WO 02/47081 A2

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
13 June 2002 (13.06.2002)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 02/47081 A2

(31

@
@2)
@9)
26)

(30

(M)

(72)

International Patent Classification’: G11B 20/00,
GO6F 1/00
International Application Number: PCT/US01/47014

International Filing Date: 6 December 2001 (06.12.2001)

Filing Language: English

Publication Language: English
Priority Data:

60/251,731 7 December 2000 (07.12.2000) US
Applicant: SANDISK CORPORATION [US/US]; 140

Caspian Court, Sunnyvale, CA 94089 (US).

Inventors: QAWAMI, Bahman; 5899 KILLARNEY
cIRCLE, sAN jOSE, ca 95138 (US). SABET-SHARGHI,
Farshid; 5634 Snowdon Place, San Jose, CA 95138 (US).

(74)

@81

34

CHANG, Robert, C.; 10 Stanton Court, Danville, CA
95406 (US).

Agent: MIKHAIL, Peter, G.; Skjerven Morrill MacPher-
son LLP, Three Embarcadero Center, 28th Floor, San Fran-
cisco, CA 94111 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
7ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

[Continued on next page]

(54) Title: SYSTEM, METHOD, AND DEVICE FOR PLAYING BACK RECORDED AUDIO, VIDEO OR OTHER CONTENT
FROM NON-VOLATILE MEMORY CARDS, COMPACT DISKS OR OTHER MEDIA

{ VIDEQ INTERFACE 110

S~

API130A ‘

K IMAGING INTERFACE 115

COMMAND DISPATCHER 130

F |

SD VIDEO ENGINE 150

SD AUDIO ENGINE 140

nl
SAPL
1404

SAPI
150A

SO IMAGE ENGINE 160
NSAP!
1508

SAPI _l
180A
1

T
T
SSM MANAGER 180
-

SD SECURITY ENGINE 175

[NSAPL
i 1408

L5

NSAPI
1608

(NON SECURE FILE INTERFACE
170

DEVICE DRIVER 190

e

| 0000000 !

SD CARD 13

DEVICE
INTERFACE
k]

PORTABLE
DEVICE 15

(57) Abstract: A secure software system for a portable
device or computer that provides a simple interface to
the device or computer and that retrieves and dynamically
decrypts keys and content from a secure media while
minimizing exposure of the keys and eliminating the need
for manufacturers of the device or computer to create a
their own system to manage these complex processes.

w0 02/47081 A2 D000 000 OO A

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, For two-letter codes and other abbreviations, refer to the "Guid-
NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

Published:

— without international search report and to be republished
upon receipt of that report

WO 02/47081 PCT/US01/47014

10

15

20

25

SYSTEM, METHOD, AND DEVICE FOR PLAYING BACK RECORDED AUDIO,

VIDEO OR OTHER CONTENT F ROM NON-VOLATILE MEMORY CARDS,

COMPACT DISKS OR OTHER MEDIA

CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to and claims priority from U.S. Provisional Patent
Application Serial No. 60/251,731 entitled “SECURE SOFTWARE SYSTEM FOR
PLAYING BACK RECORDED AUDIO, VIDEO OR OTHER CONTENT FROM
NON-VOLATILE MEMORY CARDS, COMPACT DISKS OR OTHER MEDIA”
filed December 7, 2000, and is related to U.S. Application entitled “SYSTEM,
METHOD, AND DEVICE FOR PLAYING BACK RECORDED AUDIO, VIDEO
OR OTHER CONTENT FROM NON-VOLATILE MEMORY CARDS, COMPACT
DISKS OR OTHER MEDIA,” attorney docket number M-9913 US filed concurrently

on the same day as this application and having the same inventors as this application.

Source code is submitted on a compact disc according to 37 CFR 1.52 as an
appendix containing the following files, each of which is hereby incorporated by this
reference in its entirety: Sd_security\Sd_oem\Makefile, 11/05/01, 2KB;
Sd_security\Sd_oem\Readme, 11/05/2001, 3KB; Sd_security\Sd_oem\Sd oem.c,
11/05/2001, 6KB; Sd_security\Sd_oem\Sd_oem.h, 11/05/2001, 1KB;
Sd_security\Sd_oem\Sd_oem.inc, 11/05/2001, 1KB; Sd_security\Sd_oem\Sdtypes.h,
11/05/2001, 3KB; Sd_security\Sd_oem\vssver.scc, 11/05/2001, 1KB;
Sd_security\Security\Tstsampl\Dotest.c, 11/05/2001, 8KB;
Sd_security\Security\Tstsampl\Makefile, 11/05/2001, 4KB;
Sd_security\Security\Tstsampl\Readme, 11/05/2001, 3KB;
Sd_security\Security\Tstsampl\Regress.c, 11/05/2001, 26 KB,;
Sd_security\Security\Tstsampl\Sdls.c, 11/05/2001, 10KB;
Sd_security\Security\Tstsampl\Sdrm.c, 11/05/2001, 5KB;

-1-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

Sd_security\Security\Tstsampl\Securmmec.c, 11/05/2001, 6KB;
Sd_security\Security\Tstsampl\T'stsampl.inc, 11/05/2001, 1KB;
Sd_security\Security\Tstsampl\vssver.scc, 11/05/2001, 1KB;
Sd_security\Security\Err.h, 11/05/2001, 1KB; Sd_security\Security\Fsentry.c,
11/05/2001, 7KB; Sd_security\Security\keyInfo.h, 11/05/2001, 84K B;
Sd_security\Security\Makefile, 11/05/2001, 3KB; Sd_security\Security\Readme,
11/05/2001, 4KB; Sd_security\Security\Scdrv.c, 11/05/2001, 29 KB;
Sd_security\Security\Scdrv.h, 11/05/2001, 5KB; Sd_security\Security\Scfs.c,
11/05/2001, 13KB; Sd_security\Security\Scfs.h, 11/05/2001, 4KB;
Sd_security\Security\Sdsec.h, 11/05/2001, SKB; Sd_security\Security\Sdsys.c,
11/05/2001, 2KB; Sd_security\Security\Security.c, 11/05/2001, 64KB;
Sd_security\Security\Smanager.c, 11/05/2001, 7KB;
Sd_security\Security\Smanager.h, 11/05/2001, 2KB; Sd_security\Security\Ssmapi.c,
11/05/2001, 3KB; Sd_security\Security\vssver.scc, 11/05/2001,
1KB;Sdaudlib\HostFunc.c, 11/05/2001, 3KB; Sdaudlib\Inpoutp.c, 11/05/2001, 1KB;
Sdaudlib\mssccprj.sce, 11/05/2001, 1KB; Sdaudlib\plmInfo.h, 11/05/2001, 16KB;
Sdaudlib\Sd_plm.h, 11/05/2001, SKB; Sdaudlib\Sd_tkm.h, 11/05/2001, 4KB;
Sdaudlib\Sd_types.h, 11/05/2001, 2KB; Sdandlib\Sdapi.h, 11/05/2001, 2KB;
Sdaudlib\Sdaudapi.c, 11/05/2001, 91KB; Sdaudlib\Sdaudapi.h, 11/05/2001, 8KB;
Sdaudlib\Sdaudlib.dsp, 11/05/2001, 4KB; Sdaudlib\Sdaudlib.dsw, 11/05/2001, 1KB;
Sdaudlib\vssver.scc, 11/05/2001, 1KB.

BACKGROUND

1. Field of the invention

This invention relates generally and specifically to secure playback of digital

audio, video or other content from memory cards, compacts disks or other media.

2. Related art

The potential of electronic distribution of copyrighted music over the Internet,
by other communication systems or through retail kiosks, is being limited by concerns
about unauthorized copying of the music. This is also the case for other audio, as well

as video, content. The content is typically provided to the ultimate customer in
D

WO 02/47081 PCT/US01/47014

10

15

20

25

30

encrypted form, and the customer records the encrypted content files onto some
storage media, such as a personal computer memory, a memory of a portable playing
device, a writable compact disk (CD) or a non-volatile memory card. Providers of the
content would like to eliminate the possibility of unauthorized copying of the content
but have to be satisfied with taking steps that minimize the amount of copying that
occurs. This includes proyiding protection of the content on the recording media.

The protection of content stored on non-volatile memory cards is described herein, as
specific examples, but the same content protection techniques can be applied to

compact disks or other recordable media.

There are several commercially available non-volatile memory cards that are
suitable for use as the content data storage media. One is the CompactFlash (CF)
card, another is the MultiMediaCard (MMC), and yet another is the Secure Digital
(SD) memory card that is closely related to the MMC card. All three, and others, are
available in various storage capacities from SanDisk Corporation of Sunnyvale,
California, assignee of the present application. The physical and electrical
specifications for the MMC are given in “The MultiMediaCard System Specification”
that is updated and published from time-to-time by the MultiMediaCard Association
(“MMCA”) of Cupertino, California. Versions 2.11 and 2.2 of that Specification,
dated June 1999 and January 2000, respectively, are expressly incorporated herein by
this reference. The MMC products are also described in a “MultiMediaCard Product
Manual,” Revision 2, dated April 2000, published by SanDisk corporation, which
Manual is expressly incorporated herein by this reference. Certain aspects of the
electrical operation of the MMC products are also described in co-pending patent
applications of Thomas N. Toombs and Micky Holtzman, Serial Nos. 09/185,649 and
09/186,064, both filed November 4, 1998, and assigned to SanDisk Corporation. The
physical card structure and a method of manufacturing it are described in U.S. patent
no. 6,040,622, assigned to SanDisk Corporation. Both of these applications and

patent are also expressly incorporated herein by this reference.

The newer SD Card is similar to the MMC card, having the same in plan view.
A primary difference between them is that the SD Card includes additional data
contacts in order to enable faster data transfer between the card and a host. The other
contacts of the SD Card are the same as those of the MMC card in order that sockets
-3-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

designed to accept the SD Card will also accept the MMC card. The electrical
interface with the SD card is further made to be, for the most part, backward
compatible with the MMC product described in version 2.11 of its specification
referenced above, in order that few changes to the operation of the host need be made
in order to accommodate both types of card. The electrical interface of the SD Card,
and its operation, are described in co-pending patent application Serial No.
09/641,023, filed August 17, 2000, which application is incorporated herein in its

entirety by this reference.

SUMMARY OF THE INVENTION

Encrypted content is difficult to access, and memory cards or compact disks
with encrypted content each have specific structures that require specific commands
and routines to access encrypted and unencrypted content. The software of the
present invention is a simple solution that any original equipment manufacturer
(OEM) can install and run on a myriad of different types of devices having a myriad
of different types of microprocessors. These devices range from personal computers
to portable devices to car stereos, and include any device from which one would like
to access content that may be encrypted. The portable devices may be portable audio
players or cell phones or portable organizers or generally any microprocessor
controlled portable device. The storage media may be flash memory or any type of
recordable disk. The devices may have a simple or powerful microprocessor with a
small or large amount of memory. The software utilizes and requires only a small
buffer for encryption purposes and is designed to run efficiently even in environments
with limited processing power and memory. It can be run by any type of general
purpose microprocessor, special purpose microprocessors such as a DSP, or an ASIC.
Additionally, computationally demanding portions of the software, such as the
encryption and decryption (security) engine may be executed by the DSP while other

portions of the software may be executed by a another microprocessor or an ASIC.

The software has audio, video and image interfaces to receive commands for
each of the respective types of files. These interfaces can organize playback and
recording, including managing playlists and other convenient features. Thus,
whatever the device, it need only issue 2 command to an interface and the software

A4-

WO 02/47081 PCT/US01/47014

10

15

20

25

will take care of reading or writing data from the secure media, and decoding and
decompressing the data from any well known audio, video or image file formats

within the audio video or image engines.

The encryption and decryption takes place in an isolated module that is very
difficult to access and thus isolated from any attempts from unauthorized persons
wishing to access encryption keys in order to copy the files from the media or the
device. Content is only decrypted in small portions, and a method of dynamic key

generation and deletion minimizes exposure of decrypted keys.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is an illustration of the devices used to read and write information on a

secure media.
FIG. 2 is a schematic diagram of a device used to access the secure media.
FIG. 3A is an abstract illustration of the layers of the secure media.

FIG. 3B is an illustration of the physical and logical structure of the memory

cells of the secure media.

FIG. 4 is an illustration of a media key block (MKB) image broken into its

component chunks.

FIG. 5 is an illustration of a portion of the authentication and decryption

process.
FIG. 6 is an illustration of the authentication and encryption process.

FIG. 7 is a schematic of the authentication key exchange process shown in

FIG. 6.

FIG. 8 is a block diagram illustrating the modules of the software of the

present invention.

FIG. 9 is a flow chart overview of the playback of an audio track according to

the present invention.

WO 02/47081 PCT/US01/47014

10

15

20

25

30

FIG. 10 is a flow chart of the processing of an MKB image seen in FIG. 4, a
step of FIG. 9.

DETAILED DESCRIPTION

With reference to Figure 1, an exemplary system is described in which content
protection is applied to audio content such as music. A host computer device 11 may
be a personal computer (PC), as shown, a kiosk located in a retail store to distribute
music or other content, or the like. An SD memory card 13 is used in this example to
store music. The card 13 is insertable into a utilization device, in this case a portable
device (PD) 15 that operates from batteries to play the music or other andio content
recorded on the card 13 through personal earphones. The music may be stored on the
card 13 when inserted into the device 15 by connecting the device 15 to the host 11,
such as through a computer universal serial bus (USB) connection 17. Alternatively,
if the player device 15 is not provided with the capability of recording content onto
the card 13, or if it is otherwise desirable, a card writer/reader 19 may be connected to
the computer through a USB connection 21, and the card 13 inserted into it for
recording music on the card. The card 13 is then removed from the writer/reader 19
and inserted into the portable device 15 to play the audio content recorded on the card.
The host 11 is termed a licensed compliant module (LCM) when it includes the
software necessary to write to and read from the card 13 content data in accordance

with the security and authentication protocols of the 4C Entity and the SD Group.

The electronic system within the example portable utilization device 15 is
illustrated in Figure 2. Operably connected together through a bus 23 are a compilting
unit (MCU) 25, preferably with some non-volatile flash memory 25A, system
memory 27, which is preferably a high speed random access memory (RAM), and
interface circuits 29 for connecting with the memory card 13. The USB connection
17 is also optionally provided to the MCU 25. A digital signal processor (DSP) 31 is

also included, when needed, for decompressing and/or decrypting content data, such

as audio or video data, that is stored in a compressed and/or encrypted form. DSP 31

also has its own RAM memory 31A included as part of the processor. DSP 31 may or

may not be included. Furthermore, if a DSP processor is included, it may perform the

functionality of MCU 25, and thus MCU 25 may therefore be eliminated. Read only
-6-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

memory (ROM) 32 can store part or all of the software of the invention. Software
instructions and data in ROM 32 can be executed or read directly from ROM 32 or

first shadowed into any RAM memory included in the circuitry of the device.

Specifications for the protection of content on recordable media have been
jointly established by Intel Corporation, International Business Machines Corporation,
Matsushita Electric Industrial Co., Ltd. and Toshiba Corporation (4C Entity).
Particularly relevant here are the following three publications of the 4C Entity, which
are expressly incorporated herein by this reference: “Content Protection for
Recordable Media Specification, Introduction and Common Cryptographic
Elements,” Revision 0.94, October, 2000, “Content Protection for Recordable Media
Specification, SD Memory Card Book,” Revision 0.95, May, 2001, and “C2 Block
Cipher Specification,” Revision 0.9, January 11, 2000, and “Content Protection for
Recordable MediaSpecification, DVD Book,” Revision 0.95, May 2001. Additional
detailed specifications for implementing these 4C Entity specifications on SD
memory cards have been established by Matsushita Electric Industrial Co., Ltd.
(METI), SanDisk Corporation and Toshiba Corporation (SD Group).

Referring to Figure 3A, a memory card 13 can be thought of as having four

distinct layers. Such layers may also be present in other types of secure media.

At its most basic level, data is stored in memory cells arranged in clusters on
the physical layer 13d of memory card 13. The data is encrypted or secure if it is
copyrighted material or otherwise worthy of encryption. Keys used to encrypt and
decrypt the secure content are also encrypted and stored in a secure area of the

physical layer.

The software of the present invention runs within a device to allow the device
to store and retrieve encrypted information without the manufacturer (OEM) having
to program very specific instructions to access the memory cells containing encrypted
data and keys. It contains methods of sending the encrypted data to the device,
decrypting the data within the device, and decompressing and playing audio, video
and image files upon requests from the device. In short, a device need only send a

command such as “play track.” The software will accept the command, retrieve the

-7-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

encrypted data stored in the memory cells, retrieve the encrypted keys, organize and

decrypt the data, decompress and format it, and play the song back.

Logical layer 13c contains the organizational structure for the memory cells
and clusters of physical layer 13d. The two layers 13c and 13d contain and logically
structure the memory of card 13. As card 13 is a secure card, security layer 13b

controls and limits access to the secure data housed in the layers below.

Application layer 13a is the part of memory card 13 that communicates with a
device accessing the content stored in the card. It does this through a device interface
or contacts 39. Memory card 13 preferably includes a controller that manages the
operation of the card and functionality of the application layer 13 together with

control of all layers 13a-d of the card.

The physilcal and logical structure of a recording media, the SD card 13,
according to the foregoing specifications, and corresponding to layers 13c and 13d of
Figure 3A, is illustrated in Figure 3B. The card includes an array of memory cells 33
and a memory controller 35. User data, commands and status signals are
communicated between the controller 35 and the memory array 33 over a circuit 37.
The controller 35 communicates with a host device connected to a socket in which the

card is inserted through a series of electrical contacts 39 on the card.

The memory cells of the array 33 are divided into the four non-overlapping
areas of cells that are individually designated to store different types of data. A
largest storage capacity area 41 is designated to store user data, in this case, encrypted
audio, video or other data. The user data may or may not also include unencrypted
data. A system area 43 of the memory stores a 64-bit media identifier (IDyeqgia) of the
card manufacturer, and 16 media key blocks (MKB) provided by the 4C Entity, each
MKB having a maximum size of 4k bytes, all being pre-recorded by the card
manufacturer. One of the 16 MKBs is specified for use with audio user data, another
for use with video user data, another for use of image data, and so on. The system
area 43 is a write-protected area that is accessible for reading from outside of the card.
A hidden area 45 carries 16 pre-recorded media unique keys (Kp) corresponding to
the 16 distinct media key blocks (MKB) stored in the system area 43. The hidden

area 45 is a write-protected area that is accessible only by the memory card itself. A
-8-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

protected area 47 is a read/write area that is accessible only after a successful explicit
mutual authentication has occurred. Randomly picked title keys (K;) and copy control
information (CCI) are stored in the protected area 47 in an encrypted form. Each
piece (file) of content stored in the user data area 41 is encrypted with a unique title
key that is also stored in an encrypted form in the protected area 47. The title keys
and CCI stored in the protected area 47 are concatenated and encrypted together by
the media unique key, which is unique for each memory card and stored in its hidden
area 45. The file system of the user data area 41 is typically an ordinary FAT file

system.

The media key block (MKB), as stored in the system area 43 of the card
memory, contains a sequence of contiguous records, one such record being illustrated
in Figure 4. The entire MKB image 49 is 64 Kbytes. It is broken into 128 chunks of
512 bytes, and chunk 1, which contains all or part of they first record, and is labeled
MKB chunk 50 in the figure, is enlarged to show its component parts. Chunk 50 may
also contain multiple records. A first field 51 contains the record type, a second field
53 the total length of the record, and the remaining field 55 the key itself. The data in
the record type and length fields 51 and 53 are not encrypted. Each record of the
MKB is a multiple of 4 bytes in total length. As illustrated by a block 57 of Figure 5,
the MKB key records are decrypted by device keys stored in the portable device (PD),
licensed compliant module (LCM) or other device that utilizes a memory card for
reading or programming content data stored on it. Device keys Kd1, Kd2, Kd3 ... are
written into a memory of the utilization device, such as non-volatile flash memory
within the MCU 25 of the portable audio player of Figure 2, by the manufacturer of
the device. The device keys are provided to device manufacturers by the 4C Entity,
and are maintained in confidence. The number of device keys which are stored in a

given utilization device depends upon the type of the device.

The utilization device (PD, LCM or other device) which performs the
processing of Figure 5 calculates the media key Ky, as part of the decryption of block
57, which is discussed in further detail with regard to Figures 9 and 10. Each record
(Figure 4) of the MKB read from the system area of an inserted memory card is
usually processed in this manner. After processing of the MKB is completed, the
most recently calculated K, value is taken as the secret media key output of the block

9.

WO 02/47081 PCT/US01/47014

10

15

20

25

30

57. This media key K, and the media identifier IDeqi, are combined by use of a C2
one-way function, as indicated by a block 59 of Figure 5, to produce the media unique
key K. Additional details of this processing may be had by reference to the 4C

Entity publications referenced previously.

Figure 6 illustrates all of the authentication and encryption processing that
takes place when either recording audio content onto, or playing audio content from, a
memory card 13 having the memory space allocation of Figure 3. Processing that
takes place in a personal computer or other LCM 63 is illustrated for recording audio
or other content onto the card 13. Similarly, the processing of a portable audio or
other utilization device 65 is shown for reading the recorded content from the card 13.
Included in both is the processing described with respect to Figure 5, the processing
blocks 57 and 59 being part of the utilization device 65 and corresponding processing
blocks 57° and 59’ being part of the content recording system 63.

As part of recording content, an arbitrarily assigned title key K} is input at a
line 67 for use by an encryption module 69 to encrypt one file (piece) of audio or
other content input at line 71. The encrypted file is then stored in the user data area
41 of the memory card 13. In order to make the title key available for decrypting the
recorded content, an encrypted version of the title key (K,) is stored in the protected
card memory area 47, as previously described. An encrypted version of the title key
(Ky) is also stored in either system memory 27, RAM memory 25A of MCU 25, or
RAM memory 31A of DSP 31. Storing the encrypted title key (K:) in a memory of
the device eliminates the need to access protected card memory area 47. This is
significant because it saves considerable time and processing capacity in comparison
to accessing the protected area 47 for each read. This will be discussed later with
regard to Figure 9. The title key K, and copy control information CCI are encrypted
by a series of encryption modules 75, 77 and 79 in the LCM 63, and a module 81 on
the memory card 61. The media unique key Ky, is used by the module 77. An
authentication key exchange (AKE) module 83 combines the media unique keys K
as calculated by the module 59’ and stored in the hidden area 45 of the card 61, to
generate a session key K that is used by each of the modules 79 and 81. In order for

the utilization device 65 to decrypt the recorded encrypted content, corresponding

-10-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

modules, indicated with the same reference numbers but with a prime () added, are

utilized to perform an inverse of the encryption process.

Figure 7 illustrates a technique for accessing the protected area 47 of a
memory card, utilizing an authentication and key exchange (AKE) challenge-response
protocol between a card and some LCM or utilization device. When this
authentication is successful, the card and the other module or device share a secure
common session key K. Additional details of the forgoing processing and protocols

may be had by reference to the 4C Entity publications previously identified.

Performing accesses to the authentication area of the SD Memory Card
requires using secret device keys that OEMs must license from the 4C Entity, as
mentioned previously. Protecting these key values and restricting their exposure
within SDK SW 100 software layers is one of the central considerations in the
software design. Isolation of these keys (and other resultant values such as session
keys) within a single internal module while enabling a secure media such as the SD
memory card device driver to perform operations dependent on these values is
achieved in a robust and secure interface methodology. Once again, the SD memory
card is used to illustrate the invention; however, the invention can be used on any
secure media such as CDs or other secure memory that may be in a card or even in a

remotely located storage device.

Figure 8 illustrates an embodiment of a software systém designed to run in a
portable device or LCM in order to access information encrypted with the
aforementioned processes. The SanDisk software, SW 100, is a complete tufn—key
software solution that enables OEM music players and recorders to readily support

secure media including the secure digital (SD) memory card.

In Figure 8, SW 100 is shown as ported into portable device 15 in order to
access SD card 13. SW 100 may also be installed in any licensed compliant module
such as a personal computer. Audio interface 105, video interface 110, and imaging
interface 115 are the points of communication to the device. These interfaces provide
a single point of communication for the device and generally receive simple
commands from the device so that the device does not have to get involved with the

intricacies of getting encrypted data from a secure media, then decrypting and
-11-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

processing the data. All of these complex processes are handled by SW 100.
Interfaces 105, 110, and 115 also manage the arrangement of playback such as
managing playlists and the correlation of images such as that of an artist with the
songs of the artist or the various playlists. Application programming interface (API)
130A resides within command dispatcher (CD) 130. CD 130 and API 130A receive
commands from interfaces 105, 110, and 115, relay information to the interfaces, and
organize all of the processes that take place in the SW 100 - the processes of device
15 related to the playback and recording of content stored on the secure media, with
all of the requisite encryption, decryption, and compression algorithms. For more
information on this seamless interface and control, see copending U.S. Patent
Application, attorney docket No. M-9913 US, entitled “SYSTEM, METHOD, AND
DEVICE FOR PLAYING BACK RECORDED AUDIO, VIDEO OR OTHER
CONTENT FROM NON-VOLATILE MEMORY CARDS, COMPACT DISKS OR
OTHER MEDIA,” filed on the same day as this application and having the same

inventors as this application.

SD audio engine (SDAE) 140, SD video engine (SDVE) 150, and SD image
engine (SDIE) 160 respectively process audio, video, and image content residing on
the secure media, upon receipt of instructions from CD 130. This means SDAE 140
can process any of the well known formats for audio, such as AAC, WMA, and MP3.
Likewise SDVE 150 can process any of the well known formats for video clips such
as Windows media files or real networks files MPEGs or any other well known type
of video files. Finally, SDIE 160.can process any well known type of image files
such as TIF, GIF, JPEG, bitmaps etc... Each interface has a secure API (SAPI) and a
non-secure API (NSAPI). The content processed may or may not be encrypted.
Encrypted content is accessed through SAPIs 140A, 150A, and 160A:~These SAPIs
communicate with SanDisk security manager (SSM) 180. All commands having to
do with secure content are channeled through SSM 180. Secure digital security
engine (SDSE) 175, which will be described later in further detail, handles all
encryption and decryption processes. Keys used to authenticate the media and
decrypt the content are contained within and handled exclusively by SDSE 175.
Unencrypted content residing on the card is accessed through NSAPI 140B, 150B,

-12-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

and 160B. These NSAPIs communicate with a non-secure file interface (NSFI) 170

in order to access unencrypted content on the media.

In order to read or write data in the storage media, NSFI 170 and SDSE 175
communicate with device driver 190. Device driver 190 in the example of the SD
card manages and drives signals to and from the device interface 39’s contacts of the
SD card 13. Device driver 190 will be tailored to the specific type of device interface
39 of various devices or media. In the case of a memory card device, driver 190
manages and drives signals to and from contacts located on device 15. In the case of
optical media, device driver 190 may manage and drive signals from various
hardware components including an optical pick-up unit. Device driver 190 contains a
secure device driver interface (SDDI) 190A, and a non-secure device driver interface
(NSDDI) 190B. SDDI 190A and NSDDI 190B are isolated from each other within
device driver 190. SDDI 190A communicates exclusively with SDSE 175, while
NSDDI 190B communicates exclusively with NSFI 170.

‘Device keys and other values central to the SD-Audio security scheme are
housed within one restricted security software module, SD security engine (SDSE)
175. All manipulation of these values is solely restricted to this module. Values are
never passed in or out to software layers above SDSE 175. All requests for the
security services involving these keys are controlled and monitored by SSM 180 that
shields this security module. Beneath the security module, the SD Memory Card
device driver 190 carries out security accesses. Requests for these driver services are
made via a private driver security interface, secure device driver interface (SDDI)
190A, that is only known to the security module. SDSE 175 uses this interface 190A
to perform special security commands such as Get Media Key Block (MKB). Non-
secure device driver interface (NSDDI) 190B also utilizes device driver 190 to access

any unencrypted files in user area 41 of card 13.

The security of SW100 architecture resides in the security of its keys. Secret
“soft keys” are not stored in temporary secure areas for a long period of time, since
this increases the possibility of comprising the keys and thus the encrypted content.

SW 100 utilizes a scheme within SDSE 175 of dynamically generating the needed

-13-

WO 02/47081 PCT/US01/47014

10

15

20

25

keys (or “soft keys™) and deleting them when there is no immediate need for those

specific keys.

Operation of SW 100 is now described in more detail. Within the SW 100,
commands are issued to the device which require the OEM’s 4C-licensed device keys
to be used. All processing of these keys is solely limited to the SDSE 175 module
which is housed beneath the SSM 180.

When SSM 180 receives a request for security services, it carries it out by
passing the command request packet to the process_security function within SDSE
175. Key values are never contained within the request packets or exposed at

software layers above SDSE 175.

When needed internally by SDSE 175, device keys are retrieved via a function
call into an OEM-supplied library. The library of SDSE 175, security.lib, contains the
following APIs designed to reduce the time that a decrypted key resides in the secure

area of the system:
1) SEC_AKE API;
2) SEC_ENC_TKEY API;
3) SEC_DEC_TKEY API;
4) SEC_GETCCI APL;
5) SEC_UPDATECCI API; and

The functionality and the structure of SW 100 are described in the text of this
application and more specifically, the functionality of APIs 1-5 above are shown
within the flowchart of FIG. 9. The APIs are shown next to the corresponding
functions that they implement. Further detail of the implementation of these APIs, as
well as all of SW 100, can be seen in the source code that submitted in an appendix of
this application. That source code forms a part of this application, and is hereby

expressly incorporated by this reference.

-14-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

Once obtained, the device key is combined with the Media Key Block (MKB)
from the SD Memory Card to form the “media key.” This value is kept within SDSE
175 for use in processing subsequent requests. Note, however, the “unique media
key” (Kmy) is never retained inside SDSE 175. This value, which forms the basis for
all security accesses, is always calculated on a real-time basis (and never cached) as

an extra security precaution. Detailed description of the processing of the keys within
SDSE 175 follows.

The encryption process is in general terms designed to stop unauthorized
copying of the content located on the secure media. There are many aspects of the
invention that achieve this. First, an entire file, for example, a song, is never
decrypted at once and stored into memory where it may be vulnerable. The portable
device allocates a buffer and SDSE 175 reads chunks of encrypted content at a time,
decrypts it, and then writes over the same buffer over and over again until the end of
the file.

As was seen in Figures 6 and 7, the media unique key (Ky,,) and title key (K)
are the keys finally used to decrypt the content. There are many ways to protect the
title key. One is to store the keys in a very secure area of device 15, another is to read
the title key from the protected area 47 of card 13 each time the encrypted buffer is
read and decrypted. Figure 9 is a flow chart depicting the preferred method.

Returning to Figure 9, in step 205, an MKB image, which, as seen in Figure 4,
is 64 kilobytes, is read to process the media key (K,,), as seen in Figure 6, to yield the
media unique key (K,,). This step is further detailed in Figure 10 which will be
described later. After mutual authentication of the device and the media is complete
in step 205, the AKE process is undergone to yield a session key (Ks) that can only be
used during that session (as long as the device is turned on or is in an active state) in
step 210. The AKE process can be seen by referring once again to Figure 6. In step
213, the media unique key (Kinu) is deleted. In step 215, the seésion key (K;) is used
to decrypt the doubly encrypted title key E(E(K,)) stored in protected area 47 of
memory card 13. The result is a singly encrypted title key (E(X)). In step 220, this
encrypted title key (E(K)) is stored in a memory of the device 15. The (E(K})) may
be stored in system memory 27, RAM memory 25A of MCU 25, or RAM memory

-15-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

31A of DSP 31. The title key K, is specific for each title, referred to as a track in the
realm of audio and on Figure 9 used to illustrate the invention. Each track may be
made of multiple files, for example, in the case of a long classical song. For large
video clips, a title may comprise many files. Thus, for all subsequent reading and
decryption of the encrypted content of the track, the title key need not be retrieved
from the memory card because it is stored in a local memory, and precious time and
computing resources can be saved, while at the same time, the title key remains

encrypted for security purposes.

In step 225, a portion of the track is played back. This portion may be in any
of the files that comprise the track. In step 225a, the media unique key (Kny) is
calculated once again. In step 225b, the encrypted title key stored in local memory is
decrypted. Then, in step 225c, the title key is used to decrypt the content from the
buffer of device 15 containing content from the user area 41 of card memory card 13.
Immediately after the buffer is decrypted, the title key is deleted in step 225d and the
media unique key is deleted in step 225¢. The order of steps 225d and 225¢ is not
important, but it is important that both keys are only exposed for the time it takes to
read a portion of the track. This portion may be anywhere from a fraction of a second
of playback (decrypted, decompressed, and decoded) content, audio or otherwise, to
about ten seconds. Preferably it is two seconds. The time it takes to read the portion
is dependent on many factors including the processing speed and the buffer size of the
device. As discussed previously, SW 100 can be executed by either the MCU 25 or
DSP 31 and stored in any of the memory 27, 25A, 31A or 32 of device 15, thus, the
pro;:essing times can vary. This is repeated until all portions of the track are read as
seen in step 230. Once all portions have been read the system can move on to the
next track, as shown in step 235, if playback is to continue. This may be the case, for

example, if the user has chosen to play an entire playlist.

When the all portions of track have been read and the reading of the next track
is to commence, the process will begin again at step 215 and will retrieve the next
doubly encrypted title key from the protected area 47 of card 13. This is generally the
case if the user has set the device in motion to play an entire playlist that includes
multiple tracks. If the session is closed (i.e., device 15 has been turned on or off),
then a new session key will have to be generated and the process will initiate at step

-16-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

210. If memory card is removed or freshly inserted, the device and media will have to
be re-authenticated and the process will begin again at step 205 in order to read a

track.

Figure 10 describes the operation of processing the Media Key Block, step
205 of Figure 9 described above. As was seen in Figure 4, an MKB image 49 is 64
Kbytes in length. Reading the entire image 49 at once to calculate the MKB would be
inefficient, requiring a large RAM and long processing times. The present system
reduces RAM requirements and decreases processing time. The MKB image 49 is
divided into chunks 1 through 128. Each chunk is 512 bytes and may contain one of
four different types of records of the MKB: the verify media key record (VMKR)
known as 0x81; the calculate media key record (CMKR) known as 0x01; the
conditionally calculate media key record (CCMKR) known as 0x82; or the end media
key record (EMKR) known as 0x02. These records are described in the Content
Protection for Recordable Media (CPRM) Specification of the 4C Entity, referenced

above.

In this example, the chunk length and the buffer length are the same.
However, the buffer length and chunk length can both range from 256 bytes to 4096
bytes. Each record is examined to perform specific operations based on the record
type and certain data will be saved for later to obtain the Media Key. The record
length is added to the total length of the buffer offset every time a record is identified.
The chunk number is calculated by dividing the total length with the chunk length.
The chunk number is the index to the Media Key Block of a selected chunk data. The
remainder of the total length is the offset to the selected chunk data. The row and
column are used to figure out where the encrypted media key and the conditional
encrypted media key are. Those encrypted keys are saved and the decryption C2
cipher in Electronic Codebook Mode algorithm is performed to obtain the Media Key.
This Media Key is then verified for a correct final Media Key (K,) .

The number of reads, T, required per MKB chunk for obtaining the Media

Key (Km) from the MKB associated with the number of records is shown below:

Number of Records < T < (Number of records * 2)

-17-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

T: Number of times required for accessing MKB chunks

Each record has different length and data values. The information of each
record can be obtained within two reads. Since there are four records, between 4 and

8 reads will be necessary to process the MKB chunk and obtain the records.
Therefore, the number of reads, T, are:
4<T<8

Suppose that it takes N ms to access 512-byte of MKB data. It will take
(128*N)ms to access an entire 64K MKB image to obtain the Media Key from the
first method. It only takes, from the second method, (8*N)ms, as the worst case
scenario, to obtain the Media Key. Thus, there is a considerable time saved using this
scheme. On the average, to obtain the Media Key (K.,), the number of reads would be
in the range of 4 to 6, and the time necessary would be proportionately less than

shown above.

Step 205 of Figure 9, expanded here in Figure 10, is performed until a final
media key is produced in step 205.75 or the media is rejected in step 205.80. Not all
of the 128 chunks need to be reaél, and not all of the 512 bytes per chunk need to be
read in order to calculate the media key. Processing MKB data is an operation that
requires requesting a chunk of data at a time, pointing to the desired location within
that specific chunk and computing the obtained values. Not all MKB data is needed.
The algorithm depicted in Figure 10 will provide a mathematical calculation to figure
out exactly what chunk of MKB data is needed, what record should be processed and

where the encrypted data is located.

In step 205.5, the buffer pointer is set to the data buffer and the buffer offset is
cleared. Next, in step 205.10, the chunk number is checked to see if it is equal to or
larger than the maximum chunk number. Ifitis, an error will be returned in step
205.15. Ifit is not, the chunk number will be incremented and new data will be
loaded into the buffer in step 205.20. Then the buffer offset will be updated in step
205.25. Thus, the pointer can be set to the correct location (the chunk number plus
offset). In step 205.30, the buffer pointer is set to the buffer offset. In step 205.40 the

buffer is read starting at the offset where the pointer is located. The system will then
-18-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

determine what type of record it is reading. As seen in step 205.40, the system will
first check what type of record is being read, and what record length is associated with
that record. The actions that will follow differ depending upon the record type and
length. The record length of each record will be used to determine where the buffer
pointer should be located in reading the subsequent record. This is reflected by steps

205.49, updating the buffer offset and setting the buffer pointer at the new offset.

If the record is a CMKR as shown in step 205.42, then the system updates the
buffer chunk number and offset to the correct MKB location where the encrypted
media key (Ky,)is located in step 205.49. Each card has 16 MKBs. Thus, the system
will get the offset where the encrypted media key is, go to the specific MKB chunk
number, allocate buffer (16 blocks x 512 bytes), and go to the offset within each block
to read the encrypted media key. Then the system uses a device key (Kg4) supplied
from device 15 to decrypt (calculate) the media key in step 205.50. Once the media

key has been calculated the next step is to verify the media key.

If the record is a VMKR as evaluated in step 205.44, the media key that was
previously calculated, either on the first attempt in step 205.50, or in a subsequent
attempt in step 205.65, will be compared to a reference media key (Ky,) in step
205.55. In order to do this, reference media key will first be stored locally. If the key
is the same a pass will be returned, which in hex is DEADBEEF, and the system will
not need to conditionally calculate the media key. In order to figure out where to start
reading the next record, the record length of the VMKR 1is used to move the buffer
pointer to the next record. If it is not the same it then it will be calculated again when
a CCMKR record is read in step 205.46. When this record is read, the media key will
be calculated once again in step 205.65 after the buffer point has been set to read at
the updated buffer offset in step 205.49, and then it will be subsequently verified
when the next VMKR is read. The maximum number of times the CCMKR is

calculated may be set by the system and preferably one.

The first calculation takes place when a CMKR is found. Ifit is successfully
calculated, as determined during the verification process initiated when a VMKR is
found, then there will be no need to conditionally calculate the media key (Kp,,). If the

verification is unsuccessful then when a CCMKR is found the media key (K,,) will be

-19-

WO 02/47081 PCT/US01/47014

10

15

20

25

recalculated and re-verified. This means that there are two chances to calculate the
media key. Finally, if the record is an EMKR as evaluated in step 205.48, then in step
205.75 the system will verify that at the end of the record a valid media key (K,) is
present, and in step 205.75 the final media key (K;,) will be produced, after the buffer
pointer is set at a the proper offset for this type of record in step 205.49. If, however,
a valid media key is not returned in step 205.70, the media will be rejected in step
205.80. If the final media key is returned in step 205.70, the processing will continue
at step 210 of Figure 9, as shown by step 205.85. Thus the MKB process is complete.

Functions within SDSE 175 perform security accesses such as Get MKB by
using a secure device driver interface (SDDI) 190A to device driver 190. This same
device driver, SDDI 190a also makes use of functions within SDSE 175 which it can
call directly. For example, prior to issuing a read of the authentication area, SDDI
190a must first call the sec_ake function within SDSE 175. The sec_ake function will
in turn call back into SDDI 190a. This “dual calling relationship” which facilitates
the isolation of the device key within SDSE 175 is unique to SW 100s implementation
of the SD-Audio standards.

Since SDSE 175 handles all key-oriented processing, and these values are
needed when certain SD commands are received by the audio interface 105, video
interface 110, or image interface 115, the device driver must make use of functions
within SDSE 175 which it can call directly. When carrying out the functions, SDSE
module 175 must in turn call back into the device driver 190°s private security
interface, SDDI 190A. This “dual calling relationship” allows interwoven requests
between SDSE 175 and device driver 190, thus enabling key values to be isolated

within the security module.

The SDSE 175 software layer invokes security device driver services via the
private interface by initiating a security driver request packet and calling the security

driver interface entry point passing a request packet pointer.

In order to clarify the appended source code which has been incorporated by

reference, the following tables are provided.

-20-

WO 02/47081

PCT/US01/47014

The request packet (defined in sdapi.h) consists of a data type SSMSERVE

which is defined as follows:

Variable

Variable name

Typedef struct _mySecuredDrv

{
Data buffer UCHAR *buffer
Number of data blocks UINT16 noBlocks

Application unique Number

UINT16 mkb ID

Start address

UINT16 Iba

Security flag

INT16 securityFlag

Dnve number

]NT} 6 driveNo

Command index

INT16 opCode

Command index (INT16 opCode) holds the command for the service being

requested. Supported commands include:

Command Functional Code Routine
Device identify #define SDDRV _IDENT 0
Security identify #define SDDRV_SECIDENT 1

Secure read

#define SDDRV_SECRD 2

Secure write

#define SDDRV_SECWR 3

Secure erase

#define SDDRV_SECERASE 4

Read MKB #define SDDRV_RDMKB 5
Get MID #define SDDRV_GETMID 6
Set challenge #define SDDRV_SETCHALGE 7
Get challenge #define SDDRV_GETCHALGE 8

Set response

#define SDDRV_SETRESP 9

Get response

#define SDDRV_GETRESP 10

Change size of protected area

#define SDDRV_CHANGESA 11

Security device driver service requests are issued from the SDSE 175module.

For example, the Generate Challenge 1 function sends challenge 1 as follows:

21-

WO 02/47081 PCT/US01/47014

10

15

20

Generate Challenge 1

Command Operation
Call security routine SDSECURITYDRYV mySecDrv
Set drive number mySecDrv.driveNo = (INT16)drv
Set memory address within media mySecDrv.lba=0
Number of data blocks mySecDrv.noBlocks = 1
Set challenge mySecDrv.opCode =

SDDRV_SETCHALGE

Send challenge 1 mySecDrv.buffer = Chlgl
Call to device driver scDDHandler(&mySecDrv)

Because all key manipulation is confined to SDSE 175, SSDI 190a must rely
on SDSE 175 functions to perform Authentication Key Exchange (AKE) or for
decrypting data that has been transferred across the bus (note that all data sent across

the bus is first encrypted using the “session key” which is generated from each AKE.)

When performing the AKE, SDSE 175 must send commands to the SD
Memory Card 13, thus, it must in turn call into SDDI 190a. This calling relationship
is outlined in the diagram of Figure 7 which depicts the steps necessary to process a

read of the authentication area.

Notice that the sec_ake function within the SDSE 175, when called by the
security SDDI 190a, performs four calls back into the security device driver via the
private driver interface. These four requests consist of: SDDRV_SETCHALGE,
SDDRV_GETCHALGE, SDDRV_SETRESP, and SDDRV_GETRESP. This
enables the security module to carry out the requisite set challenge/get challenge, set
response/get response steps seen in Figure 7. The resultant session key is stored
within the security module. This is used to decrypt data when the security device
driver calls into the SDSE 175’s bus_decrypt function to get information from SDDI
190a.

Random Number Generation:

The AKE process 83 seen in Figures 6 and 7 requires generation of a random
number. Implementation of SD random number generation (RNG) requires

-22-

WO 02/47081 PCT/US01/47014

10

15

20

25

30

computation of a random number Seed V(t+1) based on the previous Random
Number Vt. Random Number Seed V(t+1) needs to be stored in Flash memory and
will be used as the seed for the generation of next random number. This random

number and seed are used in the C2_G, a C2 Cipher one-way function.

In low cost computing platforms where it is not possible to re-write Random
Number Seed Vi+1 (i.e., no EEPROM designated for Seed storahge) RNG

implementation may create a problem.

If the program uses a fixed number or a predictable number as the seed of the
random number generator, a hacker may break the copy protection or steal the keys.
With a fixed seed, the first random number and the challenge are also fixed if the
same SD card address is to be accessed. By tracking the response, the unique media
key may possibly be stolen. Here we utilize the system timer as a solution for PC
applications. In order to ensure that the timer generated seed is not predictable, we
shuffle the timer so that every byte of the random number seed is random. On
systems such as Microchip PIC16xxx, the Timer1, which is the number of instructions

executed, can be used as a seed of random number generation after shuffling.

The main idea is to use more than one timer that is always incrementing, and
manipulate the frequency of the slowest updating (most significant) bytes such that
they update at a higher frequency. The values of the slowest updating (most
significant) bytes will be calculated as a function of the fastest updating (least
significant) bytes. One method of random number generation utilizes the system
timer. It uses 4 bytes of the processor clock and 4 bytes of the Universal Coordinated
Time. The processor clock is the number of processor time since the program starts.
This time is refined to CLOCKS PER_SECONDS which is 60 in this application. It
is obtained through the Microsoft C++ runtime function “clock()”. The Universal
Coordinated Time is obtained through the Microsoft C++ runtime function “time()”.

It is the number of seconds from midnight, December 31, 1899.

Processor clocks are read into the bytes 0-3, and the universal coordinate time
is read into bytes 4-7. Bytes 0 and 1 change rapidly, while bytes 2 and 3 change less
rapidly. Thus, we can increase the rate of change of bytes 2 and 3 by making bytes 2

23-

WO 02/47081 PCT/US01/47014

10

15

20

25

and 3 change at a pace based upon the pace that bytes 0 and 1 change at. This can be

accomplished a number of ways. For example, with an exclusive OR function:
vt _1[2] =vt_1[2] * vt_1[0]
vt 1[3]=vt _1[3]" vt _1[1] " vt 1[O].

Similarly, bytes 6 and 7 can be made to change at a faster pace by the

following example:
Vt 1[6]=vt 1[0]+ vt 1[1]+ vt 1[2]+ vt_1[3] + vt_1[4] + vt_1[5]+ vt_1{6]

Vt 1[7]=vt_1[0] A vt_1[1] 7 vt_1[2] ~ vt_1[3] A vt 1[4] ~ vt_1[5]* vt _1[6]~
vt 1[7].

Increasing the pace of the change can also be achieved by using multiples of
the timer values at certain byte locations or by other methods of making the slow
moving bytes dependent upon the faster moving bytes. For more detail, please refer

to the attached source code that forms part of this application.

Consequently, applying the C2 cipher on the fixed seed will generate a new
random number seed V(t+1). The C2_G is a C2 Cipher One-way function; It applies
the random number key “c1” on fixed seed “v0” to generate different initial seed “v1”
for the first AKE.

The CurrentTime is an assembly program using DOS software interrupt “1A”
function “0” to read the timer ticks. The following is the code of _CurrentTime
PROC NEAR: push cx;mov ax,0;int lah;mov ax,dx;mov dx,cx; pop
cx; ret; CurrentTime ENDP.

Advantages

The system and method of the present invention are advantageous over prior
techniques in many ways. Device keys and resultant session keys are manipulated in

a very isolated and protected software layer. These are never exposed in upper layers.

24

10

15

WO 02/47081 PCT/US01/47014

Even the lower device driver layer is not given direct access to the keys. Device keys
are retrieved from an OEM-supplied library when generating the media key. This key
1s retained within the security engine, but the media unique key (Ky,,) which is the
heart of the security scheme is never stored. A private interface to security engine
enables the security engine to gain low-level access to the memory card while keeping
the exposure of all security-related keys (e.g., device keys, media keys, session keys)
confined within the security engine. A “dual calling relationship™ allows the security

engine and the security device driver to make interwoven use of each other’s services.

While particular embodiments of the present invention and their advantages
have been shown and described, it should be understood that various changes,
substitutions, and alterations can be made therein without departing from the spirit
and scope of the invention as defined by the appended Claims. For example, although
usage of an SD memory card has been shown to illustrate the functioning of the
invention, the invention can be used on any media having encrypted content. It can

also be utilized by any type of device.

25.

—
o

WO 02/47081 PCT/US01/47014

CLAIMS:

1. A method of accessing an encrypted track on a removable media with a
device, the track comprising frames having content, the method comprising:
authorizing the media;
decrypting the track by a process comprising:
(a) calculating a media unique key; and thereafter
(b) decrypting a title key stored in the memory of the device
with the media unique key; and thereafter

(c) decrypting a group of frames; and thereafter

O 00 NN Y B~ W =

(d) deleting the decrypted title key;

(e) deleting the media unique key; and

AN W R W= N N R W =

(f) repeating (a) through (e) until the entire track is completed.

2. The method of claim 1, wherein authorizing the media comprises:

calculating a media key; and thereafter

calculating a media unique key from the media key; and thereafter

deleting the media key; and thereafter

calculating a session key from the media unique key; and thereafter

deleting the media unique key.
3. The method of claim 1, further comprising:

decrypting a doubly encrypted title key stored in the media with a
session key calculated while authorizing the media to produce a singly
encrypted title key; and

copying the singly encrypted title key from the media into a memory of
the device.
4. The method of claim 2, wherein calculating the media key comprises:

(a) reading a first record of a media key block from a buffer;

(b) updating the buffer offset based on the length and type of the first
record;

(c) reading aﬁother record of the media key block at the updated
buffer offset; and

[« N T N B R S R

-26-

WO 02/47081 PCT/US01/47014

O 0 3 & U B W N = NN = N 0 N

[NS T N R N I e e e e T e T e T = O T U =
W N = N = O 0 0N RWN= O

(d) repeating (2) - (c) until all necessary records of the media key
block are read and the media key is calculated.
5. The method of claim 1, wherein the group of frames comprises less
than one to about five seconds of content in a decoded or decompressed form.
6. The method of claim 1, wherein decrypting the track comprises
decrypting one or more files, the files comprising the frames.
7. The method of claim 1, further comprising decoding and
decompressing the track.
8. A method of accessing an encrypted data file on a removable media
with a device, the data file comprising frames having content, the method comprising:
authorizing the media for a user session by a process comprising:
calculating a media key; and thereafter
calculating a media unique key from the media key; and
thereafter
deleting the media key; and thereafter
calculating a session key from the media unique key; and
thereafter
deleting the media unique key.
decrypting a doubly encrypted title key stored in the media with the
session key to produce a singly encrypted title key;
copying the singly encrypted title key from the media into a memory of
the device; and
decrypting the file by a process comprising:
(a) calculating the media unique key; and thereafter
(b) decrypting the title key stored in the memory of the device
with the media unique key; and thereafter
(c) decrypting a group of frames; and thereafter
(d) deleting the decrypted title key;
(e) deleting the media uniqﬁe key;
(f) repeating (a) through (e) until the entire file is completed.
9. The method of claim 8, wherein calculating the media key comprises:
dividing a media key block into chunks, the chunks comprising bytes
of encrypted data; and

27-

WO 02/47081 PCT/US01/47014

O 0 1 Y i B W N R, N, N =Y R W N e B

g S Vg vy
BOW N = O

15

encrypting a key within the media key block by setting the buffer to
read at an offset within a specific chunk of the block.

10. The method of claim 9, wherein decrypting the key comprises:

(a) calculating a media key from first record; and

(b) updating the buffer offset; and

(c) reading a second record at the updated buffer offset; and

(d) verifying the media key with a second record by comparing the
calculated media key with a reference media key.

11. The method of claim 10, wherein the buffer offset is determined by the
type and length of the first record of the media key block.

12. The method of claim 8, wherein the group of frames comprises less
than one second to about five seconds of decompressed and decoded audio content.

13. A system for enabling a device to read an encrypted file having
encrypted content from a media, and to write an encrypted file having encrypted
content to a media, the system comprising:

a computing unit, and a system memory;
interface means for receiving commands from the device;
secure dynamic decryption means configured to:

(a) copy an encrypted title key from the media to a memory of
the device, '

(b) decrypt the encrypted title key,

(c) decrypt a portion of encrypted content with the decrypted
title key,

(d) delete the decrypted title key, and

(e) repeat a-d such until all of the content of the file has been
decrypted, and wherein the decrypted title keys reside in and are
accessible only to the secure means of the system.

14. The system of claim 13, wherein the title key is in a decrypted state for
the time it takes to decrypt 5 seconds or less of content in a decompressed and
decoded state when played back.

15. The system of claim 13, further comprising a digital signal processor.

16. The system of claim 13, wherein the interface means and secure

" dynamic decryption means are stored in a system memory of the device.

28-

WO 02/47081 PCT/US01/47014

— N = W N =

W 00 N O »n b~ W DN

T T T T Y
AN U AR WN = O

N = N = W N = N

17. The system of claim 16, wherein the interface means and secure
dynamic decryptipn means are executed by the computing unit.

18. The system of claim 15, wherein the secure dynamic decryption means
is stored in memory of the digital signal processor, and executed by the digital signal
processor.

19. The system of claim 18, wherein the interface means is executed by the
digital signal processor.

20. A system that enables a device to decrypt a file having encrypted
content on a secure medium, the system comprising:

one or more user interface modules for receiving commands from the
device;

an applications programming interface for receiving the commands
from the one or more user interface modules and managing the retrieval and
storage of encrypted content from the secure medium;

a security engine for decrypting the encrypted content and the one or
more encrypted keys sent from the secure medium to a memory of the device,
the decrypted keys used to decrypt the encrypted content, wherein

the one or more keys are contained in an encrypted data
segment, and

the security engine (a) decrypts one or more of the keys, (b)
decrypts a portion of the encrypted content using the one or more

decrypted keys, and (c) deletes the one or more decrypted keys, and (d)

repeats (a) - (c) until all portions of the content are decrypted.

21. The system of claim 20, wherein the content is encoded in the AAC,
MP3 or WMA format.

22. The system of claim 21, wherein the one or more keys are in a
decrypted state for the time it takes to decrypt and process less than one second to
about five seconds of decoded content.

23. The system of claim 20, wherein the data segment comprising the one
or more encrypted keys is buffered and decrypted in fractional portions.

24. The system of claim 23, wherein the fractional portion is about 512
bytes.

-29-

WO 02/47081 PCT/US01/47014

W N = N = W N = N = R W N = NN = W= N =N =N =N = N

25. The system of claim 20, wherein the device comprises a computing
unit, system memory, and a hardware interface.

26. The system of claim 20, wherein the device further comprises a digital
signal processor.

27. The system of claim 25, wherein the system is stored in the system
memory of the device.

28. The system of claim 27, wherein the software system stored in the
system memory is executed by the computing unit.

- 29. The system of claim 26, wherein the system is stored in RAM of the
digital signal processor.

30. The system of claim 26, wherein a portion of the system is stored in
the system memory of the device and a portion of the system is stored in RAM of the
digital signal processor.

31. The system of claim 30, wherein the portion of the system stored in the
RAM of the digital signal processor is executed by the digital signal processor.

32. The system of claim 30, wherein the portion of the system stored in the
RAM of the digital signal processor comprises the security engine.

33. The system of claim 20, further comprising one or more engines for
processing and transmitting audio, video or images, each engine comprising a secure
application programming interface, the secure interface(s) for accessing the encrypted
content and keys of the medium, and the non-secure interface(s) for accessing the
unencrypted content of the medium.

34. The system of claim 33, further comprising a security manager
module.

35. The system of claim 34, wherein the secure interface(s) communicate
with the security manager module and module communicates with the security
engine.

36. The system of claim 33, further comprising a device driver, the
security engine accessing the content and keys through the device driver.

37. The system of claim 33, wherein each of the one or more engines for
processing and transmitting audio, video or images further comprising a non-secure

application programming for accessing unencrypted content of the medium.

=30-

WO 02/47081 PCT/US01/47014

38. The system of claim 20, wherein the security engine further comprises
a random number generator, the generator utilizing two or more system timers to
create the random number.

39. The system of claim 38, wherein the generator increases the natural

D= W =

frequency update of the timer ticks used to create the random number.

-31-

PCT/US01/47014

WO 02/47081

1/11

=
siquos

bl } A

8sn

flsats

...........
\\\\\\\\\\\\\
\\\\\\\\

WO 02/47081 PCT/US01/47014
2/11

PORTABLE
DEVICE 15

\ MCU 25 SYSTEM MEMORY 27
L~ 25A

SYSTEM BUS 23

=] | DDDODOD |
31A \ \

\\\\"—**—*‘¥WVCARDIF29

poooooon

MEMORY CARD 13

aaaa

WO 02/47081 PCT/US01/47014
3/11

requests for content and
keys received

DEVICE
INTERFACE 39
ELECTRICAL
CONTACTS

encrypted content and
encrytped keys to decrypt
content transmitted

13a. APPLICATION LAYER

communicates with device
accessing content

13b. SECURITY LAYER

controls acces to logical
and physical layers

| DODoooo

_____ - 00 \\) 13c LOGIGAL LAYER
N
¥y files, tracks, directory
structure of content
| corresponding to clusters,
AND encrypted keys

13d. PHYSICAL LAYER

clusters of memory cells

33 with encrypted content
and keys

FIGURE 3A

13c. LOGIGAL LAYER

FIGURE 3B

4/11

PCT/US01/47014

IDENTIFIER

MEDIA KEY
BLOCKS

SYSTEM AREA 43

35 CONTROLLER

MEDIA UNIQUE
KEYS

R

RANDOM
37

HIDDEN AREA 45

ENCRYPTED
TITLE KEY

T

ENCRYPTED CCl

PROTECTED AREA 47

ENCRYPTED
CONTENT

USER DATA AREA 41

WO 02/47081 PCT/US01/47014

5/11
|« 64 kbytes 4
‘ [/ ’ 49 "MKB" IMAGE
1 12{3|4| .CHUNK128 /
. \\\
\”\\
-
v 51 53 55 /1/ Ty
1BYTE| 3BYTES MULTIPLE OF 4 BYTES /~ 50 "MKB" CHUNK
RECORD RECORD /t
D
TYPE LENGTH RECORD KEY
!< - 512 bytes ;}

FIG. 4

WO 02/47081 PCT/US01/47014
6/11

DEVICE KEYS

Kan Kag - - -
(From Utilization Device)

Y

DECRYPT
MEDIA KEY BLOCK (MKB) ———=| MKB
(Read From Card) {one Record at o Time) -
MEDIA KEY (Kyy)
y
MEDIA IDENT“'—IERO'D\H——LDHLD o
: FUNCTION
REA? From Card) 59

MEDIA UNIQUE KEY (Kpy)

FIG. 5

PCT/US01/47014

WO 02/47081

711

9 94 x el 09
| [ey) m
10 Juelo " u| 1us)u0)
WM = 1 1UBIUOY PAJCADUT = 080370
(' (9)
M ‘ (p T Daxy o ks
[58l ~mmmmmmmed g bL
R I ! A B e } %
J890 2803 109~ 0800 0803
020 =~ 0 A N4)
I *,\mx 18] o | pauy papsjold | ‘,mx I _,\
A8 ENL(Y) () o8
¢l
] [/
| = .
(b 1 1 1 Gyt e/ | (1ndy0 5119 9 40
809G Jupoliubis)spa)) g mr DaJy UAPPIH Lm nuwy | §}1q-9G 1upoyubls 1s09))
T o) et - Dipal g —= 9720(0) T o
. i
Ev_ A / Ex
S psseooid(t) [m il — eirssoid()) [
ooty ¢ “ DBy Wwa3shs W sty ¢
(9y By Wy | vm e -) (9P TPy Py
u| skey 8o Cy uj skey somaq
pIn) Kjowsp
N1

(d

PCT/US01/47014

WO 02/47081

8/11

(MWy) fay anbiun oipsyy

—/

pio) Alowsly

4 gebusypLy foy wossas / b UN_.*N foy uoissag zebusjpuw)
970 O
|abusjpyy 963 [Py
awidwo) \ Justudwon
osiig osimig
4 ’ 7
{ o] e N AN
] ‘
(9729) zabusjioy)
1010J3U89 NN .
9720 oty | Husp =— 9720 =
- e | J
_ uLwnbID - » “ 67 i
oy dn yoid ’ _S 0 =y ! \v (9720)
jabuajipyy . lojpiausy Ny |
e ; pUDLULIOY) PoIndas
() j0 Juewnbly i

L
-

(NWy)) Aoyt anbiun oipaly

0d/ o1

WO 02/47081 PCT/US01/47014
9/11

AUDIO INTERFACE 105 VIDEO INTERFACE 110 IMAGING INTERFACE 115

v

APl 130A

COMMAND DISPATCHER 130

\
4 h h 4
SD AUDIO ENGINE 140 SD VIDEO ENGINE 150 SD IMAGE ENGINE 160
SAPI NSAPI SAPI NSAPI SAPI NSAPI
140A 140B 150A 150B 160A 160B
A iy
—7]
h 4
SSM MANAGER 180
NoN SECURE1F7“6E INTERFACE 8D SECURITY ENGINE 175

)
A Y
/ NSDD | SDD N
190B DEVICE DRIVER 190 190A
A

SWWWN“///

PORTABLE goooaaon ﬁ\IET\,’:_'gEA cE
DEVICE 15 SD CARD 13

39

FIGURE 8

WO 02/47081 PCT/US01/47014
10/11

CORRESPONDING APl [PROCESS MKB IMAGE / 205
IN CODE

MKB -> Km -> Kmu

v

PARTIALLY
PROCESS AKE | _— 210

Kmu -> Ks

l 213

DELETE Kmu
v
USE SESION KEY (Ks) TO
DECRYPT DOUBLY
ENCRYPTED TITLEKEY | 210

SEC_AKE API
SEC_ENC_TKEY API 4

E(E(KY) -> E(KY)

STORE E(Kt) IN A
MEMORY OF THE - 220
DEVICE

225

v

N

READ PORTION OF TRACK

CALCULATE Kmu |——— 225a

v

DECRYPT E(KY)

225b
E(K) -> Kt

SEC_DEC_TKEY API NO

Y
USE Kt TO
SEC_GETCCI API < DECRYPT

'] CONTENT OF 1225¢
C
SEC_UPDATECCI AF} BUFFER

DELETE Kt

DELETE Kmu [~}

230

ALL PORTIONS QF
TRACK READ?

Y

WO 02/47081

PCT/US01/47014
11/11
SET THE BUFFER POINTER
_| TO THE DATA BUFFER AND /\
"| CLEAR THE BUFFER 205.5
OFFSET.
205.10
205.15
IS CN
EQUAL OR
LARGER THAN ERROR
128
INCREMENT CN
AND LOAD NEW /K
DATA INTO 205.20 ’ 205
BUFFER
UPDATE THE
BUFFER /\
OFFSET 205.25
BUFFER /\ 205.40
POINTER TO
THE BUFFER 205.30
OFFSET
READ BUFFER AND GHECK RECORD TYPE FOR EACH CHUNK 1-128 ™~
N s st e et v o = o e)
205.46 205.48,
. 1
N~ EMKR? eoew :
..... Y _.__..‘,.-___..__.._..___..._.Y e ———
! \ 4
UPDATE AND UPDATE AND 20549 UPDATE AND
SET THE SET THE UPDATE AND SETTHE
BUFFER BUFFER SET THE BUFFER
POINTER AT A POINTERAT A PO&UT’;';EET R POINTER AT A
NEW OFFSET NEW OFFSET
NEW OFFSET NEW OFFSET
4 v 205.70
USE Kd FROM Km SAMEAS b USE K?E I;ROM !
DEVICE 15 TO STORED DEVICE 15 TO : H
CALCULATE Km Km? CONDITIONALLY THE END OF ;
CALGULATE Km RECORD? !
7 y
205.50 205.75 ¥
RETURN PASS \ RETURNFINAL |
Km }
205.55 (DEADBEEF) 205.65 i
205.60
.
GOTO STEP 210 CEJECT MEDIA
FIGURE 10 OFFIGY
205.85

205.80

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

