发明名称
假体部件及其制造方法

摘要
本发明提供了一种假体部件及其制造方法，其中，假体部件包括多孔层，设置在多孔层一侧的金属实体层以及设置在多孔层和金属实体层之间的熔覆层，熔覆层包括多孔基体以及通过熔覆技术渗入至多孔基体的孔中的金属渗入结构，多孔基体与多孔层连接，金属渗入结构与金属实体层连接。本发明的技术方案能够有效地解决现有技术中的假体部件的多孔材料和实体材料之间结合强度不高的问题。
1. 一种假体部件，其特征在于，包括多孔层(10)、设置在所述多孔层(10)一侧的金属实体层(20)以及设置在所述多孔层(10)和所述金属实体层(20)之间的熔覆层(30)，所述熔覆层(30)包括多孔基体(31)以及通过熔覆技术渗入至所述多孔基体(31)的孔中的金属渗入结构(32)，所述多孔基体(31)与所述多孔层(10)连接，所述金属渗入结构(32)与所述金属实体层(20)连接。

2. 根据权利要求1所述的假体部件，其特征在于，所述金属渗入结构(32)与所述金属实体层(20)为通过所述熔覆技术形成的一体成型结构。

3. 根据权利要求1所述的假体部件，其特征在于，所述多孔基体(31)与所述多孔层(10)为一体成型结构。

4. 根据权利要求1所述的假体部件，其特征在于，所述金属渗入结构(32)的材质的熔点低于所述多孔基体(31)的材质的熔点。

5. 根据权利要求4所述的假体部件，其特征在于，所述金属渗入结构(32)的材质为钛合金、镁合金、钴合金或不锈钢。

6. 根据权利要求4所述的假体部件，其特征在于，所述多孔基体(31)的材质为多孔生物陶瓷或多孔钽金属。

7. 根据权利要求1至6中任一项所述的假体部件，其特征在于，所述假体部件为髋关节假体部件。

8. 一种假体部件的制造方法，其特征在于，依次包括如下步骤：
 步骤S10：制得多孔坯体，所述多孔坯体包括多孔层(10)以及形成在所述多孔层(10)的一侧的多孔基体(31)；
 步骤S20：在所述多孔坯体的所述多孔基体(31)的表面通过熔覆装置将待熔覆材料(40)熔化形成第一金属熔液，所述第一金属熔液渗入至所述多孔基体(31)的孔中并与所述多孔基体(31)融合形成熔覆层(30)；
 步骤S30：在所述熔覆层(30)的表面继续通过所述熔覆装置将所述待熔覆材料(40)熔化形成第二金属熔液，所述第二金属熔液在所述熔覆层(30)的表面上逐层堆积形成金属实体层(20)；
 步骤S40：得到假体部件。

9. 根据权利要求8所述的制造方法，其特征在于，所述熔覆装置包括用于发出高能束的高能束发生装置(50)以及输送装置，所述高能束发生装置(50)具有高能束出口(51)，所述输送装置将所述待熔覆材料(40)输送至所述高能束出口(51)的下方。

10. 根据权利要求9所述的制造方法，其特征在于，所述高能束为电弧、激光、电子束等离子束。

11. 根据权利要求9所述的制造方法，其特征在于，所述待熔覆材料(40)为金属丝，所述输送装置包括相对设置的第一滚轮(61)和第二滚轮(62)，所述第一滚轮(61)和所述第二滚轮(62)共同夹持所述金属丝，所述第一滚轮(61)和所述第二滚轮(62)的至少一个转动带动所述金属丝移动。

12. 根据权利要求9所述的制造方法，其特征在于，所述待熔覆材料(40)为金属粉末，所述输送装置包括用于输送所述金属粉末的粉末输送通道(63)，所述粉末输送通道(63)具有粉末出口(631)。
假体部件及其制造方法

技术领域
[0001] 本发明涉及医疗器械技术领域，具体而言，涉及一种假体部件及其制造方法。

背景技术
[0002] 目前，在医学植入物制造时经常会遇到对一件产品的不同部位有不同的材料需求。具体地，植入物与人体软组织或骨组织相贴合的界面部位的材料需要设置为多孔材料，例如，多孔生物型陶瓷或具有良好生物力学特性的多孔金属，这样才能使未来人体细胞组织可以长入多孔材料内部的孔隙从而形成组织融合。而植入物上与此相对的另一侧则需要另一种较为致密的实体材料，例如耐磨性高的金属，这样才能提供必要的力学性能，满足功能性要求。在现有技术中，上述多孔材料和实体材料之间通常采用粘接、焊接、铆接等工艺结合到一起，但是通过这些方法形成的结合部位的强度不高，在植入物使用过程中容易发生断裂脱落，影响植入物使用性能。

发明内容
[0003] 本发明的主要目的在于提供一种假体部件及其制造方法，以解决现有技术中的假体部件的多孔材料和实体材料之间结合强度不高的问题。
[0004] 为了实现上述目的，根据本发明的一个方面，提供了一种假体部件，包括多孔层、设置在多孔层一侧的金属实体层以及设置在多孔层和金属实体层之间的熔覆层，熔覆层包括多孔基体以及通过熔覆技术渗入至多孔基体的孔中的金属渗入结构，多孔基体与多孔层连接，金属渗入结构与金属实体层连接。
[0005] 进一步地，金属渗入结构与金属实体层为通过熔覆技术形成的一体成型结构。
[0006] 进一步地，多孔基体与多孔层为一体成型结构。
[0007] 进一步地，金属渗入结构的材质的熔点低于多孔基体的材质的熔点。
[0008] 进一步地，金属渗入结构的材质为钛合金、镍合金、钴合金或不锈钢。
[0009] 进一步地，多孔基体的材质为多孔生物陶瓷或多孔钽金属。
[0010] 进一步地，假体部件为髋关节假体部件。
[0011] 根据本发明的另一方面，提供了一种假体部件的制造方法，依次包括如下步骤：步骤S10，制得多孔坯体，多孔坯体包括多孔层以及形成在多孔层的一侧的多孔基体；步骤S20，在多孔坯体的多孔基体的表面通过熔覆装置将待熔覆材料熔化形成第一金属熔液，第一金属熔液渗入至多孔基体的孔中并与多孔基体融合形成熔覆层；步骤S30，在熔覆层的表面继续通过熔覆装置将待熔覆材料熔化形成第二金属熔液，第二金属熔液在熔覆层的表面上逐层堆积形成金属实体层；步骤S40，得到假体部件。
[0012] 进一步地，熔覆装置包括用于发出高能束的高能束发生装置以及输送装置，高能束发生装置具有高能束出口，输送装置将待熔覆材料输送至高能束出口的下方。
[0013] 进一步地，高能束为电弧、激光、电子束或等离子束。
[0014] 进一步地，待熔覆材料为金属丝，输送装置包括相对设置的第一滚轮和第二滚轮，
第一滚轮和第二滚轮共同夹持金属丝，第一滚轮和第二滚轮中的至少一个转动带动金属丝移动。

1. 进一步地，待熔覆材料为金属粉末，输送装置包括用于输送金属粉末的粉末输送通道，粉末输送通道具有粉末出口。

2. 应用本发明的技术方案，在多孔层和金属实体层之间设置熔覆层，该熔覆层包括多孔基体以及金属渗入结构，上述金属渗入结构通过熔覆技术渗入至多孔基体的孔中。在使用上述熔覆技术时，待熔覆材料（金属）熔融形成的金属熔液（熔滴或熔池）渗入至多孔基体的孔中，待冷却凝固后形成金属渗入结构，并且该金属渗入结构包绕嵌合在多孔基体中以形成熔覆层。由于多孔基体与多孔层连接，金属渗入结构与金属实体层连接，上述熔覆层可以使多孔层和金属实体层结合在一起，在两者之间形成牢固的融合界面，并且结合部位强度高，在植入物使用过程中不易发生断裂脱落，保证了植入物的使用稳定性。

附图说明

构成本申请的部分说明书附图用来提供对本发明的进一步理解，本发明的示意性实施例及其说明用于解释本发明，并不构成对本发明的不当限定。在附图中：

1. 图1示出了根据本发明的假体部件的实施例的局部结构示意图；

2. 图2示出了根据本发明的假体部件的制造方法的实施例一的制造工作状态示意图；

3. 图3示出了图2的假体部件的制造方法的流程示意图；

4. 图4示出了根据本发明的假体部件的制造方法的实施例二的第一制造工作状态示意图；

5. 图5示出了图4的假体部件的制造方法的第二制造工作状态示意图；以及

6. 图6示出了图4的假体部件的制造方法的流程示意图。

其中，上述附图包括以下附图标记：

10. 多孔层；20. 金属实体层；30. 熔覆层；31. 多孔基体；32. 金属渗入结构；40. 待熔覆材料；50. 高能束发生装置；51. 高能束出口；61. 第一滚轮；62. 第二滚轮；63. 粉末输送通道；631. 粉末出口。

具体实施方式

需要说明的是，在不冲突的情况下，本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。

应该指出，以下详细说明都是例示性的，旨在对本申请提供进一步的说明。除非另有指明，本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

需要注意的是，这里所使用的术语仅是为了描述具体实施方式，而非意图限制根据本申请的示例性实施方式。如在这里所使用的，除非上下文另外明确指出，否则单数形式也意图包括复数形式，此外，还应当理解的是，当在本说明书中使用术语“包含”和/或“包括”时，其指明存在特征、步骤、操作、器件、组件和/或它们的组合。

需要说明的是，本申请的说明书和权利要求书及上述附图中的术语“第一”、“第
二”等是用于区别类似的对象，而不必用于描述特定的顺序或先后次序。应理解这样使用的数据在适当情况下可以互换，以便这里描述的本申请的实施方式例如能够以上述在这里图示或描述的那些以外的顺序实施。此外，术语“包括”和“具有”以及他们的任何变形，意图在于覆盖不排他的包含，例如，包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元，而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

【0030】为了便于描述，在这里可以使用空间相对术语，如“在……之上”、“在……上方”、“在……上表面”、“上面的”等，用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是，空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如，如果附图中的器件被倒置，则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而，示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位旋转90度或处于其他方位，并且对于这里所使用的空间相对描述作出相应解释。

【0031】如图1所示，本实施例的假体部件为髋关节假体部件。上述假体部件包括多孔层10、设置在多孔层10一侧的金属实体层20以及设置在多孔层10和金属实体层20之间的熔覆层30。其中，熔覆层30包括多孔基体31以及通过熔覆技术渗入多孔基体31的孔中的金属渗入结构32。多孔基体31与多孔层10连接。金属渗入结构32与金属实体层20连接。

【0032】应用本实施例的假体部件，在多孔层10和金属实体层20之间设置熔覆层30，该熔覆层30包括多孔基体31以及金属渗入结构32。上述金属渗入结构32通过熔覆技术渗入多孔基体31的孔中。在使用上述熔覆技术时，待熔覆材料（金属）熔融形成的金属熔液（熔池）渗入多孔基体31的孔中，待冷却凝固后形成金属渗入结构32，并且该金属渗入结构32包围嵌合在多孔基体31中以形成熔覆层30。由于多孔基体31与多孔层10连接，金属渗入结构32与金属实体层20连接，上述熔覆层30可以使多孔层10和金属实体层20结合在一起，在两者之间形成牢固的融合界面，并且结合部位强度高，在植入物使用过程中不易发生断裂脱落，保证了植入物的使用稳定性。

【0033】如图1所示，在本实施例的假体部件中，金属渗入结构32与金属实体层20为通过熔覆技术形成的一体成型结构。多孔基体31与多孔层10为一体成型结构。在假体部件制作过程中，待熔覆材料熔融形成的金属熔液渗入多孔基体31的孔中，待冷却凝固后形成金属渗入结构32并形成熔覆层30。此后，将上述待熔覆材料继续熔融，金属熔液在熔覆层30的表面上逐层堆积形成金属实体层20。上述金属实体层20和金属渗入结构32都是由金属熔液形成的，两者形成一体成型结构，这样可以使金属实体层20和金属渗入结构32牢固地结合在一起，进而使金属实体层20与多孔层10可靠地结合在一起。

【0034】当然，金属渗入结构32与金属实体层20的设置方式不限于此，在图中未示出的其他实施方式中，金属渗入结构与金属实体层可以直接通过焊接、铆接等方式连接在一起，由于金属渗入结构也为致密的金属实体材料，当金属渗入结构与金属实体层连接在一起时，两者之间的连接强度相比于现有技术的金属实体层与多孔层直接连接的连接强度也会高一些。

【0035】在本实施例的假体部件中，金属渗入结构32的材质的熔点低于多孔基体31的材质
的熔点。在使用熔覆技术制造假体部件时，多孔基体31通常选择具有较高熔点温度（2000℃以上）的材质，金属渗入结构32（待熔覆材料）则选择熔点温度稍低一些的金属材料。这样可以保证在进行熔覆工艺加工时多孔基体31能保持完好的原有多孔形态，不会在待熔覆材料的温度的影响下产生变形。在本实施例中，金属渗入结构32的材质（待熔覆材料）为钛合金、镁合金、锆合金、不锈钢等，多孔基体31的材质为多孔生物陶瓷、多孔钽金属等。

[0036] 如图2和图3所示，本申请还提供了一种假体部件的制造方法，根据本申请的假体部件的制造方法的实施例依次包括如下步骤：

[0037] 步骤S10：制得多孔坯体，多孔坯体包括多孔层10以及形成在多孔层10的一侧的多孔基体31；

[0038] 步骤S20：在多孔坯体的多孔基体31的表面通过熔覆装置将金属丝熔化形成第一金属熔滴，第一金属熔滴渗入至多孔基体31的孔中并与多孔基体31融合形成熔覆层；

[0039] 步骤S30：在熔覆层的表面继续通过熔覆装置将金属丝熔化形成第二金属熔滴，第二金属熔滴在熔覆层的表面上逐层堆积形成金属实体层；

[0040] 步骤S40：得到假体部件。

[0041] 需要说明的是，在本实施例的步骤S10中，多孔坯体为一个整体多孔结构，该多孔结构的表层部分形成多孔基体31，其余部分形成多孔层10。在本实施例的步骤S20和步骤S30中，第一金属熔滴和第二金属熔滴为金属丝熔化形成的同种金属，即熔覆层中第一金属熔滴形成的金属渗入结构与金属实体层为一体结构，这样能够保证最终形成的熔覆层和金属实体层之间的连接强度。

[0042] 如图2所示，在实施例一的假体部件的制造方法中，熔覆装置包括用于发出高能束的高能束发生装置50以及输送装置。高能束发生装置50具有高能束出口51。在本实施例中，高能束为激光，即熔覆技术为激光熔覆技术。上述激光从高能束出口51发出。输送装置将待熔覆材料40输送至高能束出口51的下方。在本实施例中，输送装置包括相对设置的两组第一滚轮61和第二滚轮62，第一滚轮61和第二滚轮62共同夹持金属丝，第一滚轮61和第二滚轮62共同转动可以带动金属丝向高能束出口51的方向移动。当然，高能束不限于此，其他实施方式中，高能束可以为电弧、电子束、或等离子束等其他高能束。

[0043] 需要说明的是，本实施例的待熔覆材料40为金属丝，输送装置为与上述金属丝相配合的滚轮结构。当然，待熔覆材料40不限于此，在其他实施方式中，待熔覆材料可以为其他形式的材料。

[0044] 在实施例一的假体部件的制造方法中，多孔基体31的孔隙为三维联通的孔洞，孔隙孔径为50～3000微米，这样便与待熔覆材料40渗透进入。上述待熔覆材料40在高能束的高温作用下熔化形成第一金属熔滴，不同材料不同温度下的熔液其表面张力大小也会有所不同。而在相同表面张力作用下，熔液向多孔基体31内部渗透进入的深度与孔隙孔径有关。因此，通过选择待熔覆材料40、熔化温度以及多孔基体31的孔隙孔径可以有效控制金属渗入结构渗入至多孔基体31的深度。

[0045] 如图2所示，在实施例一的假体部件的制造方法中，将高能束导入到靠近多孔基体31表面的特定区域，同时通过输送装置将金属丝送入上述高能束形成的高温区，并在此区域升温熔化形成第一金属熔滴，该第一金属熔滴将渗透进入多孔基体31的孔隙内部并逐渐冷却凝固，最终与多孔基体31共同形成相互包绕渗入的熔覆层。此后，在熔覆层的表面持续
进行金属丝磨粉过程，使金属丝熔化形成的第二金属熔滴在熔覆层的表面连续叠加堆积得到具有所需要的体积的金属实体层。上述金属实体层可以用于后续加工得到所需的夹套部件。

【0046】如图4至图6所示，本申请还提供了一种夹套部件的制造方法，根据本申请的夹套部件的制造方法的实施例二，依次包括如下步骤：

【0047】步骤S10：制得多孔坯体，多孔坯体包括多孔层10以及形成在多孔层10的一侧的多孔基体31；

【0048】步骤S20：对多孔基体的多孔基体31的表面通过熔覆装置将金属粉末熔化形成第一金属熔池，第一金属熔池渗入至多孔基体31的孔中并与多孔基体31混合形成熔覆层30；

【0049】步骤S30：在熔覆层30的表面继续通过熔覆装置将金属粉末熔化形成第二金属熔池，第二金属熔池在熔覆层30的表面上逐层堆积形成金属实体层20；

【0050】步骤S40：得到夹套部件。

【0051】需要说明的是，在本实施例的步骤S10中，多孔坯体为一个整体多孔结构，该多孔结构的表层部分形成多孔基体31，其余部分形成多孔层10。在本实施例的步骤S20和步骤S30中，第一金属熔池和第二金属熔池为金属粉末熔化形成的同种金属，即熔覆层30中第一金属熔池形成的金属渗入结构32与金属实体层20为一体结构，这样能够保证最终形成的熔覆层30和金属实体层20之间的连接强度。

【0052】如图4和图5所示，在实施例二的该夹套部件的制造方法中，熔覆装置包括用于发出高能束的高能束发生装置50以及输送装置。高能束发生装置50具有高能束出口51。在本实施例中，高能束为激光，即熔覆技术为激光熔覆技术。上述激光从高能束出口51发出，输送装置将待熔覆材料40输送至高能束出口51的下方。在本实施例中，输送装置包括用于输送金属粉末的粉末输送通道63。粉末输送通道63具有粉末出口631。该粉末出口631设置在高能束出口51的下方，从而使金属粉末输送到高能束出口51的下方。当然，高能束不限于此，在其他实施方式中，高能束可以为电弧、电子束或等离子束等其他高能束。

【0053】在实施例二的夹套部件的制造方法中，多孔基体31的孔隙为三维联动的孔洞，孔隙孔径为50～3000微米，这样便于待熔覆材料40渗透进入。上述待熔覆材料40在高能束的高温作用下熔化形成第一金属熔池时，不同材料不同温度下的熔液其表面张力大小也会有所不同。而在相同表面张力作用下，熔液向多孔基体31内部渗透进入的深度与孔隙孔径有关。因此，通过选择待熔覆材料40、熔化温度以及多孔基体31的孔隙孔径可以有效控制金属渗入结构32渗入至多孔基体31的深度。

【0054】如图4和图5所示，在实施例二的夹套部件的制造方法中，将高能束导入到靠近多孔基体31表面的特定区域，同时通过输送装置将金属粉末送入上述高能束形成的高温区，并在此区域升温熔化形成第一金属熔池，该第一金属熔池将渗入多孔基体31的孔隙内并逐渐冷却凝固，最终与多孔基体31共同形成相互包绕渗入的熔覆层30（第一制造工作状态）。此后，熔覆层30的表面继续进行金属粉末熔覆过程，使金属粉末熔化形成的第二金属熔池在熔覆层30的表面连续叠加堆积得到具有所需要的体积的金属实体层20（第二制造工作状态），上述金属实体层20便于后续加工得到所需的夹套部件。

【0055】以上所述仅为本发明的优选实施例而已，并不用于限制本发明。对于本领域的技术人员来说，本发明可以有各种更改和变化。凡在本发明的精神和原则之内，所作的任何修
改、等同替换、改进等，均应包含在本发明的保护范围之内。
制得多孔坯体，多孔坯体包括多孔层以及形成在多孔层的一侧的多孔基体

在多孔坯体的多孔基体的表面通过熔覆装置将金属丝熔化形成第一金属熔滴，第一金属熔滴渗入至多孔基体的孔中并与多孔基体融合形成熔覆层

在熔覆层的表面继续通过熔覆装置将金属丝熔化形成第二金属熔滴，第二金属熔滴在熔覆层的表面上逐层堆积形成金属实体层

得到假体部件

图3
图4
制得多孔坯体，多孔坯体包括多孔层以及形成在多孔层的一侧的多孔基体

在多孔坯体的多孔基体的表面通过熔覆装置将金属粉末熔化形成第一金属熔池，第一金属熔池渗入至多孔基体的孔中并与多孔基体融合形成熔覆层

在熔覆层的表面继续通过熔覆装置将金属粉末熔化形成第二金属熔池，第二金属熔池在熔覆层的表面上逐层堆积形成金属实体层

得到假体部件