockrdetefminations arejbased on the
WAIT bits in the following way. '

' Referring to Fig. 7, the PID values and the
WAIT bits of the four PSWs for processors A, B, C, and'D

',are all dellvered to logic 96 which analyses them to
determine the existence of a deadlock; when a deadlock

is detected logic 96 issues a deadlock signal 97 that
calls the operating system 98 (stored in shared memory
16, Fig. 1) and also provides operating system 98 with
information about the waieing processors. Operating

' system.98 then -responds to the deadlock signal, for

example by reassigninq,at least one of the Drocessors to
another place in the machine instructicd'sequence.

, Logic 96 declares a deadlock in accordance with
the followin@'rule. If all processors having the same '
PID i.e., all processors working on a given process are
waltlng, deadlodk is declared For example, suppose

~three processors (E, F., G) are working respectlve?y on

executing blocks U, V, and W, respectlvely, of a given

=

process P. Suppose that processors E and F have reached

 points in blocks U and V where they must wait for data

values to be computed in block W by processor G, and
tnose values have not yet been computed. Then, while

= ™

w

detected, because another processo:; G, which is aisc

o
O
ct
2,
o
b
o
poe
vy
?
I8

''''' .~ Suppose- Thaz,

‘due to other demands on computational resources, the

WO 89/00734

10

15

20

25

30

PCT/US88/02304

- 11 -

operating system removes processor G from working on
process P and reassigns 1t to an unrelated process. Now
all processors (E and F) assigned to process P are
waiting; and logic 96 detects and signals a deadlock
condition. In response to the deadlock condition, the
operating system determines that either processor E or F
would be better assigned to executing block W which is

currently without a processor, than waiting in block E

or F. Therefore, the operating system reassigns
processor E, say, to executing block W. Then the
deadlock condition no longer exists.

' Referring to Fig. 8, logic 96 includes four
inequality comparators 110, 112, 114, 116 each of which
has -a J input connected to receive the PID bits (e.q.,
PIDA) of one if the four PSWs (of processor A, B, C,
or D). The other, K, input of each comparator receives
(on a line 118) the PID bits (called PID,) of the PSW

of any processor which enters a waiting condition (i.e.,

is executing an instruction that branches to itself).

Thus each time processor i (the current processor)
executes an instruction that branches to itself, it
applies its PID bits on line 110. The outputs of the
comparators are fed respectiVely to OR gates 120, 122,
124, 126. .The other inputs of the OR gates are
connected to receive respectively the WAIT bits from the
PSWs of the four processors. The outputs of the four OR
gates are connected to an AND gate 128 whose output
represents the existence or non-existence of a

deadlock. Deadlock is indicated at the output of AND
gate 128 if all either processors are waiting or if any
processor that is not waiting has a different PID (i.e.,
is eXeduting in a different process) from the current
processor s PID appearing on line 118. The output o
AND gate 128 is delivered to the current processor whose

10
~ deadlock, wh11e allowing the non-waiting processors to

15

20

25

30

WO89/00734 - | ~ PCT/US88/02304

- 12 -

PID is on line 118. The output of AND gate_lzs does not
specify whether a deadlock is hard or soft. That is
determined'by the operating system. ' 7

When a deadlock condition is signaled to the

_current processor (i), that processor stops executing
. the instruction that branches to itself and'begins to
_execute operating system code whose purpose is to 7
resolve the deadlock. | |

"Operating system 98 handles a deadlock by
interruptlng only those pProcessors 1nvolved in the

contlnue execution. The operating system code
determines which process P was involved in the deadlock -

fcondition by noticing which process was running at the

time the deadlock occurred based on the PID bits of

processor 1. It then consults a scheduling table that

indicates which processors are assigned to the different
blocks:-of various prodésSes‘to determine whether any '
blocks of process P where work remains to be done have

no a551oned processor

If any such bloc&s of process P have no
assigned processor, the operating system reassigns one
or more processors to those blocks from the waiting

;blocks If the deadlock was soft, then eventually
: (pos51b1y after a few*more deadlocks) a block of

1nstructlons where prooress may be made will have a
processor aSSLgned to it, and that block may gererate
values that other olocks awalt, thus resolvinq'the'soft'
deadTOCA o

On the other hand, if all blocks of process ?
are awaltlng other ca1cr at‘ons, then: reoeared ‘Jeadiocks
will continue to occur, no m**ter wnat combination of

cesscrs are ass igned :o_process B's oroc&:J The

operating system Xeeps track of the number cf deadlock

o»

WO 89/00734 PCT/US88/02304

- 13 -

signals generated by each process per unit time. When
the number exceeds a configurable parameter, the
operating system declares that process P 1is in a hard
deadlock, and terminates execution of process P.

5 - ~ Note that a deadlock is detected and handled
whenever the processors working on a given process are
deadlocked even though other processors working or other
processes may not be deadlocked. Furthermore, deadlocks
can be detected with respect to two different processes

10 at the same time, that is a deadlock between processors
A and B working on process P may be detected at the same
time that a deadlock between processors C and D working
on process Q is detected. Thus the deadlock detected 1is
relatively fine-grained.

15 Referring again to Fig. 5, the condition on
which instruction 88 branches to itself may be any one
of a wide variety of conditions (not limited to the set
or clear condition of a particular bit) including
conditions set up by other instructions inserted in the

20 machine instruction sequence by the compiler.

Referring to Fig. 9, in one simple example, if
at a given point 100 in the machine instruction
sequende, processing should wait until a data value M
has been calculated, then a bit N in one of the

25 ~concurrency registers 26 (Fig. 3) may be set by an
instruction 102 placed by the compiler immediately after

-

-

the instruction 104 where M is calculated. A conditona

()]

branch instruction 106 causes bit N to be tested and, 1
not set, branches to itself; and otherwise proceeds.

30 Because of the versatility of typically
available conditional branch instructions, a variety of

synchronization functions can de implemented in a simple

(L

)

381

refully construccte

(@]
W
I

way by triggering waits

(

o the set or clear condicicn of

[N
ct

conditions (not limite

WO 89/00734

10

15

20

25

30

- 14 -

a s1ngle blr)

‘For example, a readers/wrrters lock could be
implemented by the follow1ng sets of 1nstruct10ns
Suppose that a word (LOCK) stored in memory 1nc1udes low

‘order bits (NUMBER) that represent the number of

processors that are either readlng or waiting to read at
a given storage location (LOCATION) and a high order

-lock bit (BIT) that indicates whether a processor is

writing at LOCATION. The goal is to assure that no

processor reads until there are no other processors

writing at LOCATION, and that no processor is writing at
LOCATION if any other processor is reading there. o
. In order to lock LOCATION for reading (i.e., to

determine when no other processors are writing at

LOCATION and -to prevent other processors from ertlnq),
the following instruction sequence could be used.
‘Instruction Sequence '

‘Atomically fetch LOCK and :
add ONE to NUMBER to increment -
the number of processors
waiting to read at LOCATION

Test BIT to see if there
are any processors writing at
- LOCATION and conditional branch
- to self until BIT is clear
'(no more writers), then proceed:

In order to unlock a read lock, the follow1ng
instruction sequence could be used.

IRSLEUCthH Secuence

‘Atomically Fetch LOCK and
subtract ONE f£rom NUMBER to
indicate one rewe ~readers.

PCT/US88/02304

WO 89/00734

10

15

25

30

- 15 -

To lock for writing:

Instruction Sequence

Load BIT in a register

Test LOCK for any writers

and readers and conditional
branch to self until LOCK 1is

zero (no writers and no readers),
then set BIT (atomic compare and
store back in LOCK) and proceed.

To unlock a write Lock:

Instruction Sequence

Clear BIT

Thus the waiting condition of a processor
waiting to-write is indicated automatically by the
execution of an already available conditional branch to
self instruction that is part of the algorithm itself,
based on a value (NUMBER) that is not simply a single
bit

Note that while the same sequence of
instructions could be used on other systems (provided
the appropriate instructions -- comparable to fetch and
add, fetch and subtract, compare and store, and clear --
were available), deadlock detection would not alsc be
accomplished unless either special deadlock detection
instructions were inéluded or more complicated set up
sequences were used.

In some cases it is not necessary to introduce

~additional new variables to trigger the waiting

condition. For example, suppose a value 0 of a variable
(BYTES) already stored in memcry indicates an "empty’

condition. Then a thread may determine when memory

PCT/US88/02304

WO 89/00734

10

15

20

25

30

- 16 -

becomes:avaiiable by’loeding BYTES into a register (REG)

and testing it.

Instruction Sequehcer
Load BYTES into REG.

Conditional branch to self
untll BYTES 1s zero, then proceed

The fact that a processor walts at such a

'condltlonal branch instruction for available memory is

used as the basis for deadlock detection, without -
requiring additional instructions. Thus, the same

'1nstructlon both accomplishes the testing needed to

determine when memory is avallable and 1nd1cates when

the processor is waiting.

Because the hardware of each processor is now

capable of indicating when that processor is waiting (by
‘setting the WAIT bit), it is possible for cthe operating

system 98 to assign overhead tasks to processors that

are known to be wa1t1ng, regardless of whether a
deadlocg exists. '

Furthermore, the hardware is able to de*ect

when a processor is idle (i.e. is both waltlng and not

currently as51gned to .any. portlon of the instruction

sequence) 'In such a case, assigning the idle processor

to an overhead ‘task (e.g., an 1nput/outour task) is
better than preempting a waiting (but not idle).

processor to the tas& oecause another. orooessor may be

wa‘rlng for resulrs from tne non—1d1e waiting .
processor. Of course preempting a waiting proce or

(idle or no*) is preferable to preempting one which is

no:jwaltl g at ail,

PCT/US88/02304

73]

5y

e

WO 89/00734

10

15

20

25

30

PCT/US88/02304

- 17 -

The operating system is able to determine
whether a waiting processor is idle or not by observing,
for example, the PRV bit of the processor’'s PSW. If the
bit is set, then the processor has a work assignment,
hence it is not idle. If the processor has its PRV bit
clear, then it has no work assignment, hence it is
idling. The PRV bit is set by the processor executing a
special instruction (one of the assignment instructions,
called EPR, used to govern the execution of parallel
regions) when its thread first enters a parallel
region. When EPR is executed, the PRV field in the PSW
of the processor whose thread is entering the parallel
region is set to indicate that it 1is executing within a
parallel region.

' Another type of assignment instruction (XPR) is
executed by a processor that exits a parallel region.
During execution of XPR, the PRV is cleared indicating
that the thread is no longer working in a parallel

~region.

When a processor reaches the end of 1its worx in
a parallel region and executes the XPR instruction, it
may be precluded from proceeding until other processors
in the parallel region have completed their work. A
dependency bit may have been stored to indicate, for
example, whether the blocks within a parallel region are
dependent such that they all should be completed before
subsequent instructions following that parallel region
are begun. In that situation, the compiler includes a
TEST DEPENDENCY BIT instruction (that branches to itself

‘until that bit is cleared) in the sequence following the

XPR instruction. If an exiting processor finds the

dependency bit set, it is then both waiting (its WAIT
it is set) and idle (its PRV birt is cleared) indicating

to the operating system that it is available to worx on

WO 89/00734 | | | ~ PCT/US88/02304

- 18 -

a diffetent thread. The last processor to exit the

pétallel’:egion clears the'dependency'bit before'
-:eXecuting the TEST instruction and then simply,prbceeds ,
- to the inStructiohs*that follow the parallel region.

5 'Othe:jtypes of instructions may also be used to cause a

processor to idle.

@

2

WO 89/00734 o ' PCT/US88/02304

10

15

20

25

30

- 19 -

Claims

1. A method for controlling the simultaneous
work of multiple processors at different places in a
machine inétruction sequence of the kind which includes
points at each of which processing may need to wait for
the occurrence of a predetermined event, comprising
o including in said instruction sequence at each
said point a conditional branch which, when said event
has not yet occurred, causes the processor executing
said branch to enter and repeat a loop including said
conditional branch, and causes said processing to
continue outside said loop only when said event has
occurred,. and '

detecting that a processor is waiting at one of
said points by determining that it is executing such a
conditional branch.

2. A method for controlling the simultaneous
work of multiple processors at different places in a
machine instruction sequence of the kind which includes
points at each of which processing may need to wait for
the occurrence of a predetermined event, comprising '

including in said instruction sequence at each
said point a conditional instruction which, when said
event has not yet occurred, causes the processor to wait
and, when said event has occur:ed} causes said processor

to stop waiting, and

detecting that a processor is waiting at one of
said points by determining that it is executing such a
conditional instruction, and wherein

there are a plurality of different types of
said events on which said conditional instructlion may

overate.

WO 89/00734 - o ' PCT/US88/02304

10

15

20

25

- .30

- 20 -

instruction that branches to itself as leng as said

predetermlned ‘event has not yet occurred. ;
4. The method of claim 1 or 2 whereln said 7 7

condltlonal branch is based on a condltlonal branch o .

instruction of a kind that is also used as part of said

machine instruction sequence'fbr purposes other than to

indicate that. sa1d processor is waiting. '
5. The method of claim 1or 2 further

comprlslng | ,
1dent1fy1ng when a group of said processors,

,whose process1ng act1v1t1es are. currently 1nterrelated

are all ‘waiting, and
reassigning at . least one of said waltlng

~ processors to another place in said machine 1nstructlon

sequence. o 7 7
6. The method of claim 5 wherein:saidrgroup of
proeeSSorsrcemprises fewer than-all said multipie.
ptdcessors.' ' , , -
7. The method of claim 5 wherein all

processors -in said group are working on a single process.

8. The method of claim 1 or 2 wherein said
machine instruction sequence includes an operating
system capable df'interrupting'the activities-of each

‘said processor from time to time to reas51gn it to

another place in said machlne instruction sequence, and
said method further comprises 1nterrupt1nq processors

that are waltlng before interrupting processors that are

not waiting.

9. The method of claim 5 wherein said step of

identifying when a group of said processors are all

in

waiting is performed by an individual said processor,
whereby said iaertz-v1nq and reassigning mav net reguire

-

interrupcion of other said processors.

WO 89/00734 PCT/US88/02304

10

15

20

25

- 21 -

10. The method of claim 2 wherein said events
include the setting or clearing of a single bit.

: 11. A method for determining the status of one
of a plurality of processors simultaneously working on a
machine instruction seguence comprising

detecting separately

, ~a first condition in which a processor has been
assigned to work at a location within said machine
instruction sequence but is waiting to proceed until the
occurrences of a predetermined event, and

a second condition in which an idle processor
has not been assigned to work at any location within
said machine instruction sequence.

12. The method of claim 11 wherein

a value is stored corresponding to each
processor indicating whether it is assigned to work at
any said location, and ,

said first and second conditlons are detected
based on said value.

13. The method of claim 12 wherein said
machine instruction seguence includes an operating
system capable of interrupting the activities of each
said processor from time to time to reassign it to
another place in said machine instruction sequence, and
said method further comprises interrupting a processor
in said second condition before interrupting any

processor in said first condition.

PCT/US88/02304

WO 89/00734

176

| 9l

\o_
g
g 43151934 MSd - ¥0553208d
TETN J
aTa 5 53151598 Msg] 40553008d AHOWIW
GIHVHS a3YVHS
40 100d . A
7 | g ol [30n3n03s
235 g ¥31S1934 M5d |- 90553205 NOLLONHISNI
, v 1] INIHIOYW
— . v
v 3151938 Msd|_Y9553904d

i

ob

27

WO 89/00734

184

PCT/US88/02304

2/6
PARALLEL
REGION W
BLOCK
Q
09"
PARALLEL BLOCK
REGION R
X .
BLOCK S
| BLOCK T
PARALLEL
REGION
Y R
PARALLEL
REGION FIG. 2

Z

PCT/US88/02304

WO 89/00734

og
G 9l /
. 142
um\x « 0 Y9
o~ OvAN3 [anuov | 0u3z)| 180 Bmmu_no I
I€-12] (0z-81 Zi-1ifoI-6 8-2[1 [0
*K.mw /8 0L g
©
I . |
789 =| 2b
v o
r A] N .>
aid| 189 |Ayd
2 057 g

92

¢ ol

189 I 43151934

xuzmtmbuzg

0YI
O Y31S1934
AINIHYNINOI

4%

£ 135

¢ 135

[135

0135

WO 89/00734 PCT/US88/02304

476

EXECUTE epr <ea>, Ra

¢
LOAD PRD INTO Ra, Rat!, Ra+2
64 JLLEGAL

TES .
PRV At NSTRUCTION

' VALID
SUSPEND ASYNCHRONOUS INTERRUFPTS

72 SET CONDITION
CODE Z AND
BOTH SET NOT BOTH SET SyPPRESS
EXECUTION OF

INCREMENT 78 REMAINDER OF
ENTERED AND ACTIVE” INSTRUCTION

62

|66

NO

|

CLEAR CONDITION copd%* FIND UNUSED CRI VALUE |

84

r % LOAD CRI VALUE INTO | 86
|GET CRI VALUE FROM PRO- PSM; AND PRD

SET PRV SS

SETCRI +——100 F/G 6

| ,
SET PRV |02
¥ ¥

LOAD MODIFIED CONTROL 04
WORD INTO Ra —
60 COPY Ra BACK INTO PRD —106

COPY Ra+/ AND Ra+2 INTO CRO,CRI 107

WO 89/00734

1o

PCT/US88/02304

576

EXECUTE XPR <ea> Ra

14
: ILLEGAL
RV — [INSTRUCTION
NOT SET
SET _ TRAP
SUSPEND ASYNCHRO/:JOUS INTERRUPTS 5
LOAD CONTROL WORD INTO Ra 116

DECREMENT ENTERED AND ACTIVE I8

120
CER 0 | i

o

CLEAR VI —124

L 4

CLEAR PRN [— 130

LOAD MODIFIED -
o
CONTROL WORD INTO Ra
! ,
COPIES Ra+l Ra+2
TO PRD — |34

FIG. 7

WO 89/00734 | PCT/US88/02304

6/6°

EDR FDRI, Ra —

L1 TEST AND SET Bl'l_'_O CRO L2

BLOCK |
— INSTRUCTIONS

PARALLEL 140

L2 TESTANDSET BITI CRO L3 REGION

-

BLOCK 2
— INSTRUCTIONS

L3 XPR PRDI, Ra
TEST DEPENDENCY BIT _

FIG. 8

INTERNATIONAL SEARCH REPORT
International Application No. PCT/U588/02304

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) &

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC (4): GO6F 15/16
U.S. Cl. 364/200

Il. FIELDS. SEARCHED

Minimum Documentation Searched 7

Classification System . Classification Symbols

U.s. 364/200, 900

Documentation Searched other than Minimum Documentation
to the Extent that such D-cuments are Included in the Fields Searched 8

1Il. DOCUMENTS CONSIDERED TO BE RELEVANT 9
Category * Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No. ¥

X U.S., A, 3,810,119 (ZIEVE ET AL.) 07 MAY 1974, 1-4
see entire document.

X U.S., A, 4,318182 (BACHMAN ET AL.) 02 MARCH 1982, 1-13
see entire document.

X U.S., A, 4,445,197 (LORIE ET AL.) 24 APRIL 1984, 11-13
' see entire document.

Y U.S., A, 4,494,193 (BRAHM ET AL.) 15 JANUARY 1985, 5-9
see entire document.

A U.S., A, 3,518,413 (HOLTEY) 30 JUNE 1970, 1-2
See column |, lines 14-21 and column 2, :
lines 60-66.

A U.S., A, 4,189,771 (ROEVER) 19 FEBRUARY 1980, 1-13
see entire document.

A, P |U.S., A, 4,754,398 (PRIBNOW) 28 JUNE 1988, 1-13
see entire document.

* Special categories of cited documents: 10 “T" later document published afterﬂthe internationallﬁling dgti
. . which iority date and not in conflict with the app ication bu
'A" document defining the general state of the art which is not or priori con |
f h cited to understand the principle or theory underlying the
considered to be of particular relevance invention
ugn f : . :
E ??A;}le%g?ecument but publlshed_on or after the international ux" document of particular refevance; the ciaimed invention
1hng cannot be considered novel or cannat be considered to
L dc':]cuhment wtgch may ét\r%wtdoubtgl on priodrity cl?im(szhor involye an inventive step
which is cited to establish the publication date of another wy" document of . . . : .
ey : : particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
"0" document referring to an. oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means . ments, such combination being obvious to a person skilled
“p" document published prior to the international filing date but in the art.
later than the priority date claimed ug" document member of the same patent family
IV. CERTIFICATION
Date of the Actual Completion of the International Search | Date of Mailing of this International Search Report
! ivm~ NN .
22 AUGUST 1988 BN AN RN I
International Searching Authority B Sigpature of Authorized /Oﬁ‘rcer
.] /
1 (997 I3 C/W//)
ISA/US i Debra Chun

Form PCTASA/210 (second sheet) (Rev.11-87)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

