

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2015340305 B2

(54) Title
Diheteroaryl histone deacetylase inhibitors and their use in therapy

(51) International Patent Classification(s)

C07D 241/20 (2006.01)	C07D 403/12 (2006.01)
A61K 31/497 (2006.01)	C07D 413/12 (2006.01)
A61K 31/501 (2006.01)	C07D 417/12 (2006.01)
A61K 31/506 (2006.01)	C07D 487/04 (2006.01)
A61P 29/00 (2006.01)	C07D 491/048 (2006.01)
A61P 35/00 (2006.01)	

(21) Application No: **2015340305** **(22) Date of Filing:** **2015.10.29**

(87) WIPO No: **WO16/067040**

(30) Priority Data

(31) Number	(32) Date	(33) Country
1419228.0	2014.10.29	GB

(43) Publication Date: **2016.05.06**
(44) Accepted Journal Date: **2018.12.06**

(71) Applicant(s)
Karus Therapeutics Ltd

(72) Inventor(s)
Shuttleworth, Stephen Joseph;Cecil, Alexander Richard Liam;MacCormick, Somhairle;Nodes, William John;Tomassi, Cyrille Davy;Silva, Franck Alexandre

(74) Agent / Attorney
Madderns Patent & Trade Mark Attorneys, GPO Box 2752, ADELAIDE, SA, 5001, AU

(56) Related Art
WO 2007085540 A1
WO 2009063240 A1
EP 0556396 A1
CAS RN 1187969-17-0, STN Entry Date 13 Oct 2009
CAS RN 1257852-06-4, STN Entry Date 29 Dec 2010
Uno, S., et al, "N2-N1 Migration of s-Triazinyl Group in the Reaction of N1-Acetyl-N2-(s-triazinyl)alkylenediamines", Bulletin of the Chemical Society of Japan, 1973, 46(7), 2257-8
WO 2010086646 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/067040 A1

(43) International Publication Date

6 May 2016 (06.05.2016)

(51) International Patent Classification:

C07D 241/20 (2006.01) *A61K 31/497* (2006.01)
C07D 403/12 (2006.01) *A61K 31/501* (2006.01)
C07D 487/04 (2006.01) *A61K 31/506* (2006.01)
C07D 417/12 (2006.01) *A61P 35/00* (2006.01)
C07D 491/048 (2006.01) *A61P 29/00* (2006.01)
C07D 413/12 (2006.01)

novation Drive, Abingdon Oxfordshire OX14 4RZ (GB).
SILVA, Franck Alexandre; c/o KARUS THERAPEUTICS LTD, 93 Innovation Drive, Abingdon Oxfordshire OX14 4RZ (GB).

(74) Agents: **GILL JENNINGS & EVERY LLP** et al.; The Broadgate Tower, 20 Primrose Street, London EC2A 2ES (GB).

(21) International Application Number:

PCT/GB2015/053260

(22) International Filing Date:

29 October 2015 (29.10.2015)

(25) Filing Language:

English

(26) Publication Language:

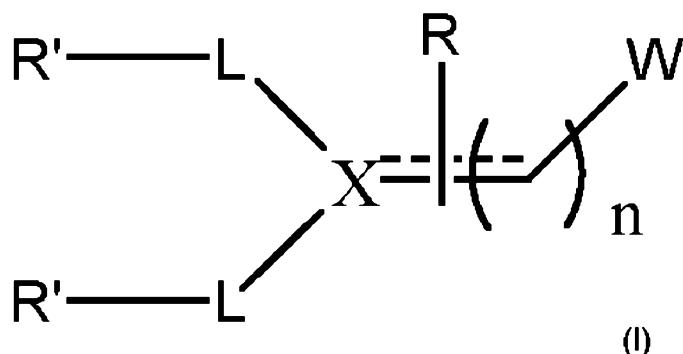
English

(30) Priority Data:

1419228.0 29 October 2014 (29.10.2014) GB

(71) Applicant: **KARUS THERAPEUTICS LTD** [GB/GB];
93 Innovation Drive, Milton Park, Abingdon Oxfordshire OX14 4RZ (GB).

(72) Inventors: **SHUTTLEWORTH, Stephen Joseph**; c/o KARUS THERAPEUTICS LTD, 93 Innovation Drive, Abingdon Oxfordshire OX14 4RZ (GB). **CECIL, Alexander Richard Liam**; c/o KARUS THERAPEUTICS LTD, 93 Innovation Drive, Abingdon Oxfordshire OX14 4RZ (GB). **MACCORMICK, Somhairle**; c/o KARUS THERAPEUTICS LTD, 93 Innovation Drive, Abingdon Oxfordshire OX14 4RZ (GB). **NODES, William John**; c/o KARUS THERAPEUTICS LTD, 93 Innovation Drive, Abingdon Oxfordshire OX14 4RZ (GB). **TOMASSI, Cyrille Davy**; c/o KARUS THERAPEUTICS LTD, 93 In-


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: DIHETEROARYL HISTONE DEACETYLASE INHIBITORS AND THEIR USE IN THERAPY

(57) Abstract: The present invention is a compound having the following formula: (Formula I) or a pharmaceutically acceptable salt thereof, wherein e.g. X is C or N; n is 1 to 10; each L is independently a 5- to 12-membered heteroaryl containing at least two nitrogen atoms; and W is a zinc-binding group. The compounds are useful as histone deacetylase (HDAC) inhibitors.

WO 2016/067040 A1

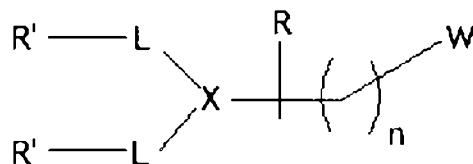
HISTONE DEACETYLASE INHIBITORS AND THEIR USE IN THERAPY

Field of the Invention

The present invention relates to novel compounds which are inhibitors of histone deacetylase (HDAC) and therefore have therapeutic utility.

Background of the Invention

HDACs are zinc metalloenzymes that catalyse the hydrolysis of acetylated lysine residues. In histones, this returns lysines to their protonated state and is a global mechanism of eukaryotic transcriptional control, resulting in tight packaging of DNA in the nucleosome. Additionally, reversible lysine acetylation is an important regulatory process for non-histone proteins. Thus, compounds which are able to modulate HDAC have important therapeutic potential.

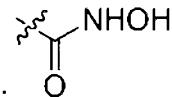

WO2010/086646 discloses compounds which act as inhibitors of HDAC. In the claims, L is defined broadly as being a "nitrogen-containing" heteroaryl. All the exemplified compounds require that L is pyridyl or benzofused pyridyl.

WO2014/072714 also discloses compounds which act as inhibitors of HDAC. However, WO2014/072714 has compounds with L and Y as capping groups, wherein at least one capping group must be a 5-membered nitrogen-containing heteroaryl.

Summary of the Invention

It has surprisingly been found that replacing both L groups of the compounds disclosed in WO2010/086646 or L and Y in the compounds disclosed in WO2014/072714 with 5 to 12 membered heteroaryl groups containing two nitrogen atoms results in improved plasma clearance following IV dosing.

In an aspect, there is provided a compound of the formula

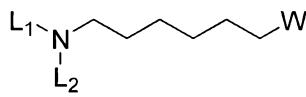

wherein:

X is N;
n is 1 to 10;
R is H;
each R' is independently selected from H and QR₁;

each Q is independently selected from a bond, C₁-C₄ alkylene, CO, CO₂, NH, S, SO, SO₂ or O;

each R₁ is independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₁-C₄ alkoxy, aryl, heteroaryl, C₁-C₁₀ cycloalkyl, halogen, C₁-C₁₀ alkylaryl, C₁-C₁₀ alkyl heteroaryl, C₁-C₁₀ heterocycloalkyl, NR₂R₃ or trifluoromethyl, wherein R₂ and R₃ are C₁-C₄ alkyl;

L is independently a 5 to 12 membered heteroaryl, wherein each L contains at least two nitrogen atoms;


W is a zinc-binding group—CONHOH of structure:

each aryl or heteroaryl may be substituted by up to five substituents selected from C₁-C₆ alkyl, hydroxy, C₁-C₃ hydroxyalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, amino, C₁-C₃ mono alkylamino, C₁-C₃ bis alkylamino, C₁-C₃ acylamino, C₁-C₃ aminoalkyl, mono (C₁-C₃ alkyl) amino C₁-C₃ alkyl, bis(C₁-C₃ alkyl) amino C₁-C₃ alkyl, C₁-C₃-acylamino, C₁-C₃ alkyl sulfonylamino, halo, nitro, cyano, trifluoromethyl, carboxy, C₁-C₃ alkoxy carbonyl, aminocarbonyl, mono C₁-C₃ alkyl aminocarbonyl, bis C₁-C₃ alkyl aminocarbonyl, -SO₃H, C₁-C₃ alkylsulfonyl, aminosulfonyl, mono C₁-C₃ alkyl aminosulfonyl and bis C₁-C₃-alkyl aminosulfonyl; and

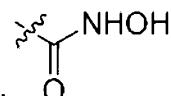
each alkyl, alkenyl or alkynyl may be optionally substituted with C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, aryl, cycloalkyl, heteroaryl, halogen, NH₂, NO₂ or hydroxyl,

or a pharmaceutically acceptable salt thereof.

In another aspect, there is provided a compound represented by:

or a pharmaceutically acceptable salt thereof,

wherein


L₁ is a 5-6 membered monocyclic heteroaryl having at least 2 nitrogen atoms;

L₂ is a 5-6 membered monocyclic heteroaryl having at least 2 nitrogen atoms, or a 9-10 membered bicyclic heteroaryl having at least 2 nitrogen atoms;

wherein L₁ and L₂ are each optionally substituted by one, two or three substituents each independently selected from RL;

RL is selected for each occurrence from the group consisting of: C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl; C₁₋₆alkoxy, C₃₋₆cycloalkyl, halogen, NR^aR^b; -C(O)-NR^aR^b, -NR^a-C(O)-R^a; and -NR^aSO₂-R^a (wherein C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy and C₃₋₆cycloalkyl may be optionally substituted by one, two or three halogens or C₁₋₆alkoxy);

5 R^a and R^b are each independently selected from H or C₁₋₄alkyl; or R^a and R^b taken together with the nitrogen to which they are attached form a 4-6 membered heterocycle; and

W is the zinc binding group -CONHOH of structure: .

10 In another aspect, there is provided a pharmaceutical composition comprising a compound of the invention, and a pharmaceutically acceptable carrier or diluent.

15 In another aspect, there is provided a product containing (a) a compound of the invention, and (b) another inhibitor of HDAC, for simultaneous, separate or sequential use in the treatment or prevention of a condition mediated by HDAC.

In another aspect, there is provided a product containing (a) a compound of the invention, and (b) another chemotherapeutic or antineoplastic agent, for simultaneous, separate or sequential use in the treatment or prevention of cancer.

20 In another aspect, there is provided a method of treating a condition mediated by histone deacetylase (HDAC), comprising administering a pharmaceutically effective amount of a compound, composition or product of the invention.

25 The compounds of the invention may be useful as an inhibitor of HDAC, i.e. in they may be used in a method of treating a disease associated with an over-expression of HDAC.

Description of the Invention

Definitions

As used herein, "alkyl" means a C₁-C₁₀ alkyl group, which can be linear or branched. Preferably, it is a C₁-C₆ alkyl moiety. More preferably, it is a C₁-C₄ alkyl moiety. Examples include methyl, ethyl, n-propyl and t-butyl. It may be divalent, e.g. propylene.

As used herein, "cycloalkyl" contains from 3 to 10 carbon atoms. It may be monovalent or divalent.

As used herein, "alkenyl" means a C₂-C₁₀ alkenyl group. Preferably, it is a C₂-C₆ alkenyl group. More preferably, it is a C₂-C₄ alkenyl group. The alkenyl radicals may be mono- or di-saturated, more preferably monosaturated. Examples include vinyl, allyl, 1-propenyl, isopropenyl and 1-but enyl. It may be 5 divalent, e.g. propenylene

As used herein, "alkynyl" is a C₂-C₁₀ alkynyl group which can be linear or branched. Preferably, it is a C₂-C₄ alkynyl group or moiety. It may be divalent.

Each of the C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl and C₂-C₁₀ alkynyl groups may be optionally substituted with each other, i.e. C₁-C₁₀ alkyl optionally substituted with 10 C₂-C₁₀ alkenyl. They may also be optionally substituted with aryl, cycloalkyl (preferably C₃-C₁₀), aryl or heteroaryl. They may also be substituted with halogen (e.g. F, Cl), NH₂, NO₂ or hydroxyl. Preferably, they may be substituted with up to 10 halogen atoms or more preferably up to 5 halogens. For example, they may be substituted by 1, 2, 3, 4 or 5 halogen atoms. Preferably, the 15 halogen is fluorine. For example, C₁-C₁₀ alkyl may be CF₃, CHF₂, CH₂CF₃, CH₂CHF₂ or CF₂CF₃ or OCF₃, OCHF₂, OCH₂CF₃, OCH₂CHF₂ or OCF₂CF₃.

As used herein, "aryl" means a monocyclic, bicyclic, or tricyclic monovalent or divalent (as appropriate) aromatic radical, such as phenyl, biphenyl, naphthyl, anthracenyl, which can be optionally substituted with up to 20 five substituents preferably selected from the group of C₁-C₆ alkyl, hydroxy, C₁-C₃ hydroxyalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, amino, C₁-C₃ mono alkylamino, C₁-C₃ bis alkylamino, C₁-C₃ acylamino, C₁-C₃ aminoalkyl, mono (C₁-C₃ alkyl) amino C₁-C₃ alkyl, bis(C₁-C₃ alkyl) amino C₁-C₃ alkyl, C₁-C₃-acylamino, C₁-C₃ alkyl sulfonylamino, halo, nitro, cyano, trifluoromethyl, carboxy, C₁-C₃ 25 alkoxy carbonyl, aminocarbonyl, mono C₁-C₃ alkyl aminocarbonyl, bis C₁-C₃ alkyl aminocarbonyl, -SO₃H, C₁-C₃ alkylsulfonyl, aminosulfonyl, mono C₁-C₃ alkyl aminosulfonyl and bis C₁-C₃-alkyl aminosulfonyl.

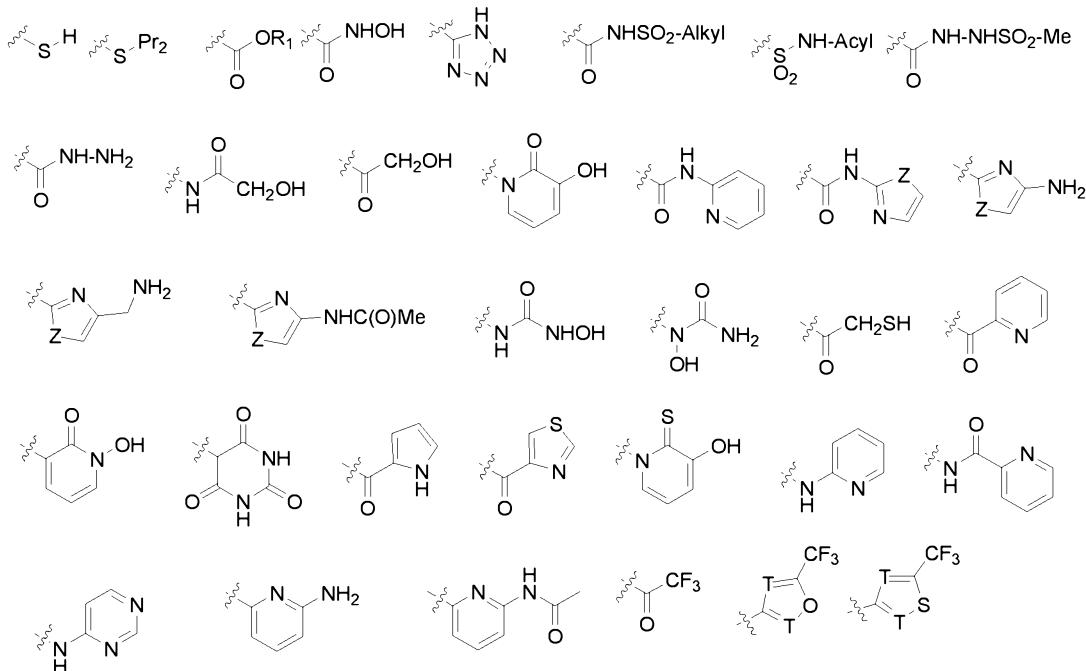
As used herein, "heteroaryl" means a monocyclic, bicyclic or tricyclic monovalent or divalent (as appropriate) aromatic radical containing up to four 30 heteroatoms selected from oxygen, nitrogen and sulfur, such as thiazolyl, isothiazolyl, tetrazolyl, imidazolyl, oxazolyl, isoxazolyl, thienyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, indolyl, quinolyl, isoquinolyl, triazolyl, thiadiazolyl, oxadiazolyl, said radical being optionally substituted with up to three substituents 35 preferably selected from the group of C₁-C₆ alkyl, hydroxy, C₁-C₃ hydroxyalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, amino, C₁-C₃ mono alkylamino, C₁-C₃ bis

alkylamino, C₁-C₃ acylamino, C₁-C₃ aminoalkyl, mono (C₁-C₃ alkyl) amino C₁-C₃ alkyl, bis (C₁-C₃ alkyl) amino C₁-C₃ alkyl, C₁-C₃-acylamino, C₁-C₃ alkyl sulfonylamino, halo, nitro, cyano, trifluoromethyl, carboxy, C₁-C₃ alkoxy carbonyl, aminocarbonyl, mono C₁-C₃ alkyl aminocarbonyl, bis C₁-C₃ alkyl aminocarbonyl,
5 -SO₃H, C₁-C₃ alkylsulfonyl, aminosulfonyl, mono C₁-C₃ alkyl aminosulfonyl and bis C₁-C₃-alkyl aminosulfonyl.

As will be appreciated from above, L is a 5- to 12-membered heteroaryl, wherein each L contains at least two nitrogen atoms. The 5- to 12-membered heteroaryl may be bicyclic, for example, a 6-membered heteroaryl fused to a 5-
10 membered heteroaryl as shown in Examples B, C, G, K, N and P. In other words, bicyclic means that the two rings share two atoms.

In the compounds of the invention, certain L groups are substituted with R'. However, they may still be substituted by up to three additional substituents, selected from the groups defined above. It is preferred that R' is the only
15 substituent.

As used herein, the term "heterocycle" or "heterocycloalkyl" is a mono- or di-valent carbocyclic radical containing up to 4 heteroatoms selected from oxygen, nitrogen and sulfur. It may be monocyclic or bicyclic. It is preferably saturated. The word 'linker' has been used herein to mean di-valent. If the
20 heterocycle is a di-valent linker, the heterocycle may be attached to neighbouring groups through a carbon atom, or through one of the heteroatoms, e.g. a N. Examples of heterocycles are piperazine or morpholine.


The heterocyclic ring may be mono- or di-unsaturated. The radical may be optionally substituted with up to three substituents independently selected
25 from C₁-C₆ alkyl, hydroxy, C₁-C₃ hydroxyalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, amino, C₁-C₃ mono alkylamino, C₁-C₃ bis alkylamino, C₁-C₃ acylamino, C₁-C₃ aminoalkyl, mono (C₁-C₃ alkyl) amino C₁-C₃ alkyl, bis (C₁-C₃ alkyl) amino C₁-C₃ alkyl, C₁-C₃-acylamino, C₁-C₃ alkyl sulfonylamino, halo e.g. F, nitro, cyano, trifluoromethyl, carboxy, C₁-C₃ alkoxy carbonyl, aminocarbonyl, mono C₁-C₃ alkyl
30 aminocarbonyl, bis C₁-C₃ alkyl aminocarbonyl, -SO₃H, C₁-C₃ alkylsulfonyl, aminosulfonyl, mono C₁-C₃ alkyl aminosulfonyl and bis C₁-C₃-alkyl aminosulfonyl.

As used herein, the above groups can be followed by the suffix -ene. This means that the group is divalent, i.e. a linker group.

Preferred groups of the invention

The group W is a zinc-chelating residue, i.e. a metallophile capable of binding with zinc in the active site of HDAC. Suitable metallophiles are known to those skilled in the art.

5 In a preferred embodiment, W is selected from:

wherein R₁ is as defined in claim 1, Pr² is H or a thiol protecting group, Z is selected from O, S or NH and T is N or CH.

When W is COOR₁, R₁ is not halogen. More preferably, when W is

10 COOR₁, R₁ is H or C₁-C₁₀ alkyl.

Preferably, W is COOMe, -CONHOH, -CONHSO₂CH₃, -CONHNHSO₂CH₃, -CONHNH₂, -CONH(2-pyridyl), -NHCONHOH, tetrazole, hydroxypyridin-2-thione or hydroxypyridin-2-one. Preferably W is not COOR₁. More preferably, W is -CONHOH, CONHSO₂CH₃, -CONHNHSO₂CH₃, -CONHNH₂, -CONH(2-pyridyl) -NHCONHOH, tetrazole, hydroxypyridin-2-thione or hydroxypyridin-2-one. Even more preferably, W is -CONHOH, tetrazole, hydroxypyridin-2-thione or hydroxypyridin-2-one. Most preferably, W is -CONHOH.

15

Preferably, at least one, preferably both L groups are independently selected from pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, thiadiazolyl and imidazolyl, each of which may be optionally fused to a 5-membered heteroaryl. Preferably, the 5-membered heteroaryl contains N or O, preferably N.

20

At least one, preferably both L is independently selected from pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, thiadiazolyl, oxadiazolyl and imidazolyl, each of which may be optionally fused to a 5-membered heteroaryl, wherein the 5-membered heteroaryl contains at least one N or O, preferably N.

5 More preferably, at least one, preferably both L is a 6-membered heteroaryl independently selected from pyrazinyl, pyrimidinyl, pyridazinyl. The 6-membered heteroaryl is optionally fused to a 5-membered heteroaryl, preferably a nitrogen-containing heteroaryl.

10 Preferably, at least one L is pyrazinyl. More preferably, each L is independently selected from pyrazinyl and pyridazinyl. More preferably still, one L is pyridazinyl and the other L is pyrazinyl.

15 Alternatively R' is independently selected from H and QR₁; each Q is independently selected from a bond, CO, CO₂, NH, S, SO, SO₂ or O;

20 each R₁ is independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, aryl, heteroaryl, C₁-C₁₀ cycloalkyl, halogen, C₁-C₁₀ alkylaryl, C₁-C₁₀ alkyl heteroaryl, C₁-C₁₀ heterocycloalkyl, or trifluoromethyl.

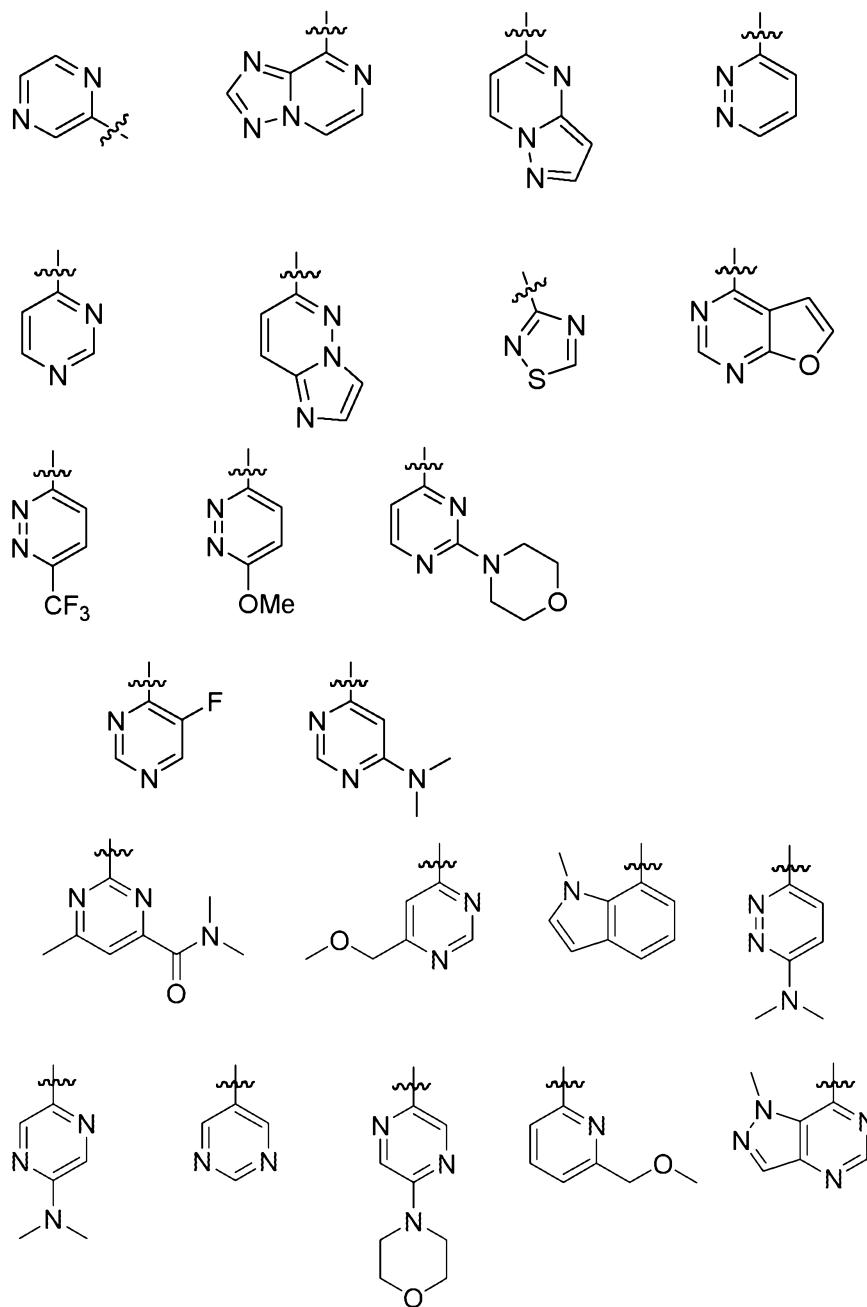
25 Preferably, n is 3 to 7. More preferably, n is 6 or 7.

30 In a preferred embodiment, X_{...} is N- or , X_{...} is C=. Preferably, X_{...} is N. At least one R' may also be a substituted or unsubstituted aryl or O-(substituted or unsubstituted aryl). Preferably, at least one R' is aryl or O-aryl, each of which may be substituted with a halogen, amino or C₁-C₁₀ alkyl. The aryl may be substituted in any position. The aryl may be mono-, bis-, or tri-substituted.

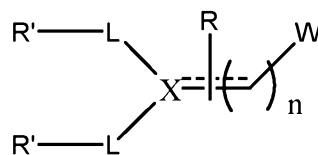
35 Most preferably, at least one R' is selected from H, C₁-C₁₀ alkyl, O-(C₁-C₁₀ alkyl), N(C₁-C₁₀ alkyl)₂, heterocycloalkyl, trifluoromethyl or halogen, preferably wherein the alkyl is substituted with at least one fluorine.

40 Preferably, Q is a direct bond or -O-. More preferably, Q is a direct bond. Where Q is a direct bond, R₁ can be as defined for R'.

45 Alternatively, R₁ can be selected from halogen (preferably F, when Q is a direct bond), C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl or C₂-C₁₀ alkynyl, preferably substituted with halogen, N(C₁-C₁₀ alkyl)₂, NH₂, NO₂ or hydroxyl. More preferably, R₁ is C₁-C₁₀ alkyl substituted with halogen which is preferably fluorine. The C₁-C₁₀ alkyl group may be substituted by up to 10 halogen atoms or preferably, by up to 5 halogen atoms, i.e., 1, 2, 3, 4 or 5 halogen atoms. For example, R₁ may be CF₃,


CHF_2 , CH_2CF_3 , CH_2CHF_2 or CF_2CF_3 . This means that R' may be CF_3 , CHF_2 , CH_2CF_3 , CH_2CHF_2 or CF_2CF_3 or OCF_3 , OCHF_2 , OCH_2CF_3 , OCH_2CHF_2 or OCF_2CF_3 , most preferably CF_3 .

In a preferred embodiment, R is H or C_1 to C_6 alkyl, preferably H.

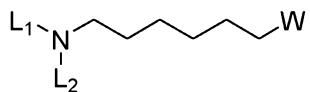

5 Preferably in at least one, preferably both, of L , the atom that is directly bonded to X is a carbon, and at least one nitrogen atom is directly bonded to said carbon (preferably via a double bond). More preferably, said nitrogen atom is a hydrogen bond acceptor.

10 Preferably, in addition to a N atom, L contains at least one other heteroatom in the heteroaryl ring which is selected from N, O or S.

In a preferred embodiment, each L is independently selected from:

In some embodiments the invention is represented by a compound of the formula

wherein:


5 ... is a double bond and X is C; or
... is a single bond and X is N, CH or CQR₁; and

wherein:

n is 1 to 10;
R is H or QR₁;
10 each R' is independently selected from H and QR₁;
each Q is independently selected from a bond, CO, CO₂, NH, S, SO, SO₂ or O;
each R₁ is independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, aryl, heteroaryl, C₁-C₁₀ cycloalkyl, halogen, C₁-C₁₀ alkylaryl, C₁-C₁₀ alkyl heteroaryl, C₁-C₁₀ heterocycloalkyl or trifluoromethyl;
15 L is independently a 5- to 12-membered heteroaryl, wherein each L contains at least two nitrogen atoms;
W is a zinc-binding group;
each aryl or heteroaryl may be substituted by up to five substituents
20 selected from C₁-C₆ alkyl, hydroxy, C₁-C₃ hydroxyalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, amino, C₁-C₃ mono alkylamino, C₁-C₃ bis alkylamino, C₁-C₃ acylamino, C₁-C₃ aminoalkyl, mono (C₁-C₃ alkyl) amino C₁-C₃ alkyl, bis(C₁-C₃ alkyl) amino C₁-C₃ alkyl, C₁-C₃-acylamino, C₁-C₃ alkyl sulfonylamino, halo, nitro, cyano, trifluoromethyl, carboxy, C₁-C₃ alkoxy carbonyl, aminocarbonyl, mono C₁-C₃ alkyl aminocarbonyl, bis C₁-C₃ alkyl aminocarbonyl, -SO₃H, C₁-C₃ alkylsulfonyl, aminosulfonyl, mono C₁-C₃ alkyl aminosulfonyl and bis C₁-C₃-alkyl aminosulfonyl; and
25 each alkyl, alkenyl or alkynyl may be optionally substituted with C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, aryl, cycloalkyl, heteroaryl, halogen, NH₂, NO₂ or hydroxyl,
30 or a pharmaceutically acceptable salt thereof.

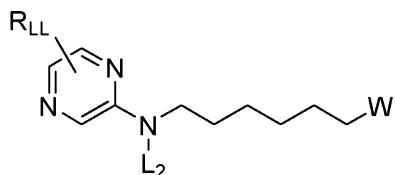
For the avoidance of doubt, the above embodiment can be combined with any of the preferred features described herein.

In some embodiments, the invention is a compound represented by:

or a pharmaceutically acceptable salt thereof,

wherein

L_1 is a 5-6 membered monocyclic heteroaryl having at least 2 nitrogen atoms;

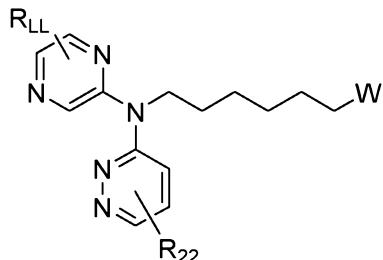

L_2 is a 5-6 membered monocyclic heteroaryl having at least 2 nitrogen atoms, or a 9-10 membered bicyclic heteroaryl having at least 2 nitrogen atoms; wherein L_1 and L_2 are each optionally substituted by one, two or three substituents each independently selected from RL:

10 RL is selected for each occurrence from the group consisting of: C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl; C₁₋₆alkoxy, C₃₋₆cycloalkyl, halogen, NR^aR^b; -C(O)-NR^aR^b, -NR^aC(O)-R^a; and -NR^aSO₂-R^a (wherein C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy and C₃₋₆cycloalkyl may be optionally substituted by one, two or three halogens or C₁₋₆alkoxy);

15 R^a and R^b are each independently selected from H or C₁₋₄alkyl; or R^a and R^b taken together with the nitrogen to which they are attached form a 4-6 membered heterocycle; and

W is a zinc binding group.

Preferably, the compound is represented by:



20

wherein R_{LL} is selected for each occurrence from the group consisting of H, F, CF_3 , and CH_3 .

Preferably, wherein L_2 is a 6 membered monocyclic heteroaryl having two nitrogens.

25 More preferably, the compound is represented by:

R_{22} ; wherein R_{22} is selected from the group consisting of H, F, NR^aR^b ; C_{1-2} alkoxy; and methoxymethyl.

A pharmaceutical composition of the invention comprises a compound as defined above, and a pharmaceutically acceptable carrier or diluent. A pharmaceutical composition of the invention typically contains up to 85 wt% of a 5 compound of the invention. More typically, it contains up to 50 wt% of a compound of the invention. Preferred pharmaceutical compositions are sterile and pyrogen-free. Further, the pharmaceutical compositions provided by the invention typically contain a compound of the invention which is a substantially 10 pure optical isomer. Preferably, the pharmaceutical composition comprises a pharmaceutically acceptable salt form of a compound of the invention. For example, contemplated herein is a pharmaceutically acceptable composition comprising a disclosed compound and a pharmaceutically acceptable excipient.

As used herein, a pharmaceutically acceptable salt is a salt with a pharmaceutically acceptable acid or base. Pharmaceutically acceptable acids 15 include both inorganic acids such as hydrochloric, sulfuric, phosphoric, diphosphoric, hydrobromic or nitric acid and organic acids such as citric, fumaric, maleic, malic, ascorbic, succinic, tartaric, benzoic, acetic, methanesulfonic, ethanesulfonic, ethanesulfonic, salicylic, stearic, benzenesulfonic or *p*-toluenesulfonic acid. Pharmaceutically acceptable bases include alkali metal 20 (e.g. sodium or potassium) and alkali earth metal (e.g. calcium or magnesium) hydroxides and organic bases such as alkyl amines, aryl amines or heterocyclic amines.

For the avoidance of doubt, the present invention also embraces prodrugs which react *in vivo* to give a compound of the present invention. 25 The compounds of the present invention are found to be inhibitors of HDAC. The compounds of the present invention are therefore therapeutically useful in the treatment of conditions affected by HDAC activity.

The compounds of the invention may be prepared by synthetic routes that will be apparent to those skilled in the art, e.g. based on the Examples. 30 The compounds of the present invention are found to be inhibitors of HDAC. The compounds of the present invention are therefore therapeutically useful.

The compounds of the invention and compositions comprising them may be administered in a variety of dosage forms. In one embodiment, a 35 pharmaceutical composition comprising a compound of the invention may be

formulated in a format suitable for oral, rectal, parenteral, intranasal or transdermal administration or administration by inhalation or by suppository. Typical routes of administration are parenteral, intranasal or transdermal administration or administration by inhalation.

5 The compounds of the invention can be administered orally, for example as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules. Preferred pharmaceutical compositions of the invention are compositions suitable for oral administration, for example tablets and capsules.

10 The compounds of the invention may also be administered parenterally, whether subcutaneously, intravenously, intramuscularly, intrasternally, transdermally or by infusion techniques. The compounds may also be administered as suppositories.

15 The compounds of the invention may also be administered by inhalation. An advantage of inhaled medications is their direct delivery to the area of rich blood supply in comparison to many medications taken by oral route. Thus, the absorption is very rapid as the alveoli have an enormous surface area and rich blood supply and first pass metabolism is bypassed. A further advantage may be to treat diseases of the pulmonary system, such that delivering drugs by inhalation delivers them to the proximity of the cells which are required to be 20 treated.

The present invention also provides an inhalation device containing such a pharmaceutical composition. Typically said device is a metered dose inhaler (MDI), which contains a pharmaceutically acceptable chemical propellant to push the medication out of the inhaler.

25 The compounds of the invention may also be administered by intranasal administration. The nasal cavity's highly permeable tissue is very receptive to medication and absorbs it quickly and efficiently, more so than drugs in tablet form. Nasal drug delivery is less painful and invasive than injections, generating less anxiety among patients. By this method absorption is very rapid and first 30 pass metabolism is usually bypassed, thus reducing inter-patient variability. Further, the present invention also provides an intranasal device containing such a pharmaceutical composition.

35 The compounds of the invention may also be administered by transdermal administration. The present invention therefore also provides a transdermal patch containing a compound of the invention.

The compounds of the invention may also be administered by sublingual administration. The present invention therefore also provides a sub-lingual tablet comprising a compound of the invention.

A compound of the invention may also be formulated with an agent which 5 reduces degradation of the substance by processes other than the normal metabolism of the patient, such as anti-bacterial agents, or inhibitors of protease enzymes which might be the present in the patient or in commensural or parasite organisms living on or within the patient, and which are capable of degrading the compound.

10 Liquid dispersions for oral administration may be syrups, emulsions and suspensions.

Suspensions and emulsions may contain as carrier, for example a natural 15 gum, agar, sodium alginate, pectin, methylcellulose, carboxymethylcellulose, or polyvinyl alcohol. The suspension or solutions for intramuscular injections may contain, together with the active compound, a pharmaceutically acceptable carrier, e.g. sterile water, olive oil, ethyl oleate, glycols, e.g. propylene glycol, and if desired, a suitable amount of lidocaine hydrochloride.

Solutions for injection or infusion may contain as carrier, for example, 20 sterile water or preferably they may be in the form of sterile, aqueous, isotonic saline solutions.

In one embodiment the compounds of the present invention may be used in combination with another known inhibitor of HDAC, such as SAHA. In this embodiment, the combination product may be formulated such that it comprises each of the medicaments for simultaneous, separate or sequential use.

25 The compounds of the present invention can be used in both the treatment and prevention of cancer and can be used in a monotherapy or in a combination therapy. When used in a combination therapy, the compounds of the present invention are typically used together with small chemical compounds such as platinum complexes, anti-metabolites, DNA topoisomerase inhibitors, 30 radiation, antibody-based therapies (for example herceptin and rituximab), anti-cancer vaccination, gene therapy, cellular therapies, hormone therapies or cytokine therapy.

In one embodiment of the invention a compound of the invention is used 35 in combination with another chemotherapeutic or antineoplastic agent in the treatment of a cancer. Examples of such other chemotherapeutic or

antineoplastic agents include platinum complexes including cisplatin and carboplatin, mitoxantrone, vinca alkaloids for example vincristine and vinblastine, anthracycline antibiotics for example daunorubicin and doxorubicin, alkylating agents for example chlorambucil and melphalan, taxanes for example paclitaxel, 5 antifolates for example methotrexate and tomudex, epipodophyllotoxins for example etoposide, camptothecins for example irinotecan and its active metabolite SN38 and DNA methylation inhibitors for example the DNA methylation inhibitors disclosed in WO02/085400.

According to the invention, therefore, products are provided which 10 contain a compound of the invention and another chemotherapeutic or antineoplastic agent as a combined preparation for simultaneous, separate or sequential use in alleviating a cancer. Also provided according to the invention is the use of compound of the invention in the manufacture of a medicament for use in the alleviation of cancer by co-administration with another 15 chemotherapeutic or antineoplastic agent. The compound of the invention and the said other agent may be administrated in any order. In both these cases the compound of the invention and the other agent may be administered together or, if separately, in any order as determined by a physician.

HDAC is believed to contribute to the pathology and/or symptomology of 20 several different diseases such that reduction of the activity of HDAC in a subject through inhibition of HDAC may be used to therapeutically address these disease states. Examples of various diseases that may be treated using the HDAC inhibitors of the present invention are described herein.

One set of indications that HDAC inhibitors of the present invention may 25 be used to treat is those involving undesirable or uncontrolled cell proliferation. Such indications include benign tumours, various types of cancers such as primary tumours and tumour metastasis, restenosis (e.g. coronary, carotid, and cerebral lesions), abnormal stimulation of endothelial cells (atherosclerosis), insults to body tissue due to surgery, abnormal wound healing, abnormal 30 angiogenesis, diseases that produce fibrosis of tissue, repetitive motion disorders, disorders of tissues that are not highly vascularized, and proliferative responses associated with organ transplants. More specific indications for HDAC inhibitors include, but are not limited to prostate cancer, lung cancer, acute leukaemia, multiple myeloma, bladder carcinoma, renal carcinoma, breast 35 carcinoma, colorectal carcinoma, neuroblastoma and melanoma.

In one embodiment, a method is provided for treating diseases associated with undesired and uncontrolled cell proliferation. The method comprises administering to a subject suffering from uncontrolled cell proliferation a therapeutically effective amount of a HDAC inhibitor according to the present invention, such that said uncontrolled cell proliferation is reduced. The particular dosage of the inhibitor to be used will depend on the severity of the disease state, the route of administration, and related factors that can be determined by the attending physician. Generally, acceptable and effective daily doses are amounts sufficient to effectively slow or eliminate uncontrolled cell proliferation.

HDAC inhibitors according to the present invention may also be used in conjunction with other agents to inhibit undesirable and uncontrolled cell proliferation. Examples of other anti-cell proliferation agents that may be used in conjunction with the HDAC inhibitors of the present invention include, but are not limited to, retinoid acid and derivatives thereof, 2-methoxyestradiol, Angiostatin™ protein, Endostatin™ protein, suramin, squalamine, tissue inhibitor of metalloproteinase-1, tissue inhibitor of metalloproteinase-2, plasminogen activator inhibitor-1, plasminogen activator inhibitor-2, cartilage-derived inhibitor, paclitaxel, platelet factor 4, protamine sulfate (clupeine), sulfated chitin derivatives (prepared from queen crab shells), sulfated polysaccharide peptidoglycan complex (sp-pg), staurosporine, modulators of matrix metabolism, including for example, proline analogs ((1-azetidine-2-carboxylic acid (LACA), cishydroxyproline, d,L-3,4-dehydroproline, thiaproline), beta-aminopropionitrile fumarate, 4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone; methotrexate, mitoxantrone, heparin, interferons, 2 macroglobulin-serum, chimp-3, chymostatin, beta-cyclodextrin tetradecasulfate, eponemycin; fumagillin, gold sodium thiomalate, d-penicillamine (CDPT), beta-1-anticollagenase-serum, alpha-2-antiplasmin, bisantrene, lobenzarit disodium, n-(2-carboxyphenyl-4-chloroanthronilic acid disodium or "CCA", thalidomide; angiostatic steroid, carboxyaminoimidazole; metalloproteinase inhibitors such as BB94. Other anti-angiogenesis agents that may be used include antibodies, preferably monoclonal antibodies against these angiogenic growth factors: bFGF, aFGF, FGF-5, VEGF isoforms, VEGF-C, HGF/SF and Ang-1/Ang-2. Ferrara N. and Alitalo, K. "Clinical application of angiogenic growth factors and their inhibitors" (1999) Nature Medicine 5:1359-1364.

Generally, cells in benign tumours retain their differentiated features and do not divide in a completely uncontrolled manner. A benign tumour is usually localized and nonmetastatic. Specific types of benign tumours that can be treated using HDAC inhibitors of the present invention include hemangiomas,

5 hepatocellular adenoma, cavernous haemangioma, focal nodular hyperplasia, acoustic neuromas, neurofibroma, bile duct adenoma, bile duct cystanoma, fibroma, lipomas, leiomyomas, mesotheliomas, teratomas, myxomas, nodular regenerative hyperplasia, trachomas and pyogenic granulomas.

In the case of malignant tumors, cells become undifferentiated, do not 10 respond to the body's growth control signals, and multiply in an uncontrolled manner. Malignant tumors are invasive and capable of spreading to distant sites (metastasizing). Malignant tumors are generally divided into two categories: primary and secondary. Primary tumors arise directly from the tissue in which they are found. Secondary tumours, or metastases, are tumours that originated 15 elsewhere in the body but have now spread to distant organs. Common routes for metastasis are direct growth into adjacent structures, spread through the vascular or lymphatic systems, and tracking along tissue planes and body spaces (peritoneal fluid, cerebrospinal fluid, etc.).

Specific types of cancers or malignant tumours, either primary or 20 secondary, that can be treated using the HDAC inhibitors of the present invention include, but are not limited to, leukaemia, breast cancer, skin cancer, bone cancer, prostate cancer, liver cancer, lung cancer, brain cancer, cancer of the larynx, gallbladder, pancreas, rectum, parathyroid, thyroid, adrenal, neural tissue, head and neck, colon, stomach, bronchi, kidneys, basal cell carcinoma, 25 squamous cell carcinoma of both ulcerating and papillary type, metastatic skin carcinoma, osteo sarcoma, Ewing's sarcoma, veticulum cell sarcoma, myeloma, giant cell tumour, small-cell lung tumour, gallstones, islet cell tumour, primary brain tumour, acute and chronic lymphocytic and granulocytic tumours, hairy-cell tumour, adenoma, hyperplasia, medullary carcinoma, pheochromocytoma, 30 mucosal neuromas, intestinal ganglioneuromas, hyperplastic corneal nerve tumour, marfanoid habitus tumour, Wilms' tumour, seminoma, ovarian tumour, leiomyomater tumour, cervical dysplasia and in situ carcinoma, neuroblastoma, retinoblastoma, soft tissue sarcoma, malignant carcinoid, topical skin lesion, mycosis fungoide, rhabdomyosarcoma, Kaposi's sarcoma, osteogenic and other 35 sarcoma, malignant hypercalcemia, renal cell tumour, polycythermia vera,

adenocarcinoma, glioblastoma multiforme, leukemias, lymphomas, malignant melanomas, epidermoid carcinomas, and other carcinomas and sarcomas.

The HDAC inhibitors of the present invention may also be used to treat abnormal cell proliferation due to insults to body tissue during surgery. These 5 insults may arise as a result of a variety of surgical procedures such as joint surgery, bowel surgery, and cheloid scarring. Diseases that produce fibrotic tissue that may be treated using the HDAC inhibitors of the present invention include emphysema. Repetitive motion disorders that may be treated using the present invention include carpal tunnel syndrome. An example of a cell 10 proliferative disorder that may be treated using the invention is a bone tumour.

Proliferative responses associated with organ transplantation that may be treated using HDAC inhibitors of the invention include proliferative responses contributing to potential organ rejections or associated complications. Specifically, these proliferative responses may occur during transplantation of 15 the heart, lung, liver, kidney, and other body organs or organ systems.

Abnormal angiogenesis that may be treated using this invention include those abnormal angiogenesis accompanying rheumatoid arthritis, ischemic-reperfusion related brain edema and injury, cortical ischemia, ovarian hyperplasia and hypervascularity, polycystic ovary syndrome, endometriosis, 20 psoriasis, diabetic retinopathy, and other ocular angiogenic diseases such as retinopathy of prematurity (retrolental fibroplastic), macular degeneration, corneal graft rejection, neurosular glaucoma and Oster Webber syndrome.

Examples of diseases associated with uncontrolled angiogenesis that may be treated according to the present invention include, but are not limited to 25 retinal/choroidal neovascularization and corneal neovascularization. Examples of diseases which include some component of retinal/choroidal neovascularization include, but are not limited to, Best's disease, myopia, optic pits, Stargart's diseases, Paget's disease, vein occlusion, artery occlusion, sickle cell anemia, sarcoid, syphilis, pseudoxanthoma elasticum carotid apo structive diseases, 30 chronic uveitis/vitritis, mycobacterial infections, Lyme's disease, systemic lupus erythematosus, retinopathy of prematurity, Eale's disease, diabetic retinopathy, macular degeneration, Bechet's diseases, infections causing a retinitis or chroiditis, presumed ocular histoplasmosis, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma and post-laser 35 complications, diseases associated with rubesis (neovascularization of the

angle) and diseases caused by the abnormal proliferation of fibrovascular or fibrous tissue including all forms of proliferative vitreoretinopathy. Examples of corneal neovascularization include, but are not limited to, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, 5 superior limbic keratitis, pterygium keratitis sicca, sjogrens, acne rosacea, phlyctenulosis, diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, polyarteritis, Wegener sarcoidosis, Scleritis, periphigoid radial keratotomy, neovascular glaucoma and retrothalental fibroplasia, syphilis, Mycobacteria 10 infections, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections and Kaposi sarcoma.

Chronic inflammatory diseases associated with uncontrolled angiogenesis may also be treated using HDAC inhibitors of the present 15 invention. Chronic inflammation depends on continuous formation of capillary sprouts to maintain an influx of inflammatory cells. The influx and presence of the inflammatory cells produce granulomas and thus maintains the chronic inflammatory state. Inhibition of angiogenesis using a HDAC inhibitor alone or in conjunction with other anti-inflammatory agents may prevent the formation of the 20 granulomas and thus alleviate the disease. Examples of chronic inflammatory diseases include, but are not limited to, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, psoriasis, sarcoidosis, and rheumatoid arthritis.

Inflammatory bowel diseases such as Crohn's disease and ulcerative 25 colitis are characterized by chronic inflammation and angiogenesis at various sites in the gastrointestinal tract. For example, Crohn's disease occurs as a chronic transmural inflammatory disease that most commonly affects the distal ileum and colon but may also occur in any part of the gastrointestinal tract from the mouth to the anus and perianal area. Patients with Crohn's disease generally 30 have chronic diarrhoea associated with abdominal pain, fever, anorexia, weight loss and abdominal swelling. Ulcerative colitis is also a chronic, nonspecific, inflammatory and ulcerative disease arising in the colonic mucosa and is characterized by the presence of bloody diarrhoea. These inflammatory bowel diseases are generally caused by chronic granulomatous inflammation 35 throughout the gastrointestinal tract, involving new capillary sprouts surrounded

by a cylinder of inflammatory cells. Inhibition of angiogenesis by these inhibitors should inhibit the formation of the sprouts and prevent the formation of granulomas. Inflammatory bowel diseases also exhibit extra intestinal manifestations, such as skin lesions. Such lesions are characterized by 5 inflammation and angiogenesis and can occur at many sites other the gastrointestinal tract. Inhibition of angiogenesis by HDAC inhibitors according to the present invention can reduce the influx of inflammatory cells and prevent lesion formation.

Sarcoidosis, another chronic inflammatory disease, is characterized as a 10 multisystem granulomatous disorder. The granulomas of this disease can form anywhere in the body. Thus, the symptoms depend on the site of the granulomas and whether the disease is active. The granulomas are created by the angiogenic capillary sprouts providing a constant supply of inflammatory cells. By using HDAC inhibitors according to the present invention to inhibit 15 angiogenesis, such granulomas formation can be inhibited. Psoriasis, also a chronic and recurrent inflammatory disease, is characterized by papules and plaques of various sizes. Treatment using these inhibitors alone or in conjunction with other anti-inflammatory agents should prevent the formation of new blood vessels necessary to maintain the characteristic lesions and provide the patient 20 relief from the symptoms.

Rheumatoid arthritis (RA) is also a chronic inflammatory disease characterized by non-specific inflammation of the peripheral joints. It is believed that the blood vessels in the synovial lining of the joints undergo angiogenesis. In addition to forming new vascular networks, the endothelial cells release 25 factors and reactive oxygen species that lead to pannus growth and cartilage destruction. The factors involved in angiogenesis may actively contribute to, and help maintain, the chronically inflamed state of rheumatoid arthritis. Treatment using HDAC inhibitors according to the present invention alone or in conjunction with other anti-RA agents may prevent the formation of new blood vessels 30 necessary to maintain the chronic inflammation.

The compounds of the present invention can further be used in the treatment of cardiac/vasculature diseases such as hypertrophy, hypertension, myocardial infarction, reperfusion, ischaemic heart disease, angina, arrhythmias, hypercholesterolemia, atherosclerosis and stroke. The compounds can further 35 be used to treat neurodegenerative disorders/CNS disorders such as acute and

chronic neurological diseases, including stroke, Huntington's disease, Amyotrophic Lateral Sclerosis and Alzheimer's disease.

The compounds of the present invention can also be used as antimicrobial agents, for example antibacterial agents. The invention therefore 5 also provides a compound for use in the treatment of a bacterial infection. The compounds of the present invention can be used as anti-infectious compounds against viral, bacterial, fungal and parasitic infections. Examples of infections include protozoal parasitic infections (including plasmodium, cryptosporidium parvum, toxoplasma gondii, sarcocystis neurona and Eimeria sp.)

10 The compounds of the present invention are particularly suitable for the treatment of undesirable or uncontrolled cell proliferation, preferably for the treatment of benign tumours/hyperplasias and malignant tumours, more preferably for the treatment of malignant tumours and most preferably for the treatment of chronic lymphocytic leukaemia (CLL), breast cancer, prostate 15 cancer, ovarian cancer, mesothelioma, T-cell lymphoma.

In a preferred embodiment of the invention, the compounds of the invention are used to alleviate cancer, cardiac hypertrophy, chronic heart failure, an inflammatory condition, a cardiovascular disease, a haemoglobinopathy, a thalassemia, a sickle cell disease, a CNS disorder, an autoimmune disease, 20 organ transplant rejection, diabetes, osteoporosis, MDS, benign prostatic hyperplasia, oral leukoplakia, a genetically related metabolic disorder, an infection, Rubens-Taybi, fragile X syndrome, or alpha-1 antitrypsin deficiency, or to accelerate wound healing, to protect hair follicles or as an immunosuppressant.

25 Typically, said inflammatory condition is a skin inflammatory condition (for example psoriasis, acne and eczema), asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), Crohn's disease or colitis.

30 Typically, said cancer is chronic lymphocytic leukaemia, breast cancer, prostate cancer, ovarian cancer, mesothelioma or T-cell lymphoma.

Typically, said cardiovascular disease is hypertension, myocardial infarction (MI), ischemic heart disease (IHD) (reperfusion), angina pectoris, arrhythmia, hypercholesterolemia, hyperlipidaemia, atherosclerosis, stroke, myocarditis, congestive heart failure, primary and secondary i.e. dilated 35 (congestive) cardiomyopathy, hypertrophic cardiomyopathy, restrictive

cardiomyopathy, peripheral vascular disease, tachycardia, high blood pressure or thrombosis.

Typically, said genetically related metabolic disorder is cystic fibrosis (CF), peroxisome biogenesis disorder or adrenoleukodystrophy.

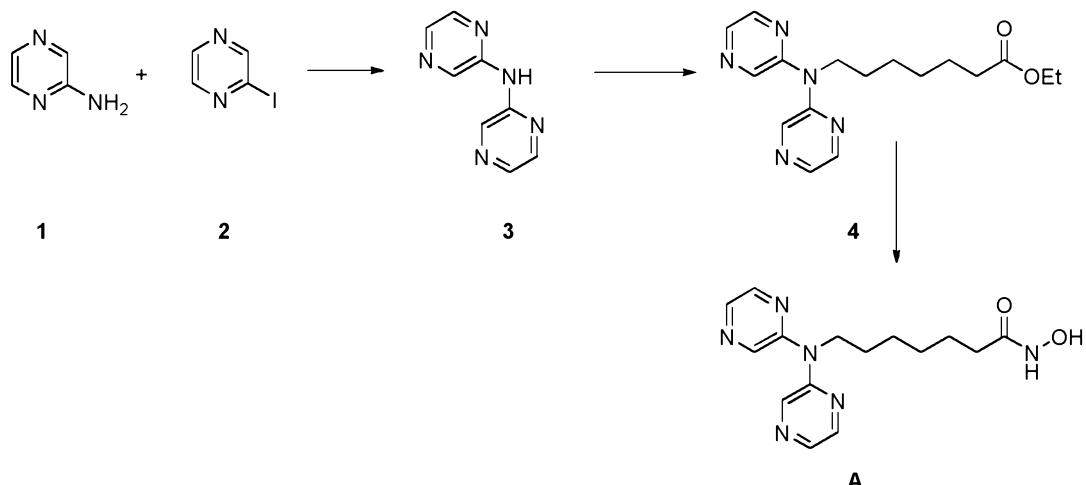
5 Typically, the compounds of the invention are used as an immunosuppressant following organ transplant.

Typically, said infection is a viral, bacterial, fungal or parasitic infection, in particular an infection by *S aureus*, *P acne*, *candida* or *aspergillus*.

10 Typically, said CNS disorder is Huntingdon's disease, Alzheimer's disease, multiple sclerosis or amyotrophic lateral sclerosis.

In this embodiment, the compounds of the invention may be used to alleviate cancer, cardiac hypertrophy, chronic heart failure, an inflammatory condition, a cardiovascular disease, a haemoglobinopathy, a thalassemia, a sickle cell disease, a CNS disorder, an autoimmune disease, diabetes or 15 osteoporosis, or are used as an immunosuppressant.

The compounds of the invention may also be used to alleviate chronic lymphocytic leukaemia (CLL), breast cancer, prostate cancer, ovarian cancer, mesothelioma, T-cell lymphoma, cardiac hypertrophy, chronic heart failure or a skin inflammatory condition, in particular psoriasis, acne or eczema.


20 The compounds of the present invention can be used in the treatment of animals, preferably in the treatment of mammals and more preferably in the treatment of humans.

The compounds of the invention may, where appropriate, be used prophylactically to reduce the incidence of such conditions.

25 In use, a therapeutically effective amount of a compound of the invention is administered to a patient. A typical dose is from about 0.001 to 50 mg per kg of body weight, according to the activity of the specific compound, the age, weight and conditions of the subject to be treated, the type and severity of the disease and the frequency and route of administration.

30 Compounds of the invention may be tested for HDAC inhibitory activity by any suitable assay, e.g. the assay described in WO2008/062201.

The following Examples illustrate the invention.

Example A**7-[Bis(pyrazin-2-yl)amino]-N-hydroxyheptanamide**

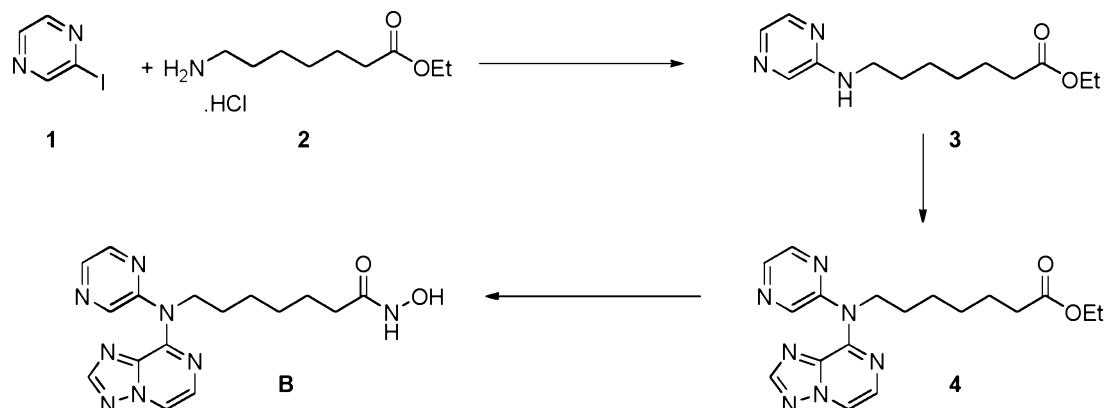
A solution of 2-iodopyrazine (**2**) (2.59g, 27.2mmol), pyrazin-2-amine (**1**) (5.10g, 24.8mmol), Cs_2CO_3 (24.2g, 74.3mmol) and Xantphos (573mg, 0.99mmol) in dioxane (100mL) was purged with Ar(g) for 10min. $\text{Pd}_2(\text{dba})_3$ (680mg, 0.74mmol) was added and mixture was heated up to 90°C overnight. Once cooled, it was partitioned between H_2O (200mL) and EtOAc (3 x 200mL). The combined organics were dried over MgSO_4 , filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography with hexane/EtOAc (4:1-0:1) then EtOAc/MeOH (1:0-3:1) to yield (**3**) as an off white solid (2.58g, 60%).

¹H NMR (300 MHz, Chloroform-*d*) δ_{H} ppm: 8.99 (d, *J*=1.4 Hz, 2H), 8.30 (dd, *J*=2.6, 1.5 Hz, 2H), 8.11 (d, *J*=2.7 Hz, 2H).
LCMS (ES): Found 174.1 [M+H]⁺.

NaH (60%) (121mg, 3.0mmol) was added portion-wise to N-(pyrazin-2-yl)pyrazin-2-amine (**3**) (475mg, 2.74mmol) in DMF (10mL) at 0°C under Ar(g). The reaction mixture was then stirred for 20min and ethyl 7-iodoheptanoate (857mg, 3.0mmol) was added. The reaction mixture was stirred at 70°C under Ar(g) for 1h. Once cooled, it was partitioned between H_2O (10mL), EtOAc (3 x 10mL). The combined organics were dried over MgSO_4 , filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography with hexane/EtOAc (1:0-2:3) to yield ethyl 7-[bis(pyrazin-2-yl)amino]heptanoate (**4**) as a yellow solid (709mg, 78%).

¹H NMR (300 MHz, Chloroform-*d*) δ_{H} ppm: 8.59 (d, *J*=1.3 Hz, 2H), 8.25-8.32 (m, 2H), 8.16 (d, *J*=2.4 Hz, 2H), 4.07-4.22 (m, 4H), 2.28 (t, *J*=7.4 Hz, 2H), 1.68-1.81

(m, 2H), 1.62 (quin, $J=7.3$ Hz, 2H), 1.32-1.46 (m, 4H), 1.25 (t, $J=7.2$ Hz, 3H).
LCMS (ES): Found 330.2 [M+H]⁺.


To a solution of **(4)** (709mg, 2.15mmol) in MeOH/THF (1:1, 20mL) was added 5 hydroxylamine (50% w/w in H₂O; 2.84mL, 43.0mmol) followed by 6N NaOH (0.72mL, 4.3mmol). The mixture was stirred at rt for 1h. Then, it was quenched with 1M KHSO₄ (30mL) and partitioned between H₂O (20mL) and CH₂Cl₂ (3 x 50mL). The combined organics were dried over MgSO₄, filtered and concentrated *in vacuo* to yield 7-[bis(pyrazin-2-yl)amino]-N-hydroxyheptanamide 10 **(A)** as a white solid (378mg, 56%).

¹H NMR (300 MHz, DMSO-*d*₆) δ _H ppm: 10.30 (br. s., 1H), 8.59-8.67 (m, 3H), 8.33 (dd, $J=2.4$, 1.5 Hz, 2H), 8.21 (d, $J=2.6$ Hz, 2H), 4.07-4.17 (m, 2H), 1.91 (t, $J=7.3$ Hz, 2H), 1.54-1.69 (m, 2H), 1.44 (quin, $J=7.2$ Hz, 2H), 1.16-1.36 (m, 4H).
LCMS (ES): Found 317.2 [M+H]⁺.

15

Example B

N-Hydroxy-7-[(pyrazin-2-yl)([1,2,4]triazolo[1,5-a]pyrazin-8-yl)amino]heptanamide

20

To a flask were added 2-iodopyrazine **(1)** (10g, 48.5mmol), ethyl 7-aminoheptanoate hydrochloride **(2)** (13.2g, 63.1mmol), Cs₂CO₃ (47.5g, 145.5mmol) and Cul (0.461g, 2.42mmol) under Ar(g). DMF (100mL) was then 25 added followed by 2-isobutyrylcyclohexanone (1.62mL, 9.7mmol). The reaction mixture was then left to stir overnight at rt under Ar(g). The mixture was partitioned between H₂O (10mL) and EtOAc (3 x 50mL). The combined organics were washed with brine (2 x 25mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography with

hexane/EtOAc (7:3-3:7) to yield ethyl-7-[(pyrazin-2-yl)amino]heptanoate (**3**) as a brown solid (11.25g, 93%).

¹H NMR (300 MHz, Chloroform-*d*) δ _H ppm: 7.44-9.08 (m, 3H), 5.00 (br. s., 1H), 4.13 (q, *J*=7.1 Hz, 2H), 3.35 (t, *J*=6.8 Hz, 2H), 2.31 (t, *J*=7.4 Hz, 2H), 1.59-1.72

5 (m, 4H), 1.33-1.50 (m, 4H), 1.26 (t, *J*=7.2 Hz, 3H).

LCMS (ES): Found 252.0 [M+H]⁺.

A solution of (**3**) (100mg, 0.40mmol), 8-chloro-[1,2,4]triazolo[1,5-*a*]pyrazine

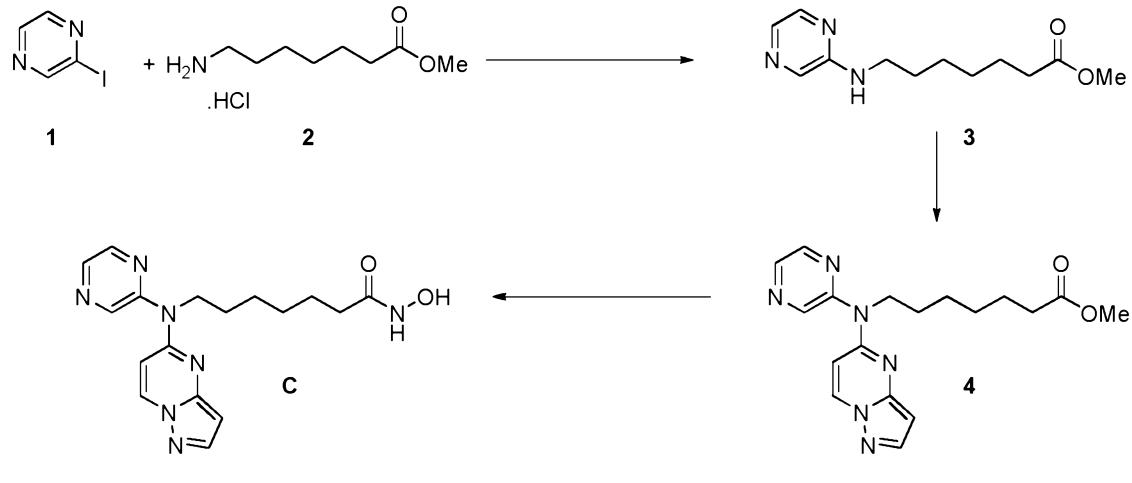
(74.2mg, 0.48mmol), Cs₂CO₃ (390mg, 1.20mmol) and BINAP (15mg, 0.02mmol)

10 in dioxane (4mL) was purged with Ar(g) for 10min. Pd₂(dba)₃ (11mg, 0.012mmol) was added and mixture was heated up to 90°C overnight. Once cooled, it was partitioned between H₂O (10mL) and EtOAc (3 x 10mL). The combined organics were dried over MgSO₄, filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography to yield (**4**) as an off white

15 solid (110mg, 75%).

¹H NMR (300 MHz, Chloroform-*d*) δ _H ppm: 8.43 (d, *J*=0.8 Hz, 1H), 8.34 (dd, *J*=2.5, 1.4 Hz, 1H), 8.27 (d, *J*=2.4 Hz, 1H), 8.16-8.23 (m, 2H), 7.74-7.81 (m, 1H), 4.43 (dd, *J*=8.3, 7.0 Hz, 2H), 4.03-4.16 (m, 2H), 2.19-2.31 (m, 2H), 1.77 (quin, *J*=7.4 Hz, 2H), 1.59 (quin, *J*=7.3 Hz, 2H), 1.28-1.46 (m, 4H), 1.18-1.27 (m, 3H).

20 LCMS (ES): Found 370.2 [M+H]⁺.


To a solution of (**4**) (110mg, 0.30mmol) in MeOH/THF (1:1, 5mL) was added hydroxylamine (50% w/w in H₂O; 0.60mL, 6mmol) followed by NaOH (95mg, 2.38mmol). The mixture was stirred at rt for 10min. Then, it was concentrated *in*

25 *vacuo* and purified by reverse phase column chromatography with H₂O/MeCN (19:1-1:1) to yield N-hydroxy-7-[(pyrazin-2-yl)([1,2,4]triazolo[1,5-*a*]pyrazin-8-yl)amino]heptanamide (**B**) as a white solid (24.6mg, 23%).

¹H NMR (300 MHz, DMSO-*d*₆) δ _H ppm: 8.59-8.72 (m, 1H), 8.53 (d, *J*=1.5 Hz, 1H), 8.43-8.50 (m, 1H), 8.40 (dd, *J*=2.5, 1.4 Hz, 1H), 8.23-8.35 (m, 1H), 7.91 (d,

30 *J*=4.5 Hz, 1H), 4.20-4.48 (m, 2H), 1.85 (t, *J*=7.3 Hz, 2H), 1.55-1.78 (m, 2H), 1.41 (quin, *J*=7.2 Hz, 2H), 1.11-1.35 (m, 4H).

LCMS (ES): Found 357.2 [M+H]⁺.

Example C**N-Hydroxy-7-[(pyrazin-2-yl){pyrazolo[1,5-a]pyrimidin-5-yl}amino]heptanamide**

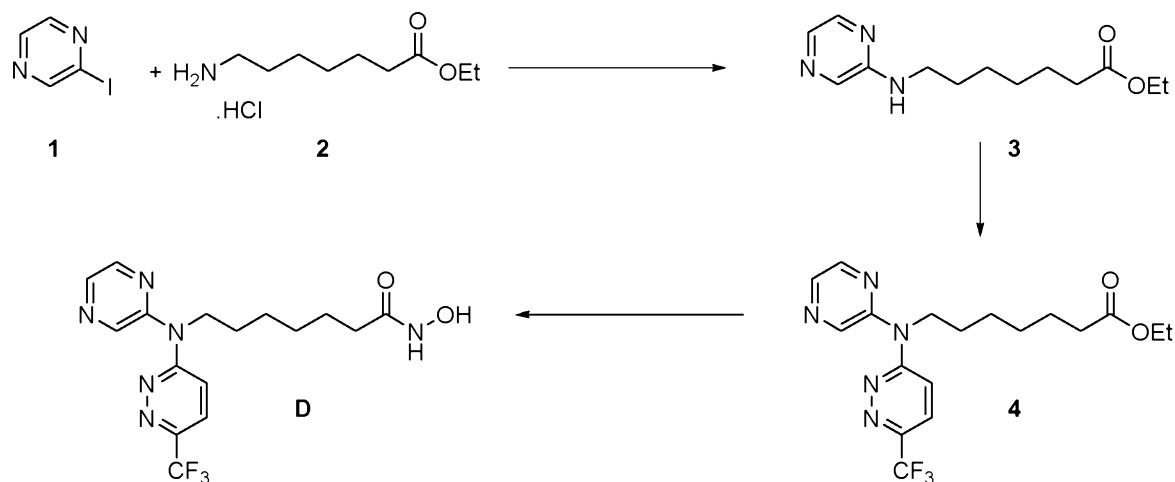
To a flask were added 2-iodopyrazine (**1**) (3.5g, 17.0mmol), methyl 7-aminoheptanoate hydrochloride (**2**) (4.3g, 22.1mmol), Cs_2CO_3 (16.6g, 51.0mmol) and CuI (0.16g, 0.85mmol) under Ar(g) . DMF (35mL) was then added followed by 2-isobutyrylcyclohexanone (0.57mL, 3.40mmol). The reaction mixture was then left to stir overnight at rt under Ar(g) . The mixture was partitioned between H_2O (200mL) and EtOAc (3 x 150mL). The combined organics were washed with brine (2 x 50mL), dried over MgSO_4 , filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography with hexane/ EtOAc (9:1-3:7) to yield methyl-7-[(pyrazin-2-yl)amino]heptanoate (**3**) as a brown solid (3.11g, 77%).

^1H NMR (300 MHz, Chloroform-*d*) δ_{H} ppm: 7.97 (dd, $J=2.7, 1.4$ Hz, 1H), 7.92 (d, $J=1.3$ Hz, 1H), 7.80 (d, $J=2.8$ Hz, 1H), 4.84 (br. s., 1H), 3.68 (s, 3H), 3.29-3.42 (m, 2H), 2.33 (t, $J=7.4$ Hz, 2H), 1.66 (quin, $J=7.0$ Hz, 4H), 1.34-1.51 (m, 4H). LCMS (ES): Found 238.0 $[\text{M}+\text{H}]^+$.

A solution of (**3**) (125mg, 0.53mmol), 5-bromopyrazolo[1,5-a]pyrimidine (0.81mL, 0.63mmol), Cs_2CO_3 (343mg, 1.05mmol) and Xantphos (15mg, 0.03mmol) in dioxane (3mL) was purged with Ar(g) for 10min. $\text{Pd}_2(\text{dba})_3$ (12mg, 0.01mmol) was added and mixture was heated up to 90°C overnight. Once cooled, it was partitioned between H_2O (10mL) and CH_2Cl_2 (3 x 10mL). The combined organics were dried over MgSO_4 , filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography with heptane/ EtOAc (1:0-0:1) then EtOAc/MeOH (1:0-4:1) to yield (**4**) as a yellow residue (109mg, 48%).

LCMS (ES): Found 355.4 [M+H]⁺.

To a solution of **(4)** (109mg, 0.26mmol) in MeOH/THF (1:1, 2mL) was added hydroxylamine (50% w/w in H₂O; 0.34mL, 5.5mmol) followed by 6N NaOH


5 (0.92mL, 0.56mmol). The mixture was stirred at rt for 15min. Then, it was quenched with 1M KHSO₄ (2mL) followed by H₂O (5mL) which resulted in a suspension. The solids were filtered, washed with MeCN (1mL) and dried *in vacuo* to yield N-hydroxy-7-[(pyrazin-2-yl){pyrazolo[1,5-a]pyrimidin-5-yl}amino]heptanamide (**C**) as a white solid (88mg, 81%).

10 ¹H NMR (500 MHz, DMSO-*d*₆) δ_H ppm: 10.30 (s, 1H), 8.69-8.84 (m, 2H), 8.63 (s, 1H), 8.47 (dd, *J*=2.6, 1.5 Hz, 1H), 8.35 (d, *J*=2.6 Hz, 1H), 8.00 (d, *J*=2.2 Hz, 1H), 6.74 (d, *J*=7.7 Hz, 1H), 6.31 (dd, *J*=2.2, 0.7 Hz, 1H), 4.07-4.20 (m, 2H), 1.91 (t, *J*=7.4 Hz, 2H), 1.64 (quin *J*=7.4 Hz, 2H), 1.45 (quin *J*=7.4 Hz, 2H), 1.18-1.35 (m, 4H).

15 LCMS (ES): Found 356.4 [M+H]⁺.

Example D

N-Hydroxy-7-[(pyrazin-2-yl)[6-(trifluoromethyl)pyridazin-3-yl]amino]heptanamide

A solution of **(3)** (5.0g, 20mmol), 3-bromo-6-(trifluoromethyl)pyridazine (5.42g, 23.9mmol), Cs₂CO₃ (20.0g, 60mmol) and BINAP (1.24g, 2.0mmol) in dioxane (100mL) was purged with Ar(g) for 10min. Pd₂(dba)₃ (915mg, 1.0mmol) was

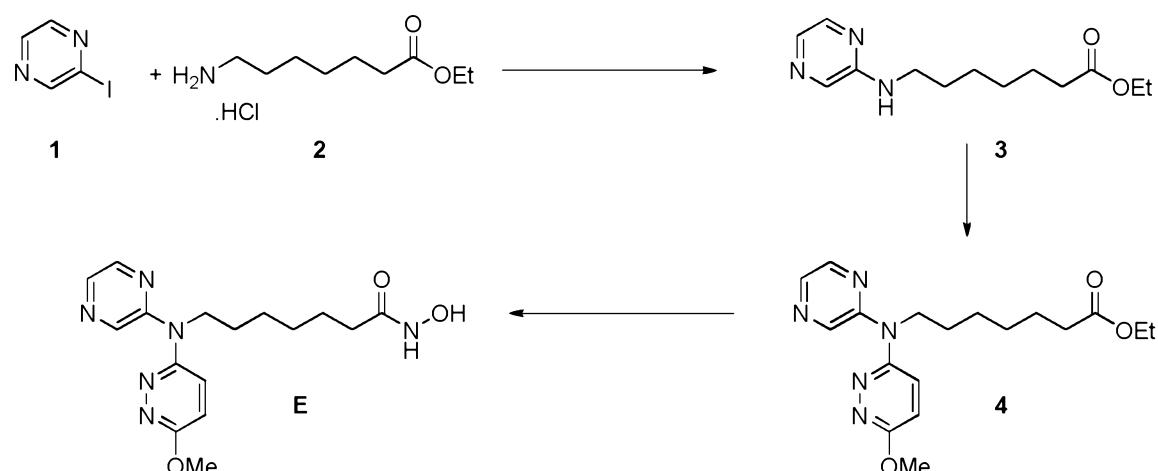
25 added and mixture was heated up to 100°C overnight. Once cooled, it was partitioned between H₂O (50mL) and EtOAc (3 x 100mL). The combined organics were dried over MgSO₄, filtered and concentrated *in vacuo*. The

resulting residue was purified by flash column chromatography with hexane/EtOAc (1:0-1:3) to yield (**4**) as a brown oil (7.95g, 75%).

¹H NMR (300 MHz, Chloroform-*d*) δ _H ppm: 8.65 (br. s., 1H), 8.29-8.43 (m, 2H), 7.46-7.63 (m, 2H), 4.29-4.41 (m, 2H), 4.12 (q, *J*=7.2 Hz, 2H), 2.28 (t, *J*=7.3 Hz, 2H), 1.73-1.93 (m, 2H), 1.62 (quin, *J*=7.3 Hz, 2H), 1.32-1.50 (m, 4H), 1.22-1.30 (m, 3H).

LCMS (ES): Found 398.2 [M+H]⁺.

To a solution of (**4**) (1.23g, 3.10mmol) in MeOH/THF (1:1, 40mL) was added

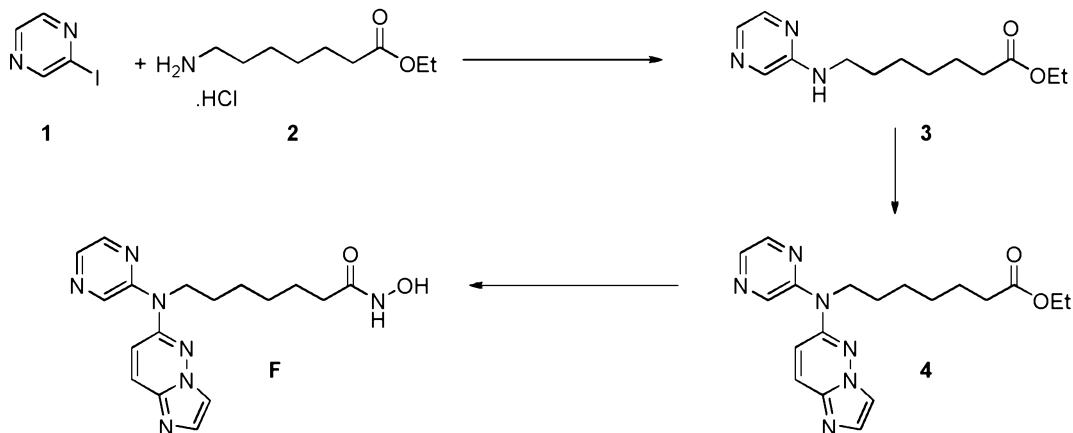

10 hydroxylamine (50% w/w in H₂O; 1.03mL, 62mmol) followed by 6N NaOH (1.03mL, 6.2mmol). The mixture was stirred at rt for 1h. Then, it was quenched with 1M KHSO₄ (30mL) and partitioned between H₂O (30mL) and CH₂Cl₂ (3 x 50mL). The combined organics were dried over MgSO₄, filtered, concentrated *in vacuo* and purified by C₁₈ reverse phase column chromatography with 15 H₂O/MeCN (19:1-1:1) to yield N-hydroxy-7-[(pyrazin-2-yl)[6-(trifluoromethyl)pyridazin-3-yl]amino]heptanamide (**D**) as an orange gum (994mg, 83%).

¹H NMR (300 MHz, DMSO-*d*₆) δ _H ppm: 8.92-10.19 (m, 2H), 8.81 (d, *J*=1.3 Hz, 1H), 8.46 (dd, *J*=2.5, 1.4 Hz, 1H), 8.40 (d, *J*=2.4 Hz, 1H), 7.96 (d, *J*=9.4 Hz, 1H), 7.72 (d, *J*=9.4 Hz, 1H), 4.16-4.31 (m, 2H), 1.90 (t, *J*=7.3 Hz, 2H), 1.58-1.74 (m, 2H), 1.45 (quin, *J*=7.2 Hz, 2H), 1.17-1.38 (m, 4H).

LCMS (ES): Found 385.2 [M+H]⁺.

Example E

25 **N**-Hydroxy-7-[(6-methoxypyridazin-3-yl)(pyrazin-2-yl)amino]heptanamide

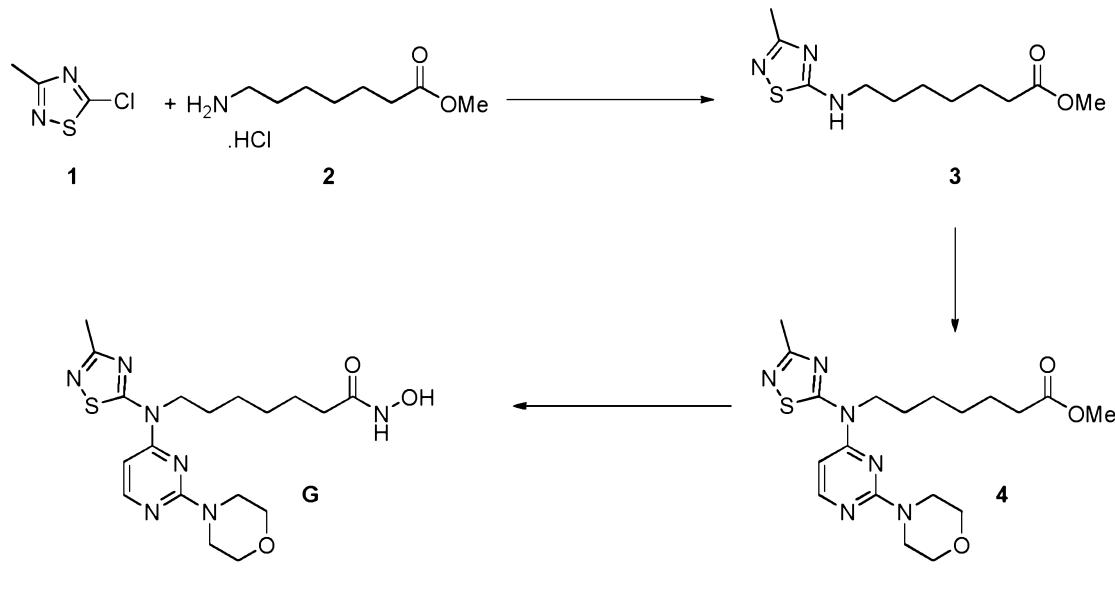


A solution of **(3)** (3.0g, 11.9mmol), 3-chloro-6-methoxypyridazine (2.07g, 14.3mmol), Cs₂CO₃ (11.6g, 35.7mmol) in dioxane (100mL) was purged with Ar(g) for 10min. Xantphos (0.69g, 1.2mmol) and Pd₂(dba)₃ (550mg, 0.6mmol) 5 were added and mixture was heated up to 100°C overnight. The mixture was re-treated with Cs₂CO₃ (3.9g, 11.9mmol), 3-chloro-6-methoxypyridazine (0.86g, 7.2mmol), Xantphos (0.69g, 1.2mmol) and Pd₂(dba)₃ (550mg, 0.6mmol) and heated up to 100°C overnight. Once cooled, it was partitioned between H₂O (100mL) and EtOAc (3 x 150mL). The combined organics were dried over 10 MgSO₄, filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography with hexane/EtOAc (1:0-3:7) to yield **(4)** (3.8g, ~53% pure).

To a solution of impure **(4)** (3.69g, 10.27mmol) in MeOH/THF (1:1, 140mL) was 15 added hydroxylamine (50% w/w in H₂O; 12.6mL, 205mmol) followed by 6N NaOH (6.8mL, 41.1mmol). The mixture was stirred at rt for 0.5h. Then, it was quenched with 1M KHSO₄ (37mL) and partitioned between H₂O (120mL) and CH₂Cl₂ (3 x 250mL). The combined organics were dried over MgSO₄, filtered and concentrated *in vacuo* and purified by C₁₈ reverse phase column 20 chromatography with H₂O/MeCN (19:1-1:1) to yield N-hydroxy-7-[(6-methoxypyridazin-3-yl)(pyrazin-2-yl)amino]heptanamide (**E**) as pale yellow gum (1.40g, 34% over 2 steps).

¹H NMR (300 MHz, DMSO-*d*₆) δ _H ppm: 9.01-9.96 (m, 2H), 8.38 (d, *J*=1.3 Hz, 1H), 8.22 (dd, *J*=2.5, 1.4 Hz, 1H), 8.08 (d, *J*=2.6 Hz, 1H), 7.66 (d, *J*=9.4 Hz, 1H), 25 7.20 (d, *J*=9.4 Hz, 1H), 4.04-4.11 (m, 2H), 4.01 (s, 3H), 1.90 (t, *J*=7.3 Hz, 2H), 1.53-1.69 (m, 2H), 1.45 (quin, *J*=7.1 Hz, 2H), 1.18-1.33 (m, 4H).

LCMS (ES): Found 347.2 [M+H]⁺.


Example F**N-Hydroxy-7-({imidazo[1,2-b]pyridazin-6-yl}(pyrazin-2-yl)amino)heptanamide**

5 A solution of **(3)** (100mg, 0.40mmol), 6-chloroimidazo[1,2-b]pyridazine (73mg, 0.48mmol), Cs₂CO₃ (389mg, 1.2mmol) and BINAP (15mg, 0.02mmol) in dioxane (2.5mL) was degassed with N₂(g) for 10min. Pd₂(dba)₃ (11mg, 0.012mmol) was added and mixture was heated up to 90°C overnight. Once cooled, it was partitioned between H₂O (10mL) and EtOAc (3 x 10mL). The combined organics 10 were dried over MgSO₄, filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography eluting with heptane/EtOAc (1:0-0:1) to yield **(4)** as a tan oil (76mg, 52%).

LCMS (ES): Found 369.0 [M+H]⁺.

To a solution of **(4)** (76mg, 0.21mmol) in MeOH/THF (1:1, 1mL) was added 15 hydroxylamine (50% w/w in H₂O; 0.25mL, 4.1mmol) followed by 6N NaOH (0.07mL, 0.41mmol). The mixture was stirred at rt for 15mins. Then, it was quenched with the addition of 1M KHSO₄ (3mL) and H₂O (5mL), filtered and extracted with CH₂Cl₂ (2 x 10mL). Purification by C₁₈ reverse phase chromatography eluting with H₂O/MeCN gave 20 N-hydroxy-7-((imidazo[1,2-b]pyridazin-6-yl)(pyrazin-2-yl)amino)heptanamide (**F**) as pale yellow gum (21mg, 28%).

LCMS (ES): Found 356.0 [M+H]⁺

Example G**N-Hydroxy-7-[(3-methyl-1,2,4-thiadiazol-5-yl)[2-(morpholin-4-yl)pyrimidin-4-yl]amino]heptanamide**

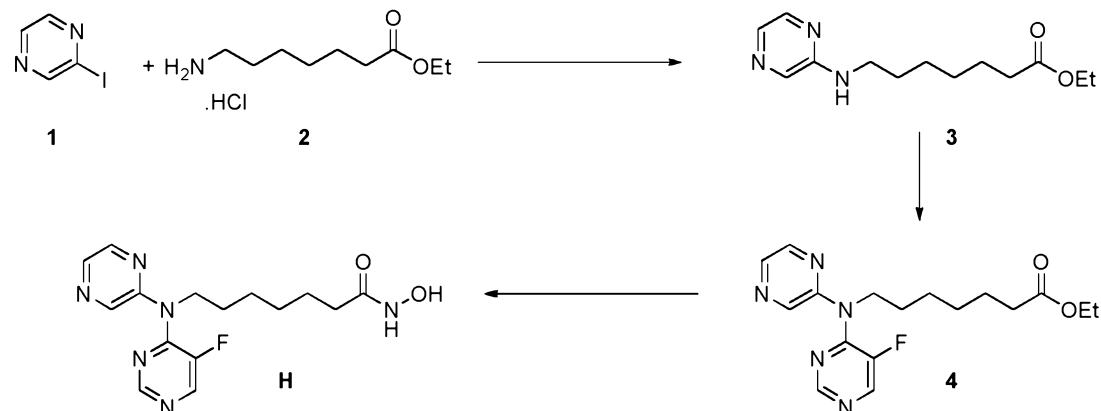
5 To a solution of **(1)** (1.64g, 12mmol) and **(2)** (2.34g, 12mmol) in DMF (10mL) was added triethylamine (5mL, 36mmol). After 12h stirring at rt, H₂O (50mL) was added and the mixture was extracted with EtOAc (3 x 100mL). The combined organics were dried over MgSO₄ and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography with hexane/EtOAc (1:0-1:1) to yield **(3)** as a low melting solid (1.46g, 47%).

10 ¹H NMR (300 MHz, Chloroform-*d*) δ _H ppm: 6.48-6.73 (m, 1H), 3.68 (s, 3H), 3.25 (t, *J*=7.3 Hz, 2H), 2.44 (s, 3H), 2.33 (t, *J*=7.3 Hz, 2H), 1.55-1.79 (m, 4H), 1.29-1.50 (m, 4H).

15 LCMS (ES): Found 258.0 [M+H]⁺.

20 A solution of **(3)** (120mg, 0.47mmol), 4-(4-bromopyrimidin-2-yl)morpholine (137mg, 0.56mmol), Cs₂CO₃ (304mg, 0.93mmol) and Xantphos (13mg, 0.02mmol) in dry dioxane (5mL) was degassed with N₂(g) for 10min. Pd₂(dba)₃ (9mg, 0.01mmol) was added and the mixture was heated up to 90°C overnight. Once cooled, it was partitioned between H₂O (5mL) and EtOAc (2 x 15mL). The combined organics were dried over MgSO₄, filtered and concentrated *in vacuo*. The resulting residue was purified by flash column chromatography eluting with EtOAc/Hex (0:1-1:0) to yield **(4)** as a yellow solid (167mg, 78%).

25 LCMS (ES): Found 421.5 [M+H]⁺.


To a solution of **(4)** (166mg, 0.39mmol) in MeOH/THF (1:1, 2mL) was added hydroxylamine (50% w/w in H₂O; 0.48mL, 7.9mmol) followed by 6N NaOH (0.13mL, 0.79mmol). The mixture was stirred at rt for 15min. The reaction was quenched with the addition of 1M KHSO₄ (2.5mL) and H₂O (5mL). The resulting suspension was stirred for 10min and sonicated before the solid was collected by filtration, washing the cake with H₂O (2 x 5mL) to give N-hydroxy-7-[(3-methyl-1,2,4-thiadiazol-5-yl)[2-(morpholin-4-yl)pyrimidin-4-yl]amino]heptanamide (**G**) as an off-white solid (141mg, 83%).

1H NMR (300 MHz, DMSO-*d*₆) δ _H ppm: 10.32 (s, 1H), 8.64 (s, 1H), 8.32 (d, *J*=5.7 Hz, 1H), 6.67 (d, *J*=5.8 Hz, 1H), 4.30 (dd, *J*=8.1, 7.2 Hz, 2H), 3.76-3.91 (m, 4H), 3.65-3.77 (m, 4H), 2.44 (s, 3H), 1.94 (t, *J*=7.3 Hz, 2H), 1.57-1.71 (m, 2H), 1.42-1.54 (m, 2H), 1.20-1.41 (m, 4H).
LCMS (ES): Found 422.5 [M+H]⁺.

15

Example H

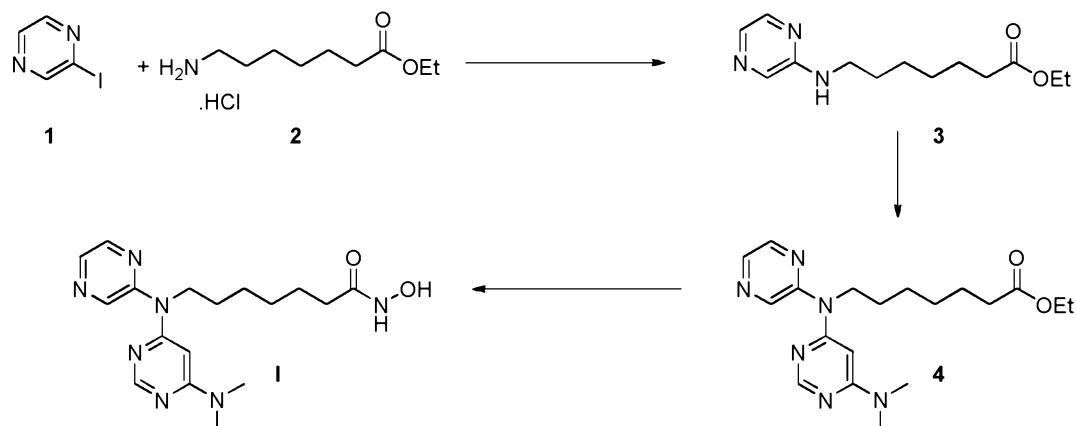
7-[(5-Fluoropyrimidin-4-yl)(pyrazin-2-yl)amino]-N-hydroxyheptanamide

20 A solution of **(3)** (1.0g, 4.0mmol), 4-bromo-5-fluoropyrimidine (0.85g, 4.8mmol), Cs₂CO₃ (3.89g, 11.9mmol), BINAP (0.25g, 0.4mmol) and Pd₂(dba)₃ (182mg, 0.2mmol) in dioxane (30mL) was purged with Ar(g) for 10min. The mixture was then heated up to 100°C overnight. Re-treatment was carried out with 4-bromo-5-fluoropyrimidine (0.84g, 4.8mmol), Cs₂CO₃ (3.89g, 11.9mmol), BINAP (0.25g, 0.4mmol) and Pd₂(dba)₃ (182mg, 0.2mmol) and the mixture was heated up again to 100°C overnight. Once cooled, it was partitioned between H₂O (50mL) and EtOAc (3 x 50mL). The combined organics were dried over MgSO₄, filtered and concentrated *in vacuo*. The resulting residue was purified by flash column

chromatography with hexane/EtOAc (1:0-0:1) to yield **(4)** as a pale yellow oil (0.63g, 46%).

¹H NMR (300 MHz, Chloroform-d) δ_H ppm: 8.71 (d, *J*=2.4 Hz, 1H), 8.41 (d, *J*=1.3 Hz, 1H), 8.28-8.37 (m, 3H), 4.17-4.25 (m, 2H), 4.12 (q, *J*=7.2 Hz, 2H), 2.28 (t, *J*=7.4 Hz, 2H), 1.68-1.80 (m, 2H), 1.62 (quin, *J*=7.3 Hz, 2H), 1.31-1.44 (m, 4H), 1.25 (t, *J*=7.2 Hz, 3H).

LCMS (ES): Found 348.2 [M+H]⁺.


To a solution of **(4)** (0.63g, 1.81mmol) in MeOH/THF (1:1, 20mL) was added hydroxylamine (50% w/w in H₂O; 2.22mL, 36mmol) followed by 6N NaOH (0.60mL, 3.6mmol). The mixture was stirred at rt for 1h. Then, it was quenched with 1M KHSO₄ (20mL) and partitioned between H₂O (10mL) and CH₂Cl₂ (3 x 50mL). The combined organics were dried over MgSO₄, filtered and concentrated *in vacuo* to yield 7-[(5-fluoropyrimidin-4-yl)(pyrazin-2-yl)amino]-N-hydroxyheptanamide (**H**) as pale yellow gum (0.56g, 93%).

¹H NMR (300 MHz, DMSO-*d*₆) δ _H ppm: 10.30 (s, 1H), 8.74 (d, *J*=2.8 Hz, 1H), 8.63 (s, 2H), 8.57 (d, *J*=4.9 Hz, 1H), 8.34-8.41 (m, 2H), 4.10-4.20 (m, 2H), 1.90 (t, *J*=7.3 Hz, 2H), 1.55-1.70 (m, 2H), 1.44 (quin, *J*=7.1 Hz, 2H), 1.17-1.34 (m, 4H).

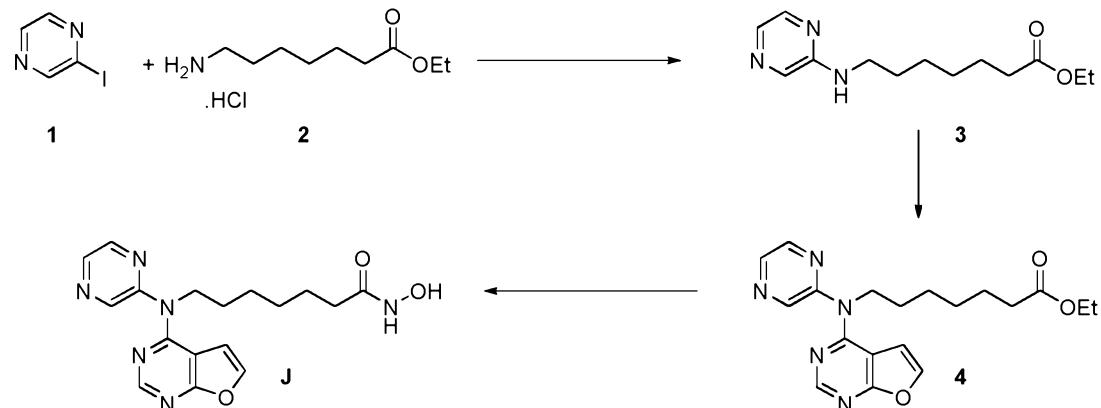
20 LCMS (ES): Found 335.2 [M+H]⁺.

Example 1

7-{{[6-(Dimethylamino)pyrimidin-4-yl](pyrazin-2-yl)amino}-N-hydroxyheptanamide

A solution of **(3)** (100mg, 0.4mmol), 6-chloro-N,N-dimethylpyrimidin-4-amine (75mg, 0.48mmol), Cs_2CO_3 (389mg, 1.2mmol) and BINAP (15mg, 0.02mmol) in dioxane (3mL) was purged with $\text{N}_2(\text{g})$ for 2min before $\text{Pd}_2(\text{dba})_3$ (11mg,

0.01mmol) was added and the reaction heated up to 90°C overnight. The reaction was cooled to rt and re-treatment was carried out, adding Xantphos (4mg, 0.01mmol) and Pd(OAc)₂ (4mg, 0.02mmol). The system was purged with N₂(g) and heated up to 100°C overnight. The reaction was cooled to rt and re-treatment was carried out again, adding Xantphos (6mg, 0.01mmol) and Pd(OAc)₂ (3mg, 0.01mmol). The system was purged with N₂(g) and heated up to 100°C overnight. The reaction mixture was cooled to rt and diluted with dioxane (3mL), filtered through celite, washed with dioxane (3 x 3mL). The filtrate was concentrated *in vacuo*. The resulting residue was purified by flash column chromatography with first heptane/EtOAc (1:0-0:1) then CH₂Cl₂/MeOH (1:0-9:1) to yield (**4**) as an orange oil (81mg, 45%).


LCMS (ES): Found 373.2 [M+H]⁺.

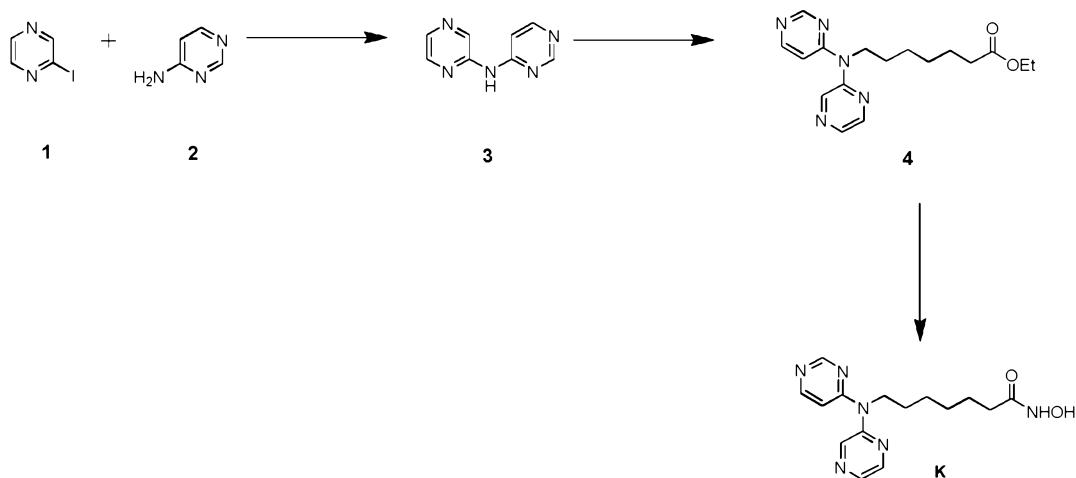
To a solution of (**4**) (81mg, 0.22mmol) in MeOH/THF (1:1, 1mL) was added hydroxylamine (50% w/w in H₂O; 0.13mL, 4.4mmol) followed by 6N NaOH (0.07mL, 3.6mmol). The mixture was stirred at rt for 15min. Then, it was quenched with 1M KHSO₄ (2mL) followed by NaHCO₃ (sat. aq. 5mL) and extracted with 1:2 IPA/CHCl₃ (4 x 30mL). The combined organics were dried over MgSO₄, filtered and concentrated *in vacuo*. The resulting residue was purified by C₁₈ reverse phase chromatography with H₂O/MeCN to give 7-{{[6-(dimethylamino)pyrimidin-4-yl](pyrazin-2-yl)amino}-N-hydroxyheptanamide (**I**) as an orange glass (28mg, 35%).

LCMS (ES): Found 360.2 [M+H]⁺.

25 Example J

7-{{Furo[2,3-d]pyrimidin-4-yl}(pyrazin-2-yl)amino}-N-hydroxyheptanamide

A solution of (**3**) (100mg, 0.4mmol), 4-chlorofuro[2,3-d]pyrimidine (74mg,


0.48mmol), Cs₂CO₃ (389mg, 1.2mmol) and BINAP (15mg, 0.02mmol) in dioxane (3mL) was purged with N₂(g) for 2min before Pd₂(dba)₃ (11mg, 0.01mmol) was added and the reaction was heated up to 90°C overnight. The reaction was cooled to rt and re-treatment was carried out, adding Xantphos (4mg, 0.01mmol) 5 and Pd(OAc)₂ (4mg, 0.02mmol). The system was purged with N₂(g) and heated up to 100°C overnight. The reaction was cooled to rt and diluted with dioxane (3mL), filtered through celite and washed with dioxane (3 x 3mL). The filtrate was concentrated *in vacuo*. The resulting residue was purified by flash column chromatography with heptane/EtOAc (1:0-0:1) to yield **(4)** as an orange oil 10 (171mg, 94%).

LCMS (ES): Found 370.4 [M+H]⁺.

To a solution of **(4)** (171mg, 0.46mmol) in MeOH/THF (1:1, 2mL) was added hydroxylamine (50% w/w in H₂O; 0.28mL, 9.3mmol) followed by 6N NaOH 15 (0.15mL, 0.9mmol). The mixture was stirred at rt for 15min. Then, it was quenched with 1M KHSO₄ (2mL) followed by H₂O (5mL) and extracted with CH₂Cl₂ (3 x 10mL). The combined organics were dried over MgSO₄, filtered and concentrated *in vacuo*. The resulting residue was purified by C₁₈ reverse phase column chromatography eluting with H₂O/MeCN gave 20 7-({furo[2,3-d]pyrimidin-4-yl}(pyrazin-2-yl)amino)-N-hydroxyheptanamide **(J)** as an orange gum (57mg, 34%).

1H NMR (300 MHz, DMSO-*d*₆) δ _H ppm: 10.30 (s, 1H), 8.74 (d, *J*=1.5 Hz, 1H), 8.63 (s, 1H), 8.53-8.58 (m, 2H), 8.50 (d, *J*=2.6 Hz, 1H), 7.87 (d, *J*=2.4 Hz, 1H), 5.82 (d, *J*=2.6 Hz, 1H), 4.16-4.28 (m, 2H), 1.90 (t, *J*=7.3 Hz, 2H), 1.66 (t, *J*=7.7 25 Hz, 2H), 1.38-1.52 (m, 2H), 1.17-1.36 (m, 4H).

LCMS (ES): Found 357.4 [M+H]⁺.

Example K**N-Hydroxy-7-[(pyrazin-2-yl)(pyrimidin-4-yl)amino]heptanamide**

A solution of 2-iodopyrazine (1.2g, 5.8mmol), pyrimidin-4-amine (609mg, 6.4mmol), Cs_2CO_3 (3.8g, 11.7mmol) and Xantphos (148mg, 0.26mmol) in dioxane (15mL) was purged with $\text{N}_2(\text{g})$ for 10 min. $\text{Pd}_2(\text{dba})_3$ (107mg, 0.12mmol) was added and the reaction mixture was sealed and heated up to 90°C for 3h. It was cooled to rt and partitioned between water (300mL) and EtOAc (100mL). Aqueous phases were separated and washed with EtOAc (2 x 100mL). Combined organics were washed with water (50mL), dried over Na_2SO_4 , filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography with $\text{CH}_2\text{Cl}_2/\text{MeOH}$ (1:0-9:1) to yield (**3**) (678mg, 66%).

¹H NMR (500 MHz, Methanol-*d*₄) δ _H ppm 9.06 (d, *J*=1.3 Hz, 1H), 8.74 (s, 1H), 8.42 (d, *J*=6.0 Hz, 1H), 8.34 (dd, *J*=2.6, 1.5 Hz, 1H), 8.19 (d, *J*=2.7 Hz, 1H), 7.72 (dd, *J*=6.0, 1.0 Hz, 1H).

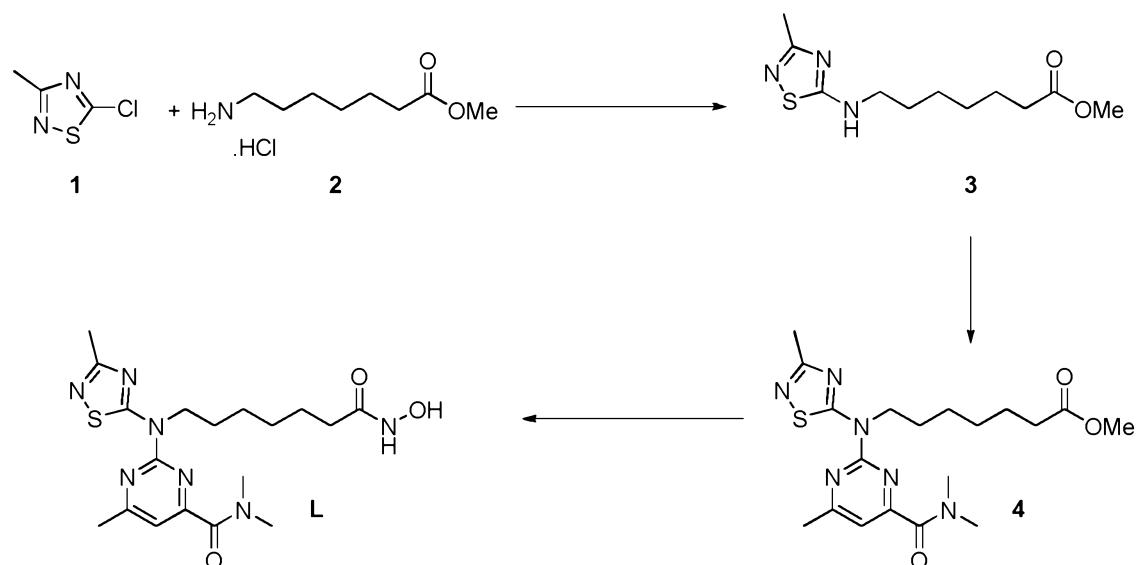
LCMS (ES): Found 174.1 [M+H]⁺.

A suspension of N-(pyrimidin-4-yl)pyrazin-2-amine (**3**) (309mg, 1.78mmol) in dry DMF (7mL) was cooled to 0°C under $\text{N}_2(\text{g})$. NaH (60% suspension, 75mg, 1.87mmol, 1.05eq) was added in one portion and the mixture was stirred at 0°C for 10min. Then, the temperature was raised to ambient temperature and a solution of methyl 7-iodoheptanoate (578mg, 2.14mmol, 1.2eq) in DMF (3mL) was slowly added. The resulting mixture was heated to 70°C and was stirred at that temperature for 1.5h. After cooling to ambient temperature, the reaction mixture was quenched by adding onto H_2O (50mL). After extraction with EtOAc (3 x 30mL), the combined organics were dried over MgSO_4 , filtered and

concentrated *in vacuo*. The residue was purified by flash column chromatography heptane/EtOAc (0:1-1:0) to yield (**4**) as light brown oil (230mg, 41%).

¹H NMR (500 MHz, Chloroform-*d*) δ _H ppm 8.74-8.80 (m, 2H), 8.41 (dd, *J*=2.5, 1.5 Hz, 1H), 8.36 (d, *J*=6.0 Hz, 1H), 8.31 (d, *J*=2.6 Hz, 1H), 6.87 (dd, *J*=6.1, 1.2 Hz, 1H), 4.06-4.18 (m, 2H), 3.66 (s, 3H), 2.29 (t, *J*=7.5 Hz, 2H), 1.69-1.73 (m, 2H), 1.56-1.66 (m, 2H), 1.30-1.42 (m, 4H).

LCMS (ES): Found 316.1 [M+H]⁺.

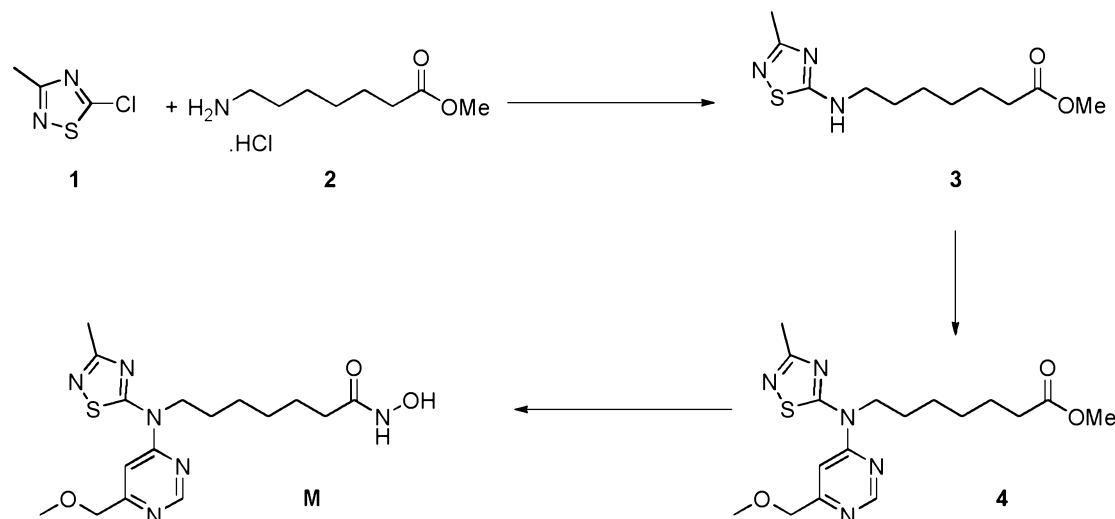

10 A solution of (**4**) (226mg, 0.72mmol) in 0.85M hydroxylamine in MeOH (10mL) was stirred at rt for 18h under N₂(g). The reaction mixture was evaporated to dryness. The residue (off-white solid) was dissolved in MeOH and purified by reverse phase HPLC with H₂O:MeCN (1:0-0:1) to yield N-hydroxy-7-[(pyrazin-2-yl)(pyrimidin-4-yl)amino]heptanamide (**K**) as an off-white gum (79mg, 35%).

15 ¹H NMR (500 MHz, DMSO-*d*₆) δ _H ppm 8.83 (d, *J*=1.3 Hz, 1H), 8.69 (s, 1H), 8.51 (dd, *J*=2.4, 1.5 Hz, 1H), 8.33-8.43 (m, 2H), 7.00-7.05 (m, 1H), 4.01-4.14 (m, 2H), 1.89 (t, *J*=7.4 Hz, 2H), 1.60 (quin, *J*=7.5 Hz, 2H), 1.44 (quin, *J*=7.4 Hz, 2H), 1.17-1.33 (m, 4H).

LCMS (ES): Found 317.1 [M+H]⁺.

20 Example L

2-{{[6-(hydroxycarbamoyl)hexyl](3-methyl-1,2,4-thiadiazol-5-yl)amino}-N,N,6-trimethylpyrimidine-4-carboxamide


A solution of **(3)** (100mg, 0.37mmol), 2-chloro-N,N,6-trimethylpyrimidine-4-carboxamide (110mg, 0.55mmol), Cs₂CO₃ (540mg, 1.66mmol), BINAP (14mg, 0.02mmol) in dry dioxane (2.5mL) was degassed with N₂(g) for 10min. Pd₂(dba)₃ (10mg, 0.01mmol) was added and the mixture was heated up to 100°C overnight. Once cooled, it was filtered through celite, washed with dioxane (2 x 5mL) and the filtrate was concentrated *in vacuo*. The resulting residue was purified by basic prep-HPLC to yield **(4)** as a tan oil (117mg, 78%).

To a solution of **(4)** (125mg, 0.29mmol) in MeOH/THF (1:1, 2mL) was added hydroxylamine (50% w/w in H₂O; 0.35mL, 5.8mmol) followed by 6N NaOH (0.15mL, 0.58mmol). The mixture was stirred at rt for 20min. The reaction was quenched with the addition of 1M KHSO₄ (2.0mL) and H₂O (5mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 5mL). The organics were separated through a PTFE fritted tube then concentrated *in vacuo*. The resulting oil was purified by prep-HPLC to yield 2-{{6-(hydroxycarbamoyl)hexyl}(3-methyl-1,2,4-thiadiazol-5-yl)amino}-N,N,6-trimethylpyrimidine-4-carboxamide (**L**) as a pale yellow oil (89mg, 73%).

LCMS (ES): Found 422.5 [M+H]⁺.

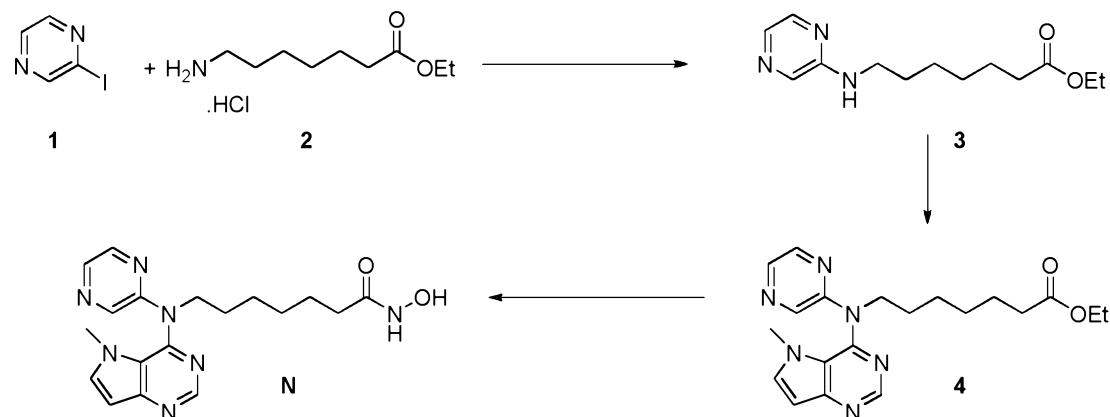
20 Example M

N-hydroxy-7-{{[6-(methoxymethyl)pyrimidin-4-yl](3-methyl-1,2,4-thiadiazol-5-yl)amino}heptanamide

25 A solution of **(3)** (100mg, 0.39mmol), 4-chloro-6(methoxymethyl)pyrimidine

(74mg, 0.47mmol), Cs_2CO_3 (380mg, 1.16mmol), Xantphos (11mg, 0.02mmol) in dry dioxane (2.5mL) was degassed with $\text{N}_2(\text{g})$ for 10min. $\text{Pd}_2(\text{dba})_3$ (11mg, 0.01mmol) was added and the mixture was heated up to 100°C overnight. Once cooled down, it was filtered through celite, washed with dioxane (6 x 3mL) and 5 the filtrate was concentrated *in vacuo*. Purification by flash column chromatography with heptane/EtOAc (1:0-0:1) yielded (**4**) as an off-white solid (121mg, 73%).

To a solution of (**4**) (121mg, 0.32mmol) in MeOH/THF (1:1, 2mL) was added hydroxylamine (50% w/w in H_2O ; 0.20mL, 6.4mmol) followed by 6N NaOH 10 (0.1mL, 0.6mmol). The mixture was stirred at rt for 15min. The reaction was quenched with the addition of 1M KHSO_4 (2.0mL) and H_2O (5mL). The resulting suspension was stirred for 10min before the solid was collected by filtration, washing the cake with H_2O (2 x 5mL). The residue was purified by prep-HPLC to 15 yield N-hydroxy-7-{{[6-(methoxymethyl)pyrimidin-4-yl](3-methyl-1,2,4-thiadiazol-5-yl)amino}heptanamide (**M**) as an orange solid (46mg, 38%).


LCMS (ES): Found 381.5 [M+H]⁺.

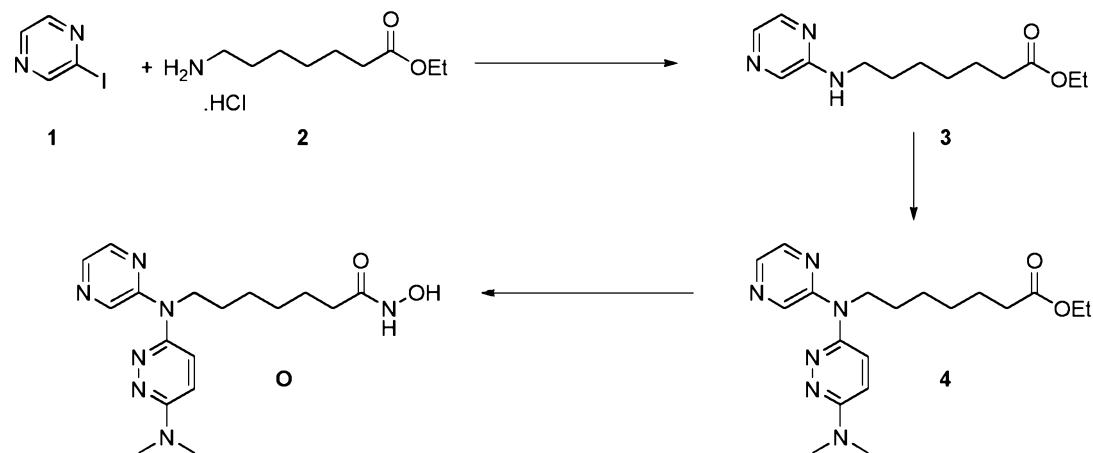
Example N

N-hydroxy-7-{{[5-methyl-5H-pyrrolo[3,2-d]pyrimidin-4-yl](pyrazin-2-yl)amino}heptanamide

20

heptanamide

A solution of (**3**) (100mg, 0.40mmol), 4-chloro-5-methyl-5H-pyrrolo[3,2-d]pyrimidine (100mg, 0.60mmol), Cs_2CO_3 25 (389mg, 1.2mmol) and BINAP (15mg, 0.02mmol) in dioxane (4mL) was purged with Ar(g) for 10min. $\text{Pd}_2(\text{dba})_3$ (11mg, 0.012mmol) was added and the mixture was heated up to 100°C overnight. The reaction was then re-charged with 4-chloro-5-methyl-5H-pyrrolo[3,2-d]pyrimidine (100mg, 0.60mmol), $\text{Pd}(\text{OAc})_2$


(12mg, 0.05mmol) and Xantphos (13mg, 0.03mmol). It was heated up to 100°C another night. Once cooled down, it was filtered through celite, washed with dioxane (6 x 3mL) and the filtrate was concentrated *in vacuo*. Purification by flash column chromatography with heptane/EtOAc (1:0-0:1) then EtOAc/MeOH (1:0-4:1) yielded (**4**) as a brown residue (159mg, 50%).

To a solution of (**4**) (159mg, 0.42mmol) in MeOH/THF (1:1, 2mL) was added hydroxylamine (50% w/w in H₂O; 0.50mL, 8.3mmol) followed by 6N NaOH (0.14mL, 0.8mmol). The mixture was stirred at rt for 15min. The reaction was quenched with the addition of 1M KHSO₄ (2.0mL) and H₂O (5mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 5mL). The organics were separated through a PTFE fritted tube then concentrated *in vacuo*. The residue was purified by neutral prep-HPLC to yield N-hydroxy-7-(5-methyl-4aH,5H,7aH-pyrrolo[3,2-d]pyrrolidin-4-yl}(pyrazin-2-yl)amino)heptanamide (**N**) as a pale yellow foam (2.7mg, 1.7%).

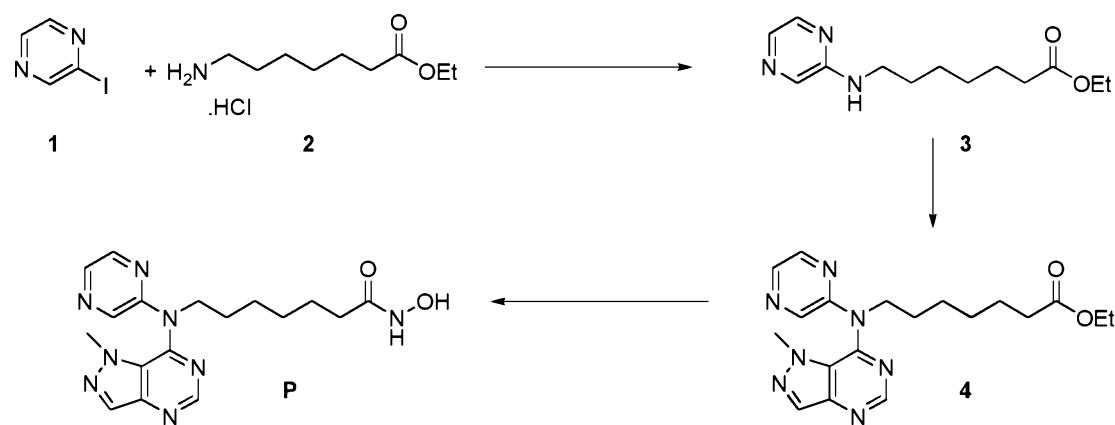
LCMS (ES): Found 370.2 [M+H]⁺.

Example O

7-{{[6-(dimethylamino)pyridazin-3-yl](pyrazin-2-yl)amino}-N-hydroxyheptanamide

A solution of (**3**) (100mg, 0.40mmol), 6-bromo-N,N-dimethylpyridazin-3-amine (96.4mg, 0.48mmol), Cs₂CO₃ (389mg, 1.2mmol) and BINAP (15mg, 0.02mmol) in dioxane (4mL) was purged with Ar(g) for 10min. Pd₂(dba)₃ (11mg, 0.012mmol) was added and the mixture was heated up to 100°C overnight. The mixture was then re-charged with Cs₂CO₃ (300mg, 0.92mmol), Xantphos (4.3mg, 0.01mmol) and Pd(OAc)₂ (4.7mg, 0.02mmol). Once cooled down, the mixture was diluted

with CH_2Cl_2 (3mL), filtered through celite, washed with CH_2Cl_2 (6 x 3mL) and the filtrate was concentrated *in vacuo*. Purification by flash column chromatography with heptane/EtOAc (1:0-0:1) then CH_2Cl_2 /MeOH (1:0-9:1) yielded (**4**) as a black gum (108mg, 42%).

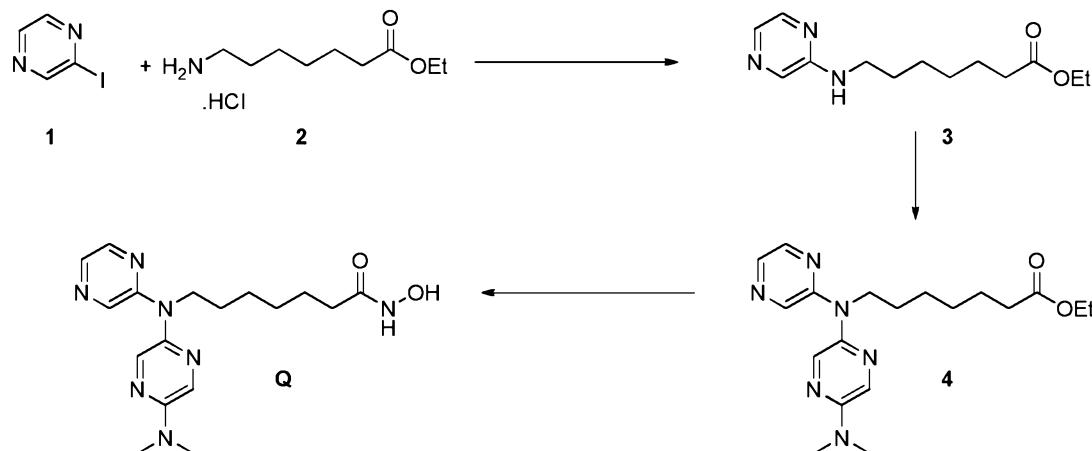

5 To a solution of (**4**) (108mg, 0.29mmol) in MeOH/THF (1:1, 2mL) was added hydroxylamine (50% w/w in H_2O ; 0.18mL, 6.0mmol) followed by 6N NaOH (0.1mL, 0.58mmol). The mixture was stirred at rt for 15min. The reaction was quenched with the addition of 1M KHSO_4 (2.0mL) and H_2O (5mL). The aqueous layer was extracted with IPA:chloroform (1:2, 2 x 30mL). The organics were then 10 concentrated *in vacuo*. The residue was purified by prep-HPLC to yield 7-[6-(dimethylamino)pyridazin-3-yl](pyrazin-2-yl)amino]-N-hydroxyheptanamide (**O**) as a yellow glass film (41.1mg, 34%).

15 ^1H NMR (500 MHz, $\text{DMSO}-d_6$) δ ppm 10.30 (br. s., 1H), 8.62 (br. s., 1H), 8.13-8.15 (m, 1H), 8.06-8.08 (m, 1H), 7.93 (d, $J=2.7$ Hz, 1H), 7.39-7.45 (m, 1H), 7.17 (d, $J=9.6$ Hz, 1H), 3.96-4.00 (m, 2H), 3.10-3.12 (m, 6H), 1.91 (t, $J=7.4$ Hz, 2H), 1.54-1.62 (m, 2H), 1.40-1.48 (m, 2H), 1.19-1.31 (m, 4H).

LCMS (ES): Found 360.2 $[\text{M}+\text{H}]^+$.

Example P

20 **N-hydroxy-7-(1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)(pyrazin-2-yl)amin o)heptanamide**

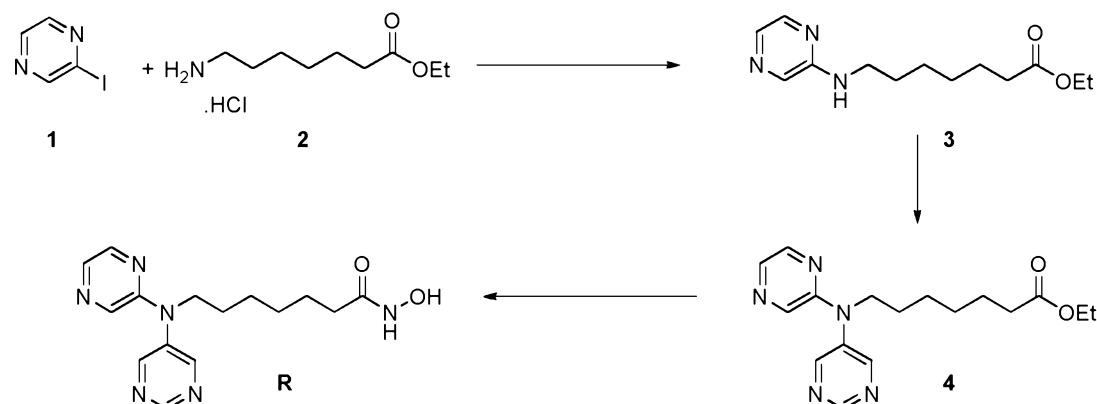

25 A solution of (**3**) (100mg, 0.40mmol), 7-chloro-1-methyl-1H-pyrazolo[4,3-d]pyrimidine (80.5mg, 0.48mmol), Cs_2CO_3 (389mg, 1.2mmol) and BINAP (15mg, 0.02mmol) in dioxane (3mL) was purged with Ar(g) for 10min. $\text{Pd}_2(\text{dba})_3$ (11mg, 0.012mmol) was added and the mixture

was heated up to 100°C overnight. The reaction was then re-charged with 7-chloro-1-methyl-1H-pyrazolo[4,3-d]pyrimidine (40.0mg, 0.24mmol), Pd(OAc)₂ (4.5mg, 0.02mmol) and Xantphos (4.3mg, 0.01mmol). It was heated up to 100°C for another night. The reaction was again re-charged with Cs₂CO₃ (300mg, 5 0.9mmol), Pd(OAc)₂ (4.5mg, 0.02mmol) and Xantphos (4.3mg, 0.01mmol), then heated up to 100°C for another night. Once cooled down, the mixture was diluted with CH₂Cl₂ (3mL), filtered through celite, washed with CH₂Cl₂ (6 x 3mL) and the filtrate was concentrated *in vacuo*. Purification by flash column chromatography with heptane/EtOAc (1:0-0:1) then CH₂Cl₂/MeOH (1:0-9:1) 10 yielded (**4**) as an orange oil (72mg, 28%).

LCMS (ES): Found 384.5 [M+H]⁺.
To a solution of (**4**) (72mg, 0.19mmol) in MeOH/THF (1:1, 2mL) was added hydroxylamine (50% w/w in H₂O; 0.12mL, 3.8mmol) followed by 6N NaOH (0.06mL, 0.38mmol). The mixture was stirred at rt for 15min. The reaction was 15 quenched with the addition of 1M KHSO₄ (2mL) and H₂O (7mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 10mL). The organics were separated through a PTFE fritted tube then concentrated *in vacuo*. The residue was purified by prep-HPLC to yield N-hydroxy-7-(1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)(pyrazin-2-yl)amino)heptanamide (**P**) as an off-white solid (2.5mg, 4%).
LCMS (ES): Found 371.1 [M+H]⁺.

Example Q

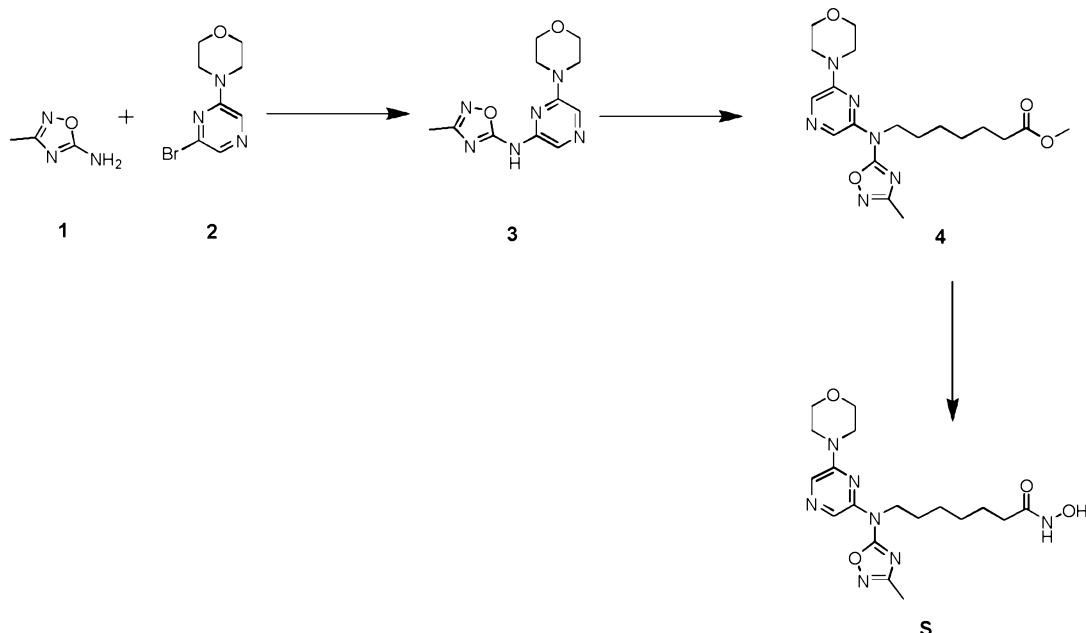
25 **7-{[5-(dimethylamino)pyrazin-2-yl](pyrazin-2-yl)amino}-N-hydroxyheptanamide**


A solution of **(3)** (100mg, 0.40mmol), 5-bromo-N,N-dimethylpyrazin-2-amine (96.5mg, 0.48mmol), Cs₂CO₃ (389mg, 1.2mmol) and BINAP (15mg, 0.02mmol) in dioxane (3mL) was purged with Ar(g) for 10min. Pd₂(dba)₃ (11mg, 0.012mmol) was added and the mixture was heated up to 100°C overnight. The reaction was 5 then re-charged with 5-bromo-N,N-dimethylpyrazin-2-amine (45mg, 0.22mmol), Pd(OAc)₂ (4.5mg, 0.02mmol) and Xantphos (4.3mg, 0.01mmol). It was heated up to 100°C for another night. The reaction was again re-charged with Cs₂CO₃ (300mg, 0.9mmol), Pd(OAc)₂ (4.5mg, 0.02mmol) and Xantphos (4.3mg, 0.01mmol), then heated up to 100°C for another night. Once cooled down, the 10 mixture was diluted with CH₂Cl₂ (3mL), filtered through celite, washed with CH₂Cl₂ (6 x 3mL) and the filtrate was concentrated *in vacuo*. Purification by flash column chromatography with CH₂Cl₂/MeOH (1:0-9:1) yielded **(4)** as a brown gum (171mg, 49%).

LCMS (ES): Found 373.1 [M+H]⁺.
 15 To a solution of **(4)** (171mg, 0.46mmol) in MeOH/THF (1:1, 2mL) was added hydroxylamine (50% w/w in H₂O; 0.28mL, 9.2mmol) followed by 6N NaOH (0.15mL, 0.92mmol). The mixture was stirred at rt for 15min. The reaction was quenched with the addition of 1M KHSO₄ (2mL) and H₂O (7mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 10mL). The organics were separated 20 through a PTFE fritted tube then concentrated *in vacuo*. The residue was purified by neutral prep-HPLC to yield 7-{{[5-(dimethylamino)pyrazin-2-yl](pyrazin-2-yl)amino}-N-hydroxyheptanamide (**Q**) as an off-white solid (38mg, 23%).

LCMS (ES): Found 360.2 [M+H]⁺.

25 Example R


N-hydroxy-7-[(pyrazin-2-yl)(pyrimidin-5-yl)amino]heptanamide

A solution of **(3)** (100mg, 0.40mmol), 5-bromopyrimidine (94.9mg, 0.60mmol), Cs₂CO₃ (389mg, 1.2mmol), BINAP (15mg, 0.02mmol) and Pd₂(dba)₃ (11mg, 0.012mmol) in dioxane (2.5mL) was purged with Ar(g) for 10min. Then, Pd(OAc)₂ (12mg, 0.05mmol) and Xantphos (13mg, 0.03mmol) were added and 5 the mixture was heated up to 100°C overnight. The reaction was then recharged with Pd(OAc)₂ (12mg, 0.05mmol) and Xantphos (13mg, 0.03mmol). It was heated up to 100°C for another night. Once cooled down, the mixture was diluted with dioxane (3mL), filtered through celite, washed with dioxane (3 x 3mL) and the filtrate was concentrated *in vacuo*. Purification by basic prep-HPLC 10 yielded **(4)** as a tan residue (82mg, 50% pure, 31%), which was used as such in the next step.

To a solution of **(4)** (82mg, 50% pure, 0.12mmol) in MeOH/THF (1:1, 1mL) was added hydroxylamine (50% w/w in H₂O; 0.15mL, 2.4mmol) followed by 6N NaOH (0.04mL, 0.24mmol). The mixture was stirred at rt for 15min. The reaction 15 was quenched with the addition of 1M KHSO₄ (2mL) and H₂O (5mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 5mL). The organics were separated through a PTFE fritted tube then concentrated *in vacuo*. The residue was purified by prep-HPLC to yield N-hydroxy-7-[(pyrazin-2-yl)(pyrimidin-5-yl)amino]heptanamide **(R)** as a pale 20 yellow oil (9.8mg, 25%).

LCMS (ES): Found 317.1 [M+H]⁺.

Example S**N-hydroxy-7-[(3-methyl-1,2,4-oxadiazol-5-yl)[6-(morpholin-4-yl)pyrazin-2-yl]amino]heptanamide**

5 A solution of 3-methyl-1,2,4-oxadiazol-5-amine (120mg, 1.2mmol), 4-(6-bromopyrazin-2-yl)morpholine (355mg, 1.45mmol), Cs_2CO_3 (986mg, 3.0mmol) and Xantphos (28mg, 0.05mmol) in dioxane (3mL) was purged with $\text{N}_2(\text{g})$ for 10 min. $\text{Pd}_2(\text{dba})_3$ (22mg, 0.02mmol) was added and the reaction mixture was heated up to 100°C overnight. Once cooled down, it was diluted with dioxane (5mL) and filtered. The precipitate was taken up in H_2O (5mL), sonicated, filtered and washed with H_2O (3 x 10mL). Additional material was recovered from the aqueous layer after purification by basic prep-HPLC. Both materials were combined to yield (**3**) as a grey powder (139mg, 42%).

LCMS (ES): Found 263.4 $[\text{M}+\text{H}]^+$.

15 To NaH (60% suspension, 32mg, 0.8mmol) in dry DMF (7mL) was added dropwise a solution of (**3**) (139mg, 0.53mmol) in DMF (2mL) at 0°C under $\text{N}_2(\text{g})$. The mixture was then warmed to rt for 10min and a solution of methyl 7-iodoheptanoate (186mg, 0.69mmol) in DMF (1mL) was slowly added. The resulting mixture was heated up to 70°C for 1h in dark. Once cooled down, the reaction mixture was quenched with H_2O (30mL) and extracted with EtOAc (4 x 10mL). The combined organics were washed with brine, dried over Na_2SO_4 , filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography heptane/ EtOAc (4:1-2:3) to yield (**4**) as a yellow oil (153mg,

68%).

¹H NMR (500 MHz, Chloroform-*d*) δ _H ppm 8.65 (br. s., 1H), 7.87 (br. s., 1H), 4.09-4.20 (m, 2H), 3.80-3.87 (m, 4H), 3.66 (s, 3H), 3.49-3.58 (m, 4H), 2.31 (s, 3H), 2.28 (t, *J*=7.5 Hz, 2H), 1.74 (t, *J*=7.4 Hz, 2H), 1.53-1.67 (m, 2H), 1.28-1.42

5 (m, 4H).

LCMS (ES): Found 263.1 [M+H]⁺.

To a solution of (**4**) (140mg, 0.35mmol) in MeOH/THF (1:1, 3mL) was added hydroxylamine (50% w/w in H₂O; 0.42mL, 7.0mmol) followed by 6N NaOH (0.12mL, 0.70mmol). The mixture was stirred at rt for 15min. The reaction was

10 quenched with the addition of 1M KHSO₄ (5mL) and H₂O (10mL). The aqueous layer was extracted with CH₂Cl₂ (4 x 10mL). The organics were dried over Na₂SO₄, filtered and concentrated *in vacuo* to yield N-hydroxy-7-[(3-methyl-1,2,4-oxadiazol-5-yl)[6-(morpholin-4-yl)pyrazin-2-yl]amin o]heptanamide (**S**) as a pale yellow wax (101mg, 71%).

15 ¹H NMR (500 MHz, DMSO-*d*₆) δ _H ppm 10.32 (br. s., 1H), 8.65 (br. s., 1H), 8.47 (s, 1H), 8.07 (s, 1H), 3.99-4.13 (m, 2H), 3.68-3.77 (m, 4H), 3.48-3.56 (m, 4H), 2.24 (s, 3H), 1.92 (t, *J*=7.3 Hz, 2H), 1.64 (quin, *J*=7.2 Hz, 2H), 1.45 (quin, *J*=7.3 Hz, 2H), 1.18-1.34 (m, 4H).

LCMS (ES): Found 406.5 [M+H]⁺.

Biochemical Selectivity

Example	HDAC1	HDAC6
A	***	*
B	***	*
C	**	*
D	**	*
E	**	*
F	**	*
G	**	*
H	***	*
I	***	*
J	***	*
K	**	**
L	**	*
M	***	*
N	***	*
O	**	*
P	***	*
Q	**	*
R	***	*
S	***	*

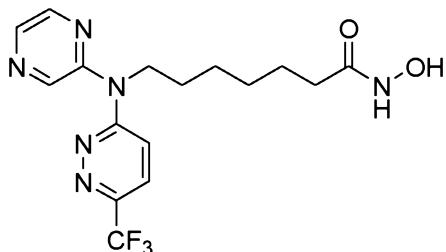
Key:

5 * $\leq 100\text{nM}$
 ** $> 100\text{nM} \leq 1000\text{nM}$
 *** $> 1000\text{nM}$

Comparative Plasma Clearance Data following IV treatment for Example

10 When comparing compounds of the present invention with Examples in WO 2010/086646 and WO 2014/072714, it has been shown that compounds of the invention have improved plasma clearance following IV dosing in mice.

Example DProtocol


A group of eighteen male Balb/c mice were divided into two groups Group 1 (3mg/kg; i.v.), Group 2 (10mg/kg; p.o.) with each group comprising of nine mice.

5 Animals in Group 1 were administered intravenously with Example D solution formulation in 5% NMP, 5% solutol HS-15 in 90% HP β CD solution (20% HP β CD in RO water) at 3 mg/kg dose while animals in Group 2 were administered orally with 10 mg/kg solution formulation of Example D in 5% NMP, 5% solutol HS-15 in 90% HP β CD solution (20% HP β CD in RO water). Blood samples

10 (approximately 60 μ L) were collected from retro orbital plexus under light isoflurane anesthesia such that the samples were obtained at pre-dose, 0.08, 0.25, 0.5, 1, 2, 4, 8 and 24 hr (i.v.) and pre-dose, 0.25, 0.5, 1, 2, 4, 6, 8 and 24 hr (p.o.). The blood samples were collected from set of three mice at each time point in labeled micro centrifuge tube containing K₂EDTA as anticoagulant.

15 Plasma samples were separated by centrifugation of whole blood and stored below -70°C until bioanalysis. All samples were processed for analysis by protein precipitation using acetonitrile (ACN) and analyzed with fit for purpose LC/MS/MS method (LLOQ: 1.27ng/mL). Pharmacokinetic parameters were calculated using the non-compartmental analysis tool of Phoenix WinNonlin

20 (Version 6.3).

Plasma clearance = 48.60 mL/min/kg

Example 3 of WO 2010/086646

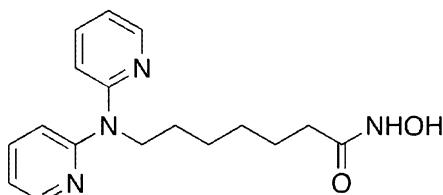
25 Protocol

Compound was administered both intravenously and orally to mice. Blood samples were collected at up to 7 time points over 8 hours and plasma was analysed by LC-MS/MS to determine the concentration of compound at each time point. The plasma time concentration profile was delivered along with the

30 main calculated PK parameters (Co, Cmax, AUC-last, t_{1/2}, tmax, Vd, and CL).

Three male CD1 mice, 25-30g, were dosed per administration route per timepoint. Compound was administered both orally (10mg compound per kg of body weight) and intravenously (5mg compound per kg body weight). The excipient used was 10% NMP/90% water. Animals were given free access to 5 food throughout the study.

At the following time points, the animals were anaesthetized, blood collected in heparinized tubes and animals were sacrificed:


Oral dosing: 0.08, 0.25, 0.5, 1, 2, 4 and 8hr post-dose;

IV dosing: 0.08, 0.25, 0.5, 1, 2, 4 and 8hr post-dose.

10 Blood samples were centrifuged to obtain the plasma, which was transferred to a separate, labelled container. Aliquots from the individual time points for the three animals were analyzed singly. Protein was precipitated by adding three volumes of methanol and centrifuging for 30 min at 4°C. Aliquots of 100µL of the resulting supernatant were diluted with 200µL of HPLC grade water in a 96 well plate.

15 Standard curves were prepared in blank plasma matrices and treated in an identical manner to the samples. The plasma samples were quantified by LC-MS/MS and the concentration of compound in plasma was reported in µg/mL. Pharmacokinetic parameters were calculated employing non-compartmental model analysis.

20

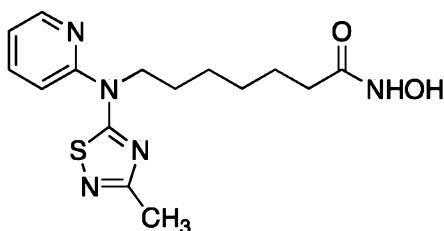
Plasma clearance = 373.76 mL/min/kg

Example A of WO 2014/072714

25 Protocol

Species: Mouse

Strain: CD1


Sex: Male

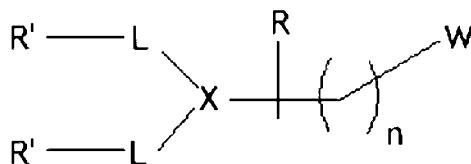
Formulation: Solutions in 10% DMSO, 15% Cremophor, 75% Saline

Dosing: 10mg/kg P.O. and 5mg/kg I.V.

Protocol:

- n=3 male mice per time point per route;
- Terminal blood sampling at 8 time points (5min, 10min, 0.5hr, 1hr, 3hr, 6hr, 8hr and, 24hr);
- Collection of plasma, bio-analysis and report of AUC, AUMC, Vss, CL, half life, MRT and bioavailability.

10 Plasma clearance = 252.8 mL/min/kg


Throughout the specification and the claims that follow, unless the context requires otherwise, the words "comprise" and "include" and variations such as "comprising" and "including" will be understood to imply the inclusion of 15 a stated integer or group of integers, but not the exclusion of any other integer or group of integers.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement of any form of suggestion that such prior art forms part of the common general knowledge.

20 It will be appreciated by those skilled in the art that the invention is not restricted in its use to the particular application described. Neither is the present invention restricted in its preferred embodiment with regard to the particular elements and/or features described or depicted herein. It will be appreciated that the invention is not limited to the embodiment or embodiments disclosed, but is 25 capable of numerous rearrangements, modifications and substitutions without departing from the scope of the invention.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A compound of the formula

wherein:

5 X is N;
 n is 1 to 10;
 R is H;
 each R' is independently selected from H and QR₁;
 each Q is independently selected from a bond, C₁-C₄ alkylene, CO, CO₂,
 10 NH, S, SO, SO₂ or O;
 each R₁ is independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl,
 C₂-C₁₀ alkynyl, C₁-C₄ alkoxy, aryl, heteroaryl, C₁-C₁₀ cycloalkyl, halogen, C₁-C₁₀
 alkylaryl, C₁-C₁₀ alkyl heteroaryl, C₁-C₁₀ heterocycloalkyl, NR₂R₃ or
 trifluoromethyl, wherein R₂ and R₃ are C₁-C₄ alkyl;
 15 L is independently a 5- to 12-membered heteroaryl, wherein each L
 contains at least two nitrogen atoms;

W is a zinc-binding group -CONHOH of structure: ;
 each aryl or heteroaryl may be substituted by up to five substituents
 selected from C₁-C₆ alkyl, hydroxy, C₁-C₃ hydroxyalkyl, C₁-C₃ alkoxy, C₁-C₃
 20 haloalkoxy, amino, C₁-C₃ mono alkylamino, C₁-C₃ bis alkylamino, C₁-C₃
 acylamino, C₁-C₃ aminoalkyl, mono (C₁-C₃ alkyl) amino C₁-C₃ alkyl, bis(C₁-C₃
 alkyl) amino C₁-C₃ alkyl, C₁-C₃-acylamino, C₁-C₃ alkyl sulfonylamino, halo, nitro,
 cyano, trifluoromethyl, carboxy, C₁-C₃ alkoxy carbonyl, aminocarbonyl, mono C₁-
 C₃ alkyl aminocarbonyl, bis C₁-C₃ alkyl aminocarbonyl, -SO₃H, C₁-C₃
 25 alkylsulfonyl, aminosulfonyl, mono C₁-C₃ alkyl aminosulfonyl and bis C₁-C₃-alkyl
 aminosulfonyl; and
 each alkyl, alkenyl or alkynyl may be optionally substituted with C₁-C₁₀
 alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, aryl, cycloalkyl, heteroaryl, halogen, NH₂,
 NO₂ or hydroxyl,
 30 or a pharmaceutically acceptable salt thereof.

2. The compound according to claim 1, wherein R' is independently selected from H and QR₁;

each Q is independently selected from a bond, CO, CO₂, NH, S, SO, SO₂ or O;

5 each R₁ is independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, aryl, heteroaryl, C₁-C₁₀ cycloalkyl, halogen, C₁-C₁₀ alkylaryl, C₁-C₁₀ alkyl heteroaryl, C₁-C₁₀ heterocycloalkyl, or trifluoromethyl.

3. The compound according to claim 1 or claim 2, wherein at least one L is independently selected from pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl,

10 thiadiazolyl, oxadiazolyl and imidazolyl, each of which may be optionally fused to a 5-membered heteroaryl, wherein the 5-membered heteroaryl contains at least one N or O

4. The compound according to claim 1 or claim 2, wherein both L is independently selected from pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl,

15 thiadiazolyl, oxadiazolyl and imidazolyl, each of which may be optionally fused to a 5-membered heteroaryl, wherein the 5-membered heteroaryl contains at least one N.

5. The compound according to any one of the preceding claims, wherein at least one L is independently selected from pyrazolyl, pyrazinyl, pyrimidinyl,

20 pyridazinyl, thiadiazolyl and imidazolyl, each of which may be optionally fused to a 5-membered nitrogen-containing heteroaryl, wherein the 5-membered heteroaryl contains N or O.

6. The compound according to any one of the preceding claims, wherein both L is independently selected from pyrazolyl, pyrazinyl, pyrimidinyl,

25 pyridazinyl, thiadiazolyl and imidazolyl, each of which may be optionally fused to a 5-membered nitrogen-containing heteroaryl, wherein the 5-membered heteroaryl contains N.

7. The compound according to any one of the preceding claims, wherein in at least one of L, the atom that is directly bonded to X is a carbon, and at least

30 one nitrogen atom is directly bonded to said carbon.

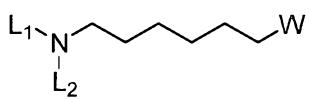
8. The compound according to any one of the preceding claims, wherein in both of L, the atom that is directly bonded to X is a carbon, and at least one nitrogen atom is directly bonded to said carbon.

9. The compound according to any one of the preceding claims, wherein at least one L is a 6-membered heteroaryl independently selected from pyrazinyl, pyrimidinyl, pyridazinyl.

10. The compound according to any one of the preceding claims, wherein 5 both L is a 6-membered heteroaryl independently selected from pyrazinyl, pyrimidinyl, pyridazinyl.

11. The compound according to any one of the preceding claims, wherein R' is independently selected from H, C₁-C₁₀ alkyl, O-(C₁-C₁₀ alkyl), N(C₁-C₁₀ alkyl)₂, heterocycloalkyl, trifluoromethyl or halogen.

10 12. The compound according to any one of the preceding claims, wherein R' is independently selected from H, C₁-C₁₀ alkyl, O-(C₁-C₁₀ alkyl), N(C₁-C₁₀ alkyl)₂, heterocycloalkyl, trifluoromethyl or halogen, wherein the alkyl is substituted with at least one fluorine.


13. The compound according to claim 11 or 12, wherein the heterocycloalkyl 15 is morpholino.

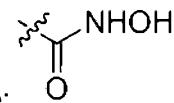
14. The compound according to claim 11 or 12, wherein R' is independently H and CF₃.

15. The compound according to any one of the preceding claims, wherein n is 3 to 7.

20 16. The compound according to claim 15, wherein n is 5 to 7.

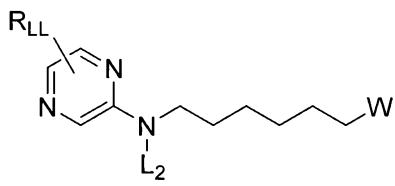
17. A compound represented by:

or a pharmaceutically acceptable salt thereof,


wherein

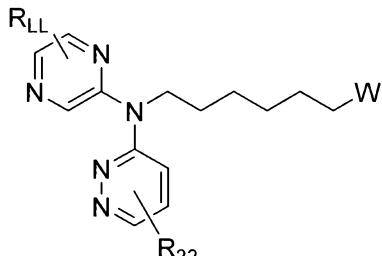
25 L₁ is a 5-6 membered monocyclic heteroaryl having at least 2 nitrogen atoms;

L₂ is a 5-6 membered monocyclic heteroaryl having at least 2 nitrogen atoms, or a 9-10 membered bicyclic heteroaryl having at least 2 nitrogen atoms; wherein L₁ and L₂ are each optionally substituted by one, two or three substituents each independently selected from RL;


30 RL is selected for each occurrence from the group consisting of: C₁-₆alkyl, C₂-₆alkenyl, C₂-₆alkynyl; C₁-₆alkoxy, C₃-₆cycloalkyl, halogen, NR^aR^b; -C(O)-NR^aR^b, -NR^aC(O)-R^a; and -NR^aSO₂-R^a (wherein C₁-₆alkyl, C₂-₆alkenyl, C₂-₆alkynyl, C₁-₆alkoxy and C₃-₆cycloalkyl may be optionally substituted by one, two or three halogens or C₁-₆alkoxy);

R^a and R^b are each independently selected from H or C_{1-4} alkyl; or R^a and R^b taken together with the nitrogen to which they are attached form a 4-6 membered heterocycle; and

W is the zinc binding group $-CONHOH$ of structure:


5 18. The compound of claim 17, represented by:

wherein R_{LL} is selected for each occurrence from the group consisting of H, F, CF_3 , and CH_3 .

10 19. The compound of claim 17 or 18, wherein L_2 is a 6 membered monocyclic heteroaryl having two nitrogens.

20. The compound of any one of claims 17-19, represented by:

wherein R_{22} is selected from the group consisting of H, F, NR^aR^b ; C_{1-2} alkoxy; and methoxymethyl.

15 21. The compound according to any one of the preceding claims, comprising:

7-[Bis(pyrazin-2-yl)amino]-N-hydroxyheptanamide; N-Hydroxy-7-[(pyrazin-2-yl)([1,2,4]triazolo[1,5-a]pyrazin-8-yl])amino]heptanamide; N-Hydroxy-7-[(pyrazin-2-yl)(pyrazolo[1,5-a]pyrimidin-5-yl])amino]heptanamide; N-Hydroxy-7-[(pyrazin-2-yl)[6-(trifluoromethyl)pyridazin-3-yl]amino]heptanamide; N-Hydroxy-7-

20 [(6-methoxypyridazin-3-yl)(pyrazin-2-yl)amino]heptanamide;

N-Hydroxy-7-({imidazo[1,2-b]pyridazin-6-yl}(pyrazin-2-yl)amino)heptanamide; N-Hydroxy-7-[(3-methyl-1,2,4-thiadiazol-5-yl)[2-(morpholin-4-yl)pyrimidin-4-yl]amino]heptanamide; 7-[(5-Fluoropyrimidin-4-yl)(pyrazin-2-yl)amino]-N-hydroxyheptanamide;

25 7-{{6-(Dimethylamino)pyrimidin-4-yl}(pyrazin-2-yl)amino}-N-hydroxyheptanamide; 7-({Furo[2,3-d]pyrimidin-4-yl}(pyrazin-2-yl)amino)-N-hydroxyheptanamide; N-

Hydroxy-7-[(pyrazin-2-yl)(pyrimidin-4-yl)amino]heptanamide;
2-{{6-(hydroxycarbamoyl)hexyl}(3-methyl-1,2,4-thiadiazol-5-yl)amino}-N,N,6-trimethylpyrimidine-4-carboxamide;

N-hydroxy-7-{{6-(methoxymethyl)pyrimidin-4-yl}(3-methyl-1,2,4-thiadiazol-5-yl)a

5 mino}heptanamide;

N-hydroxy-7-{{5-methyl-5H-pyrrolo[3,2-d]pyrimidin-4-yl}(pyrazin-2-yl)amino}heptanamide;

7-{{6-(dimethylamino)pyridazin-3-yl}(pyrazin-2-yl)amino}-N-hydroxyheptanamide;

N-hydroxy-7-{{1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl}(pyrazin-2-yl)amino}hep

10 tanamide;

7-{{5-(dimethylamino)pyrazin-2-yl}(pyrazin-2-yl)amino}-N-hydroxyheptanamide;

N-hydroxy-7-[(pyrazin-2-yl)(pyrimidin-5-yl)amino]heptanamide; or

N-hydroxy-7-[(3-methyl-1,2,4-oxadiazol-5-yl)[6-(morpholin-4-yl)pyrazin-2-yl]amino]heptanamide.

15 22. The compound according to any one of the preceding claims, for use in therapy.

23. The compound according to any one of the preceding claims, for use in the treatment or prevention of a condition mediated by histone deacetylase (HDAC).

20 24. The compound according to claim 23, wherein the condition is cancer, cardiac hypertrophy, chronic heart failure, an inflammatory condition, a cardiovascular disease, a haemoglobinopathy, a thalassemia, a sickle cell disease, a CNS disorder, an autoimmune disease, diabetes, osteoporosis, MDS, benign prostatic hyperplasia, endometriosis, oral leukoplakia, a genetically related metabolic disorder, an infection, Rubens-Taybi, fragile X syndrome, or alpha-1 antitrypsin deficiency.

25 25. The compound according to claim 23 or claim 24, wherein the condition is chronic lymphocytic leukaemia, breast cancer, prostate cancer, ovarian cancer, mesothelioma, T-cell lymphoma, cardiac hypertrophy, chronic heart failure, a

30 skin inflammatory condition (in particular psoriasis, acne or eczema), a musculoskeletal inflammatory condition (in particular rheumatoid arthritis, juvenile rheumatoid arthritis, ankylosing spondylitis or osteoarthritis), or an inflammatory condition of the gastrointestinal tract (in particular inflammatory bowel disease, Crohn's disease, ulcerative colitis, or irritable bowel syndrome).

26. The compound according to any one of claims 1 to 21, for use in accelerating wound healing, protecting hair follicles, or as an immunosuppressant.

27. A pharmaceutical composition comprising a compound according to any 5 one of claims 1 to 17, and a pharmaceutically acceptable carrier or diluent.

28. A product containing (a) a compound according to any one of claims 1 to 21, and (b) another inhibitor of HDAC, for simultaneous, separate or sequential use in the treatment or prevention of a condition mediated by HDAC.

29. A product containing (a) a compound according to any one of claims 1 to 10 21, and (b) another chemotherapeutic or antineoplastic agent, for simultaneous, separate or sequential use in the treatment or prevention of cancer.

30. A method of treating a condition mediated by histone deacetylase (HDAC), comprising administering a pharmaceutically effective amount of a compound, composition or product according to any one of the preceding claims.