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(57) Abstract: The present invention relates to a shared resource multi-thread processor array. An array of heterogeneous function
blocks are interconnected via a self-routing switch fabric, in which the individual function blocks have an associated switch port
address. Each switch output port comprises a FIFO style memory that implements a plurality of separate queues. Thread queue
empty flags are grouped using programmable circuit means to form self-synchronised threads. Data from different threads are
passed to the various addressable function blocks in a predefined sequence in order to implement the desired function. The sepa-
rate port queues allows data from different threads to share the same hardware resources and the reconfiguration of switch fabric
addresses further enables the formation of ditferent data- paths allowing the array to be configured for use in various applications.
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SHARED RESOURCE MULTI-THREAD PROCESSOR ARRAY

TECHNICAL FIELD

This invention relates to a shared resource multi-thread processor array.

BACKGROUND ART

With the every increasing need for denser computing power there is a current trend to
implement multi-core arrays. These silicon devices usually have the same microprocessor
core instantiated several times on the same device and are interconnected by a shared bus.
Due to the sequential architecture of microprocessors they tend only be able to perform a
limited number of operations per clock cycle, though peripheral functions offer some
parallelism in that are used to calculate the next potential instruction address and implement
various interfaces. Different parallel or concurrent threads within a complex application will
be assigned to each processor. A thread is a sequence of instructions used to implement a
task. A task implements an algorithm and forms part of a computer program. A thread of
execution results from a fork of a computer program into two or more concurrently running
tasks. When a thread has completed its task, the thread is suspended, destroyed or initiates
another thread. Multi-threading describes a program that is designed to have parts of its code
or multiple threads execute concurrently. These threads share the processor’s resources but
are able to execute independently. As a result many of the microprocessor resources may be
under utilized, as there is not a one-to-one match between the application algorithms and
hardware resources. In addition, many calculations require the transfer and temporary
storage of intermediate results, which further consumes processing time and power. Due to
their sequential processing, microprocessors and hence related software approaches to
parallelism tend to be much slower and inefficient, especially when implementing Digital

Signal Processing (DSP) intensive applications.

One solution to this problem is to implement an array processor, in which an array of
homogeneous processing elements is provided. The term array processor used herein is not
limited to vector processors and includes processors that contain an array of homogencous
or heterogencous processing clements and can process two or more program threads
concurrently.. The processing elements in an array processor are usually interconnected in a

simple way, for example nearest neighbour, in order to reduce the routing overhead. Several
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prior art array processors employ a common bus means to transfer data between one or a
plurality of elements in an array for processing and reconfiguration. For example, Vorbach,
et. al. in US Pat. No. 7,237,087 teaches such an architecture. Nonetheless, such common bus
schemes are inefficient and provide data / processing bottlenecks. In addition, such arrays
have the disadvantage that each homogeneous processing element needs to be quite complex
(implement many type of arithmetic and logic functions) as it may be required to implement
one of many functions depending on the algorithm to be implemented. If, for example, the
output of one processing clement needed to be shifted up or down say, and the next
processing clement did not implement a shifting function, then an algorithm would be
difficult to implement. A shifter may be provided at a certain location in the array, but for
data to reach the array it will need to be passed through several pipeline stages.
Consequently, all the other stages will either need to be halted or stalled or extra register
delays inserted to compensate. In such cases, the sole purpose of a complex array element is
to perform a simple pipeline register function. Consequently, the hardware resources are
under utilised. It also means that the processing array is synchronous and any delay in one
thread will interfere with the processing of other non-related threads. Due to the global
synchronous switching of data and array elements the processing of independent threads is
limited. This type of processing architecture tends to be very unwieldy to implement and

program for.

Another parallel processing solution is a Very Long Instruction Word (VLIW) processor,
where sub-fields of an instruction are partitioned to control separate execution units.
However, if a VLIW compiler cannot find enough parallel operations to fill all of the slots in
an instruction, it must place explicit NOP (no-operation) operations into the corresponding
operation slots. This means the hardware is then under utilized. This causes VLIW programs
to use more memory than equivalent programs for superscalar processors. Though a VLIW
processor provides some parallelism there is no provision for executing independent parallel

threads asynchronously.

Many array processors usually have processing clements that implement multiplies and
arithmetic logic functions as these operations are commonly found in DSP algorithms. Such
arrays lend themselves to implementing digital filters and the like as their data flow graphs

map neatly on to the processing array. However, they have limited applications.
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Another disadvantage of array processors is that they are based on coarse-grained processing
clements and as a consequence it is difficult to implement fine-grained logic functions.

Again, this limits the use of these devices.

In some cases, integrated circuits have a mixture of processing cores and hardware
resources. This further complicates the issue, especially at design time as many different
design tools e.g. separate compilers and simulators for the embedded cores and hardware

resources are required to design and test any application.

An alternative to implementing both coarse and fine-grained random logic is to employ
Field Programmable Logic Arrays, also referred to as Field Programmable Gate Arrays
(FPGAs). FPGA devices use a memory based Look Up Table (LUT) to implement a simple
logic function and the more complex versions can include preconfigured DSP slices
consisting of many fixed interconnected processing elements. The disadvantage to this
approach is that the DSP slices tend to target particular applications and hence FPGA
manufacturers need to provide different versions of FPGAs to target these different
applications. Though these more complex FPGAs provide a high degree of user

programmability they are not fully flexible.

Unfortunately, there are several disadvantages to using FPGAs when compared to
alternatives, such as Application Specific Integrated Circuits (ASICs). Firstly, FPGAs tend
to be much larger than their hardwired ASIC counterparts, consume more power and are
more expensive. Secondly, though they can be re-programmed, a large amount of memory is
required to implement specific functions. Another disadvantage of FPGAs is that there is a
significant routing overhead required to interconnect all the fine-grained LUTs. The
aforementioned devices are usually fabricated using a Complementary Metal Oxide

Substrate (CMOS) process.

Once an integrated circuit has been defined and initially tested subsequent actions in the
design flow includes automatic test generation and or the insertion of test circuitry, such as
Built In Self Test (BIST) and scan chains. However, there is a major design conflict with

test circuitry. It is desirable to keep this extra test circuitry to a minimum to reduce silicon
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overheads and path delays, but it must be flexible enough to provide the desired test / fault
coverage. It would be advantageous to be able to reconfigure the available circuit resources

so they can be employed as test circuits.

Programmable logic devices allow a circuit designer to use the same device to implement
many different logic functions at different times, for example, to include circuit upgrades,
try out prototype circuits or correct design errors. This design methodology allows the
designer to use off the shelf components rather than designing an Application Specific
Integrated Circuit (ASIC), which would be more expensive, take longer to design and to get
to market. Another advantage, from a programmable logic manufacturer’s perspective, is
that one device can be used to address the needs of many different customers and their

particular applications. This also allows end product differentiation.

Another way to cater for product differentiation and allow for future upgrades to silicon
devices is to provide an areca of silicon real estate on a device that is dedicated to
implementing programmable or reconfigurable logic. The remainder of the silicon real estate
being used to implement dedicated functions. Consequently, such an ASIC device would

provide both the benefits of an ASIC device and a programmable logic device.

One reason for using array processor is to provide a high degree of hardware parallelism and
allow both dependent and independent threads to be executed concurrently. However,
dependent threads (where the execution of one or more threads relies on the results of
another thread) need to be synchronised in order to maintain error free processing. Prior art
schemes to address this problem, for example US2009013323A1 (May, et. Al.), require
claborate control or Finite State Machines (FSMs), thread control and status registers, inter-
thread FSM communication links and associated protocols and instruction sets. Other thread
synchronisation methods include using semaphores, mailboxes and mutexes. These
approaches tend to be unwieldy (especially for large multi-dimensional arrays as they do not
scale well), consume valuable silicon real estate and can hinder thread processing due to
delays required to implement thread synchronisation. It is therefore a goal of the present

invention to provide a simpler and more efficient thread synchronisation method.
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In view of the forgoing, it is a goal of example embodiments of the present invention to
provide a programmable shared resource multi-thread processing array in which individual
heterogencous function blocks (both coarse and fine grained) can be interconnected in any
combination to implement the desired algorithm. The architecture of example embodiments
of the present invention enables the processor array to be reconfigured to implement
different processing architectures, such as a Single Instruction Multiple Data (SIMD),
Multiple Instruction Multiple Data (MIMD), symmetric multiprocessing and asymmetric
multiprocessing. This level of versatility allows the example embodiments of the present

invention to target many spheres of use.

Another goal of example embodiments of the present invention is to optimally utilise the
available processing array resources by allowing operations from separate and independent
threads to share or utilise the processing resources of the same heterogeneous function block

as required without reprogramming on the fly.

Yet another goal of example embodiments of the present invention is to allow independent
threads to run asynchronously even though the same heterogencous function blocks are used
by different threads, including when interrupts occur in a particular thread and the
suspension of one thread using a shared resource does not affect other threads employing the

same resource.

Yet another goal of example embodiments is to reduce the number of program memory

aCCCSSCS.

Figure 1 shows a logical block diagram of the shared resource multi-thread processor array
100 according to an example embodiment of the present invention. Each block will be

introduced initially before being described in more detail later.

One way to overcome the limitations outlined above would be to have an array of
heterogencous function blocks that are interconnected via a plurality of self-routing switch
fabrics (SRSF) 700. The heterogeneous function blocks 500 shown further in Figure 5 are
selected from a plurality of specific function blocks, the plurality of function blocks

including function blocks for fixed point arithmetic operations, floating point arithmetic
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operations, logical operations, shift operations, memory, interfaces, input operations, output
operations, bit-level manipulations, combinatorial, programmable logic arrays, synchronous
and asynchronous logic. A function block 500 therefore implements a discrete program
instruction or a plurality of related functions, for example addition and subtraction.
However, one or more macro function blocks 500 can be instantiated in the processor array
100 that implement more complex functions, such as cordic, Reduced Instruction Set
Computer (RISC) cores, and data block transforms, such as fast Fourier Transforms (FFTs),
Inverse Fast Fourier Transforms, Discrete Cosine Transforms (DCTs), Discrete Hilbert
Transforms, linear algebra methods, correlation and convolution functions for example. In
addition, a macro function block 500 can implement control functions, such as for loops, do-
while loops, if-else functions and case statements. This approach allows C-type language
constructs to be casily mapped to the resources provided in a processor array 100. As
described later a function block 500 can contain a plurality of arithmetic logic elements 560
that can be interconnected via a local switch fabric 550 enabling many operations to be

performed in parallel and in a single clock cycle.

A function block requiring N operands, where N is an integer, would connect to N outputs
of a particular self-routing switch fabric 700. For example, a multiplier having two operand
inputs would have each input connected to an output port of a self-routing switch fabric. The
output of a function block is connected to an input of a self-routing switch fabric. Each
output port of a preferred self-routing switch fabric is buffered (buffered output port) in
order to allow a plurality of inputs to transfer input data tokens (tokens are described in more
detail later) to a single output port without causing any delays in the processing of
subsequent input data tokens on any of the plurality of input ports. Each self-routing switch
fabric is therefore non-blocking. In another embodiment, the self-routing switch fabrics can
be blocking. Each output port has a specific address enabling data tokens from different

sources to be routed to any chosen output port and hence function block.

The processor array 100 also contains a plurality of thread coordinator units 600 that are
used to load program data as well as initiate, maintain and terminate thread execution. In
order to implement the various operations or instructions in a given algorithm, resultant data
output from one function block is formatted into a token and is then passed to the input of

the next function block in algorithm sequence. All token transfers are performed
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automatically via the self-routing switch fabric and so enables out-of-order or out-of
sequence processing to be implemented. As such, the route through concatenated function
blocks represents the algorithm to be implemented. As the operation of each function block
is implicit by definition, (for example an adder function block performs additions or barrel
shifter function block performs shifts on its input data) there is no need to have a centralised
instruction control unit issuing commands to the various function block resources. This then
reduces the number of program memory and or cache accesses, which can be significant

when large program loops are being executed.

Data tokens are passed between ecach function block based on a unique address attached /
appended to the output data of each function block that routes the resultant data token to the
next function block. The attached address is also referred to as a routing tag and each
function block is an addressable function block. The newly formatted data is referred to as a
token and can take different forms as described later. A self-routing switch fabric 700
provides the routing of the data tokens between the function blocks. This allows different
threads to operate asynchronously and independently of each other. The term self-routing
switch fabric used herein is used to refer to any switch fabric having a plurality of ingress
ports and egress ports, wherein input data received at an ingress port can be routed
automatically to one or plurality of selected buffered queues based on an address or routing
tag appended to the received ingress data. The said self-routing switch fabric being
preferably non-blocking. In another embodiment blocking self-routing switch fabrics may

be used.

In another embodiment, data transfers between function blocks and switch fabrics and vice
versa takes the form of data block transfers or Direct Memory Access (DMA) style
transfers. A block of data consists of K concatenated data words, where K is an integer.
Such a block than has a single routing tag attached. These block transfers are more efficient
than appending a separate routing tag to each data word. In order to facilitate block transfers
a switch fabric will route each data word of a block from an ingress port to an egress port on
a clock cycle by clock cycle basis and maintain the path between the ingress and egress port
until all data from a block has been transferred. The path between the ingress and egress
port will be established based on the address fields in the attached routing tag. There are
several methods to establish when the last data word of a block has been transferred so the

switch fabric can then close the path and establish new ingress to egress paths through the
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switch fabric. One method is to set the token type field 3A to type block data transfer 30
(which includes the block length) so a switch fabric can count the number of data words
transferred. A more efficient method would be to append a condition data field 3C set to end
of block 3Q to the end of the block to indicate that the last data word has been processed.
Examples of applications where block transfers would be used are DCTs, FFTs, image
processing and audio processing where data is processed in blocks. In another embodiment,
the routing tag and data word can be transferred in parallel on separate buses. In order to
prevent congestion the length of a block can be limited. However, the chosen block length

will decide on the application, number of switching resources and simulation results.

Different operands required to perform an operation that arrive at the inputs of a function
block from different routes are automatically synchronised before each operand is presented
to their respective function block inputs, for example operand A plus operand B when using
a two input adder. Thread synchronisation will be explained in more detail later. When the
last operation / instruction in a particular thread has been performed, then the associated
function block issues a thread complete token, which is routed back to the initiating thread
coordinator block. These thread coordinator tokens can be routed back to a thread
coordinator unit either via the same self-routing switch fabric used to route the data tokens

or a separate self-routing switch fabric dedicated to the purpose.

The output buffer of each self-routing switch port can be configured to implement a plurality
of output queues, referred to as thread queues. These queues also have a specific address and
are operated on a first-in first-out (FIFO) basis. A queue is associated with a particular
thread (referred to as a thread queue or queue for short) and by providing different queues at
each output port the same function block can be used by different threads. The scheduling of
the output queues is programmable and based on algorithm needs. This can be determined at
design time through simulation using Electronic Design Automation (EDA) tool chain 1000,
explained below with reference to Figure 17. The scheduling strategies include, but are not
limited to, first come first served, round robin, weighted round robin and priority queues.
For example, thread coordinator tokens could be given a higher priority than data tokens has
there will be less of them and they are more important in terms of thread control and

execution.
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Several function block resources can be considered local if they are interconnected using the
same basic self-routing switch fabric 700. Such a structure is referred to as a level-1 function
block and the self-routing switch fabric interconnecting them a level-1 switch fabric. In
another embodiment described later (see Figure 13), a function block 500 can contain a
plurality of arithmetic logic elements 560 interconnected via a local switch fabric 550. A
group of level-1 function blocks can be interconnected using another self-routing switch
fabric. This switch fabric is referred to as a level-2 switch fabric and the grouped function
block a level-2 function block. A plurality of level-2 function blocks can then be tiled and
themselves interconnected by separate self-routing switch fabrics. Those familiar with the
art will recognise that various switching architectures can be constructed, such as fractal,
hypercube, butterfly fat tree or hierarchical switch structures enabling different shared

resource multi-thread processor arrays 100 to be implemented.

When implementing different algorithms it becomes apparent that certain operations /
instructions occur more frequently than others. For example, most DSP based algorithms
rely heavily on multiplies and accumulates or MACs. Function blocks 500 that implement
frequently used operations are collectively referred to as frequent functions blocks 107.
However, other functions may be required, but do not occur very often or relatively
infrequently, such as barrel shifting, truncation, look-up tables, or normalisation. Function
blocks 500 that implement infrequently used operations are collectively referred to as
infrequent functions blocks 108. Consequently, it would be a very inefficient use of silicon
real estate to provide these infrequent functions locally or in every processing element. An
alternative would be to implement several of these less used or infrequent operations as
function blocks and allow them to be accessed universally from any other function block or
thread coordinator unit 101 on a device. This would then lead to a better and more efficient

use of available resources by reducing the overall gate count.

Interface blocks 104 are used to transfer data to and from external circuits. Data and control
signals 106 are provided to Interface blocks 104 are closely coupled to memory based
function blocks 500 and thread coordinators 600. Various types of Interface blocks 104 are
provided on the processor array 100 to cater for different interface protocols. Likewise, an

Interface block 104 can be constructed from a group of programmable interconnected
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function blocks enabling the Interface block 104 to be configured to implement one of a

plurality of interface protocols.

In an example embodiment, flow control is provided within the self-routing switch fabrics
700 to prevent queue overflow and loss of data. Programmable queue management means
are employed so flow control tokens are issued if a particular queue reaches a programmable
predefined level. The flow control tokens are routed back to the thread initiator instructing it
to “slow down” i.e. reduce the rate at which it issues thread initiator tokens for a determined
number of clock cycles. Likewise, the scheduling of tokens from an output queue can be
based on the queue level and queue output slots can be stolen from lower priority queues if
the need arises. This situation could occur due to uneven or bursty data flows, for example

when interrupts occur or data output varies when implementing a compression algorithm.

According to the present invention there is provided a processor array, wherein individual
instructions or groups of instructions for one or a plurality of threads are mapped to function
blocks of corresponding functionality from an array of addressable heterogeneous function
blocks, the same instructions from different threads are optimally mapped to the same
function blocks so they share a function block’s processing resources, each input port of a N
input function block, where N is an integer greater than or equal to 1, is connected directly
to a buffered output port of a self-routing switch fabric, each buffered output port being
configured to implement one or a plurality of independent thread queues, each thread queue
having at least an empty flag output, where one or more groups of Q empty flag outputs,
where Q is an integer greater than or equal to 1 and can be a different value for each group,
are logically combined by programmable circuit means to form one or more groups of
synchronised thread queues, tokens read simultancously by thread queue scheduler means
from the selected group or groups of synchronised thread queues is input directly on selected
inputs of an N input function block, resultant data from a function block is formatted into a
token by at least having a routing tag appended, the said token being automatically routed
via the self-routing switch fabric to a thread coordinator or the next function block in the
thread sequence, each thread being initiated, maintained and terminated by a thread

coordinator issuing and decoding tokens.
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Further features of the invention, its nature and various advantages will become readily
apparent from the following detailed description of the invention and the embodiments

thereof, from the claims and from the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a high-level logic block diagram of a shared resource multi-thread processor

array according to an example embodiment of the present invention;

Figure 2 shows an example of some pseudo code used to implement several condition

threads;

Figure 3 shows a data flow and thread dependency graph for the pseudo code in Figure 2;
Figure 4 shows an example of the address format of the route tag used to route tokens
through the self-routing switch fabric, for use in example embodiments of the present

invention;

Figure 5 shows an example of the token format for use in example embodiments of the

present invention;

Figure 6 shows an example of the function control & routing memory data format for use in

example embodiments of the present invention;

Figure 7 shows a logical block diagram of how data tokens are routed between function

blocks via self-routing switch fabrics in example embodiments of the present invention;

Figure 8 shows a block diagram of a thread coordinator for use in example embodiments of

the present invention;

Figure 9 shows an example level-1 function block for use in example embodiments of the

present invention;
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Figure 10 shows two switch output ports and associated queue control logic for use in

example embodiments of the present invention;

Figure 11 shows the queue maintenance & thread synchronisation logic for use in example

embodiments of the present invention;

Figure 12 shows an example of a conditional control function block for use in example

embodiments of the present invention;

Figure 13 shows a logical block diagram of a function block comprising a group of
arithmetic logic elements interconnected via a local switch fabric for use in example

embodiments of the present invention;

Figure 14 shows four level-1 function blocks instantiated as a level-2 function block for use

in example embodiments of the present invention;

Figure 15 shows three level-1 function blocks instantiated as a level-2 function block for use

in example embodiments of the present invention;

Figure 16 depicts a tiled array of level-2 function blocks for use in example embodiments of

the present invention; and

Figure 17 shows an Electronic Design Automation (EDA) tool chain and processor array

device manufacturing flow diagram.

BEST MODES FOR CARRYING OUT THE INVENTION

Figure 2 shows an example of some pseudo code used to implement several conditional
threads. The pseudo code is not associated with any particular algorithm and is shown to
help assist in the explanation of the operation of the present invention. It can be seen from
Figure 2 that the if-else loop implements three conditional threads, shown as CT1, CT2 and
CT3. The execution of a particular conditional thread is based upon the comparison of the

parameters A and B. Within each conditional thread there are several sub-threads labelled
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ST1 to STS. Sub-thread ST1 is a sequential thread and hence each subsequent operation is
dependent on the result of the previous operation. Sub-threads ST2 and ST3 are initiated if
CT2 is true and are independent parallel threads. Sub-thread ST4 and ST5 are initiated if
CT3 is true. Though sub-thread ST4 can progress at its own rate, sub-thread STS5 is
dependent on the result of ST4 (the parameter M) and so cannot complete until ST4 is

complete.

Figure 3 shows a data flow and thread dependency graph for the pseudo code in Figure 2.
Dependent operations or instructions are shown in highlighted boxes and are connected by
dashed lines. Non-dependent operations are shown in non-highlighted boxes and are
connected with solid lines. The point at which a single thread initiates the processing of two
or more parallel threads is known as a fork operation. Examples of fork operations are
shown a points CT2 and CT3 of the data flow and thread dependency graph of Figure 3. The
process whereby two or more threads merge to initiate a single thread is referred to as a join
operation. Examples of join operations (refer to Figure 3) are when the result of ST4 (the
parameter M) is transferred to sub-thread ST5 and when tokens are output from processes X
and Y from sub-threads ST2 and ST3 respectively and merged at the thread coordinator.

To initiate a thread a function block must first receive a thread initiation token. These are
shown as fine dashed lines and labelled CT1 to CT3 in figure 3. If a thread requires that a
plurality of further threads need to be initiated in parallel, as is the case for CT2 and CT3,
then more than one initiator token will be issued. When a plurality of parallel threads needs
to be initiated (referred to as a fork), the initiating token needs to be multicast to initiate the
separate parallel threads. Each multicast token will have a different address so they can be
routed to the appropriate function blocks of each sub-thread. The multicasting of tokens will
be explained in more detail later. Once a particular thread has completed execution the final
function block in the sequence issues a thread return token, shown as open arrows in Figure
3. These thread return tokens or thread complete tokens are routed back to the initiating

thread coordinator unit.

An example of the address field format 2 used by tokens to route data to different output
ports and queues via the self-routing switch fabric is shown in Figure 4. The address field 2
can also be referred to as a routing tag. The address field 2 is divided into six sub-fields 2A

to 2F. Sub-field 2A is used to indicate the column address within a processor array. Sub-
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field 2B is used to indicate the row address within a processor array. Sub-field 2C is used to
select the block and sub-field 2D the local switch within that block. The output port and
queue number within a switch are identified by sub-fields 2E and 2F respectively. This
particular address format can be used for 2-dimensional switch fabric, as shown in Figure
16. For other types of switch fabric, such as a butterfly fat tree switch fabric the sub-fields
2A and 2B are merged to form a single absolute address. Other address formats can be
employed depending on the switch fabric architecture used to implement the processor array

100.

Before the thread coordinator unit (Figure 3) can continue with the next operation it needs to
receive and process a thread complete token. If thread CT1 -> ST1 had been executed, then
only one thread complete token will be issued and returned. However, if there are parallel
threads, as is the case with threads CT2 -> (ST2||ST3), then two thread complete tokens will
be issued (one each from processes X and Y). However, the thread coordinator unit will not
be aware of this as it will not know in advance which conditional thread has been executed
(data dependent). To cater for this scenario one of two embodiments of the invention can be
employed. In a first embodiment, each thread complete token will contain a field, which
indicates the number of parallel threads that are currently being processed. It then does not
matter which thread complete token is received first by the thread coordinator unit as it will
know how many thread complete tokens to expect once it receives the first token. It then
waits until that many tokens have been returned for that particular thread before executing
the next operation. In a second embodiment, which is employed by function blocks 500 and
described in more detail later, is to use a plurality of thread queues and group selected thread
queue empty flags using programmable circuit means to indicate when a join operation
should be initiated and hence synchronised (synchronised thread queues). The waiting and
processing of a number of thread complete tokens is referred to as a join or thread merge
operation. If after a predefined time-out period not all the thread complete tokens have been
received and decoded then the thread coordinator can implement a pre-programmed

interrupt service routine to cater for such thread errors.

The fork — join operations outlined above are not limited to a thread coordinator. The join or
thread merge operations can also be implemented by a function block 500. This would occur

when a function block cannot perform an operation until a specified number of tokens are
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received in its thread queues. A mechanism to implement this functionality is to use thread
queues and group selected thread queue empty flags using programmable circuit means to
indicate when a join operation should be initiated and hence synchronised (synchronised

thread queues).

Figure 5 shows an example of the token format. The term token is generic and used to
describe one of several types of token. The token format is divided into four sub-fields. The
destination address uses the same address format 2 shown in Figure 4. Sub-field 3A is used
to identify the token type, such as a data token, thread complete token, interrupt token, flow-
control token or status token. The sub-field 3B contain data relevant to the token type, for
example an interrupt vector, or the number of thread complete tokens to expect (as described
previously). Sub-field 3C is the condition data field and is used when a thread coordinator
unit is executing conditional instruction, such as a do-while (condition) type loop. If the test
condition is false, then this field will be set to logic 0 and routed to the thread coordinator
unit. The thread coordinator unit will decode the token and as the condition field is false it
will proceed to issue another initiator token to go round the loop again. If, however, the
tested condition is true, then the condition field 3C will be set to a logic ‘1°. On receiving
and decoding the thread complete token the thread coordinator unit will now terminate the
do-while loop and execute the next thread. It will be appreciated that the logic to test the
condition will be implemented in a function block 500 that is not part of the thread

coordinator 600.

Figure 7 is provided to explain how function blocks operate and how data is routed through
the array to each function block 500 in turn via self-routing switch fabrics. The last function
block 500 in the thread sequence then issues a thread complete token, which is routed to the
initiator thread coordinator 600. A thread coordinator 600 issues a token 3 of type initiator
3F. In this example the token is input to a self-routing switch fabric 700. The token 3 contain
an address field 2, which is used to route the token (type data-routing tag 3D) to a particular
function block 500. On reaching the destination switch output port the received token type
3D is modified to a token of type 3E by removing the address field, before it is stored in the
selected output queue 801. Token data field 3B is decoded and presented to the function
control and routing memory block 501. The data field 3B is effectively an address in this

case and used to address function control and routing memory block 501. The output of the
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function control and routing memory block 501 is a control word 4 used to control the
associated function block 500 and provide the address of the next function block 500 the
resultant data should be passed to. The format of the function control and routing memory
control word 4 is shown in Figure 6. Field 4A is the function block control field and is used
to control logic circuits within a function block and select the function block operation. For
example, an adder / subtractor function block may be used to add an offset value stored
locally. Therefore, the control field 4A would be used to select the appropriate register and
select the add function. Different function blocks would have different control fields 4A
depending on the level of functionality provided in the function block. The Next Function
Block Address field 4B is appended to the resultant function block output data (to form a
token 3 of type data 3D) and is used to route the resultant data to the next function block 500
for further processing. If the function block is the last in the thread sequence then this field is
set to a known code e.g. all zeros to indicate the fact. The thread complete token field 4C
holds the token 3G (thread complete token) that are used to indicate that this is the last
function block in the thread sequence. This thread complete token is routed to the initiator
thread coordinator 600 via the self-routing switch fabric based on the address field 2.

Before the processor array 100 can be used it must first be programmed. This is one of the
tasks performed by the thread coordinator 600. A dedicated compiler 1200, shown in Figure
17, performs the mapping of thread operations or instructions to function blocks. Individual
thread operations or instructions are mapped to corresponding function blocks that can
implement that particular function. In an embodiment of the invention more complex high
level thread functions can be mapped to macro function blocks, for example a Fast Fourier
transform. Each thread coordinator 600 has an input signal 621 that is used to select between
master program load mode and thread segment load mode. The processor array may be used
in one of several configurations. Each thread coordinator 600 can be connected directly to its
own independent program memory 103. Alternatively, a plurality of thread processors can
operate as a group and access the same program memory 103. Arbitration means 105 are
provided to coordinate program memory accesses by the different thread coordinators 600.
In the latter case it would be advantageous for one thread coordinator to be designated the
master program load thread coordinator 600. This thread coordinator loads the main
program segments at power-on or reset. Once complete, the remaining thread coordinators in
the group are initiated. Program data is stored in the non-volatile program memory 103. At

power-on or when the master reset 608 is active, the thread coordinator 600 performs the
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program loading operation. The program data includes specific control instructions that are
decoded by the thread segment loader 602. These instructions instruct the thread segment
loader 602 how to transfer the program data to the relevant blocks, when all the program
data has been loaded and when to begin processing. These instructions include load
segment, begin processing, master stop, master start and the like. The first instruction is
stored at a convenient predefined address, such as address 0 in the program memory. The
thread segment loader 602 accesses the program memory 103 using control signals 610.
These signals include the address bus, program memory enable signal and program memory
read signal. Program data output from the program memory 103 is presented on the data bus
609 and input to the thread segment loader 602. The program data is transferred to all the
required configurable blocks in the processor array 100 via the program control bus 611. All
the configurable blocks are addressable and include the queue maintenance & thread
synchronisation blocks 750, the function control and routing memory blocks 501 and blocks
within a thread coordinator 600. Once all the program data has been loaded the master
thread coordinator issues a global start signal or token 3K, which are decoded by all the
thread coordinators and program executions begins. The thread segment loader 602 issues a
global start command to thread token initiator 603 via connection 612. The thread segment
loader 602 then outputs a token 3 (type global start 3K), which is transferred to all other
thread coordinators 600. In addition, threads belonging to the same group can be initiated
and suspended by receiving and decoding a group start token 3M and group stop token 3N
respectively. The global stop token 3L is issued by a thread coordinator 600 operating in

master mode when all threads are required to be suspended.

The thread coordinator 600 initiates a thread by issuing a thread initiator token 3F and
waiting for the return of one or more thread complete tokens 3G before either performing
the next iteration of the same thread or commencing the execution of another thread.
Threads can take several forms, for example they could be a set of sequential operations, a
set of parallel operations, contain various types of loops and conditional branches. The
thread coordinator 600 contains resources to control the execution of threads. The thread
control resource block 605 contains programmable counters, registers and comparators that
are used to maintain the status of a particular thread. For example, if a FOR LOOP (for x=0;
x<31;x++) was being executed then a counter will have been previously loaded (as part of

thread segment load operation) or reset to zero and a register set to the value 31. At the start
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of the loop the thread token initiator 603 would issue a thread initiator token 3F. The thread
coordinator 600 would then wait for one or more thread complete tokens 3G to be returned.
These tokens would be input to the thread coordinator on bus 607, which is an output 703
from a self-routing switch fabric 700. The received token is decoded by the token decoder
601 to determine its type and how to proceed. As several threads can be in operation at
anyone time, for example with nested loops, then the token data field 3B is used to identify a
particular thread. This data is used to select the corresponding thread control resources 605
using control signals 617. In this particular example, the corresponding counter is compared
to the value in the register and if it less than the stored value of 31 the counter is
incremented under the control of the return thread coordinator 604. The result of the
comparison is signalled on connection 618. The return thread coordinator 604 then issues a
command to the thread token initiator 603 via connection 615 to issue a thread initiator
token 3F. This process repeats until the counter has been incremented and equals 32. The
return thread coordinator 604 then resets the corresponding thread control resources 605 and
issues a command to the thread segment loader 602 via connection 613 to load up the next
thread segment from program memory, if necessary. As program data for many threads can
be stored in the processor array it is possible for the next thread to be initiated immediately
without needing to load up a new segment from program memory 103. The thread segments
that are utilised the most will be more likely to remain stored on chip and less likely to be
overwritten / replaced by new thread segments (analogous to caching in microprocessors).
However, the storing, loading and reloading of different thread segments depends on the
application, the number of available resources and the code partitioning. A new thread
segment can be loaded while other threads are being executed. Instruction data for the new
threads can be loaded into the respective control registers and memories during timeslots (a
timeslot being the time required of circuit resources to perform a task) allocated for the
previous terminated thread. Another advantage is that the amount of reconfiguration data is
small when compared to that required for FPGAs and processor array. The latter being due

to the simpler thread synchronisation method employed in the present invention.

A thread coordinator 600 can handle both software and hardware interrupts.

The thread coordinator also caters for a software reset (a form of software interrupt), which

will have been issued by another thread coordinator or function block 500. These are
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decoded by the token decoder 601 and passed to the interrupt control unit 606 via signals
619. The software reset takes the form of a token 3. When decoded by the token decoder
601, the token decoder will issue a command to the thread segment loader 602 (if a
particular interrupt thread segment has not already been loaded) via connection 620 to reload
a particular segment and a command to the return thread coordinator 604 via connection 616

to suspended operations.

Hardware interrupt signals 622, both external and internal are input to the interrupt control
unit 606.Circuit facilities are provided by the interrupt control unit 606 to latch each
interrupt event, prioritise any received interrupts and mask selected interrupts. If an interrupt
is accepted, then the interrupt control unit 606 issues a true value on the Interrupt Valid
signal 623 and place the corresponding interrupt vector or group number on the Interrupt
Vector bus 624. The concept of group numbers will be explained in detail later. Once an
interrupt routine has been completed the interrupt control unit 606 can clear the interrupt by
placing the corresponding interrupt vector or group number on the Interrupt Vector bus 624
and placing a true value on the interrupt clear signal 625. If it is required that previously
suspended threads now be flushed as part of the interrupt routine, then the interrupt control
unit 606 will place the corresponding interrupt vector or group number on the Interrupt
Vector bus 624, place a true value on the interrupt clear signal 625 and place a true value on
the Interrupt Valid signal 623. This combination of signals is used to reset the selected

queue read and write pointers 803, 804 and thereby flushing any thread.

A level-1 switch fabric is shown in Figure 9. It is used to combine a plurality of function
block resources 500, illustrated as function blocks 500A to 500Z (individually and
collectively referred to as function blocks 500) to the same switch. Such a grouping is
referred to as a local resource group. The self-routing switch fabric as a plurality of inputs
702, illustrated as inputs 702A to 702Z (individually and collectively referred to as switch
inputs 702) and a plurality of outputs 703, illustrated as switch outputs 703A to 703Z
(individually and collectively referred to as switch outputs 703). The number of switch
inputs and switch outputs do not necessarily have to be the same value. Data is transferred
between the various function blocks 500 via a self-routing switch fabric 700. The output of a
function block 500 is routed back to one of the self-routing switch fabric inputs 702. A

plurality of switch fabric inputs 702 and switch fabric outputs 703 are used to connect to
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other switch fabrics 700. Each switch output port 703 is connected to a separate queue
memory 801 that is used to implement a multiple queue structure. Data tokens 3 received on
any switch input port 702 can be routed to any queue at any switch output port via an array
of multiplexers 701. The self-routing switch fabric is preferably non-blocking. Each queue
operates on a First-In First-Out (FIFO) basis and preferably operates asynchronously with

regards reading and writing data.

Each queue memory 801 is responsible for storing received data tokens in one of a plurality
of queues, synchronising queue threads, scheduling the transfer of data to the connected
function block 500 and implementing queue maintenance. Referring to Figure 10, received
data tokens are stored in queue memory 801. The queue memory can be divided into a
plurality of separate queues (not shown), each queue being used to store data tokens from a
particular thread. The queue structures can be implemented in one of several ways. For
example, the queue memory can be divided equally between each queue (predefined
allocation of queue memory resources each of which has a dedicated read write pointer pair)
or it could be implemented as a linked list. The latter strategy is more complex to
implement, but allows the dynamic allocation of memory resources. The former is shown in
Figure 10. Each queue has an associated queue control block 802 (shown as 802A — 802Z,
individually and collectively referred to as queue control block 802) that contains a queue
write pointer 803 and a read pointer 804. Each queue write pointer 803A — 803Z
(individually and collectively referred to as queue write pointer 803) contains the address of
the next available memory location in that particular queue to store a received data token 3.
Each queue read pointer 804A — 804Z (individually and collectively referred to as queue
read pointer 804) contains the address of next available data token to be read from the
queue. The control signals and address data from each queue control block 802 is passed to
the queue memory via control bus 805. This can be a tristate bus and the signals from
individual queue control blocks 802 can be multiplexed. Control circuitry (not shown)
within each queue control block 802 is used to handle pointer maintenance e.g. pointer value
wrapping when the maximum pointer value overflows, empty flags 862A to 862Z
(individually and collectively referred to as empty flags 862), % full flags 863, full flags 865
and resets 864. Status signals, such as FIFO empty flags 862 and % full flag 863 & Full flags
865, are connected to the queue maintenance & thread synchronisation block 850 where they

are used to control the scheduling of output data / tokens from the selected thread queue to
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the connected function block 500. The queue maintenance & thread synchronisation logic
850 includes logic means to implement a thread queue scheduler 855 that is used to read

data from the selected thread queues and load the data into a function block.

The grouping of queue memories 851 with a switch fabric 700, as shown in Figure 9 is
illustrative of an embodiment of the invention. Those familiar with the art will realise that
processor array resources, such as the function blocks 500, queue memories 851 and switch
fabric 700 can be partitioned and / or grouped differently to obtain the same functionality.
For example, the queue memory block 800 could be separate from a switch fabric and be
grouped together (be considered as an internal block) with a function block 500 or it could
be considered as a separate circuit block (as shown in Figure 13) receiving tokens output

from a switch fabric 700 on bus 703 and outputting data to one or more function blocks 500.

In yet another embodiment, empty flags 862 and the % full flag 863 & Full flags 865, are
connected to the local programmable clock generator (not shown). In times of token traffic
congestion or near congestion, perhaps due to bursts of token processing in variable data
applications, then the programmable clock generator can be instructed to increase the clock
frequency in order to increase the processing and hence the throughput of the associated
thread queues experiencing congestion. Another advantage of employing a local
programmable clock generator is that the optimum clock frequency can be selected to
process the arriving tokens and keep the power dissipation to a minimum. Hence the
processor array is adaptive to processing requirements at that particular time, which is useful
for applications that generate bursty or variable length data packets. If the FIFOs are empty,
indicating there is nothing to process, then the programmable clock generator can be used to
inhibit the clocks to the processing and memory logic of a function block 500 to reduce the
overall power dissipation. The arrival of tokens in the thread queues will automatically

enable the programmable clocks again by virtue of the empty flags changing state.

A function block 500 that has P operand input ports, where P is a positive integer, will have
cach of its input ports connect to a corresponding switch fabric output port 703. Data tokens
3 are transferred from one function block 500 to another via the self-routing switch fabric
700 based on appended addresses or routing tags. Therefore, the route taken by each data

token from the same thread is the same. Consequently, data from the same thread will not
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arrive at any queue or function block out of sequence. Before a function block can perform
an operation on its input data all operand data for all ports must have been received and
stored in each associated queue. Once all the relevant data has been received then the
scheduler can read and present the data to the function block for processing. The resultant
data is then reformatted into a different type of token and transferred to a switch fabric input
702. The decision to simultaneously read multiple queues associated with a function block is
based on the empty flags 862 from each queue (note, two operands and two empty flags are
described in this example as shown in Figure 11). Empty flags 862A, 862B from related
operand queues for the same two operand input function block 500 are grouped together,
shown as 862GP. The grouping of selected empty flags 862 from different thread queues is
fully programmable (programmable circuit means are logic circuit means that allow a
plurality of input signals to be combined to implement any logic function of those input
signals for example, any combination of the queue empty flags 862A to 862Z and the
outputs 857A to 857N from the thread interrupt register to be combined to form a group
862GP) and the grouped queues are referred to as programmable interconnected or coupled
thread queues. For example, assume data from two related threads needs to be added
together. Data for operand A is received and stored in queue 3, say of the switch output port
that connects to the function block’s A operand input. Due to the delays in the different data
paths, data for operand B may arrive and be stored in queue 3 (of the switch output port that
connects to function block B operand input) at a later time. Therefore, the thread queue
scheduler 855 cannot read the data from the two separate thread queues and transfer it to the
function block inputs until data for both operands have been stored in their respective thread
queues connected to each respective function block input. When both the empty flags from
each queue indicate that their respective queues are not empty, then the data is synchronised
(that is, the thread queues are synchronised) and the thread queue scheduler 855 can read
data from the queues 801. The selected read pointer is incremented by the schedule using a
read pointer increment signal 861 when reading data from the corresponding queues. The
empty flags 862A, 862B from related queues (and hence threads shown in the example of
Figure 11) are logically ANDed together. The output 858A to 858N from each AND gate
853A to 853N (individually and collectively referred to as AND gates 853) is input to a
multiplexer 854 whose select lines are driven by the thread queue scheduler 855. The thread
queue scheduler 855 tests the value of multiplexer (selected queue) output 859 and if it is

true then the selected queues are read and the associated pointers updated. The thread queue
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scheduler 855 also accesses the function control and routing memory block 501 to obtain the
next function block address and any token data that may need to be transferred. If the
multiplexer output 859 is false then the selected thread queues are not read. The empty flags
862 are therefore used to synchronise the input data to the function block. It can be seen
thread synchronisation is implicit in the queue scheduling operation and does not require the
hardware and processing overheads of prior art thread synchronisation schemes. Of course,
if the function block 500 only requires a single operand, for example a barrel shifter,
truncation, normalization, inversion, then data can be input to the function block from the
queue as soon as it scheduled. In this case, only a single empty flag from the corresponding
thread queue is used by the thread queue scheduler to determine if token are available for
input to the connected function block 500. The other empty flag inputs to the AND gate 853
are set (programmed) to a logic 1. This is achieved by setting a logic 1 in the corresponding
bit of the function block empty flag control register 866. Each individual output 867 is
logically OR-ed with an empty flag signal 862 before being input to a AND gate 853. For
clarity, only the logic circuits for AND gate 853N are illustrated. The programmable logic
means described above to group the various empty flags are illustrative and other
programmable logic means can be employed to provide the same functionality in another
embodiment of the invention. In addition to a join operation (the parent process blocks until
all the processes spawned by the current fork operation complete), the programmable logic
means can also be programmed to implement other join operations. For example, a
‘join_any’, where the parent process blocks until any one of the processes spawned by the
current fork operation complete and a ‘join_none’, where the parent process continues to

execute in parallel with all the processes spawned by the fork operation.

The thread queue scheduler 855 can read each queue in one of several ways. The scheduling
algorithms employed include round robin, weighted round robin, first-come first-served or
priority based scheduling. The thread queue scheduler 855 can also operate asynchronously
and at a faster rate than data is input. The scheduling rate can also be proportional to the
queue levels. If a queue level exceeds a predefined level, for example % full 865, then the
thread queue scheduler 855 can issue a flow-control token 3, which is routed back to the
originating thread coordinator indicating that it should reduce the rate at which data is being

input. In another embodiment, the flow control token is broadcast to all function blocks 500
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and those associated with the thread (group number) can reduce their token outputs by a

predefined amount.

If an interrupt occurred, then it may be required that processing for a particular thread would
need to be suspended while the interrupt was serviced. Because the processing for a thread is
distributed across the processor array then each function block involved with the thread
processing will need to receive the interrupt signals. In general, the interrupts are controlled
and initiated by a thread coordinator 600. If an interrupt occurs and it is accepted (not
masked or of a lower priority if other interrupts are currently being serviced) then the thread
coordinator 600 will issue an interrupt valid signal and an interrupt vector or interrupt group
number. This data is passed to all function blocks 500 via a dedicated bus constructed from
signal 623,624 and 625. Each function block interrupt controller 851 registers the interrupt
data and outputs valid interrupts on corresponding signal 865, illustrated as 865A to 865N.
Function blocks implementing operations for the same thread are associated with the same
group and are allocated a group number. As a function block can be shared and used by
many different and independent threads (the same instructions from different threads are
therefore mapped to the same function block) a function block may have many different
group numbers associated with it. The process of allocating the same instruction or group of
instructions from different threads so they share or utilise the processing resources of the
same function block so that a function block utilisation is maximised for a specific group of
algorithms or threads is referred to as optimally mapped or thread load balancing. The level
to which a function block is shared can be determined at simulation time using the
Electronic Design Automation (EDA) tools 1000. Each function block stores a list of the
group numbers a function block is associated with. Associated with each group number is a
queue number. Function blocks that have the same group number do not necessarily have to
have the same queue number associated with the same group number. This technique allows
queue allocation flexibility to different threads depending on the utilisation of a function
block for a particular algorithm. The allocation of group numbers and the mapping of group
numbers with queue numbers are performed by dedicated compiler tools 1200 used to
design algorithms for the shared resource multi-thread processor array 100. When an
interrupt occurs and is accepted then the interrupt control 606 will output the interrupt group
number, which is confirmed by a true signal of the interrupt valid line. This will be

registered by all the function blocks 500 and compared to their stored group number lists.
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The comparison can be performed in parallel or sequentially. One way to implement the
latter is to use a Contents Addressable M memory (or CAM — not shown). If there is no
match the interrupt is not intended for that particular function block. If there is a match then
the queue number associated with the group number is read, decoded and a bit is set in the
thread interrupt register 852. Each output 857A to 857N from the thread interrupt register
852 1s used to drive an AND gate 853 (illustrated as 853A to 853N) that is also driven by the
same queue empty flag signals 862. If thread processing needs to be suspended when an
interrupt occurs then setting a thread interrupt register bit 857 to logic 0 will inhibit the
thread queue scheduler 855 from reading a queue, even if it is not empty. Consequently, data
processing for that particular thread will now be suspended. Once the interrupt has
completed the thread coordinator can reset the thread interrupt register 851 (logic 1), which
will enable the thread queue scheduler 855 to restart reading data from the previously
suspended queue. If after the interrupt has completed execution the suspended thread needs
to be stopped and cleared then the originating thread coordinator 600 will output an interrupt
clear signal together with a group number. All function blocks will again register this
interrupt data and those matching the group number will decode the message and proceed to
reset 864 the queue pointers for the selected thread queue. As the selected queue pointers
have been reset, the empty flags will indicate the queue is empty and the thread queue
scheduler will not read any data for that queue until new data is stored in the queue. Hence
the previous thread will have been “flushed”. Though a particular queue will have been
suspended, the thread queue scheduler will still process the other active queues. In a
preferred embodiment, the thread queue scheduler 855 can temporarily re-allocate the
suspended timeslots to the other queues to aid processing throughput by stealing the now
free timeslots for the suspended queue. A timeslot is the time required by the thread queue

scheduler 855 to read a particular thread queue or set of associated thread queues.

The thread synchronisation methods described so far concern sub-threads or parallel threads
that are related to the same main thread. There are occasions when different threads, which
are operating simultancously, need to access and or update the same registers and memory
locations. The order in which these memory accesses occur is critical and they must be
performed in the correct order. To achieve this a thread lock or thread wait mechanism must
be employed. This can be achieved with the present invention if an empty flag 862 from a

thread queue (referred to here as an inter-thread synchronisation queue) is grouped by
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programmable circuit means to other empty flags to form a group 862GP. If an inter-thread
synchronisation queue is empty then it will inhibit the group from becoming active until a
token is written to / received by the inter-thread synchronisation queue. Such a token would
be issued by another thread when it had performed its tasked and released the relevant
function block resources 500 for access by the waiting thread. An inter-thread
synchronisation queue would only need to store a single bit for each received token as it
only needs to indicate a wait or no wait condition. This mechanism can be extended to

implement more complex or elaborate inter-thread wait and resource sharing schemes.

In another embodiment of the invention, the thread lock or thread wait mechanism can be
implemented using an inter-thread synchronisation register (not shown). The inter-thread
synchronisation register is similar to the thread interrupt register 852 in that it consists of
individual programmable bits whose outputs connect to the AND gates 853 in order to
inhibit or active a programmable group 862GP. An inter-thread synchronisation register is
connected to the program control bus 611 so its contents can be set at initialisation, for
example. It is also connected by circuit means to a group of outputs (field) of an associated
Function Control & Routing Memory 501 enabling individual bits of the inter-thread
synchronisation register to be set or reset simultaneously. By enabling and disabling the
AND gates associated with the thread groups 862GP, different threads can be forced to wait
to access a function block’s resources. For example, when the current thread had completed
its operations an output bit from the Function Control & Routing Memory 501 could set the
bit enabling a waiting group to proceed and access a function block’s resources. At the same
time it another bit would reset a bit to disable the previous group to prevent it (thread wait or

thread lock) from accessing the function block resources.

Function blocks 500 implement a variety of different functions. They are generally used to
implement data path functions, such a data storage (memory or register files), arithmetic and
logic functions (both coarse grained and fine grained). They are also used as part of the
control path to implement conditional branch functions. These conditional thread flow
control blocks 500 contain many logic circuits and are in some respects very similar to their
data path counterparts. A conditional multi-way branch function block is shown in Figure

12. This particular function block 500 can test several conditions in parallel that are of the
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form: If ((A <comparison> B) <logic function> (C <comparison> D)) Then Branch X, Else

Branch Y. For example, If (A<B) && (C==D) Then Branch X, Else Branch Y.

Like other function blocks 500 each operand input is connected to a switch fabric output
703. The function block of Figure 12 has three such connections. It also has an internal
register file 504. The register file output 505 and the three operand inputs are each connected
to the inputs of four 4:1 multiplexers 503A to 503D allowing any of the four inputs to routed
to a multiplexer output 503A0 to 503DO respectively and subsequently to any of the
comparator input. The select lines of each 4:1 multiplexer are controlled by data output from
the Function Control & Routing Memory 501. The data is a sub-field 4AB of the function
block control field 4A. Sub-field 4AA is used to select a register output from the register file
505, sub-field 4AC is used to select the comparison function of comparator 502B, sub-field
4AD is used to select the comparison function of comparator 502A and sub-field 4AE is an
offset address, which is concatenated with the outputs 502A0, 502BO of the two
comparators 502A and 502B respectively to form an address that is input to the Thread
Decision Function Block memory 507. The comparators 502A and 502B both have two
inputs A and B and can perform the comparison functions A equals B, A greater than B and
A is less than B. Because the function block output is conditional on several inputs it is not
known a priori which branch / thread will be taken. Consequently, the next address data and
token data are not stored in the Function Control & Routing Memory 501, but in the Thread
Decision Function Block memory 507. The output of the Thread Decision Function Block
memory 506 forms the input to a self-routing switch fabric 702 and is a token 3.
Concatenating the offset address 4AE and the output of the two comparators forms the
Thread Decision Function Block memory address. The two bits from the comparators
forming the two least significant bits of the address. The offset address 4AE is provided so
different logic functions can be implemented by different threads. The contents of each
Thread Decision Function Block memory location contain a token 3. Different locations will
have different tokens 3 corresponding to the different thread branches to be taken if the set
conditions become valid. An alternative to using the memory to indirectly implement the

logic function is to use a programmable logic function.
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The register file 505, Thread Decision Function Block memory 506 and the Thread Decision
Function Block memory 507 are fully programmable and can be loaded via the Program

Control Bus 611.

As described previously, at some point in a thread’s execution a thread may fork into several
separate parallel threads. In order for the output of a function block 500 to initiate a plurality
of separate parallel processes, a mechanism is required where the token 3 output from a
function block can be used to generate a plurality of separate tokens that are used to initiate
the plurality of parallel sub-threads or processes. One method of achieving this is to perform
a multicasting operation. The parallel sub-thread initiating token 3 is input to a multicasting
function block 520. Data contained in the token is used to address a look-up table, which
contains a group of tokens that need to be issued to initiate the separate parallel processes.
Each token in the multicast group will be different, as they will have different function block
addresses. There are several ways to implement the multicast mechanism. One method is to
use a Content Addressable Memory (CAM) operating in conjunction with a Finite State
Machine (FSM) that searches and outputs the corresponding matching tokens in the
multicast group. Another method would be to use a linked-list in memory operating in
conjunction with a Finite State Machine (FSM) that searches and outputs the corresponding
matching tokens in the multicast group. The first token in the list would be pointed to by
data in the received initiator token 3. Each subsequent token in the linked list would contain
a field that pointed to the next token in the multicast group. The FSM would cycle through
the linked-list until all the tokens 3 in the multicast group had been issued and transferred to

the connected switch fabric.

Several function block resources 500 are considered local if they are interconnected using
the same basic self-routing switch fabric 700. Such a structure is referred to as a level-1
function block 900 and the self-routing switch fabric interconnecting them a level-1 switch
fabric 700A. A group of level-1 function blocks can be interconnected using another self-
routing switch fabric. This switch fabric is referred to as a level-2 switch fabric 700B and
the grouped function block a level-2 function block 910. A plurality of level-2 function
blocks can then be tiled and they themselves interconnected by separate self-routing switch
fabrics 700C, referred to as level-3 switch fabrics. Those familiar with the art will recognise

that various switching architectures can be constructed, such as multi-dimensional, butterfly
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fat tree, fractal or hierarchical switch structures enabling different shared resource multi-
thread processor arrays to be implemented. In another embodiment of the invention the
level-2 switch fabric 700B and or level-3 switch fabric 700C can employ one of a plurality
of queuing and scheduling schemes or means. The plurality of queuing schemes includes
input buffered thread queues, intermediate buffered thread queues, output buffered thread
queues (also referred to as a buffered output port) or any combinations of these buffer
schemes. The plurality of scheduling schemes or means includes priority based, round robin,

weighted round robin and first-come first-served scheduling.

Two versions of a level-2 function block 910 are shown in Figure 14 and Figure 15
respectively. The level-2 function block 910 of Figure 14 has four level-1 function blocks
900, illustrated as level-1 function blocks 900A to 900D (individually and collectively
referred to as level-1 function blocks 900) interconnected via a level-2 switch fabric 700B.
Communication between a level-2 switch fabric 700B and a level-3 switch fabric 700C is
input ingress bus 912 and output or egress bus 911. The direction of the data flow is taken
from the level-2 perspective. The level-2 function block 910 of Figure 15 has three level-1
function blocks 900, illustrated as level-1 function blocks 900A to 900C (individually and
collectively referred to as level-1 function blocks 910) interconnected via a level-2 switch
fabric 700B. Communication (token transfer scheme) between a level-2 switch fabric 700B
and a level-3 switch fabric 700C is input bus 912 and output bus 911. The reason having
fewer level-1 function blocks 900 is that the level-1 function blocks 900 may be more
complex and or require greater data bandwidth provided by using the extra switch ports of

the level-2 switch fabric 700B that would have been used by a level-1 function block.

As shown in Figure 16, four level-2 function blocks 910 can be grouped via a level-3 switch
fabric 700C to form a level-3 function block 920. These level-3 function blocks 920,
illustrated as level-3 function blocks 920A to 920Z (individually and collectively referred to
as level-1 function blocks 920) can then be tiled and themselves interconnected by separate
self-routing switch fabrics 700C, referred to as level-3 switch fabrics, illustrated as level-3
switch fabrics 700CA to 700CZ (individually and collectively referred to as level-3 switch
fabrics 700C). Each level-3 switch fabric 700C has eight dual port communication links 930,
illustrated as a dual port communication links 930A to 930H (individually and collectively

referred to a dual port communication link 930). A dual port communication link 930
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consists of an ingress port 931, an egress port 932 together with their associated queues (not
shown). Each dual port communication link 930 employs a token transfer scheme (data
transfer protocol) means and associated control signal means to transfer tokens 3 between an
the egress port 932 of one particular switch fabric and the ingress port 931 of a separate
switch fabric. The input bus 912 and output bus 911 of a level-2 function block connect to
an egress port 932 and ingress port 931 respectively.

The token transfer scheme or protocol employed on an ingress port 931 or an egress port 932
of a dual port communication link 930 and on the input bus 912 and the output bus 911 is
selected from a plurality of token transfer means, the plurality of token transfer means

including synchronous token transfer means and asynchronous token transfer means.

Each queue, port and switch fabric has a unique address. The routing tag or destination
address field 2 of a received token 3 is compared to the address allocated to a particular
switch. Based on the results of the comparison, a token 3 will either be transferred to another
switch fabric at the same level (if both the column and row address do not match those of the
current switch fabric) or be transferred firstly to a switch fabric one level down and then be

transferred to a queue in the selected output port.

As the level-2 switch fabric 700B and level-3 switch fabric 700C are not connected directly
to any function blocks 500, each switch port within a switch fabric operates independently

and at a rate governed by the traffic flows between switch fabrics.

As described previously, a function block 500 can be a macro function block, which can
implement a plurality of arithmetic and logic functions. Figure 13 shows an example of a
macro function block. This type of function blocks allows many arithmetic and logical
operations to be performed in parallel. It also allows operations to be performed
simultaneously on data / tokens from different threads as described later. As shown in Figure
13, the inputs to the macro function block 500 come from a plurality of queue memories 800
(four are shown in this example). These separate queue memories are each connected to an
output of a switch fabric 703 allowing tokens from different threads to be received
simultaneously. Each thread queue is controlled and maintained by queue maintenance &

thread synchronisation logic 850. The queue maintenance & thread synchronisation logic
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850 includes logic means to implement a thread queue scheduler 855 that is used to read
data from the selected thread queues and load the data into input registers, illustrated as
540A-540Z (individually and collectively referred to as input registers 540). Data from a
selected thread queue is routed to the selected input register via one of a plurality of
multiplexers, illustrated as 530A-530Z (individually and collectively referred to as
multiplexers 530). It is therefore possible to read a plurality of thread queues and load
individual input registers 540 simultaneously. The queue maintenance & thread
synchronisation logic 850 can also be used to decode which group or groups of empty flags
have been triggered and output the associated address on bus 860 to address the function
control and routing memory 501. The function control and routing memory 501 contains
control instructions (each divided into several control fields) to control the local switch 550,
control the various arithmetic logic elements, shown as 560A-560Z (individually and
collectively referred to as arithmetic logic elements 560). The outputs from the function
control and routing memory 501 are routed to the local switch 550, arithmetic logic elements
560 and output token formatter 570 on bus 551. Each arithmetic logic element 560 can
perform arithmetic functions, logic functions or data storage functions, such as memory or a
register file. They can also be individual processing cores, such as Reduced Instruction Set
Computer (RISC) core. The function control and routing memory 501 also contains control
fields that form the destination address of the next block to transfer the resultant data /token
to. The merging of the resultant data with a destination address and transmitting it to the

switch fabric input is performed by the output token formatter 570.

The local switch allows any combination of input registers 540 and arithmetic logic
elements 560 to be interconnected. Outputs from the input registers and arithmetic logic
clements are input to the local switch inputs 553A-553Z (individually and collectively
referred to as local switch inputs 553). Outputs 552A-552Z (individually and collectively
referred to as local switch outputs 552) from the local switch 550 are connected to the

arithmetic logic element inputs and the output token formatter 570.

Each word output from the function control and routing memory 501 is used to implement a
set of parallel operations. These can relate to a single thread group or several thread groups.
For example, suppose the instruction at location N in the function control and routing

memory is selected when data tokens arrive for threads A, B and C and the operation to be



WO 2010/142987 PCT/GB2010/050966
-32-

performed is (A * B) + C. These operations can be performed in parallel in a single clock
cycle. Now suppose that queues A and B have available tokens and the thread queues C, D
and E simultaneously receive tokens via the connected switch fabric. Also assume that
thread queues A, B and C form one group and thread queues D and E form a separate
unrelated group and the second group operation is E - D. The instruction for the second
group is stored in location S of the function control and routing memory 501. These
operations could be scheduled one after the other. However, if these two thread groups use
separate and available arithmetic logic element 560 resources then both thread groups can be
performed simultaneously. This is achieved by having a third instruction at location V in the
function control and routing memory 501 that is selected when both thread groups are active
simultaneously. The instruction at location V is a combination of the individual instructions
at locations N and S. As there are two outputs from the local switch to the output token
formatter and then to the switch fabric there is no resource contention. The same
simultaneous operations can be achieved using a dual port or multi-port memory (not
shown), though only instructions N and S would need to be stored in the dual port memory

used in the function control and routing memory 501.

Data block transfers between memory based function blocks 500 is inefficient if no
operations are performed on the data during the data transfer. The transfer also wastes
valuable switch fabric interconnection resources. One way to avoid these inefficiencies
would be for a function block 500 to read one or a plurality of memories when the data is
required for processing in a single operation rather than separate independent operations. In
order to achieve this a function block (in this example referred to as a processing function
block) would need to know when one or more data blocks were available for access. When a
function block had completed its operations and stored the resulting data in memory it
would issue a Pending Data Block token 3P, which would be routed to the next processing
function block in the algorithm sequence. If more than one data block is required by the next
function block then in order to perform the subsequent join operation the function block will
need to receive and decode the corresponding number of Pending Data Block tokens via its
thread queues. Each Pending Data Block token 3P contains the start address and block
length of the data block to be accessed. Before the processing function block can process the
data in one or more memory function blocks it must first gain access to each memory
function block and reserve the path and switching resources in order to establish and

maintain an open connection between the memory function blocks and itself. This is
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achieved by the processing function block issuing one or more Data Block Request tokens
3R to each of the memory function blocks 500. On receiving a Data Block Request token
3R, the corresponding memory function block decodes the token (which contains the start
address and data block length) and issues a return Data Block Grant token 3S when it is free
to do so. The return Data Block Grant token 3S will reserve switching resources as it is
transferred back to the processing function block. Each received Data Block Grant token
will be stored in a thread queue. Reception and decoding of the required number Data Block
Grant tokens will trigger the processing function block to begin reading the data blocks
from the selected memory function blocks and begin processing the data. In order to save
time and reduce token transactions, data will start to be read from each memory and
effectively be appended to a Data Block Grant token. Another method would be for a
processing function block 500 to issue a Data Block Start token (not shown), which would
be received and decoded by each corresponding memory function block instructing it to
begin transferring data from the selected addresses. The interconnections between the
function blocks and switch fabrics and within the switch fabrics themselves, flow control
means are provided to take account of different path delays. The resultant data block can be
stored locally or in a memory function block that has also been granted access to the
processing function block. A memory function block 500 can be a multi-port memory
allowing simultancous access by more than one other function block. Once all data has been
read from the granted memory function blocks, the processing function block will issue
Data Block Release 3T token for each accessed memory function block. A Data Block
Release token frees up the previously reserved switch fabric resources as it is routed to the
destination memory function block. A memory function block receiving a Data Block
Release token 3T will deselect and free up the previously reserved memory resources for

use by other function blocks.

The shared resource multi-thread processor array 100 according to an example embodiment
of the present invention can be embedded as a core and form part of a more complex System
on Chip (SoC) device 3000. Alternatively, the shared resource multi-thread processor array
100 according to an example embodiment of the present invention can be used to form a
complete integrated circuit device. Though reference has been made to CMOS fabrication
processes for implementing the processor array 100 this does not in any way limit
fabrication of the example embodiments of the processor array 100 to this process. The

example embodiments of the processor array 100 can be fabricated in any available
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integrated circuit fabrication process, including emerging fabrication technologies, for

example those based on graphene transistors and or optical interconnect.

The memory means used to store program data in the function control & routing memories,
queue maintenance & thread synchronisation blocks, queue pointers, register files and
function block registers can be volatile memory means or non-volatile memory means. Non-
volatile memory means allows a device based on the processor array 100 to power-up in a

know state and will not require configuring before use.

In another example embodiment, one or a plurality of thread coordinators 600 and function
blocks 500 can be configured to implement test circuitry to check the operation of the
various thread coordinators 600, function blocks 500 and self-routing switch fabrics 700. If
any of the latter circuit elements are found to be operating incorrectly these fault conditions
can be reported to a thread coordinator 600 so they are not included in the implementation
of live operational circuits. The threads would therefore be rerouted to working function
blocks. The mapping of threads to alternative function blocks and thread coordinators is
performed using a dedicated compiler, which uses the test status data outlined above as part

of the mapping process.

In another example embodiment of the invention, the processor array 100 can be configured
to implement a neural network with a plurality of function blocks 500 being used to weight
and sum inputs from a number of threads. The interconnection of the switching fabrics 700
and function blocks 500 allowing various neural network architectures or types, such as
feed-forward and back propagation, to be implemented. As a function block’s resources 500
can be shared by different thread groups, a function block 500 can be act as a node for

multiple input groups.

In yet another example embodiment of the invention the bit width of the instantiated
function blocks 500 does not have to correspond to the bit width of the input bus 912 and
output bus 911 or that of the communication links 931, 932. Each instantiated function block
500 has a bit width J, where J is an integer greater than or equal to 1. For example, each
function block 500 could be operated as a bit serial function block having bit width of 1.

This would be advantageous as more and more SoCs are incorporating high-speed serial
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communication links to transfer data between on chip blocks and modules and alleviate the

need to convert between serial and parallel (and vice versa) formats.

The architecture of example embodiments of the present invention enables the processing of
independent threads at different rates. In a preferred embodiment of the current invention
asynchronous logic (also referred to as clockless logic or self-timed logic) can be employed
to implement the circuits used in the shared resource multi-thread processor array 100.
There are several advantages to using asynchronous logic, namely reduced power
consumption, as the logic will consume zero dynamic power when there is no logic activity,
and a low electromagnetic signature because of the diffuse nature of digital transitions
within the chip. This makes these devices an attractive option for use in portable or battery

operated applications.

There are several ways to implement asynchronous logic circuits, including bounded delay
asynchronous circuits, delay-insensitive circuits, Differential Cascode Voltage Switch Logic
(DCVSL) and Quasi Delay-Insensitive (QDI) asynchronous circuits. An asynchronous
shared resource multi-thread processor array 100 can be designed using any of these
asynchronous design techniques allowing the design advantages mentioned previously to be
utilized in an asynchronous shared resource multi-thread processor array core or device.
This allows thread segment reconfiguration and related algorithm processing to be

performed asynchronously.

It is becoming increasing difficult to implement and distribute global clocks for system on
chip (SoCs) devices. The fine geometries of CMOS fabrication processes enable designers
to include ever more functionality on a device. However, this causes problems since signals
on adjacent wires interact due to cross coupling and the wire delay increases for global
wires. The interconnect effects makes it problematic to transfer information over large
distances in one clock period and block synchronization becomes a serious issue, for

example completing “timing closure”.

In yet another example embodiment of the current invention the data transfer protocols on
the communication links between circuit blocks (function blocks, thread coordinators and

self-routing switch fabrics) is by using a Global Asynchronous Local Synchronous (GALS)
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asynchronous communication scheme. Each block consists of an asynchronous wrapper and

a synchronous module. The synchronous module handles all computations and the

asynchronous wrapper handles all communication with other GALS blocks.

FElectronic Design Automation (EDA) Tool Chain.

In order to perform any useful tasks the processor array 100 will need to be loaded with
program data. The program data must conform to a predefined format for it to be decoded
and used correctly by the processor array. Before the program data can be generated a
designer must first perform a number of tasks to first implement and test algorithms required
to implement the overall application program. Figure 17 illustrates a flow diagram of an
example process for creating a device 3000, such as a SoC, with the designs and concepts
discussed herein. The information representing the components and/or process operations
for the circuitry in processor array 100, may be contained in a cell library, soft instructions
in an electronic circuit design generator, within a machine-readable storage medium storing
this information. The EDA tool chain may store the data representing the processor array
logic circuitry on a machine-readable storage medium. The EDA tool chain may be
implemented in software as a set of data and instructions stored on a machine-readable
medium. A machine-readable storage medium may include any mechanism that provides
data in a form readable by a machine, such as a computer. A machine-readable medium may
include, but is not limited to: read only memory (ROM); random access memory (RAM);
magnetic disk storage media; optical storage media; flash memory devices; DVD's;
EPROMs; EEPROMs; FLASH, magnetic or optical cards; or any other type of media
suitable for storing eclectronic instructions. The instructions and operations may also be
executed in a distributed or networked computing system where the machine-readable media

is stored on and/ or executed by more than one computer.

A designer will first use an Integrated Design Environment (IDE) 1100, which is used to
enter, compile and debug high level code used to implement the desired algorithms and
tasks. An example of an Integrated Design Environment 1100 would be the Eclipse IDE
(Registered Trade Mark). The high level code will be a parallel processing language, such as
OpenMP, MPI (Registered Trade Marks) or a dedicated parallel processing language
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designed to work specifically with the processor array 100. Though the compiled code from
the IDE can run on a targeted processor it is not true parallel code or in the correct format
for processing by the processor array 100. The IDE is used for functional and algorithm

development.

The output from the IDE 1100 is input to the array compiler 1200. The array compiler
consists of several tools, namely the test bench generator 1210, the HDL generator 1220, the
synthesis script generator 1230 and the array application code generator 1240. At this stage
in the design process a designer will need to make a range of implementation decisions.
Firstly the designer will need to decide if the design is to be implemented in a custom SOC
device 3000 or one of several predefined devices each having its own architecture, interfaces
and available processing resources. In the latter case, the array compiler 1200 will read
formatted data files 1420 that describe the architecture, interfaces and available processing
resources for each predefined device 100. Other design parameters 1300, such as silicon
area, power dissipation, clocking, throughput, the number and type of threads to be used, are
also input to the array compiler 1220. This data will be used by the array compiler 1200 to
map the algorithms, functions and tasks of the compiled code from the IDE onto the
processing resources for the selected predefined device. By altering the design parameters
1300, the designer can explore architectural trade offs and so optimize the design. The array
application code generator 1240 is then used to generate the program code to run on the

processor array 100. This data will be formatted for storage in the program memory 103.

If the designer has chosen to implement the design in a custom SOC then the array compiler
1200 will read formatted data files 1410 that describe all the Intellectual Property (IP) cores
are used to form an shared-resource processor array 100. This data will be used by the array
compiler 1200 to map the algorithms, functions and tasks of the compiled code from the
IDE onto the Intellectual Property (IP) cores are used to form a shared-resource processor
array 100. At this stage there will be many design trade offs and the array compiler can be
used for architectural exploration and thread analysis (detect thread race conditions, etc)
allowing the designer to optimize the overall design. A selected design can be converted into
a Hardware Description Language (HDL) using the HDL generator 1220. The HDL
generator can output Verilog, SystemC and VHDL (Very High Speed Integrated Circuit

Hardware Description Language). At the same time, the designer can develop and generate
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test benches in order to verify functional operation and timing analysis. The test bench
generator 1210 is used to generate test benches in the same language format as the selected
HDL output format. The HDL output and test bench outputs can be input the to a HDL
simulator 1500,which is used to simulate the design in order to verify functional operation
and timing analysis. Any errors or bugs can be corrected and the process repeated until the

designer is happy with the results.

At this stage the design does not take into account the technology that the SoC will be
fabricated in. To convert the HDL to transistors a synthesis process 1600 needs to be
implemented. In order to “guide” the synthesis process so the synthesis tool 1600 will
implement the best solution synthesis scripts are generated 1230 by the array compiler 1200
and input into the synthesis tool 1600. In addition, the synthesis tool reads standard cell
library data 1700. The output from the synthesis tool 1600 are input into the place and route
tool 1800 which is used to layout the circuits for device fabrication. Timing data produced
by the place and route tool is now included in design files and the overall design is again
input into the HDL simulator for testing and verification. This process is repeated until
timing closure has been verified and completed. The final output from the place and route
tool, together with any test files are sent to the device manufacturer for device fabrication
2000. The device 3000 can be fabricated using custom design processes or any standard cell

processes, such as 0.35um, 0.25um, 0.13um, 90nm, 65nm, 45nm, or smaller technologies.

Although the invention has been described herein with reference to particular preferred
embodiments, it is to be understood that these embodiments are illustrative of the aspects of
the invention. As such, a person skilled in the art may make numerous modifications to the
illustrative embodiments described herein, such as token formats and function block / queue
memory / switch fabric architectures. Such modifications and other arrangements which
may be devised to implement the invention should not be deemed as departing from the

spirit and scope of the invention as described and claimed herein.

INDUSTRIAL APPLICABILITY
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By the present invention, a user can implement a highly parallel multi-threading processor
array that can be employed in a wide variety of applications. Automatic thread
synchronisation logic ensures simpler silicon and compilers. The use of heterogencous
function blocks that can be shared by different threads means that the logic circuit resources
are optimised for an application. Consequently, this reduces silicon real estate, testing time
and overall system costs. As a result, writing program code for parallel processing

applications would be casier as the program code is closer to the hardware implementation.
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CLAIMS

WHAT IS CLAIMED IS:

1. A processor array, wherein individual instructions or groups of instructions for one or a
plurality of threads are mapped to function blocks of corresponding functionality from an
array of addressable heterogeneous function blocks, the same instructions from different
threads are optimally mapped to the same function blocks so they share a function block’s
processing resources, each input port of a N input function block, where N is an integer
greater than or equal to 1, is connected directly to a buffered output port of a self-routing
switch fabric, each buffered output port being configured to implement one or a plurality of
independent thread queues, each thread queue having at least an empty flag output, where
one or more groups of Q empty flag outputs, where Q is an integer greater than or equal to 1
and can be a different value for each group, are logically combined by programmable circuit
means to form one or more groups of synchronised thread queues, tokens read
simultaneously by thread queue scheduler means from the selected group or groups of
synchronised thread queues is input directly on selected inputs of an N input function block,
resultant data from a function block is formatted into a token by at least having a routing tag
appended, the said token being automatically routed via the self-routing switch fabric to a
thread coordinator or the next function block in the thread sequence, each thread being

initiated, maintained and terminated by a thread coordinator issuing and decoding tokens.

2. A processor array of claim 1, wherein the said thread coordinators employ circuit means
to control and maintain a plurality of thread join operations, a thread join operation being
initiated by the reception and decoding of a first thread complete token containing a field T,
where T is an integer greater than or equal to 2, indicating the number of related thread
complete tokens that need to be received before a join operation can be synchronised and
issue a subsequent thread token, the said control circuit means maintaining a count of the

number of received thread complete tokens for a particular join operation.

3. A processor array of claim 1, wherein the said thread coordinators synchronise related
thread complete tokens for a join operation by employing thread queue means, empty flag
means and the programmable circuit means to group selected thread queues as described in

claim 1 for synchronising related threads in a function block.
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4. A processor array of claim 1, wherein the said heterogeneous function blocks include
function blocks for performing fixed point arithmetic operations, floating point arithmetic
operations, logical operations, shift operations, memory, interfaces, input operations, output
operations, bit-level manipulations, combinatorial, synchronous and asynchronous logic

operations.

5. A processor array of claim 1, wherein the said function blocks include macro function
blocks for performing a plurality of data block transforms and complex functions, the
plurality of data block transforms and complex functions consisting Fast Fourier Transforms
(FFTs), Inverse Fast Fourier Transforms, Discrete Cosine Transforms (DCTs), Discrete

Hilbert Transforms, linear algebra methods, cordic, correlation and convolution functions.

6. A processor array of claim 1, wherein the said function blocks are adapted to contain
control circuitry means to implement one or a plurality of thread control functions, the
plurality of thread control functions consisting of for loops, do-while loops, if-clse functions

and case statements.

7. A processor array of claim 1, wherein the said function block is adapted to consist a
plurality of arithmetic logic elements interconnected by a local switch fabric enabling one or
a plurality of parallel operations from the same thread to be processed in one or more clock

cycles.

8. A processor array of claim 1, wherein the said function block is adapted to consist a
plurality of arithmetic logic elements interconnected by a local switch fabric enabling one or
a plurality of parallel operations from separate independent threads to be processed in one or

more clock cycles.

9. A processor array of claim 1, wherein a plurality of function blocks are interconnected via

the same self-routing switch fabric to form a level-1 function block.

10. A processor array of claim 9, wherein a plurality of level-1 function blocks are

interconnected via a self-routing switch fabric to form a level-2 function block.
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11. A processor array of claim 10, wherein a plurality of level-2 function blocks are
interconnected via a plurality of self-routing switch fabrics to form one of a plurality of
array processing architectures, the plurality of array processing architectures consisting
fractal, hierarchical, hypercube, butterfly fat tree, Single Instruction Multiple Data (SIMD)
and Multiple Instruction Multiple Data (MIMD) architectures.

12. A processor array of claim 11, wherein the self-routing switch fabrics are either blocking

self-routing switch fabrics or non-blocking self-routing switch fabrics.

13. A processor array of claim 11, wherein the self-routing switch fabrics employ any
combination of output buffered thread queues, intermediate buffered thread queues and input

buffered thread queues.

14. A processor array of claim 13, wherein the thread queue implementation is selected from
a plurality of queuing implementations, the plurality of queuing implementations consisting
linked list queues and predefined memory allocation queues each queue having a dedicated

pair of read and write pointers.

15. A processor array of claim 14, wherein the thread queues and corresponding empty flag
means from P separate thread queues, where P is an integer, are grouped by programmable

circuit means.

16. A processor array of claim 15, wherein a plurality of thread queues are synchronised
using the corresponding thread queue empty flag means, the thread queues being
synchronised when all the said empty flag means indicate that at least one token is stored in

each said thread queue.

17. A processor array of claim 16, wherein the thread queue scheduling scheme is selected
from a plurality of thread queue scheduling schemes, the plurality of thread queue
scheduling schemes consisting priority based scheduling, round robin scheduling, weighted
round robin scheduling, proportional to thread queue level and first-come first-served

scheduling.
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18. A processor array of claim 17, wherein the thread queue scheduler can steal timeslots
allocated to other thread queues if a thread queue level reaches or exceeds a programmable

predefined level.

19. A processor array of claim 17, wherein the scheduling operations for a group of thread
queues associated with a particular thread can be suspended due to the acceptance of an
interrupt without affecting the scheduling operations for other thread queues implemented in

the same buffered output port.

20. A processor array of claim 19, wherein a suspended group of thread queues associated

with a particular thread can be cleared.

21. A processor array of claim 17, wherein a thread queue scheduler issues flow control
tokens when programmable predefined thread queue levels are exceeded, the said flow
control token being transferred to the originating thread coordinator, which subsequently
reduces the rate that it issues thread initiator tokens, the said rate reduction means being

programmable.

22. A processor array of claim 17, wherein a thread queue scheduler issues flow control
tokens when programmable predefined thread queue levels are exceeded, the said flow
control token being transferred to and decoded by function blocks in the same thread group,
cach function blocks in the same thread group subsequently reduces the rate that it issues

data tokens, the said rate reduction means being programmable.

23. A processor array of any preceding claim, wherein a received token can be repeatedly
multicast M times, where M is an integer greater than or equal to one, each multicast token

having at least a different routing tag, each said multicast token initiating a parallel thread.

24. A processor array of any previous claim, wherein the token transfer means between
function blocks and function block and thread coordinators is selected from a plurality of
token transfer means, the plurality of token transfer means consisting synchronous token
transfer means, asynchronous token transfer means and Global Asynchronous Local

Synchronous (GALS) token transfer means.
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25. A processor array of any preceding claim, wherein the implementation of the
communication links between self-routing switch fabric ports is selected from a plurality of
communication link protocols, the plurality of communication link protocols consisting
synchronous communication link protocols, asynchronous communication link protocols

and Global Asynchronous Local Synchronous (GALS) communication link protocols.

26. A processor array of any preceding claim, wherein the processor array can be configured

to implement a neural network.

27. A processor array of any preceding claim, wherein the processor array is an embedded

logic block used to form part of an integrated circuit.

28. A processor array of any preceding claim, wherein the processor array is an integrated

circuit.

29. A machine-readable medium containing data and instructions, which when executed by a
machine enable the machine to generate a representation of the processor array of any

preceding claim.

30. The machine-readable medium of claim 29 wherein the data and instructions form part
of a Electronic Design Automation (EDA) tool chain for use in a System-on-a Chip (SoC)
design process that is employed to generate a representation of the processor array of any

preceding claim.
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{
IF (A <B) CT1
{
C++: ST1
C || D;
}
ELSE IF (A == B) CT2
{
X =(C*D)+E; ST2
Y=(G*H)-J; ST3
}
ELSE CT3
{
M= (P-Q)&&R; ST4
N=(S*"T)+M, ST5
}
}

FIG. 2
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