

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2008-215608
(P2008-215608A)

(43) 公開日 平成20年9月18日(2008.9.18)

(51) Int.Cl.

F 16 C 33/74 (2006.01)

F 1

F 16 C 33/74

テーマコード(参考)

Z

3 J O 1 6

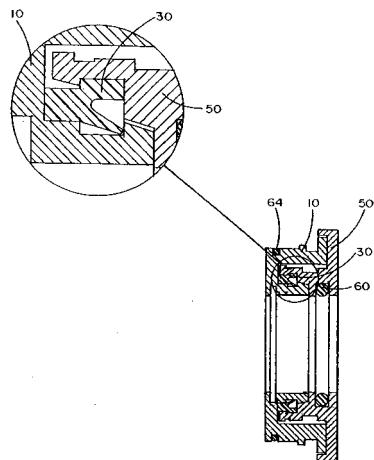
審査請求 未請求 請求項の数 19 O L 外国語出願 (全 52 頁)

(21) 出願番号 特願2007-162531 (P2007-162531)
 (22) 出願日 平成19年6月20日 (2007. 6. 20)
 (31) 優先権主張番号 11/709, 818
 (32) 優先日 平成19年2月23日 (2007. 2. 23)
 (33) 優先権主張国 米国 (US)
 (31) 優先権主張番号 11/812, 482
 (32) 優先日 平成19年6月19日 (2007. 6. 19)
 (33) 優先権主張国 米国 (US)

(71) 出願人 504315864
 ガーロック シーリング テクノロジーズ エルエルシー
 アメリカ合衆国、ニューヨーク州 145
 22, パルミラ, ディヴィジョン ストリート 1666
 (74) 代理人 100092956
 弁理士 古谷 栄男
 (74) 代理人 100101018
 弁理士 松下 正
 (74) 代理人 100120824
 弁理士 鶴本 祥文

最終頁に続く

(54) 【発明の名称】スプリット・ペアリング・アイソレータならびにシール組み立て方法


(57) 【要約】 (修正有)

【課題】耐久性、耐摩耗性に優れ、軸方向の運動中にロータおよびステータ間の接触を阻止するシール。

【解決手段】回転シャフト、ならびに、ステータ10、ロータ50および結合エレメント30を有するペアリングハウジングを密閉するためのアセンブリである。ステータ10は、少なくとも2つの部分と軸方向に伸び、その径側面上に溝を有する環状固定フランジを有し、ロータ50は、2つの部分と軸方向に伸び、その半径側に溝を有する環状固定フランジを有する。環状の結合エレメント30は、2つの部分、ステータ溝と結合するステータ固定部材、ロータ溝と結合するロータ固定部材およびステータ10と結合する両端を有する後方部材を有している。結合エレメント30の半径外面は、その1つがロータ固定部材に対応し、もう1つが前記後方部材に対応する、異なる直径を有する2つの領域を有している。

【選択図】図2

FIG.2

【特許請求の範囲】**【請求項 1】**

ベアリングハウジングおよび回転軸を備えた回転シャフトを密閉するためのアセンブリであって、

前記ステータの直径ならびに前記回転軸を通じて伸びる(extending through)ステータ平面に沿って配置された第一ステータ部ならびに第二ステータ部、および

その半径側にステータ溝を有し、軸方向に伸びるステータ環状固定フランジ、を備えたステータと、

前記ロータの直径ならびに前記回転軸を通じて伸びるロータ平面に沿って配置された第一ロータ部ならびに第二ロータ部、および

その半径側にロータ溝を有する軸方向に伸びるロータ環状固定フランジ、を備えたロータと、

環状結合エレメントの直径ならびに前記回転軸を通じて伸びる結合エレメント平面に沿って配置された第一結合エレメント部ならびに第二結合エレメント部、

前記ステータ溝に嵌まり込むステータ固定部材、

前記ロータ溝に嵌まり込むロータ固定部材、および

上端(upper edge)、下端(bottom edge)、ならびに側端(side edge)を有する後方部材であって、前記側端は、前記ステータを固定するため前記結合エレメントから伸びるもの、を有する環状の結合エレメントと、ならびに

直径が異なる2の隣接する領域であって、その1つが前記ロータ固定部材に対応し、もう1つが前記後方部材に対応するもの、を備えたこと、

を特徴とするアセンブリ。

【請求項 2】

請求項1のアセンブリにおいて、それに沿って前記第一および前記第二結合エレメント部が配置された前記結合エレメント平面は、それに沿って前記第一ロータ部および前記第二ロータ部が配置された前記ロータ平面と実質的に同じ平面であること、

を特徴とするアセンブリ。

【請求項 3】

請求項2のアセンブリにおいて、前記第一結合エレメント部は、前記第一ロータ部に接着され、前記第二結合エレメント部は、前記第二ロータ部に接着されること、

を特徴とするアセンブリ。

【請求項 4】

請求項3のアセンブリにおいて、

前記第一および前記第二ステータ部がそれに沿って配置される前記ステータ平面は、前記第一および前記第二ロータ部がそれに沿って配置されるロータ平面に対しほぼ直角であること、

を特徴とするアセンブリ。

【請求項 5】

請求項1のアセンブリにおいて、前記第一ロータ部および前記第二ロータ部は、実質的に同じであること、

を特徴とするアセンブリ。

【請求項 6】

請求項1のアセンブリにおいて、前記第一ステータ部および前記第二ステータ部は、実質的に同じであること、

を特徴とするアセンブリ。

【請求項 7】

請求項3のアセンブリにおいて、前記両ロータ部は、一緒に留められること、

を特徴とするアセンブリ。

【請求項 8】

請求項7のアセンブリにおいて、前記留め具は、ねじ、スナップリングおよびピンから

10

20

30

40

50

なるグループのいずれかであること、
を特徴とするアセンブリ。

【請求項 9】

請求項 1 のアセンブリにおいて、前記ステータは、さらに、第一ステータリング部および第二ステータリング部を有するステータリングを備え、前記第一ステータリング部は、前記第一ステータ部に接着され、前記第二ステータリング部は、前記第二ステータ部に接着されること、

を特徴とするアセンブリ。

【請求項 10】

請求項 1 のアセンブリにおいて、前記ロータは、さらに、第一ロータリング部および第二ロータリング部を有するロータリングを備え、前記第一ロータリング部は、前記第一ロータ部に接着され、前記第二ロータリング部は、前記第二ステータ部に接着されること、

を特徴とするアセンブリ。

【請求項 11】

ハウジング、ならびに、前記ハウジングに対し回転可能かつ前記ハウジングを貫通して伸びるシャフト、を密閉するためのアセンブリであって、

少なくとも 2 のステータ部、および

その半径側にステータ溝を有し、軸方向に伸びるステータ環状固定フランジ、を備えたステータと、

少なくとも 2 のロータ部、および

その半径側にロータ溝を有し、軸方向に伸びるロータ環状固定フランジ、を備えたロータと、

少なくとも 2 の結合エレメント部、

前記ステータ溝に嵌まり込むステータ固定部材、

前記ロータ溝に嵌まり込むロータ固定部材、および

上端、下端、ならびに側端を有する後方部材であって、前記側端は、前記ステータを固定するため前記結合エレメントから伸びるもの、を有する環状の結合エレメントと、ならびに

直径が異なる 2 の隣接する領域であって、その 1 つが前記ロータ固定部材に対応し、もう 1 つが前記後方部材に対応するもの、を備えたこと、

を特徴とするアセンブリ。

【請求項 12】

請求項 11 のアセンブリにおいて、前記少なくとも 2 のステータ部は、実質的に同じであること、

を特徴とするアセンブリ。

【請求項 13】

請求項 11 のアセンブリにおいて、前記少なくとも 2 のロータ部は、実質的に同じであること、

を特徴とするアセンブリ。

【請求項 14】

請求項 11 のアセンブリにおいて、前記両ロータ部は、一緒に留められること、
を特徴とするアセンブリ。

【請求項 15】

請求項 14 のアセンブリにおいて、前記留め具は、ねじ、スナップリングおよびピンからなるグループのいずれかであること、

を特徴とするアセンブリ。

【請求項 16】

請求項 11 のアセンブリにおいて、前記ステータは、さらに、第一ステータリング部および第二ステータリング部を有するステータリングを備え、前記第一ステータリ

10

20

30

40

50

ング部は、前記第一ステータ部に接着され、前記第二ステータリング部は、前記第二ステータ部に接着されること、
を特徴とするアセンブリ。

【請求項 17】

請求項 11 のアセンブリにおいて、前記ロータは、さらに、第一ロータリング部および第二ロータリング部を有するロータリングを備え、前記第一ロータリング部は、前記第一ロータ部に接着され、前記第二ロータリング部は、前記第二ロータ部に接着されること、
を特徴とするアセンブリ。

【請求項 18】

ベアリングハウジングおよび回転軸を備えた回転シャフトを密閉状態にする方法であつて、

ステータを構成するため、前記ステータの直径ならびに前記回転軸を通じて伸びるステータ平面に沿って第一の半環状ステータ部を、第二の半環状ステータ部に位置合わせするステップと、

前記第一の半環状ロータ部の第一ロータ固定フランジの半径側のロータ溝に沿って第一の半環状結合エレメント部の第一ロータ固定部材を、第一の半環状ロータ部に固定するステップと、

前記第二の半環状ロータ部の第二ロータ固定フランジの半径側のロータ溝に沿って第二の半環状結合エレメント部の第二ロータ固定部材を、第二の半環状ロータ部に固定するステップと、

前記第一の半環状ステータ部の第一ステータ固定フランジの半径側のステータ溝に沿って第一の半環状結合エレメント部の第一ステータ固定部材を、第一の環状ステータ部に固定するステップと、

前記第二の半環状ステータ部の第二ステータ固定フランジの半径側のステータ溝に沿って第二の半環状結合エレメント部の第二ステータ固定部材を、第二の環状ステータ部に固定するステップと、

前記第一の半環状結合エレメント部の第一後方部材の第一側端を、前記ステータ溝に位置合わせするステップと、ならびに

前記第二の半環状結合エレメント部の第二後方部材の第二側端を、前記ステータ溝に位置合わせするステップと、を備えたこと、

を特徴とする方法。

【請求項 19】

請求項 18 の方法であつて、さらに、前記第一の半環状ロータ部および前記第二の半環状ロータ部を一緒に留めるステップ、を備えたこと、

を特徴とする方法。

【発明の詳細な説明】

【関連出願のデータ】

【0001】

本出願は、"ラビリングシール"と題する2002年9月30日出願の米国特許仮出願番号 60/414、862 の優先権が主張された、2003年9月29日出願の米国特許出願番号 10/674、264 の分割出願であり、優先権が主張された、2005年12月9日出願の米国特許出願番号 11/297、489 の継続出願であり、現在は、米国特許番号 7、201、377 となった前記出願に基づく優先権が主張された、2007年2月23日出願の米国特許出願番号 11/709、818 の一部継続出願であり、係属中である当該出願に基づく優先権を主張しており、その全体が参照のため本出願に取り込まれる。

【技術分野】

【0002】

本発明は、回転シャフトとベアリングハウジングとの間に動的なシールを提供するラビ

リンスシーリング装置、ならびに、それを組み立てる方法に関する。具体的には、本発明は、そのそれぞれが少なくとも2の部分を有することが可能な、結合エレメント、ロータならびにステータを含む動的なシールに関するものである。

【0003】

ラビリンス型のロータリーシャフトシールは、本技術分野ではよく知られている。通常、これらの装置は、ロータおよびステータを有する2の同心円構造を含んでいる。ロータは、回転シャフトに密閉可能に取り付けられ、ステータは、ベアリングハウジングに密閉可能に取り付けられている。回転ロータと固定ステータ間の空間を密閉するため、多くの異なるタイプのシールが用いられてきた。これらには、Oリング、ゴムのリップシール、ならびにラビリンスシールが含まれる。ラビリンスシールは、効果的なタイプのシールである。具体的に言うと、ベアリングハウジングの外側とその内部との間に伸びる迷路を形成するため、曲線の経路(contoured pathway)あるいは溝がシールリングの内表面上に形成される。ラビリンス経路は、ベアリングハウジング内に液状の潤滑剤を維持するための流体力学的なバリアならびにベアリングハウジング内に異物(contaminants)が入るのを防止する役割を果たす。経路が複雑であればあるほど、異物が上記構造を通過してハウジング内に混入する可能性が低くなる。

10

【0004】

複雑な経路を作る方法の一つとしては、異物が流れる表面の領域の面積を大きくする、すなわち、経路の長さを長くすることが挙げられる。効率的なラビリンスシールを実現するため、シールを形成するために連結するロータおよびステータ側の両方にリッジおよび谷間を備えた、複雑なシーリング構造が多く作られてきた。リッジおよび谷間の数を増やすことにより、経路の総表面領域／長さを大きくすることができ、これにより、異物をブロックするという上記目的が達成される。しかし、比較的小さい空間および誤差しか許容されないとすると、これらのリッジおよび谷間(these fingers)の数およびサイズは制限される。

20

【0005】

回転シャフトシールの他の側面において、システム内に入り込んでしまった異物は、できるだけ早く排出する必要がある。特定の問題が積み重なると、シールが損傷し、および／または、ロータおよびステータの過度の摩耗を引き起こすことになる。また、システムから強制的に排出された液状の潤滑剤は、同様に回収されロータ内に戻さなければならない。液状潤滑剤を失ってしまうと複数の部品が損傷を受け、システムの摩擦熱が上昇してしまう。

30

【0006】

通常のロータおよびステータの構造においては、ロータとステータが互いに接触しないようにするために、最低限の条件をいくつか維持しなければならない。航空機の着陸装置等のいくつかのアプリケーションにおいて、ロータは、約毎分5000回転を超えるスピードで回転する。かかるロータの表面が、このスピードでステータ表面と接触すると、摩擦熱が生じ、部品は摩耗し、装置の全体効率は低下しその耐用年数が短くなってしまう。したがって、ロータとステータとが分離されていることが重要である。

40

【0007】

この2つのコンポーネント間に低摩擦性のコンタクトを設けることにより、これらを半径方向において分離するため、ロータとステータ間にゴムあるいはプラスチックのシーリング装置が頻繁に用いられる。また、ロータがステータ方向に押された場合に、同じシーリング装置によって軸方向における接触を防止することができれば有益である。

【0008】

ロータがステータから遠ざけられた場合、逆の問題が生じ得る。ロータが、軸方向においてステータから遠ざけられると、これらの部品間の隙間が拡がり、異物がベアリングハウジング内に侵入したり、グリースが外に漏れ出してしまう可能性が高くなる。このいずれもが好ましくない展開であり、効率的にロータおよびステータを”結合”し、これらを効率的かつ一緒に固定するシールが望まれている。かかるシールは、部品同士の組み立て

50

を簡単にすべきであるが、軸方向においてロータがステータから外れないようにし、それを防止すべきである。

【0009】

従前のラビリンスシールは、ロータおよびステータを用い、耐久性があり耐摩耗性に優れ、軸方向の運動中にロータおよびステータ間の接触を阻止する、効率的なシールを提供することができなかった。

【0010】

また、シールを分解すると、装置の停止時間が長くなってしまう。停止時間が長くなると、それがコストを上昇させることになる。したがって、より簡単かつより適時に交換可能なシールを作ることが望ましい。

10

【0011】

本発明は、認識されているこれらのニーズに関するものである。

【0012】

【特許文献1】なし

【発明の概要】

【0013】

本発明は、結合エレメント、ならびに回転シャフトとベアリングハウジングとの間で動的なシールを提供するラビリンスシールの組み立て方法、を提供する。前記結合エレメントは、ベアリングハウジングから異物を除去するとともに、ベアリング潤滑剤の損失を防止する。また、結合してはいるが接触していない構造により、軸方向の運動があった際のロータおよびステータの摩耗を防止する。

20

【0014】

本発明の第一の側面においては、ロータ固定部材、ステータ固定部材、ならびに後方部材を備えた環状の結合エレメントが提供される。結合エレメントの径外面は、異なる直径を有する2つの領域を有し、その1つがロータ固定部材に対応し、もう1つが後方部材に対応しており、環状結合エレメントの半径内側からステータ固定部材が半径内側方向に伸びている。

30

【0015】

本発明の他の側面においては、回転シャフトおよびベアリングハウジングを密閉するためのシーリングアセンブリであって、その半径側にロータ溝を有する軸方向に伸びる環状固定フランジを備えたロータと、その半径側にステータ溝を有し軸方向に伸びる環状固定フランジを備えたステータと、ステータ固定部材、ロータ固定部材、ならびに後方部材を有する環状の結合エレメントを備えたものが設けられる。かかるロータ固定部材はロータ溝に嵌り込み、ステータ溝に嵌め込むため、前記ステータ固定部材は、ロータ溝およびステータ溝結合エレメントから半径方向に伸びる。

30

【0016】

本発明の他の側面において、回転シャフトおよびベアリングハウジングを密閉するためのシーリングアセンブリを組み立てるための方法であって、その半径側にロータ溝を有する軸方向に伸びる環状固定フランジを備えたロータを提供するステップと、ステータ固定部材、ロータ固定部材、前記ステータ固定部材と前記ロータ固定部材間の領域によって形成されたボイド、ならびに、後方部材を備えた結合エレメントを提供するステップと、前記結合エレメントの前記ロータ固定部材が、前記ロータ環状固定フランジの前記溝内に保持されるよう、前記結合エレメントを前記ロータに固定するステップと、最後に、前記ボイド上において、前記結合エレメントが所定位置となるまで前記ステータ固定部材が折れ曲がるよう前記ロータおよび結合エレメントを前記ステータに固定するステップとを備えており、前記ステータ固定部材は、前記ステータ溝の領域内に伸びている。

40

【0017】

本発明は、結合エレメントが固有な形状の新しいデザインであることを特徴としている。かかる結合エレメントは、前記ロータおよび前記ステータにおける溝の境界内に適合するため、ほぼ長方形の断面を有する環状である。前記結合エレメントは、さらに、前記ス

50

ステータおよび前記ステータの後方壁と接触するため伸びる後方部材を、溝に固着可能に嵌め込む(to lockingly engage)ためのステータ固定部材を備えている。軸方向への運動によりロータがステータ方向に移動した場合、結合エレメントは、前記ロータと前記ステータとの摩耗を生じる前に接触する。このリング上の後方部材は、前記ロータが前記ステータに接触する前に、前記ステータの後方壁と接触するよう正確に設計されている。この特徴により、主なコンポーネントの摩耗を防止することが可能となるとともに経路を保護することが可能となる。

【0018】

前記ロータ、前記ステータならびに結合エレメントは、それぞれ2以上の部分を備えてよい。かかる特徴により、シールの組み立ておよび分解が促進されるので装置の停止時間を短縮し、これにより費用を低減することが可能となる。したがって、これによって効率性ならびに点検の容易性についての解決策が提供される。

10

【0019】

スプリットラビンスシールを用いた従来のシーリング装置は、結合エレメントを用いていない。また、これらのシーリング装置は、ロータ溝に接着する結合リングエレメントを有していない。

【0020】

ある実施形態において、ペアリングハウジングおよび回転軸を有する回転シャフトを密閉するためのシーリングアセンブリは、ステータ、ロータならびに結合エレメントを備えている。かかるステータは、前記ステータの直径ならびに前記回転軸を通じて伸びる平面に沿って位置合わせされる第一部分および第二部分を有する。また、かかるステータは、その半径側に溝を有し、軸方向に伸びる環状固定フランジを備えている。前記ロータは、前記ロータの直径ならびに前記回転軸を通じて伸びる平面に沿って設けられる第一部分および第二部分を有する。また、かかるロータは、その半径側に溝を有し軸方向に伸びる環状固定フランジを備えている。前記環状結合エレメントは、環状結合エレメントの直径ならびに前記回転軸を通じて伸びる平面に沿って設けられる第一結合エレメント部および第二結合エレメント部、前記ステータ溝に嵌まり込むステータ固定部材、前記ロータ溝に嵌まり込むロータ固定部材、および上端、下端、ならびに側端を有する後方部材を有している。前記後方部材の側端は、前記ステータを固定するため前記結合エレメントから伸びている。前記結合エレメントの径外面は、直径の異なる2の領域を有し、その1つが前記ロータ固定部材に対応し、もう1つが前記後方部材に対応している。

20

【0021】

他の実施形態において、ハウジング、ならびに、前記ハウジングに対し回転可能かつ前記ハウジングを貫通して伸びるシャフトを密閉するためのアセンブリは、ステータ、ロータ、ならびに結合エレメントを有する。前記ステータは、少なくとも2のステータ部、および、その半径側にステータ溝を有し、軸方向に伸びるステータ環状固定フランジを備えている。前記ロータは、少なくとも2のロータ部、および、その半径側にロータ溝を有する軸方向に伸びるロータ環状固定フランジを備えている。環状の結合エレメントは、少なくとも2の結合エレメント部、前記ステータ溝に嵌まり込むステータ固定部材、前記ロータ溝に嵌まり込むロータ固定部材、および、上端、下端、ならびに側端を有する後方部材を有している。前記後方部材の側端は、前記ステータを固定するため前記結合エレメントから伸びる。前記結合エレメントの径外面は、直径の異なる2の隣接する領域を有し、その1つが前記ロータ固定部材に対応し、もう1つが前記後方部材に対応する。

30

【0022】

さらに別の実施形態においては、以下のステップを備えた方法により、ペアリングハウジングおよび回転軸を有する回転シャフトを密閉状態にする方法が提供される。ステータを構成するため、前記ステータの直径ならびに前記回転軸を通じて伸びるステータ平面に沿って第一の半環状ステータ部と、第二の半環状ステータ部が設けられるステップ。前記第一の半環状ロータ部の第一ロータ固定フランジの半径側のロータ溝に沿って第一の半環状結合エレメント部の第一ロータ固定部材を、第一の半環状ロータ部に固定するステップ

40

50

。前記第二の半環状ロータ部の第二ロータ固定フランジの半径側のロータ溝に沿って第二の半環状結合エレメント部の第二ロータ固定部材を、第二の半環状ロータ部に固定するステップ。前記第一の半環状ステータ部の第一ステータ固定フランジの半径側のステータ溝に沿って第一の半環状結合エレメント部の第一ステータ固定部材を、第一の環状ステータ部に固定するステップ。前記第二の半環状ステータ部の第二ステータ固定フランジの半径側のステータ溝に沿って第二の半環状結合エレメント部の第二ステータ固定部材を、第二の環状ステータ部に固定するステップ。前記第一の半環状結合エレメント部の第一後方部材の第一側端を、前記ステータ溝に位置合わせするステップ。前記第二の半環状結合エレメント部の第二後方部材の第二側端を、前記ステータ溝に位置合わせするステップ。

【0023】

10

当業者であれば認識するであろうが、本発明にかかるラビリンス結合エレメントおよび組み立て方法には多くの異なる実施形態が可能である。本発明の付加的な使用、目的、効果、ならびに新たな特徴は、以下の詳細な説明において述べられ、以下を参照、あるいは、本発明を実施することにより、当業者にとってより明確となる。

【発明を実施するための最良の形態】

【0024】

本発明は、回転軸とステータを有するベアリングハウジング間に用いるための新しい結合エレメントを備えている。この結合エレメントは、前記ロータならびにステータ内に形成された溝にフィットするため環状リング形状である。この結合エレメントは、前記ロータとステータを結合し、その分離を防止するとともにその動きを制御する。この結合エレメントは、軸方向の移動がある場合に、前記ロータとステータとの接触を防止するために非金属部を提供する後方部材も含んでいる。

20

【0025】

本発明の他の側面においては、ラビリンスシーリングアセンブリが提供される。当該ラビリンスシーリングアセンブリは、ベアリングハウジングに結合するステータならびに回転シャフトに結合するロータを備えている。いずれの方向への潤滑剤及び/又は異物の移動を防止するため、前記2つのコンポーネント間にラビリンス通路が定義される。前記ステータは、溝を有し軸方向に伸びるフランジを備えている。かかる溝は、前記ロータ上の同様の溝に嵌る。形成された空洞内には、前記環状結合エレメントが含まれる。

30

【0026】

本発明の他の実施形態においては、シーリングアセンブリの組み立て方法が提供される。ハウジングからの潤滑剤の漏れを防止し、ハウジング内への異物の侵入を防止するため、回転シャフトとベアリングハウジング間に結合エレメントが採用される。さらに、結合エレメントは、前記シーリングアセンブリを結合し、前記ロータとステータの接触を防止する。

【0027】

この開示が本発明の原理についての例証と考えられるという理解の下、本発明について特定の実施形態を通じて更に説明を行う。本発明の例示的な実施形態は、同じ番号が様々な実施形態において同様のものを表している図面に示される。

40

【0028】

図1を参照すると、Oリング64によりベアリングハウジングに密閉可能に結合するステータ10、Oリング60により前記シャフトに密閉可能に結合するロータ50、ならびに前記ロータ50と前記ステータ10との間に位置する本発明の結合エレメント30が、シーリングエレメント中に示されている。ロータが回転すると、結合エレメント30は、当該2つの部分の間に低摩擦バッファを提供することにより当該ロータと前記ステータとが接触するのを防止するとともに、そこに潤滑剤を保持し、ベアリングハウジングから異物を排除する。

【0029】

50

前記結合エレメントの詳細については、前記アセンブリの断面図ならびに結合エレメントの断面図をそれぞれ示す、図2ならびに図4に詳しく示されている。断面を見ると、前

記結合エレメントは、ロータ固定部材36、後方部材34ならびにステータ固定部材32を備えている。

【0030】

本発明のある実施形態において、前記結合エレメントの径外面は、前記異なる直径を有する2つの領域を有している。かかる異なる直径は、後方部材34の領域における直径ならびに前記ロータ固定部材36の領域における異なる直径を含んでいる。前記後方部材34と前記ロータ固定部材36間の直径の差によって壁38が形成される。この壁38は、組み立て中、前記結合エレメントがロータ50内に留まるとともに、組み立て後、前記ロータ50ならびにステータ10を結合するよう機能する。本発明の好ましい実施形態においては、前記壁38は、前記結合エレメントの軸方向のほぼ中間点に位置する。しかし、当業者であれば、結合エレメントの機能条件ならびにロータならびにステータアセンブリの構造によって、壁38の位置が変化することを理解する。本発明の好ましい実施形態において、前記壁38は、回転軸に対してほぼ垂直である。

10

【0031】

前記ステータ固定部材32は、前記結合エレメント30の半径方向内側から伸びている。また、前記ステータ固定部材32は、前記のほぼ中間点からある角度で伸びている。ステータ固定部材の長さならびに正確な位置は、ロータならびにステータ特性とともに、組み立ての容易性を考慮することによって決まる。かかるステータ固定部材は、組み立て中に屈折する程度の可撓性を有するとともに、シーリングアセンブリを結合するため充分な強度を持っていなければならない。前記ロータ固定部材36と前記ステータ固定部材32間の領域によって形成されたボイド40が存在する。このボイド40は、前記ロータ、ステータおよび結合エレメントが一緒にシーリングアセンブリ内に組み込まれる際、前記ステータ固定部材32が屈折するための領域を提供する。

20

【0032】

壁38、後方部材34、ロータ固定部材36およびステータ固定部材32を含む特定形状の結合エレメント30は、その動作に必須のものであるが、これらの部品ならびに結合エレメント自身の正確な寸法は、結合エレメントの用途にしたがって変化する。この寸法の変更は、当業者にとって明らかであり、本発明の範囲内である。したがって、本発明の結合エレメントは、特定寸法のシーリングの用途に限定されず、広い範囲に応用可能である。

30

【0033】

本発明の前記結合エレメント30は、特定の温度、圧力、摩擦係数および他の特性の使用目的に応じ、それに適した素材を用いている。本発明の結合エレメントに用いられる一般的な材料は、フッ素化ポリマーあるいは樹脂を含んでいる。本発明のある実施形態において、前記結合エレメント30は、滑らかなプラスチック素材を含んでいる。本発明の好ましい実施形態において、結合エレメントは、ポリテトラフルオロエチレン(PTFE)を含んでいる。

【0034】

本発明の最も好ましい実施形態において、結合エレメント30は、充填剤入りのPTFE(filled PTFE)を含んでいる。充填剤入りのPTFEは、充填剤が全体に分散したPTFEを含む。充填剤は、ガラス等の構造充填剤ならびにグラファイト、モリブデン、ジスルフィド(disulphide)および他の固体潤滑剤等の潤滑剤を含むが、これに限定されない。

40

【0035】

本発明の別の側面においては、本発明の前記結合エレメント30を備えたシーリングアセンブリが提供される。本発明のシーリングアセンブリの例は、図1ならびに図2に最もよくあらわされている。かかるシーリングアセンブリは、ロータ50、ステータ10および結合エレメント30を備えている。前記ロータ50は、前記シーリングアセンブリの中央を貫通するシャフトに密閉可能に結合する。かかるロータ50は、フランジ52の半径内側に位置するロータ溝54を有した軸方向に伸びる環状フランジ52を備えている。また、ステータ10は、ベアリングハウジング68に密閉可能に結合し、フランジ12の半

50

径外側に位置するステータ溝14を有し、軸方向に伸びる環状フランジ12を備えている。ロータ固定部材36、ステータ固定部材32および後方部材34を備えた結合エレメント30は、前記ロータ環状フランジ52と前記ステータ環状フランジ12間の空間により形成された領域内に存する。より正確に言うと、前記結合エレメント30は、その一部がそれぞれ前記ロータ溝54ならび前記ステータ溝14内に存するとともに、後方部材34がステータ後方壁20に伸びている。

【0036】

図3は、所定箇所にエレメントを用いていない図2の一部を詳細に示している。本発明の一実施形態においては、シーリングアセンブリは、Oリング60によってシャフトに密閉可能に結合されるロータ50を含んでいる。かかるロータは、その半径内側に位置する溝54を含む環状のフランジ52を備えている。この溝54は、2の対向する壁58aおよび58bを備えている。同様に、ステータ10は、溝14を含む環状のフランジ12を備えている。かかるステータ溝14は、2の対向する壁18aおよび18bを備えている。本発明の好ましい実施形態において、前記対向壁58aおよび58bと前記対向18aおよび18bは、前記シャフトの軸とほぼ直角である。

10

【0037】

図3に示す本発明の一実施形態において、対向壁58aが対向壁18aの軸方向に配され対向壁58bが対向壁18bの軸方向に配されるよう、ロータ溝の各対向壁が対応するステータ溝の対向壁の軸方向に配される。この構造は、そこに結合エレメント30のロータ固定部材36ならびに内部結合エレメント部材32が収納される、長方形の断面領域を形成する。

20

【0038】

本発明の好ましい実施形態において、ステータ溝54ならびにロータ溝14の対応する壁の少なくとも一つは、ロータ溝の壁58a又は58bおよび対応するステータ溝の壁18a又は18bいずれかの対が軸方向に配されないよう、オフセットされている。

【0039】

このオフセットの一例が図5に示されており、ステータ溝壁の一つである18bは、ステータの後方壁20を備えている。また、図5は、図3に示したロータ溝の壁58bが存在しないよう、ロータ溝の壁の一の壁が除去された本発明の他の実施形態を示している。この実施形態において、結合エレメントは、ロータ内に圧入される。圧入する実施形態の結合エレメントは、結合エレメントの全長にわたって同じ外径を有している。

30

【0040】

本発明の他の実施形態において、図7を参照すると、ステータ10は、さらに、結合エレメント領域内に侵入してきたオイルの廃出を促進するため、シールのシャフト内側にオイルドレインポート22を備えている。時間とともに、潤滑剤は、ステータおよび結合エレメントを通って漏出する。前記オイルドレインポート22は、前記回転シャフトに潤滑剤を行き渡らせるため、オイルがシールのベアリング凹部側へ還流するための経路を提供する。

【0041】

本発明の他の実施形態において、ステータ10は、さらに、ステータの外側(atmospheric side)に位置する放出ポート24を備えている。かかる放出ポート24は、シールの領域に入り込んだいかかる異物もアセンブリから放出することを可能にする。

40

【0042】

本発明の好ましい実施形態において、前記シーリングアセンブリは、そこに収納される結合エレメント30を有するロータ50およびステータ10を備えている。結合エレメント30のロータ固定部材36は、当該ロータ固定部材36の軸方向外側がロータ溝54の対向する壁と接触するよう、ロータ溝54と結合する。本発明の最も好ましい実施形態において、ロータ固定部材36は、動作中の接触および摩擦を最小限にするよう、ロータ溝54内で”浮く(floats)”。ロータおよびステータが互いに軸方向に移動すると、ロータ固定部材36はロータ溝54の対応する壁と接触する。

50

【0043】

同様に、ステータ固定部材32は、ステータ溝および/又は溝の壁18aと接触する。動作中、結合エレメントは、ロータおよびステータ間に形成された空洞内で”浮く”。しかし、結合エレメントに柔軟に取り付けられたステータ固定部材32は、ステータ溝14の壁18aと接触することにより、動作中にアセンブリが移動しても結合エレメント30を適所に保つ手段を提供する。

【0044】

本発明の別の実施形態において、結合エレメント30は、後方部材34も含んでいる。かかる後方部材34は、互いの軸方向へ動く場合にステータとロータが互いに直接接触するのを阻止する。ロータがステータ方向に移動した場合、結合エレメント30の後方部材34は、ロータとステータが直接接触する前にステータ後方壁20に接触する。ロータ50は、ロータ溝の対向壁58aのいずれかの部分を介して結合エレメント30に接触し、そこに押しつけられる。この動作により、結合エレメントの後方部材34は、ステータ後方壁20に作用する。結合エレメントは、滑らかなプラスチック素材で構成されるのが好ましいので、結合エレメント30とロータ50、ならびに結合エレメント30とステータ10間の摩擦力は、ロータ50とステータ10間で直接接触するより著しく小さくなる。これにより、結合エレメント30は、ロータとステータコンポーネント間に耐摩耗性バッファを提供することになる。このことは、これら2つの部品の摩耗を最小限にすることによりロータ50およびステータ10の耐用年数を延長させることに資する。結合エレメント30がそれ自体の耐用年数に達した場合でも、ロータおよびステータを交換する場合に比べ作動休止時間を短くし、交換コストを低く抑えるとともに簡単に交換することができる。

10

20

30

【0045】

図6に示すように、本発明の他の実施形態において、ステータ10は、Oリング64によってベアリングハウジング68に密閉可能に結合する。かかるOリングは、ステータの半径内側に形成された溝内に存する。かかる溝は、溝の片側が溝の反対側より深くなるので溝の底面が傾斜するよう独特の形状に形成される。図6に示した構造において、ベアリングハウジングの本体に最も近い側は、ベアリングハウジングの本体に最も遠い側よりも浅い。これによる効果は、Oリングが圧縮され、ベアリングハウジング内の圧力が高まり、ベアリングハウジング本体からステータが離れ始めることである。かかる高まった圧力は、ステータの動きを停止させる。

【0046】

図6に示す特定の角度および位置は、例示のためだけにある。様々な実施形態において、傾斜面は溝の底面の一部、あるいは、溝の底面全体を含んでもよい。ロータの半径内側の同様の溝を介してロータ50を回転シャフトに固定するため、この原理、ならびに、傾斜したOリング溝を用いてもよいことが理解される。また、望ましくない軸方向の動きが生じた場合、Oリングの圧縮を強めるために、複数の考え得る溝形状を用いることが可能である。

【0047】

本発明の他の側面においては、シーリングアセンブリの組み立て方法が提供される。組み立て中、本発明のある実施形態の結合エレメント30は、シーリングアセンブリを形成するため、ステータ10とロータ50間に挿入される。シーリングアセンブリの好ましい組み立て方法は、まず結合エレメント30とロータ50を結合させ、次に、前記結合エレメントならびにロータを、前記ステータに嵌め込むステップを備えている。

40

【0048】

かかる方法は、さらに、ロータ固定部材36、ステータ固定部材32および後方部材34を備える結合エレメント30を提供するステップ、そこに溝54を有し軸方向に伸びる環状フランジ52を備えるロータを提供するステップ、前記結合エレメントの前記ロータ固定部材36が、前記ロータの前記環状フランジにおける溝54に嵌り込むよう、前記ロータ50内に前記結合エレメント30を位置させるステップ、を備えている。前記ロータ

50

固定部材 3 6 と前記対向壁 5 8 a および 5 8 b 間の接触により、結合エレメントが所定位置にしっかりと固定される。

【 0 0 4 9 】

組み立てられた前記ロータ 5 0 ならびに前記結合エレメント 3 0 は、前記ステータ 1 0 に嵌め込まれる。かかるステータ 1 0 は、その半径外側に溝 1 4 を有し前記ロータ方向の伸びる環状フランジ 1 2 を備えている。結合エレメント 3 0 が環状フランジ 1 2 周囲をスライドすると、ステータ固定部材 3 2 は、結合エレメント 3 0 がスライドしてステータの環状フランジ周囲に位置することを可能にするため、空間 4 0 中で歪み変形する。ステータ固定部材 3 2 がステータリップ 1 6 を超える位置まで押されると、ステータ固定部材 3 2 は、ステータ溝 1 4 内で伸びた状態になるよう自在に曲げ戻すことが可能となる。伸びた位置において、ステータ固定部材 3 2 は、リップ 1 6 の外周を超える溝 1 4 内で伸びるようになる。この位置において、ステータ固定部材 3 2 は、ロータがステータから離れる軸方向の運動を阻止することにより、結合エレメント 3 0 ならびにロータ 5 0 をステータ 1 0 に保持する手段を提供する役割を果たす。

10

【 0 0 5 0 】

この位置において、結合エレメント 3 0 は、その間の空間を埋め、対向壁 5 8 a および 5 8 b を接触させることにより、ロータ 5 0 とステータ 1 0 を結合する。ステータ固定部材 3 2 は、ステータ 1 0 の溝 1 4 内でリセットされるが、通常の動作中に対向壁 1 8 a、1 8 b と接触することはない。軸方向への力が加わり、ロータ 5 0 をステータ 1 0 から離れるように動かした場合、対向壁 5 8 b が、壁 3 8 の領域においてロータ固定部材 3 6 と接触する。これにより、結合エレメント 3 0 は、ロータ 5 0 と一緒に移動するようになる。結合エレメント 3 0 の動きは、ステータ固定部材 3 2 とステータ溝 1 4 の対向壁 1 8 a との接触によって止められる。この動きにより、ロータを備えるシーリングアセンブリ、結合エレメントならびにステータが結合される。結合エレメントに修復不可能な損傷を与えるシーリングアセンブリを分解する唯一つの方法は、軸方向へ充分な力を加えることである。

20

【 0 0 5 1 】

シーリングアセンブリにおける結合効果に加え、結合エレメントは、ロータおよびステータとの間に非接触関係を作り出す。ロータ 5 0 が軸に沿ってステータ 1 0 方向に動いた場合、ロータは結合エレメント 3 0 に接触し、後方部材 3 4 がステータ後方壁 2 0 と接触するようになる。この結合エレメント 3 0 は、後方部材 3 4 が、ステータ方向に、ロータ環状フランジ 5 2 よりも長く伸びるよう設計されている。したがって、ロータ環状フランジ 5 2 は、ステータの後方壁と接触しないようにされ、これにより、ロータおよびステータ同士の過度の摩耗を阻止することでロータならびにステータの耐用年数が延びる。

30

【 0 0 5 2 】

ある実施形態において、いずれの、あるいは、全てのロータ、ステータ、結合エレメントならびに O リングのそれぞれは、一以上の部分から組み立てることができる。ある例示的な実施形態において、図 8 を参照すると、ステータおよびロータのそれぞれは、2 の部分から組み立てることが可能である。この例示的実施形態において示すように、この構成により、機器の休止時間を短くして費用を低減することができるよう、シールの組み立ておよび分解を容易にすることができる。ロータ部分 8 1 0 、 8 2 0 は、ロータの直径および回転の軸を通じて伸びる平面に沿って配置するようにしてもよい。ロータの第一部品 8 1 0 は、第一エッジ 8 4 0 および第二エッジ 8 5 0 を有してもよい。ロータ 8 0 0 の第二部分 8 2 0 は、第一エッジ 8 7 0 および第二エッジ 8 8 0 を有してもよい。ロータを形成するため、ロータの第一部品 8 1 0 の第一エッジ 8 4 0 を、第二部分 8 2 0 の第二エッジ 8 8 0 と位置合わせしてもよく、ロータの第二部分 8 2 0 の第一エッジ 8 7 0 を、第一部品 8 1 0 の第二エッジ 8 5 0 と位置合わせしてもよい。

40

【 0 0 5 3 】

図 9 を参照すると、例示的実施形態によるロータ 9 0 0 の平面図が示されている。かかるロータ 9 0 0 は、2 の部品から組み立てても良い。ロータ部分 9 1 0 、 9 2 0 は、ロ-

50

タ900の直径930および回転の軸を通じて伸びる平面に沿って配置するようにしてもよい。ロータ900の第一部910は、第一エッジ940および第二エッジ950を有してもよい。また、ロータ900の第二部分920は、第一エッジ970および第二エッジ980を有してもよい。ロータ900を形成するため、ロータ900の第一部910の第一エッジ940を、第二部分920の第二エッジ980と位置合わせしてもよく、ロータ900の第二部分920の第一エッジ970を、第一部910の第二エッジ950と位置合わせするようにしてもよい。

【0054】

図8を再度参照すると、ステータ部分812、822は、ステータの直径および回転の軸を通じて伸びる平面に沿って配置するようにしてもよい。ステータの第一部812は、第一エッジ842および第二エッジ852を有してもよい。また、ステータの第二部分822は、第一エッジ872および第二エッジ882を有してもよい。ステータを形成するため、ステータの第一部812の第一エッジ842を、第二部分822の第二エッジ882と位置合わせしてもよく、ステータの第二部分882の第一エッジ872を、第一部812の第二エッジ852と位置合わせするようにしてもよい。

10

【0055】

図10を参照すると、例示的実施形態によるステータ1002の平面図が示されている。かかるステータ1002は、2の部品から組み立てることが可能である。ステータ部分1012、1022は、ステータ1002の直径1032および回転の軸を通じて伸びる平面に沿って配置するようにしてもよい。ステータ1002の第一部1012は、第一エッジ1042および第二エッジ1052を有してもよい。また、ステータ1002の第二部分1022は、第一エッジ1072および第二エッジ1082を有してもよい。ステータ1002を形成するため、ステータの第一部1012の第一エッジ1042を、第二部分1022の第二エッジ1082と位置合わせしてもよく、ステータ1002の第二部分1022の第一エッジ1072を、第一部1012の第二エッジ1052と位置合わせするようにしてもよい。

20

【0056】

他の例示的実施形態において、図11を参照すると、結合エレメント1104は、2の部品から組み立てることが可能である。結合エレメント部分1114、1124は、結合エレメント1104の直径1134および回転の軸を通じて伸びる平面に沿って配置するようにしてもよい。結合エレメント1104の第一部1114は、第一エッジ1144および第二エッジ1154を有してもよい。また、結合エレメント1104の第二部分1124は、第一エッジ1174および第二エッジ1184を有してもよい。結合エレメント1104を形成するため、結合エレメント1104の第一部1114の第一エッジ1144を、第二部分1124の第二エッジ1184と位置合わせしてもよく、結合エレメント1104の第二部分11124の第一エッジ1174を、第一部1114の第二エッジ1154と位置合わせするようにしてもよい。

30

【0057】

他の例示的な実施形態において、図12を参照すると、ロータリング1206は、2の部品から組み立てることが可能である。ロータリング部分1216、1226は、ロータリング1206の直径1236および回転の軸を通じて伸びる平面に沿って配置するようにしてもよい。リング1206の第一部1216は、第一エッジ1246および第二エッジ1256を有してもよい。また、リング1206の第二部分1226は、第一エッジ1276および第二エッジ1286を有してもよい。リング1206を形成するため、リング1206の第一部1216の第一エッジ1246を、第二部分1226の第二エッジ1286と位置合わせしてもよく、リング1206の第二部分1226の第一エッジ1276を、第一部1216の第二エッジ1256と位置合わせするようにしてもよい。

40

【0058】

他の例示的な実施形態において、図13を参照すると、ステータリング1308は、

50

2の部品から組み立てることが可能である。ステータOリング部分1318、1328は、ステータOリング1308の直径1338および回転の軸を通じて伸びる平面に沿って配置するようにしてもよい。ステータOリング1308の第一部1318は、第一エッジ1348および第二エッジ1358を有してもよい。また、ステータOリング1308の第二部分1328は、第一エッジ1378および第二エッジ1388を有してもよい。ステータOリング1308を形成するため、ステータOリング1308の第一部1318の第一エッジ1348を、第二部分1328の第二エッジ1388と位置合わせしてもよく、ステータOリング1308の第二部分1328の第一エッジ1378を、第一部1318の第二エッジ1358と位置合わせするようにしてもよい。

【0059】

10

ある実施形態において、図12ならびに13を参照すると、第一部1216、1318の第一エッジを、第二部分1226、1328の第二エッジ1286、1388に重ね合わせ、第二部分1226、1328の第一エッジ1276、1878を、第一部1216、1318の第二エッジ1256、1358に重ね合わることにより、Oリング1206、1308を形成してもよい。本発明の異なる実施形態において、様々な重ね合わせの組み合わせを用いることが可能である。

【0060】

20

他の実施形態において、図10ならびに13を参照すると、ステータOリング1308を、ステータ1002に接着するようにしてもよい。ステータOリングの第一部1318を、第一ステータ部分1012に沿って接着してもよい。また、ステータOリングの第二部分1328を第二ステータ部分1022に沿って接着してもよい。同様に、他の実施形態において、図9ならびに12を参照すると、ロータOリング1206をロータ900に接着してもよい。ロータOリングの第一部1216を第一ロータ部分910に沿って接着してもよい。ロータOリングの第二部分1226を第二ロータ部分920に沿って接着してもよい。かかる接着により、取り付けを簡単に行うことが可能になる。

【0061】

30

さらに別の実施形態において、図3、9ならびに11を参照すると、結合エレメントの第一部1104をロータ溝54に沿ってロータ900に接着してもよい。また、結合エレメントの第一部1104を、第一ロータ部910に沿ってロータ溝54に接着し、結合エレメントの第二部分1124を第二ロータ部920のロータ溝54に接着してもよい。かかる接着により、取り付けを簡単に行うことが可能になる。

【0062】

40

本発明のある実施形態において、図8、9ならびに14を参照すると、少なくとも1の留め具を用いることによりロータ部分810、820を組み合わせてもよい。かかる少なくとも1の留め具は、受け側1405、1407、960におけるロータ1400の第一部810ならびに第二部分820に嵌り込む、ねじ805、807の形状であってよい。前記留め具は、スナップリング、ピン、ボルト、あるいは、2の部分910、920を一緒に固定する当業者に既知のいずれの手段であってもよい。シールのステータ部分等の他のコンポーネントを代替的、あるいは、追加的に固定するため前記留め具を用いても良いことが理解される。

【0063】

他の実施形態において、図8を参照すると、ロータ部分810、820がそれに沿って配置される平面は、ステータ部分812、822がそれに沿って配置される平面からずらしてもよい。ある実施形態において、前記ロータ部分810、820がそれに沿って配置される平面は、そこにステータ部分812、822が配置されている平面に対しほぼ直角であってもよい。別の実施形態において、配置平面は、他の所定の配置平面とどのように相違してもよい。

【0064】

50

例示的な実施形態において、図8を参照すると、ステータを形成するための2のステータ部分812、822を位置合わせし、形成されたステータ周囲の2のロータ部分810

、820であって、各部が結合エレメントに嵌り込むものを位置合わせすることによってシールを形成してもよい。この実施形態において、ロータ部分1010、1020が設けられる平面は、ステータ部分1110、1120が設けられる平面に対しほぼ直角であってもよい。

【0065】

ここで述べる例示的な実施形態においては、それぞれが第一部分および第二部分を有するロータ、ステータ、結合エレメント、ならびに、Oリングが示されている。しかし、これらのコンポーネントのそれぞれが、1の部分から構成され、あるいは、3又はそれ以上の部分を含んでもよいことが理解される。また、前記シールは、第一ならびに第二部分を有するロータおよび3の部分を有するステータ等の異なる部分を有するコンポーネントの組み合わせから構成してもよい。

10

【0066】

また別の実施形態において、ロータ900、ステータ1002、結合エレメント1104、ロータOリング1206、ステータOリング1308のいずれの部分、あるいは、これらの全てが同じであってもよい。パーツが同じ場合には製造が容易になり、製造コストを低減することができる。例えば、ある実施形態において、ステータは、3の同じ部品から形成することができる。他の例示的実施形態において、ロータは、2の同じ部品から形成することができる。

20

【0067】

本発明は、特定の実施形態に基づき説明されているが、これらの実施形態は、本発明の原理を例示したに過ぎないことが認識されるべきである。当業者であれば、前記結合エレメントならびに本発明の組み立ては、他の素材によって構成し、他の方法および他の実施形態により実行してもよいことを理解する。したがって、ここでの説明は、本発明を限定するものとして理解してはならず、他の実施形態も、本発明の精神ならび範囲内にある。

【図面の簡単な説明】

【0068】

【図1】図1は、本発明の一実施形態におけるシーリングアセンブリの等角分解図である。

30

【図2】図2は、本発明の一実施形態の断面図であって、結合エレメントならびに周辺部分の拡大図を含む前記シーリングアセンブリの断面を有するものである。

【図3】図3は、本発明の一実施形態における結合エレメントなしのロータならびにステータ構造の断面図である。

【図4】図4は、本発明の一実施形態の結合エレメントの断面図である。

【図5】図5は、本発明の一実施形態の断面図であって、ロータ、ステータおよび結合エレメントを含む前記シーリングアセンブリの断面を有するものである。

40

【図6】図6は、本発明の一実施形態のシーリングアセンブリの断面図である。

【図7】図7は、潤滑剤排出ポートならびに異物排出ポートを示した、本発明の一実施形態におけるシーリングアセンブリの等角分解図である。

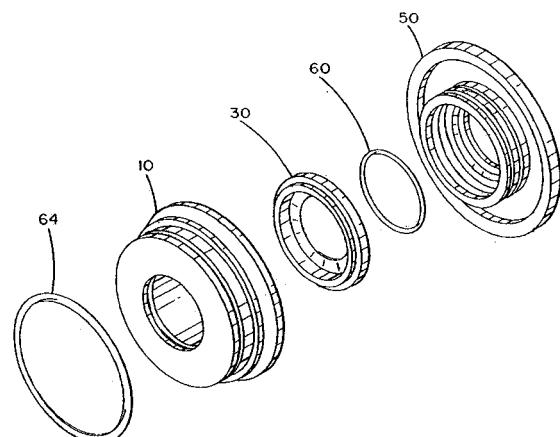
【図8】図8は、本発明による分割されたシーリングアセンブリの等角図である。

【図9】図9は、本発明の一実施形態によるロータ部分の平面図である。

40

【図10】図10は、本発明の一実施形態によるステータ部分の平面図である。

【図11】図11は、本発明の一実施形態によるステータ部分の平面図である。


【図12】図12は、本発明の一実施形態によるロータのOリング部分の平面図である。

【図13】図13は、本発明の一実施形態によるロータのOリング部分の平面図である。

【図14】図14は、本発明の一実施形態によるシーリングアセンブリ断面図である。

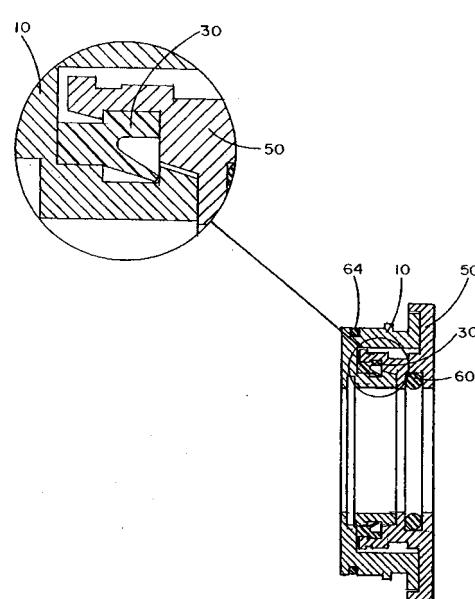
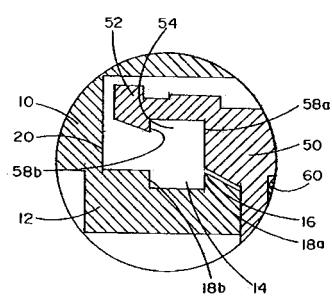

【図1】

FIG.1

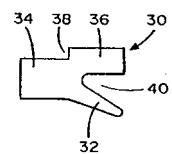
【図2】

FIG.2



【図3】

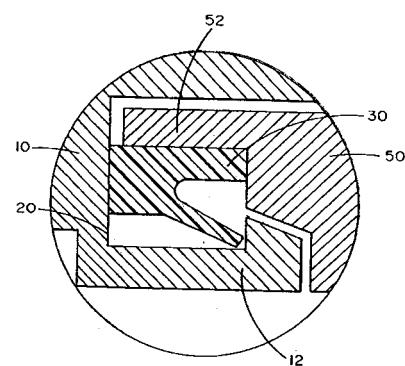
FIG.3


xk504301

xk504302

【図4】

FIG.4



xk504303

xk504304

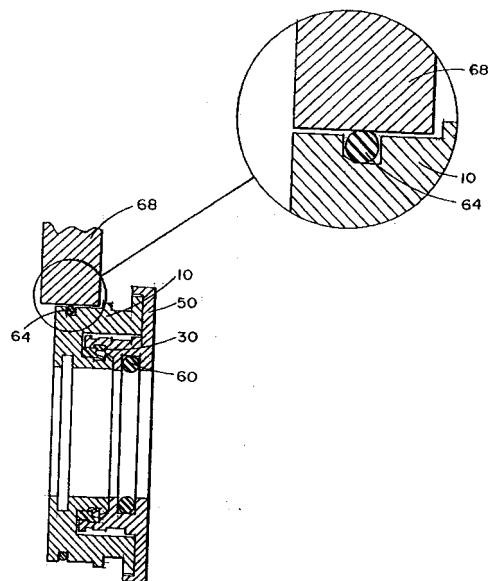

【図5】

FIG.5

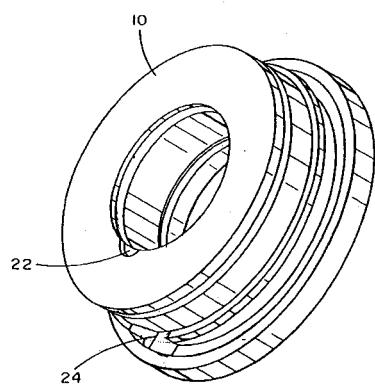

【図6】

FIG.6

【図7】

FIG.7

【図8】

FIG.7

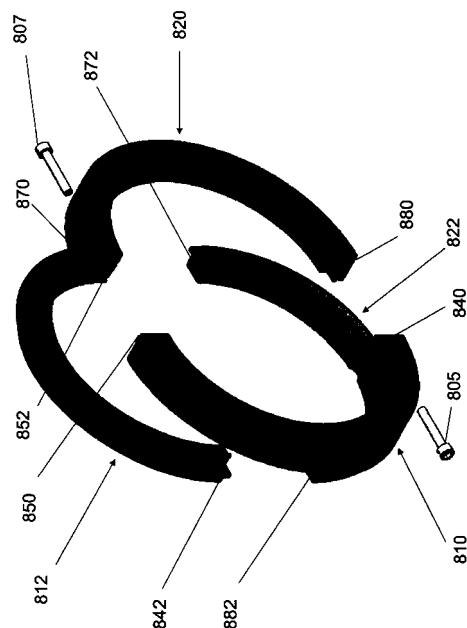


FIG.8

【図9】

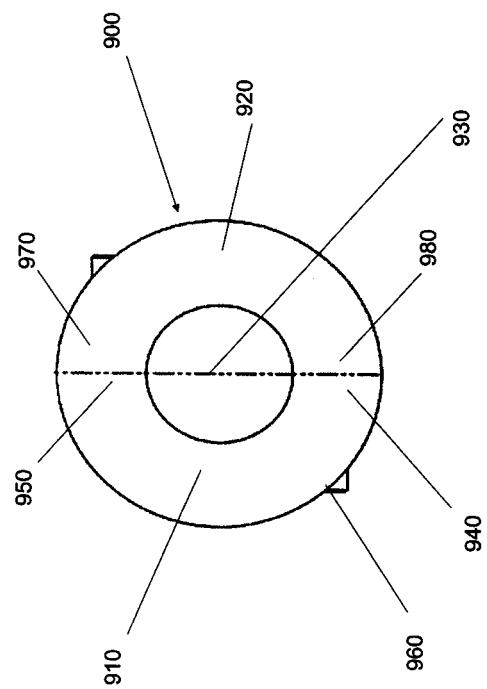


FIG.9

【図11】

XK504309

【図10】

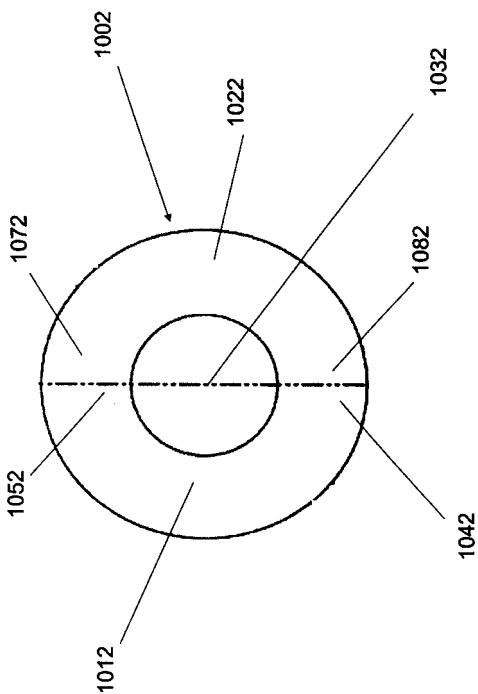


FIG.10

【図12】

XK504310

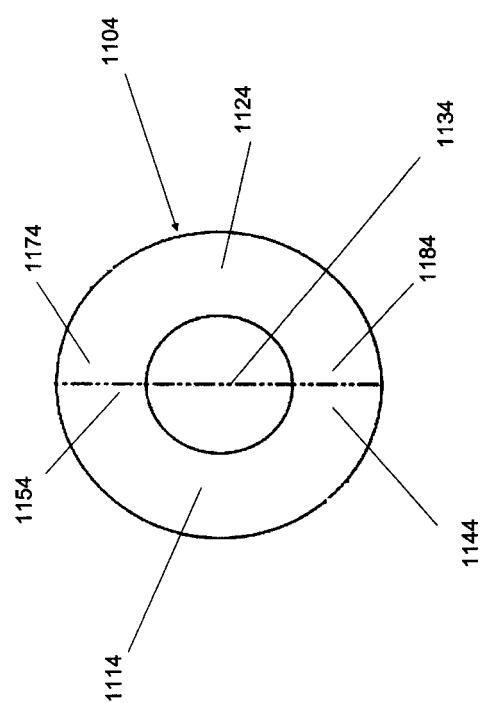


FIG.11

XK504311

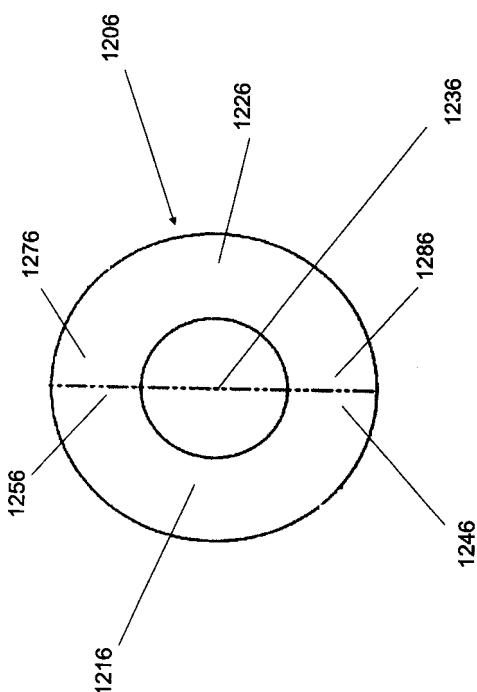


FIG.12

XK504312

【図13】

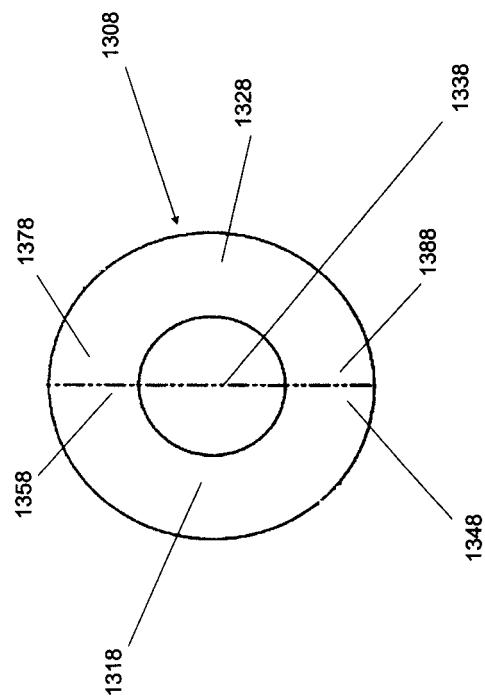


FIG.13

【図14】

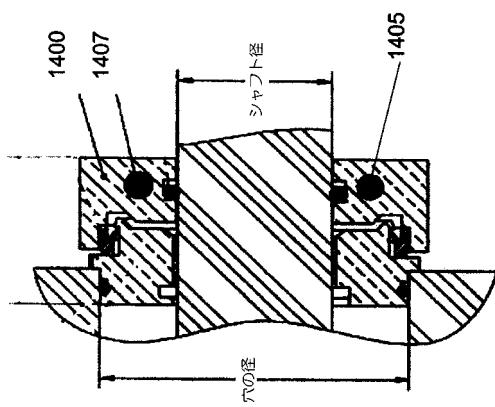


FIG.14

XKG04313

XKG04314

フロントページの続き

(72)発明者 エリザベス・シトーレン

アメリカ合衆国, ニューヨーク州 14450, フェアポート, エーピーティー. 1, イースト
チャーチ ストリート 120

(72)発明者 クリストファー・トーンズ

アメリカ合衆国, ニューヨーク州 14522, パルミラ, ウエスト メイン ストリート 15
2

F ターム(参考) 3J016 AA02 BB17

【外国語明細書】

SPLIT BEARING ISOLATOR AND A METHOD FOR ASSEMBLING SEAL

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of and claims priority to co-pending U.S. Patent Application Serial No. 11/709,818, filed February 23, 2007, which is a continuation of and claims priority to U.S. Patent Application Serial No. 11/297,489, filed December 9, 2005, now Patent No. 7,201,377, which is a divisional of and claims priority to U.S. Patent Application Serial No. 10/674,264, filed September 29, 2003, which claims priority to U.S. Provisional Application No. 60/414,862, filed September 30, 2002, entitled "LABYRINTH SEAL", all of which are herein incorporated by reference in their entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to labyrinth sealing devices for providing a dynamic seal between a rotating shaft and a bearing housing, and a method for assembling the same. In particular, the invention relates to a dynamic seal which includes a unitizing element, a rotor, and a stator, each of which can be in at least two portions.

DESCRIPTION OF RELATED ART

[0003] Labyrinth type rotary shaft seals are well known in the art. Typically, these devices include two concentric ring structures which comprise a rotor and a stator. The rotor is sealingly engaged with a rotating shaft and the stator is sealingly engaged with a bearing housing. Many different types of seals have been used to try to seal the space between the spinning rotor and the fixed stator. These include O-rings, rubber lip seals, and labyrinth seals. Labyrinth seals are the most effective type of seal. Specifically contoured pathways or grooves are formed on the interior surfaces of the seal rings to create a labyrinth extending between the exterior of the bearing housing and the interior of the bearing housing. The labyrinth pathway serves as a hydrodynamic barrier to maintain fluid lubricants within the bearing housing and

prevent contaminants from entering the bearing housing. The more elaborate the pathway, the less chance there is that contaminating materials will pass through the structure and into the bearing housing.

[0004] One method of making a more elaborate pathway is to increase the amount of surface area that must be traversed by the contaminating materials, i.e. by increasing the length of the pathway. In order to achieve an effective labyrinth seal, many have created elaborate sealing structures comprising ridges and valleys on both the rotor and stator sides which interlock to form a seal. By increasing the number of ridges and valleys, the total surface area / length of pathway is increased thereby achieving the above stated goal of blocking out contaminants. Given the relatively small spaces and tolerances involved, the number and size of these fingers is limited.

[0005] In another aspect of rotary shaft seals, contaminants which do migrate into the system need to be expelled as quickly as possible. Build up of particulate matter can damage the seal and/or cause increased wear of the rotor and stator. Furthermore, any lubricating fluid forced out of the system must likewise be recaptured and returned to the interior of the rotor. Loss of lubricating fluid will lead to damaged parts and increase the frictional heat of the system.

[0006] In a typical rotor and stator configuration, some minimum clearance must be maintained to keep the rotor and stator from contacting one another. In some applications, such as aircraft landing gear, the rotor spins at speeds in excess of about 5000 rpm. If a surface of the rotor contacts a surface of the stator at these speeds, frictional heat develops, the components wear and the overall efficiency and working life of the apparatus declines. It is, therefore, important to keep the rotor and stator separate.

[0007] Rubber or plastic sealing devices are often employed between the rotor and stator to keep them separate in the radial direction by providing a low friction contact

between the two components. It would also be beneficial if the same sealing device could prevent contact in the axial direction, in the event that the rotor was forced toward the stator.

[0008] If the rotor were to move away from the stator, the reverse problem can occur. As the rotor moves axially away from the stator, the gap between the components widens, increasing the likelihood of contaminants entering the bearing housing or grease leaking to the outside. Both of these being undesirable scenarios, a seal that “unitizes” the rotor and stator effectively locking them together is desired. The seal should provide for easy assembly of the components, but withstand and prevent the rotor from disengaging the stator in the axial direction.

[0009] Prior labyrinth seals have failed to provide an effective seal that is durable and wear-resistant, unitizes the rotor and stator, and prevents contact between the rotor and stator during periods of axial movement.

[0010] Disassembling seals can cause increased downtime of equipment. The increased downtime can incur expensive costs. It is, thus, desirable to create seals that are more easily replaceable and which can be replaced in a more timely fashion.

[0011] It is to these perceived needs that the present invention is directed.

BRIEF SUMMARY OF THE INVENTION

[0012] The present invention provides a unitizing element and assembly for a labyrinth seal which provide a dynamic seal between a rotating shaft and a bearing housing. The unitizing element excludes contaminants from the bearing housing, while also preventing loss of bearing lubricants. The unitized, non-contacting configuration also prevents wear of the rotor and stator in the case of axial movement.

[0013] In a first aspect of the present invention, an annular unitizing element is provided comprising a rotor engaging member, a stator engaging member, and a rear member. The radially outer surface of the unitizing element comprises two areas of differing diameter, one corresponding to the rotor engaging member and the other corresponding to the rear member and the stator engaging member extends radially inward from the radially inner side of the annular unitizing element.

[0014] In another aspect of the present invention a sealing assembly for sealing a rotating shaft and a bearing housing is provided comprising a rotor comprising an annular engagement flange extending in an axial direction comprising a groove on a radial side thereof, a stator comprising an annular engagement flange extending in an axial direction comprising a groove on a radial side thereof, and an annular unitizing element comprising, a stator engaging member, a rotor engaging member, and a rear member. The rotor engaging member engages the rotor groove and the stator engaging member extends from the unitizing element in a radial direction to engage the stator groove.

[0015] In a further aspect of the present invention a method for assembling a sealing assembly for sealing a rotating shaft and a bearing housing is provided comprising: providing a rotor comprising an annular engagement flange extending in an axial direction comprising a groove on a radial side thereof; providing a unitizing element comprising a stator engaging member, a rotor engaging member, a void comprising the area between the stator engaging member and the rotor engaging member, and a rear member; engaging the unitizing element with the rotor such that the rotor engaging member of the unitizing element is retained within the groove on the rotor annular engagement flange; further providing a stator comprising an annular engagement flange extending in an axial direction comprising a groove on a radial side thereof; and finally engaging the rotor and unitizing element with the stator such that the stator engaging member deflects onto the void until the unitizing element is in position, then the stator engaging member extends into the area of the stator groove.

[0016] A feature of the present invention is the new design of a uniquely shaped unitizing element. The unitizing element is annular with a cross section that is substantially rectangular to fit within the confines of grooves in the rotor and stator. The unitizing element further comprises a stator engaging member to lockingly engage a groove on the stator and a rear member that extends to contact the rear wall of the stator to prevent axial movement. If axial movement shifts the rotor toward the stator, the unitizing element will make contact before any wear of the rotor and stator can occur. The rear member on this ring is precisely designed to contact the back wall of the stator before the rotor contacts the stator. This feature will prevent any wear of the main components and preserve the labyrinth pathway.

[0017] The rotor, the stator, and the unitizing element can comprise two or more portions each. The feature can facilitate the assembly and disassembly of the seal, which can lower the downtime of equipment, and therefore can prevent expenses. This can create an efficient, easy to service solution.

[0018] Conventional sealing devices using a split labyrinth seal do not use a unitizing element to create the seal. Additionally, these sealing devices do not have a unitizing ring element adhered to a rotor groove.

[0019] In one embodiment, a sealing assembly for sealing a bearing housing and a rotating shaft that has an axis of rotation has a stator, a rotor, and a unitizing element. The stator has a first portion and a second portion aligned along a plane extending through a diameter of the stator and the axis of rotation. The stator also has an annular engagement flange extending in an axial direction having a groove on a radial side thereof. The rotor has a first portion and a second portion aligned along a plane extending through a diameter of the rotor and the axis of rotation. The rotor also has an annular engagement flange extending in an axial direction having a groove on the

radial side thereof. The annular unitizing element has a first unitizing element portion and a second unitizing element portion aligned along a plane extending through a diameter of the annular unitizing element and the axis of rotation, a stator engaging member that engages the stator groove, a rotor engaging member that engages the rotor groove, and a rear member having a top edge, a bottom edge, and a side edge. The side edge of the rear member extends from the unitizing element to engage the stator. The radially outer surface of the unitizing element has two areas of differing diameter, one corresponding to the rotor engaging member and the other corresponding to the rear member.

[0020] In another embodiment, an assembly for sealing a housing and a shaft rotatable relative to and extending through the housing has a stator, a rotor, and a unitizing element. The stator has at least two stator portions and an annular engagement flange extending in an axial direction having a groove on a radial side thereof. The rotor has at least two portions and an annular engagement flange extending in an axial direction having a groove on the radial side thereof. The annular unitizing element has at least two portions, a stator engaging member that engages the stator groove, a rotor engaging member that engages the rotor groove, and a rear member having a top edge, a bottom edge, and a side edge. The rear member side edge extends from the unitizing element to engage the stator. The radially outer surface of the unitizing element has two areas of differing diameter, one corresponding to the rotor engaging member and the other corresponding to the rear member.

[0021] In yet another embodiment, a method having the following steps forms a seal for a bearing housing and a rotating shaft having an axis of rotation. A first semi-annular stator portion is aligned with a second semi-annular stator portion along a stator plane extending through a diameter of the stator and the axis of rotation to form a stator. A first rotor engaging member of a first semi-annular unitizing element portion is engaged to a first semi-annular rotor portion along a rotor groove on a

radial side of a first rotor engagement flange of the first semi-annular rotor portion. A second rotor engaging member of a second semi-annular unitizing element portion is engaged to a second semi-annular rotor portion along a rotor groove on a radial side of a second rotor engagement flange of the second semi-annular rotor portion. A first stator engaging member of a first semi-annular unitizing element portion is engaged to a first semi-annular stator portion along a stator groove on a radial side of a first stator engagement flange of the first semi-annular stator portion. A second stator engaging member of a second semi-annular unitizing element portion is engaged to a second semi-annular stator portion along a stator groove on a radial side of a second stator engagement flange of the second semi-annular stator portion. A first side edge of a first rear member of the first semi-annular unitizing element portion is aligned with the stator groove. A second side edge of a second rear member of the second semi-annular unitizing element portion is aligned with the stator groove.

[0022] As will be realized by those of skill in the art, many different embodiments of a labyrinth unitizing element and method of assembly according to the present invention are possible. Additional uses, objects, advantages, and novel features of the invention are set forth in the detailed description that follows and will become more apparent to those skilled in the art upon examination of the following or by practice of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. 1 is an isometric exploded view of a sealing assembly in an embodiment of the present invention.

[0024] FIG. 2 is a cross sectional view of an embodiment of the present invention comprising a cross section of the sealing assembly including an enlarged view of the unitizing element and surrounding area.

[0025] FIG. 3 is a cross sectional view of a rotor and stator configuration without the unitizing element in an embodiment of the present invention.

[0026] FIG. 4 is a cross sectional view of a unitizing element of an embodiment of the present invention.

[0027] FIG. 5 is a cross sectional view of an embodiment of the present invention comprising a cross section of the sealing assembly including a rotor, stator, and unitizing element.

[0028] FIG. 6 is a cross sectional view of the sealing assembly of an embodiment of the present invention with an enlarged view of the stator O-ring.

[0029] FIG. 7 is a isometric view of the sealing assembly in an embodiment of the sealing assembly of the present invention showing a lubricant drainage port and a contaminant expulsion port.

[0030] FIG. 8 is a isometric view of a partitioned sealing assembly according to an embodiment of the present invention.

[0031] FIG. 9 is an top view of the rotor component according to an embodiment of the present invention.

[0032] FIG. 10 is an top view of the stator component according to an embodiment of the present invention.

[0033] FIG. 11 is an top view of the unitizing element according to an embodiment of the present invention.

[0034] FIG. 12 is an top view of the rotor O-ring component according to an embodiment of the present invention.

[0035] FIG. 13 is an top view of the stator O-ring component according to an embodiment of the present invention.

[0036] FIG. 14 is a cross sectional view of the sealing assembly according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0037] The present invention comprises a novel unitizing element for use between a rotating shaft and a bearing housing comprising a stator. This unitizing element is an annular ring shaped to fit the grooves formed in the rotor and stator. This unitizing element unitizes the rotor and stator, preventing separation and restricting movement. This unitizing element also contains a rear member which, in the case of axial movement, will provide a non-metallic component to prevent contact of the rotor and stator.

[0038] In another aspect of the present invention, a labyrinth sealing assembly is provided. The labyrinth sealing assembly comprises a stator engaging a bearing housing, and a rotor engaging a rotating shaft. A labyrinth pathway is defined between the two components to prevent the migration of lubricants and/or contaminants in either direction. The stator comprises an axially extending flange with a groove. This groove mates with a similar groove on the rotor. Contained within the resulting cavity is the annular unitizing element.

[0039] In another embodiment of the present invention, a method for assembling a sealing assembly is provided. A unitizing element is employed between a rotating shaft and a bearing housing to prevent leakage of lubricant from the housing and entry

of contaminants into the housing. Further, the unitizing element unitizes the sealing assembly and prevents contact of the rotor and stator.

[0040] The invention will now be further described by way of specific embodiments thereof, with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention. Exemplary embodiments of the present invention are shown in the figures where like numerals refer to like aspects of the various embodiments.

[0041] Referring to FIG. 1, the unitizing element of the present invention shown in a sealing assembly which generally comprises a stator 10 sealingly engaged to the bearing housing by an O-ring 64, a rotor 50 which is sealingly engaged to the shaft by an O-ring 60, and a unitizing element 30 located between the rotor 50 and the stator 10. As the rotor turns, the unitizing element 30 prevents the rotor from contacting the stator by providing a low friction buffer between the two components and further retains lubrication within and excludes contaminants from the bearing housing.

[0042] The unitizing element may be viewed in more detail in FIGS. 2 and 4, which show a cut away view of the assembly, and a cross sectional view of the unitizing element, respectively. Viewing a cross section, the unitizing element comprises a rotor engaging member 36, a rear member 34 and an stator engaging member 32.

[0043] In one embodiment of the present invention, the radially outer surface of the unitizing element comprises two areas of differing diameter. The differing diameters include, one diameter in the area of the rear member 34 and a differing diameter in the area of the rotor engaging member 36. A wall 38 is formed by the disparity in diameter between the rear member 34 and the rotor engaging member 36. This wall 38 functions to retain the unitizing element within a rotor 50 during assembly, and to unitize the rotor 50 and stator 10 after assembly. In a preferred embodiment of the present invention, the wall 38 is positioned at about the axial midpoint of the unitizing

element. However, one skilled in the art will recognize the position of the wall 38 will vary depending on the functionality required of the unitizing element and the configuration of the rotor and stator assembly. In a preferred embodiment of the present invention, the wall 38 is substantially perpendicular to the axis of rotation.

[0044] The stator engaging member 32 extends from the radially inner side of the unitizing element 30. The stator engaging member 32 extends from about the midpoint of the unitizing element at an angle. The length and exact location of the stator engaging member will depend upon rotor and stator characteristics as well as ease of assembly concerns. The stator engaging member must have sufficient strength to unitize the sealing assembly, while being flexible enough to deflect during assembly. There is a void 40 formed by the area between the rotor engaging member 36 and the stator engaging member 32. This void 40 provides an area for the stator engaging member 32 to deflect into when the rotor, stator, and unitizing element are brought together into a sealing assembly.

[0045] While the particular shape of the unitizing element 30 including the wall 38, rear member 34, rotor engaging member 36 and stator engaging member 32 are critical to its operation, the exact dimensions of these components as well as that of the unitizing element itself will vary according to the intended use of the unitizing element. These modifications in dimension will be apparent to one skilled in the art and fall within the scope of this invention. Thus, the unitizing element of the present invention is not limited to sealing applications of any particular size, and is equally applicable to a wide range of uses.

[0046] The unitizing element 30 of the present invention comprises a material suitable for its intended purpose depending on the particular temperature, pressure, coefficient of friction, and other operating characteristics. Common materials for use in the unitizing element of the present invention comprise fluorinated polymers or resins. In one embodiment of the present invention, the unitizing element 30

comprises a lubricious plastic material. In a preferred embodiment of the present invention, the unitizing element comprises polytetrafluoroethylene (PTFE).

[0047] In a most preferred embodiment of the present invention, the unitizing element 30 comprises filled PTFE. Filled PTFE comprises PTFE with a filler dispersed throughout. Fillers include, but are not limited to, structural fillers such as glass, and lubricants such as graphite, molybdenum disulphide, and other solid lubricants.

[0048] In another aspect of the present invention, a sealing assembly is provided comprising the unitizing element 30 of the present invention. An example of a sealing assembly of the present invention may be best viewed in FIGS. 1 and 2. The sealing assembly comprises a rotor 50, stator 10, and unitizing element 30. The rotor 50 is sealingly engaged to a shaft running through the center of the sealing assembly. The rotor 50 comprises an axially extending annular flange 52 comprising a rotor groove 54 located on a radially inward side of the flange 52. The stator 10 is sealingly engaged to a bearing housing 68 and comprises an axially extending annular flange 12 comprising a stator groove 14 located on a radially outward side of the flange 12. A unitizing element 30 comprising a rotor engaging member 36, a stator engaging member 32, and a rear member 34 resides within the area formed by the space between the rotor annular flange 52 and the stator annular flange 12. More precisely, the unitizing element 30 resides partially within each of the rotor groove 54 and stator groove 14 with the rear member 34 extending toward the stator rear wall 20.

[0049] FIG. 3 shows the detailed portion of FIG. 2 without the unitizing element in place. In one embodiment of the present invention, the sealing assembly includes a rotor 50, which is sealingly engaged to the shaft by an O-ring 60. The rotor includes an annular flange 52, which contains a groove 54 located on a radially inward side thereof. The groove 54 comprises two opposing walls 58a and 58b. Similarly, the stator 10 comprises an annular flange 12 containing a groove 14. The stator groove

14 also comprises two opposing walls 18a and 18b. In a preferred embodiment of the present invention, the opposing walls of the rotor groove 58a, 58b and the opposing walls of the stator groove 18a, 18b are about perpendicular to the axis of the shaft.

[0050] In one embodiment of the present invention, shown in FIG. 3, each opposing wall of the rotor groove is axially aligned with the corresponding opposing wall of the stator groove, such that opposing wall 58a is axially aligned with opposing wall 18a and opposing wall 58b is axially aligned with opposing wall 18b. This configuration forms an area of rectangular cross section in which the rotor engaging member 36 and inner engagement member 32 of the unitizing element 30 are housed.

[0051] In a preferred embodiment of the present invention, at least one of the walls of the stator groove 54 and corresponding wall of the rotor groove 14 are offset, such that one of the pairs of rotor groove wall 58a or 58b and corresponding stator groove wall 18a or 18b are not in axial alignment.

[0052] One example of this offset is shown in FIG. 5 wherein one wall of the stator groove 18b comprises the rear wall of the stator 20. FIG. 5 also illustrates another embodiment of the present invention in which one wall of the rotor groove is eliminated such there is no rotor groove wall 58b as is shown in FIG. 3. In this embodiment, the unitizing element is press fit into the rotor. The unitizing element of the press fit embodiment comprises a constant outer diameter throughout the length of the unitizing element.

[0053] Referring to FIG. 7, in another embodiment of the present invention, the stator 10 further comprises an oil drainage port 22 on the interior shaft side of the seal to facilitate drainage of oil that has migrated into the unitizing element area. Over time, lubricant may seep past the stator and unitizing element. The oil drainage port 22 provides a pathway for oil to pass back into the bearing cavity side of the seal to lubricate the rotating shaft.

[0054] In a further embodiment of the present invention, the stator 10 further comprises an expulsion port 24 located on the stator's atmospheric side. The expulsion port 24 allows any contaminants that migrate into the seal area to be expelled from the assembly.

[0055] In a preferred embodiment of the present invention, the sealing assembly comprises the rotor 50 and stator 10 with the unitizing element 30 housed therein. The rotor engaging member 36 of the unitizing element 30 engages the rotor groove 54 such that the axially outer sides of the rotor engaging member 36 contact the opposing walls of the rotor groove 54. In a most preferred embodiment of the present invention, the rotor engaging member 36 “floats” within the rotor groove 54 so as to minimize contact and friction during operation. When there is an axial shift of the rotor and stator relative to each other, the rotor engaging member 36 will then contact the corresponding wall of the rotor groove 54.

[0056] Similarly, the stator engaging member 32 contacts the stator groove and/or the groove wall 18a. During operation, the unitizing element “floats” within the cavity formed between the rotor and stator. However, the stator engaging member 32, being flexibly attached to the unitizing element 30, does provide a means to keep the unitizing element 30 in position by contacting the wall 18a of the stator groove 14 should the assembly shift during operation.

[0057] In a further embodiment of the present invention, the unitizing element 30 also contains a rear member 34. The rear member 34 prevents the rotor and stator from directly contacting one another in the event of axial movement toward each other. If the rotor shifts toward the stator, the rear member 34 of the unitizing element 30 will contact the rear wall of the stator 20 before the rotor and stator make direct contact. The rotor 50 will contact and press against the unitizing element 30 via one of the opposing walls 58a of the rotor groove 54. This action will force the

rear member 34 of the unitizing element against the stator rear wall 20. Since the unitizing element is preferably constructed of a lubricious plastic material, the frictional force between the unitizing element 30 and the rotor 50, and the unitizing element 30 and the stator 10 will be significantly less than direct contact between the rotor 50 and stator 10. The unitizing element 30 thereby provides a wear-resistant buffer between the rotor and stator components. This serves to prolong the useful life of the rotor and stator by minimizing wear of these two parts. When the unitizing element 30 reaches the end of its useful life, it may be easily replaced, with less operational downtime and replacement cost than that associated with replacing the rotor and stator.

[0058] As shown in FIG. 6, in another embodiment of the present invention, the stator 10 is sealingly engaged to the bearing housing 68 with an O-ring 64. The O-ring resides within a groove formed in the radially outer side of the stator. The groove is uniquely formed such that the bottom surface of the groove is sloped such that one side of the groove is deeper than the opposing side of the groove. In the configuration shown in FIG. 6, the side most proximate the body of the bearing housing is less deep than the side remote from the body of the bearing housing. The effect of this is to cause the O-ring to compress and increase pressure in the bearing housing should the stator begin to move away from the body of the bearing housing. This increased pressure will halt the movement of the stator.

[0059] The specific angle and position shown in FIG. 6 are exemplary only. In various embodiments, the sloping surface may comprise a portion of the groove bottom, or the entirety of the groove bottom. It is to be understood that this principle and sloped O-ring groove can be used to secure the rotor 50 to the rotating shaft through a similar groove on the radially inner surface of the rotor. Additionally, a plurality of possible groove shapes can be used to increase compression of the O-ring when undesirable axial movement occurs.

[0060] In another aspect of the present invention, a method for assembling a sealing assembly is provided. During assembly, the unitizing element 30 of an embodiment of the present invention is inserted between the stator 10 and the rotor 50 to form a sealing assembly. The preferred method for assembling the sealing assembly comprises first engaging the unitizing element 30 and the rotor 50, then engaging the unitizing element and rotor with the stator 10 and bearing housing.

[0061] The method further comprises, providing a unitizing element 30 comprising: a rotor engaging member 36, a stator engaging member 32, and a rear member 34, and providing a rotor comprising a rotor annular flange 52 extending in an axial direction and having a groove 54 therein; and positioning the unitizing element 30 within the rotor 50 such that the rotor engaging member 36 of the unitizing element engages the groove 54 in the annular flange of the rotor. Contact between the rotor engaging member 36 and the opposing walls of the rotor groove 58a, 58b securely retains the unitizing element in position.

[0062] The assembled rotor 50 and unitizing element 30 are engaged to the stator 10. The stator 10 comprises an annular flange 12 extending toward the rotor 50 and having a groove 14 on a radially outer side thereof. As the unitizing element 30 slides around the annular flange 12, the stator engaging member 32 is deflected and deforms into the void 40 to allow the unitizing element to slide into position around the stator annular flange. Once the stator engaging member 32 has been pushed past the stator lip 16, the stator engaging member 32 is free to flex back into an extended position within the stator groove 14. The stator engaging member 32, in the extended position, will extend in the groove 14 past the outer circumference of the stator lip 16. In this position, the stator engaging member 32 will serve to provide a means for retaining the unitizing element 30 and rotor 50 with the stator 10 by preventing axial movement of the rotor away from the stator.

[0063] In this position, the unitizing element 30 unitizes the rotor 50 and the stator 10 by filling the void therebetween and contacting the opposing walls of the rotor groove 58a, 58b. The engaging member 32 rests within the groove 14 on the stator 10, but does not contact opposing walls 18a, 18b during normal operation. If and when axial force is applied moving the rotor 50 away from the stator 10, opposing wall 58b will contact the rotor engaging member 36 in the area of the wall 38. This will force the unitizing element 30 to move with the rotor 50. Movement of the unitizing element 30 will be arrested by contact of the stator engaging member 32 with opposing wall 18a of the stator groove 14. By this action, the sealing assembly comprising the rotor, unitizing element, and stator, is unitized. The only means for disassembling the sealing assembly is to apply enough axial force to irreparably damage the unitizing element.

[0064] In addition to the unitizing effect in the sealing assembly, the unitizing element also creates a non-contacting relationship between the rotor and stator. In the event of axial movement of the rotor 50 toward the stator 10, the rotor will contact the unitizing element 30 and force the rear member 34 into contact with the stator rear wall 20. The unitizing element 30 is designed such that the rear member 34 extends toward the stator farther than the rotor annular flange 52. Thus, the rotor annular flange is prevented from contacting the rear wall of the stator, thereby increasing the useful life of the rotor and stator by preventing undue wear of the components.

[0065] In one embodiment, any or all of the rotor, the stator, the unitizing element, and the O-rings can each be assembled from more than one portion. In an exemplary embodiment, referring to FIG. 8, the stator and the rotor can each be assembled from two portions. As shown in this exemplary embodiment, this configuration can facilitate the assembly and disassembly of the seal, which can reduce the downtime of equipment, and therefore can lower expenses. Rotor portions 810, 820 can be aligned along a plane extending through a diameter of the rotor and the axis of rotation. The first portion 810 of the rotor can have a first edge 840 and a second edge 850. The

second portion 820 of the rotor 800 can have a first edge 870 and a second edge 880. The first edge 840 of the first portion 810 of the rotor can align with the second edge 880 of the second portion 820 and the first edge 870 of the second portion 820 of the rotor can align with the second edge 850 of the first portion 810 to form the rotor.

[0066] Referring to FIG. 9, a top view of a rotor 900 is shown according to an exemplary embodiment. The rotor 900 can be assembled from two portions. Rotor portions 910, 920 can be aligned along a plane extending through a diameter 930 of the rotor 900 and the axis of rotation. The first portion 910 of the rotor 900 can have a first edge 940 and a second edge 950. The second portion 920 of the rotor 900 can have a first edge 970 and a second edge 980. The first edge 940 of the first portion 910 of the rotor 900 can align with the second edge 980 of the second portion 920 and the first edge 970 of the second portion 920 of the rotor 900 can align with the second edge 950 of the first portion 910 to form the rotor 900.

[0067] Referring back to FIG. 8, stator portions 812, 822 can be aligned along a plane extending through a diameter of the stator and the axis of rotation. The first portion 812 of the stator can have a first edge 842 and a second edge 852. The second portion 822 of the stator can have a first edge 872 and a second edge 882. The first edge 842 of the first portion 812 of the stator can align with the second edge 882 of the second portion 822 and the first edge 872 of the second portion 822 of the stator can align with the second edge 852 of the first portion 812 to form the stator.

[0068] Referring to FIG. 10, a top view of a stator 1002 is shown. A stator 1002 can be assembled from two portions. Stator portions 1012, 1022 can be aligned along a plane extending through a diameter 1032 of the stator 1002 and the axis of rotation. The first portion 1012 of the stator 1002 can have a first edge 1042 and a second edge 1052. The second portion 1022 of the stator 1002 can have a first edge 1072 and a second edge 1082. The first edge 1042 of the first portion 1012 of the stator 1002 can align with the second edge 1082 of the second portion 1022 and the first edge 1072 of

the second portion 1022 of the stator 1002 can align with the second edge 1052 of the first portion 1012 to form the stator 1002.

[0069] In another exemplary embodiment, referring to FIG. 11, a unitizing element 1104 can be assembled from two portions. Unitizing element portions 1114, 1124 can be aligned along a plane extending through a diameter 1134 of the unitizing element 1104 and the axis of rotation. The first portion 1114 of the unitizing element 1104 can have a first edge 1144 and a second edge 1154. The second portion 1124 of the unitizing element 1104 can have a first edge 1174 and a second edge 1184. The first edge 1144 of the first portion 1114 of the unitizing element 1104 can align with the second edge 1184 of the second portion 1124 and the first edge 1174 of the second portion 1124 of the unitizing element 1104 can align with the second edge 1154 of the first portion 1114 to form the unitizing element 1104.

[0070] In another exemplary embodiment, referring to FIG. 12, a rotor O-ring 1206 can be assembled from two portions. Rotor O-ring portions 1216, 1226 can be aligned along a plane extending through a diameter 1236 of the rotor O-ring 1206 and the axis of rotation. The first portion 1216 of the rotor O-ring 1206 can have a first edge 1246 and a second edge 1256. The second portion 1226 of the rotor O-ring 1206 can have a first edge 1276 and a second edge 1286. The first edge 1246 of the first portion 1216 of the rotor O-ring 1206 can align with the second edge 1286 of the second portion 1226 and the first edge 1276 of the second portion 1226 of the rotor O-ring 1206 can align with the second edge 1256 of the first portion 1216 to form the rotor O-ring 1206.

[0071] In another exemplary embodiment, referring to FIG. 13, a stator O-ring 1308 can be assembled from two portions. Stator O-ring portions 1318, 1328 can be aligned along a plane extending through a diameter 1338 of the stator O-ring 1308 and the axis of rotation. The first portion 1318 of the stator O-ring 1308 can have a first edge 1348 and a second edge 1358. The second portion 1328 of the stator O-ring

1308 can have a first edge 1378 and a second edge 1388. The first edge 1348 of the first portion 1318 of the stator O-ring 1308 can align with the second edge 1388 of the second portion 1328 and the first edge 1378 of the second portion 1328 of the stator O-ring 1308 can align with the second edge 1358 of the first portion 1318 to form the stator O-ring 1308.

[0072] In one embodiment, referring to FIGS. 12 and 13, the O-rings 1206, 1308 can be formed by overlapping the first edge 1246, 1348 of the first portion 1216, 1318 with the second edge 1286, 1388 of the second portion 1226, 1328 and overlapping the first edge 1276, 1378 of the second portion 1226, 1328 with the second edge 1256, 1358 of the first portion 1216, 1318. Various combinations of overlapping edges can be used in different embodiments of the invention.

[0073] In another embodiment, referring to FIGS. 10 and 13, the stator O-ring 1308 can be adhered to the stator 1002. The first stator O-ring portion 1318 can be adhered along the first stator portion 1012. The second stator O-ring portion 1328 can be adhered along the second stator portion 1022. Similarly, in another embodiment, referring to FIGS. 9 and 12, the rotor O-ring 1206 can be adhered to the rotor 900. The first rotor O-ring portion 1216 can be adhered along the first rotor portion 910. The second rotor O-ring portion 1226 can be adhered along the second rotor portion 920. The adherence can allow for ease of installation.

[0074] In yet another embodiment, referring to FIGS. 3, 9, and 11, the unitizing element 1104 can be adhered to the rotor 900 along the rotor groove 54. The first unitizing element portion 1114 can adhere to the rotor groove 54 along the first rotor portion 910 and the second unitizing element portion 1124 can adhere to the rotor groove 54 on the second rotor portion 920. The adherence can allow for ease of installation.

[0075] In one embodiment of the invention, referring to FIGS. 8, 9, and 14, the rotor portions 810, 820 can be combined using at least one fastener. The at least one fastener can be in the form of screws 805, 807 which engage a the first portion 810 and the second portion 820 of the rotor 1400 at a receiver 1405, 1407, 960. The fastener can also be in the form of a snap ring, pins, bolts, or any other means known to one of ordinary skill in the art to fasten the two portions 910, 920 together. It is also understood that the fastener can be used to alternatively or additionally fasten other components, e.g., the stator portions, of the seal.

[0076] In another embodiment, referring to FIG. 8, the plane which the rotor portions 810, 820 are aligned along can be offset from the plane which the stator portions 812, 822 are aligned along. In one embodiment, the plane which the rotor portions 810, 820 are aligned along can be substantially perpendicular from the plane in which the stator portions 812, 822 are aligned. In an alternative embodiment, alignment planes can be at any desired variance with the other alignment planes.

[0077] In an exemplary embodiment, referring to FIG. 8, a seal can be formed by aligning two stator portions 812, 822 to form the stator and aligning the two rotor portions 810, 820 around the formed stator, wherein each portion engages a unitizing element. In this exemplary embodiment, the plane which the rotor portions 1010, 1020 are aligned can be substantially perpendicular to the plane which the stator portions 1110, 1120 are aligned.

[0078] In the exemplary embodiment described herein, the rotor, stator, unitizing element, and o-rings are shown each having a first portion and a second portion. However, it is understood that each of these components can be comprised of a single portion or can contain three or more portions. Additionally, the seal can comprise a combination of components having different portions, such as a rotor with a first and second portion and a stator having three portions.

[0079] In a further embodiment, portions of any or all of the rotor 900, the stator 1002, the unitizing element 1104, the rotor O-ring 1206, and the stator O-ring 1308 can be identical. Identical parts can facilitate manufacturing and can lower costs of manufacturing. For example, in one embodiment the stator can be formed from three identical portions. In another exemplary embodiment, the rotor can be formed from two identical portions.

[0080] Although the present invention has been described with reference to particular embodiments, it should be recognized that these embodiments are merely illustrative of the principles of the present invention. Those of ordinary skill in the art will appreciate that the unitizing element and assembly of the present invention may be constructed and implemented with other materials and in other ways and embodiments. Accordingly, the description herein should not be read as limiting the present invention, as other embodiments also fall within the scope of the present invention.

CLAIMS

What is claimed is:

1. An assembly for sealing a bearing housing and a rotating shaft comprising an axis of rotation, the assembly comprising:

 a stator comprising:

 a first stator portion and a second stator portion aligned along a stator plane extending through a diameter of the stator and the axis of rotation; and

 a stator annular engagement flange extending in an axial direction comprising a stator groove on a radial side thereof;

 a rotor comprising:

 a first rotor portion and a second rotor portion aligned along a rotor plane extending through a diameter of the rotor and the axis of rotation; and

 a rotor annular engagement flange extending in an axial direction comprising a rotor groove on a radial side thereof; and

 an annular unitizing element comprising:

 a first unitizing element portion and a second unitizing element portion aligned along a unitizing element plane extending through a diameter of the annular unitizing element and the axis of rotation;

 a stator engaging member that engages the stator groove;

 a rotor engaging member that engages the rotor groove; and

 a rear member comprising a top edge, a bottom edge, and a side edge, wherein the side edge extends from the unitizing element to engage the stator; and

 two adjoining areas of differing diameter, one area corresponding to the rotor engagement member and the other corresponding to the rear member.

2. The assembly of claim 1 wherein the unitizing element plane that the first and second unitizing element portions are aligned along is substantially the same plane as the rotor plane that the first and second rotor portions are aligned along.

3. The assembly of claim 2 wherein the first unitizing element portion is adhered to the first rotor portion and wherein the second unitizing element portion is adhered to the second rotor portion.

4. The assembly of claim 3 wherein the stator plane the first and second stator portions are aligned along is substantially perpendicular to the rotor plane the first and second rotor portions are aligned along.

5. The assembly of claim 1 wherein the first and second rotor portions are substantially identical.

6. The assembly of claim 1 wherein the first and second stator portions are substantially identical.

7. The assembly of claim 3 wherein the rotor portions are fastened together.

8. The assembly of claim 7 wherein the fastener is one of a group consisting of screws, snap rings, and pins.

9. The assembly of claim 1 wherein the stator further comprises a stator O-ring comprising a first stator O-ring portion and a second stator O-ring portion, wherein the first stator O-ring portion is adhered to said first stator portion and the second stator O-ring portion is adhered to the second stator portion.

10. The assembly of claim 1 wherein the rotor further comprises a rotor O-ring comprising a first rotor O-ring portion and a second rotor O-ring portion, wherein the first rotor O-ring portion is adhered to said first rotor portion and the second rotor O-ring portion is adhered to the second stator portion.

11. An assembly for sealing a housing and a shaft rotatable relative to and extending through the housing, the assembly comprising:

a stator comprising:

at least two stator portions; and

a stator annular engagement flange extending in an axial direction comprising a stator groove on a radial side thereof;

a rotor comprising:

at least two rotor portions; and

a rotor annular engagement flange extending in an axial direction comprising a rotor groove on a radial side thereof; and

an annular unitizing element comprising:

at least two unitizing element portions;

a stator engaging member that engages the stator groove;

a rotor engaging member that engages the rotor groove; and

a rear member comprising a top edge, a bottom edge, and a side edge, wherein the side edge extends from the unitizing element to engage the stator; and two adjoining areas of differing diameter, one area corresponding to the rotor engagement member and the other corresponding to the rear member.

12. The assembly of claim 11 wherein the at least two stator portions are substantially identical.

13. The assembly of claim 11 wherein the at least two rotor portions are substantially identical.

14. The assembly of claim 11 wherein the rotor portions are fastened together.

15. The assembly of claim 14 wherein the fastener is one of a group consisting of screws, snap rings, and pins.

16. The assembly of claim 11 wherein the stator further comprises a stator O-ring comprising a first stator O-ring portion and a second stator O-ring portion, wherein the first stator O-ring portion is adhered to said first stator portion and the second stator O-ring portion is adhered to the second stator portion.

17. The assembly of claim 11 wherein the rotor further comprises a rotor O-ring comprising a first rotor O-ring portion and a second rotor O-ring portion, wherein the first rotor O-ring portion is adhered to said first rotor portion and the second rotor O-ring portion is adhered to the second stator portion.

18. A method of forming a seal for a bearing housing and a rotating shaft comprising an axis of rotation, the method comprising the steps of:

aligning a first semi-annular stator portion with a second semi-annular stator portion along a stator plane extending through a diameter of the stator and the axis of rotation to form a stator;

engaging a first rotor engaging member of a first semi-annular unitizing element portion to a first semi-annular rotor portion along a rotor groove on a radial side of a first rotor engagement flange of the first semi-annular rotor portion;

engaging a second rotor engaging member of a second semi-annular unitizing element portion to a second semi-annular rotor portion along a rotor groove on a radial side of a second rotor engagement flange of the second semi-annular rotor portion;

engaging a first stator engaging member of a first semi-annular unitizing element portion to a first semi-annular stator portion along a stator groove on a radial side of a first stator engagement flange of the first semi-annular stator portion;

engaging a second stator engaging member of a second semi-annular unitizing element portion to a second semi-annular stator portion along a stator groove on a radial side of a second stator engagement flange of the second semi-annular stator portion;

aligning a first side edge of a first rear member of the first semi-annular unitizing element portion with the stator groove; and

aligning a second side edge of a second rear member of the second semi-annular unitizing element portion with the stator groove.

19. The method of claim 18 further comprising the step of fastening the first semi-annular rotor portion and second semi-annular rotor portion together.

ABSTRACT OF THE DISCLOSURE

An assembly for sealing a rotating shaft and a bearing housing which has a stator, a rotor, and a unitizing element. The stator has at least two portions and an annular engagement flange extending in an axial direction having a groove on a radial side thereof. The rotor has at least two portions and an annular engagement flange extending in an axial direction having a groove on the radial side thereof. The annular unitizing element has at least two portions, a stator engaging member that engages the stator groove, a rotor engaging member that engages the rotor groove, and a rear member having a side edge that engages the stator. A radially outer surface of the unitizing element has two areas of differing diameter, one corresponding to the rotor engaging member and the other corresponding to the rear member.

【図 1】

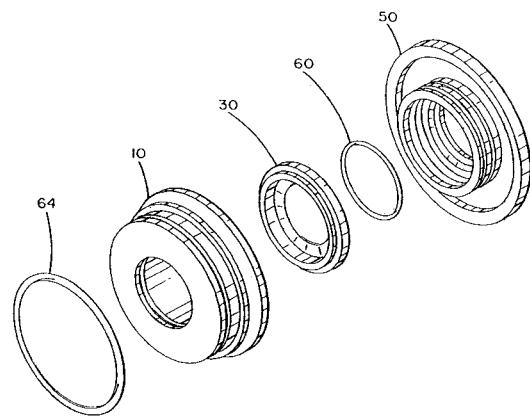


FIG. 1

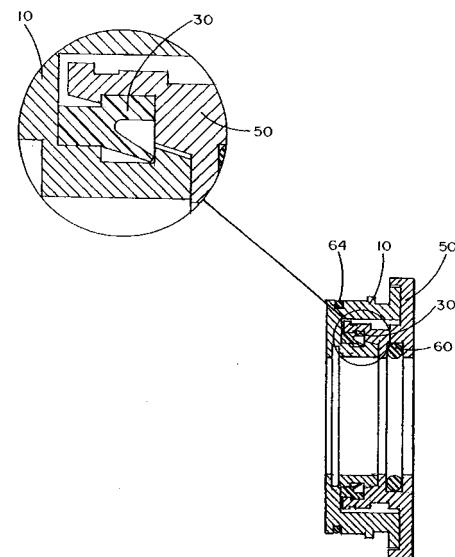


FIG. 2

【図 3】

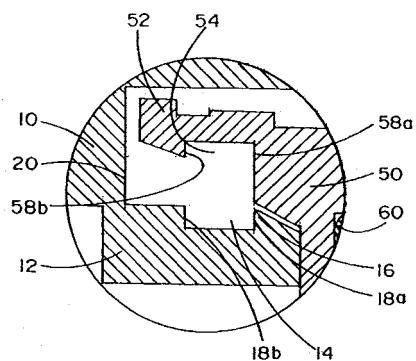


FIG. 3

【図 4】

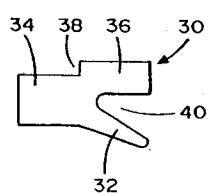


FIG. 4

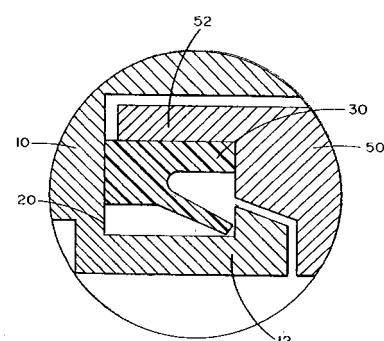


FIG. 5

【図 6】

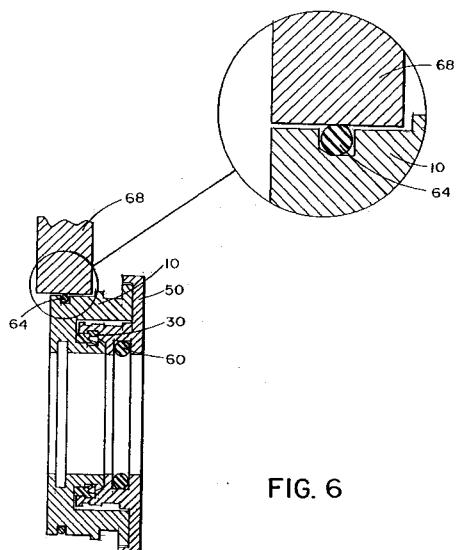


FIG. 6

【図 7】

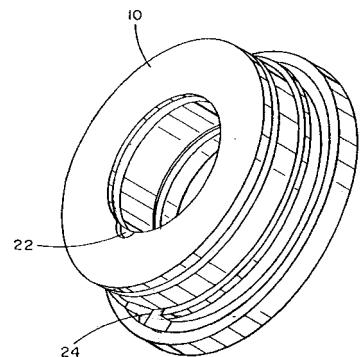


FIG. 7

【図 8】

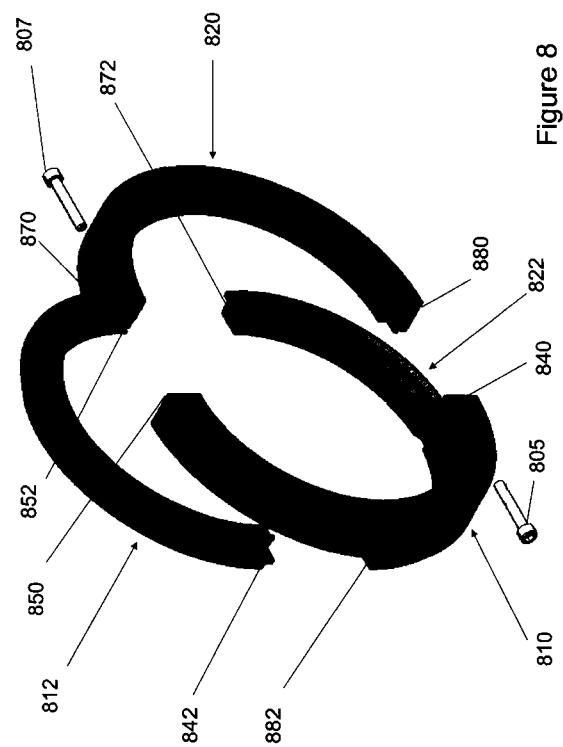


Figure 8

【図 9】

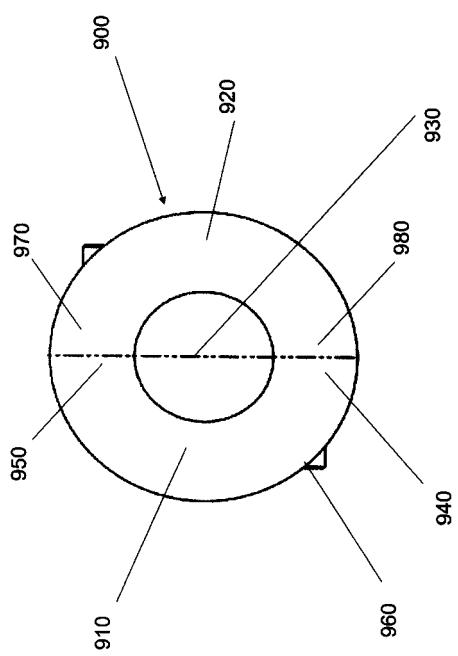


Figure 9

【図 10】

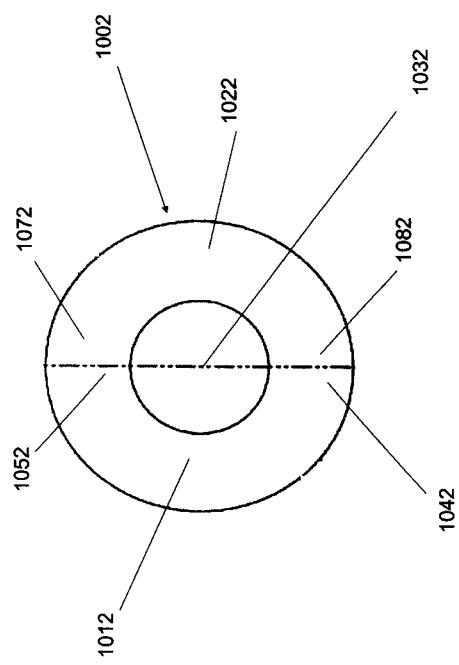


Figure 10

【図 11】

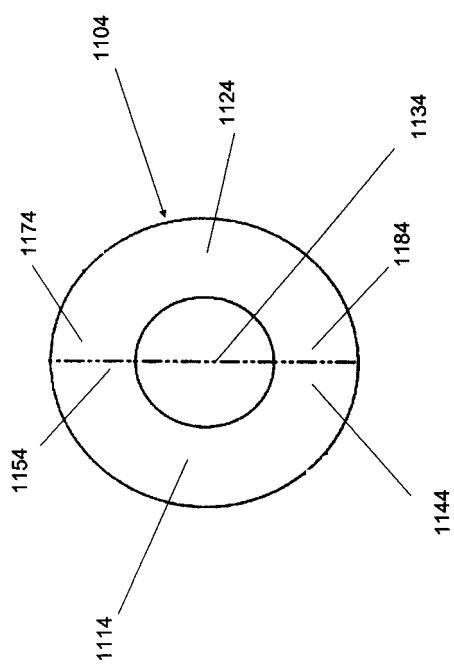


Figure 11

【図 12】

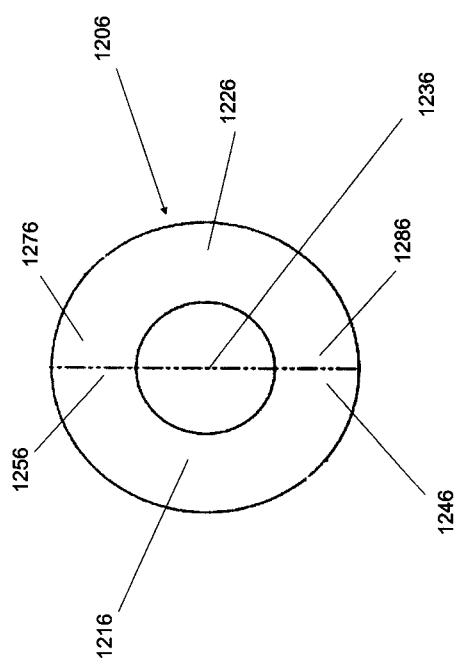


Figure 12

【図 13】

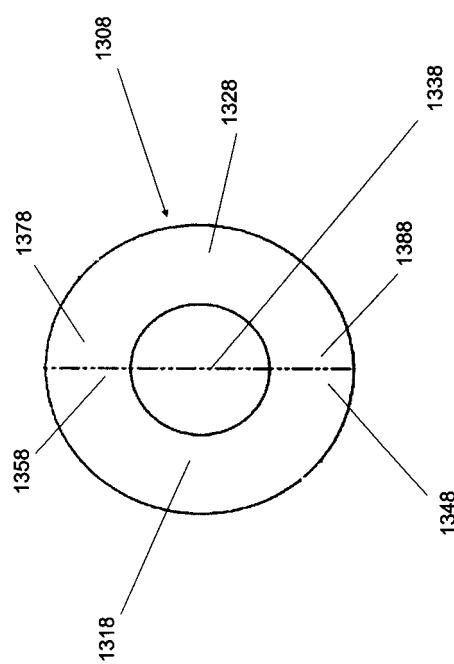


Figure 13

【図 14】

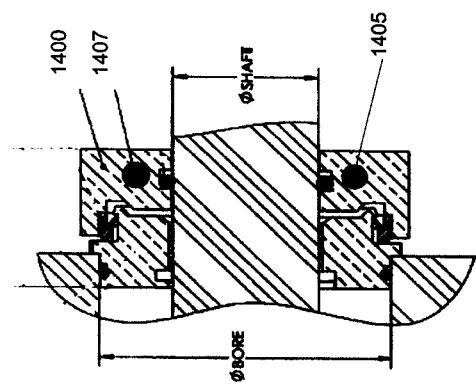


Figure 14