WO 2005/055103 A1 |0 |00 000 0 000 O O O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
16 June 2005 (16.06.2005)

(10) International Publication Number

WO 2005/055103 A1l

GO6F 17/60

(51) International Patent Classification’:

(21) International Application Number:

(74) Agents: O’BRIEN, John, A. et al.; c/o John A. O'Brien
& Associates, Third Floor, Duncairn House, 14 Carysfort
Avenue, Blackrock, County Dublin (IE).

PCT/TE2004/000166

. - . (81) Designated States (unless otherwise indicated, for every
(22) International Filing Date: 3 December 2004 (03.12.2004) kind of national protection available): A, AG. AL, AM,
(25) Filing Language: English AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(26) Publication Language: English GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(30) Priority Data: KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
: MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
2003/0907 3 December 2003 (03.12.2003) IE PH. PL, PT, RO, RU. SC, SD. SE, SG, SK, SL, SY, TJ, TM.
(71) Applicant (for all designated States except US): CORECT TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

LIMITED [IE/IE]; 3/4 Merrion Place, Dublin 2 (IE). 7W.
(72) Inventors; and (84) Designated States (unless otherwise indicated, for every
(75) Inventors/Applicants (for US only): BOURKE, Sarah kind of regional protection available): ARIPO (BW, GH,
[TE/TE]; 1 Townhouse, Terenure Road East, Dublin 6 (IE). GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
KIERNAN, Paul [IE/IE]; 3 Gowran Hall, Ballygihen Av- 7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
enue, Sandycove, County Dublin (IE). European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
[Continued on next page]

(54) Title: CONTROL OF PROCESSES
(57) Abstract: A server (1) automatically
10 Adjacency Matrix 12 Text Records

Wb

interprets a flow diagram process description to
generate an active sequence program (10). The
program (10) has analysis (13), feedback (14),
transform (15), and upload (16) code which are

A 11// common in core functionality across multiple
N] programs (10). It is specific to a particular
Contro A‘éfg:‘s 14 process by virtue of an adjacency matrix (11)
13—) of step links and text records (12). The program
(10) is downloaded to a mobile device (3).
Feedback The device (3) executes the program (10) to
Download Code generate a current step instruction, to receive
Active ﬂ Transform user feedback and automatically generate a next
Sequence Code step. A realtime time stamp is applied to each
Program 10 user feedback and it is automatically uploaded

Upload Log to the server (1).

2 15 Code

L

Upload Log
Verifications 20

’:] Instruction 1

D Instruction 2

Decision 1

I

[

oooe

oooo
oooo

/ :
AN

Decision n

Instruction m.

S

16

WO 2005/055103 A1 I} 110 080000 0000 000 00

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, For two-letter codes and other abbreviations, refer to the "Guid-
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ance Notes on Codes and Abbreviations" appearing at the begin-
GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gagzette.

Published:
— with international search report

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

-1-

“Control of Processes”

INTRODUCTION

Field of the Invention

The invention relates to control of processes carried out by humans. Such processes
include, for example, procedures in spacecraft or aircraft, or alternatively more

mundane but important procedures for cleaning/hygiene in restaurants or hotels.

Prior Art Discussion

Within industry today, engineers are required to perform operations which require
complex decisions to be undertaken. For example, for maintenance of equipment
engineers must try to analyse and determine the fault and then perform the correct
repair process. Usually, the engineer performing the operation is not the expert in a
particular field and requires remote support and assistance tools in performing the

required tasks.

It is common to use task graphs which are a pictorial representation of the instructions
and decisions that a person must follow. The engineer would manually “walk
through” the graph following the instructional steps. The graphs contain decision steps
in which a question is asked and depending on the response, a different pathway in the
task graph is followed. The engineer would “walk through” the task graph until a final
instruction is reached. Fig. A shows a simple task graph that a person would use to
perform a process task. The different shapes within the task graph define semantic
meanings. For example, a rectangle represents an instruction which must be
performed and a diamond shape represents a decision step which can have multiple
answers. The different outcomes in a decision instruction are defined by the answers
on the lines coming out of the decision step and these define the appropriate pathway

to follow.

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

-2

The use of task graphs for performing complex processes has several disadvantages
for an end user. A complex process can have a very large task chart associated with it
which if printed can run to multiple pages. Also manual cross referencing of
appropriate instruction tasks on a printed task graph can be very cumbersome.
Another problem is that a user has to view the complete process with all possible
decisions. Also, viewing an electronic version of a task chart on portable computer

equipment is awkward and slow.

The invention addresses this problem.

SUMMARY OF THE INVENTION

According to the invention, there is provided a method for process control, the method

comprising:

an interpretation function receiving a description of a process and interpreting
the process description to generate an active sequence program, said active
sequence program comprising stored process flow data and analysis program

code; and

a run-time processor executing the active sequence program code to analyse
said data and generate a sequence of instructions to advance the process to

completion in which a current instruction is automatically indicated.
In one embodiment, the process description is a flow chart.
In another embodiment, the process description is converted to mark-up language
format, and the mark-up language is processed to provide the active sequence

program.

In a further embodiment, the interpretation function processes the mark-up language to

provide a document object model (DOM) representation of the process description.

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

-3.

In one embodiment, the interpretation function processes each node of the document
object model to determine if it relates to an instruction step, to a decision step or to a

link between steps.

In another embodiment, the interpretation function generates process flow data in the

form of an adjacency matrix defining links between the steps.

In a further embodiment, the interpretation function extracts text from each node
representing an instruction step or a decision step and saves the text strings in an

addressable text record set.

In one embodiment, the interpretation function saves the adjacency matrix, the text
record set and pre-configured blocks of analysis, feedback, and transform program

code to provide the active sequence program.

In another embodiment, the text records are an array of HTML strings.

In a further embodiment, the strings are labelled according to a number for the step.

In one embodiment, the interpretation function generates the active sequence program
in a format suitable for download to the processor via a wide area network, and the
method comprises the further step of downloading it to a remote processor via the

wide area network.

In another embodiment, the interpretation function operates in real time in response to
a request from a remote client device and it generates the active sequence program to

be suitable to execute on the processor of the requesting client device.
In a further embodiment, the active sequence program is wrapped in a HTML page
having a body element with a reference to an initialisation script for initialisation of

the program on the processor.

In one embodiment, the processor executes the active sequence program to:

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

display text for a current step;

display a feedback prompt for a user to either indicate performance of the step

if it is an instruction step, or an answer if it is a decision step; and

receive feedback and automatically determine a next step and display text for

the next step.

In another embodiment, the processor automatically time stamps each feedback input

from a user.

In a further embodiment, the processor automatically uploads the user feedback and

time stamp to a remote server.

In one embodiment, the server is the same server as that which executes the

interpretation function.

In another embodiment, the server maintains a monitoring log of performance of

process steps with real-time time stamps.

In a further embodiment, the processor can be switched to a free mode in which steps

can be skipped for training purposes.

In one embodiment, a transform code block of the active sequence program receives a
batch of analysed data from an analysis code block, and determines a current step

according to inputs from a feedback code block.

In another embodiment, the transform code uses style sheets to change display

characteristics.

In a further embodiment, the processor dynamically determines according to the

process flow data the maximum number of instructions which can be displayed.

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

In one embodiment, if the processor receives an interrupt before it records
performance of a final step of the process, it automatically saves a process status data

set and uploads said data set to a server.

In another embodiment, the process status data set is passed to a method within a
hidden applet, and the hidden applet opens a URL connection and encodes and

transmits the status data to a servlet on the server.

In a further embodiment, the processor automatically checks with a server for
existence of a relevant process status set when it receives a request to activate a

process.

In another aspect of the invention, there is provided a server whenever programmed to

generate an active sequence program in a method as described above.
In a further aspect of the invention, there is provided a computer program product

comprising software code for performing the steps of a method as described above

when executing on a digital processor.

DETAILED DESCRIPTION OF THE INVENTION

Brief Description of the Drawings

The invention will be more clearly understood from the following description of some
embodiments thereof, given by way of example only with reference to the

accompanying drawings in which:~

Fig. 1 is a diagram illustrating a control system of the invention;

Fig. 2 is a flow diagram illustrating both initialisation and run-time operations

of the system; and

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

-6 -

Fig. 3 is a screen display for an active sequence generated by the system.

Description of the Embodiments

Referring to Fig. 1 a server 1 generates an active sequence program 10 from a
received flow diagram, and downloads it via the internet 2 to a mobile device 3 for
execution. As steps are performed at the user end, the device 3 automatically uploads
a log verification to the server 1. The server 1 therefore performs real time process

monitoring.

The active sequence program 10 comprises an adjacency matrix 11, a text record set
12, analysis code 13, feedback code 14, transform code 15, and update log code 16.
Briefly, the program 10 is generated by the server 1 and is downloaded to the mobile
device 3 of a person who is to carry out a process. The program 10 executes on the
mobile device 3 and generates an active sequence 20 of instruction and decision steps.
These are described in more detail below. The user may use any suitable computing
device. As steps are performed the user indicates this by feedback on the device 3,
which automatically transmits an upload to the server 1 on a step-by-step basis for

saving in a process control database 17.

Referring to Fig. 2, in an initialisation mode the server 1 executes a process involving
editing of a flow diagram in any suitable flow chart application such as Microsoft
Visio™ using an editor 25. An interpretation function 27 executes to generate the
program 10. Alternatively, the initialisation mode may involve editing a word
processor document and the interpretation function 27 processing it to generate the
program 10. The program 10 is then stored in a store 28 for download in response to

an uploaded request from a mobile device.

The editor 25 defines the process by connecting graphical elements with cbnnectors
which route through basic shapes. The connectors are used to define the flow through
a process and the pathways that are available within a process. The connectors can
either be pathways that must be followed or they can be conditional based on

information supplied with the connector such as Yes/No, True/False or answers to

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

.7-

multiple choice questions. Conditional connectors are connected to a decision step
within a process flow diagram. On completion, there is a graphical flow chart

representation of a process as shown in Fig. A.

Referring again to Fig. 1, the program 10 comprises four main blocks of code, namely
the analysis code 13, the feedback code 14, the transform code 15, and the upload log
code 16. These are essentially common across multiple programs 10. However the
interpretation function 27 generates from the received flow diagram the adjacency
matrix 11, defining links between the instruction and decision steps of the received
flow chart. It also extracts text from the instructions and decisions of the received flow
chart to provide the text records 12. Thus, each active sequence program 10 comprises
common code blocks 13, 14, 15, and 16, and a specific adjacency matrix 11 and text

record set 12.

Referring to Fig. 3 the active sequence corresponding to the edited flow chart of Fig.
A is represented as a sequence of instructions. Each instruction has a check box for
user feedback. Each decision step of the flow chart is represented by a question and a
drop-down list of options. The underlying code 13, 14, and 15 generates the drop-
down list options, and acts upon selection of an option to activate selected ones of the
remaining steps. Activation of a subsequent step is achieved by simply activating its

check box.

Thus, the interpretation function 27 converts passive flow diagram elements into
active check boxes, text, drop-down lists and underlying code to activate subsequent
steps. The complexity of the flow branching is transparent to the user, who is only
required to respond to a current step. The user in run-time contributes dynamically to

the selection of current step, although he or she does not appreciate this.

Referring again to Fig. 2, in run-time, on the mobile device 3 the sequence is
outputted in step 35, and feedback is received in step 36. This feedback (checking of
boxes and choice of drop-down list options) both allows the system to dynamically
modify the down-stream steps, and to record and upload process status. This involves

time-stamping the steps as they are performed.

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

Step 37 involves verifying the feedback and the code 16 uploading it to the server 1.
Step 18 involves modifying the downstream steps. As indicated by steps 39 and 40,
the program 10 in runtime verifies, records, and modifies repeatedly until the process
is complete. When complete, the program 10 terminates, and the server 1 has recorded

a log of all process steps with real-time time stamps.

In more detail, the function 27 is activated by being passed a pointer to an XML
document for a flow chart. It then parses the XML document to generate a document
object model (DOM) representation of the flow diagram. The DOM has a hierarchy of
nodes, each of which is tagged. The function 27 then traverses the nodes and,
according to the tags of the nodes allocates each node to an instruction step, a decision
step, or a link. It uses these allocations to generate the adjacency matrix 11, and for
the nodes corresponding to decision or instruction steps it saves the text to the text
record set 12. The function 27 couples the matrix 11 and the text records 12 with the
program code blocks 13, 14, 15, and 16 to provide the complete active sequence

program 10, in executable Java Script format.

The two dimensional adjacency matrix 11 represents connectivity information
between each instruction within the task chart. The adjacency matrix (A) is defined as
follows: Let G be a graph with "n" vertices that are assumed to be ordered from v; to

Vp. The n x n matrix A, in which

a;= 1 if there exists a path from v;to v

a;=0 otherwise

The records 12 are an array of strings containing the HTML which represents each
instruction within the procedure. Each instruction is represented by a HTML
<TABLE> where the name attribute of a table is a unique value (i) which represents
that it is the i™ instruction in the XML document. The HTML represents decision steps
graphically with a drop-down list component. The list contains the text associated
with each line coming out of the decision step. Each piece of HTML also contains a

check box element which is used to verify the step.

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

The program 10 also comprises String Variables initialised to general metadata
information about the instruction chart such as process title, process purpose and
author. The analysis code 13 interprets the adjacency matrix 11 and the transform
code 15 displays the appropriate instructions in a sequential manner within a HTML
document. The transform code 15 receives inputs from the feedback code 14 to
maintain the ‘current’ step of the process. Essentially, the analysis code 13 generates
process data in a batch from analysis of the matrix 11 and text records 12, and passes
the batch to the transform code 15. The transform code 13 includes functions to store
the pathway within the task graph chosen by the user during execution. The code 16
logs execution information back to the web server and functions to interpret and
restore the state of an executing procedure to the state a procedure was previously left

at.

The generated program 10 is wrapped within a HTML page which has an empty
<BODY> element. This BODY element has a reference to an initialisation JavaScript
method via an onLoad method, for interpretation and display of the task when the

page is completely loaded on the client’s browser.

The created HTML page is streamed back from the web server to the web browser

(step 28) via the transformation Serviet.

During the transformation process the Servlet will identify if there are logical
inconsistencies within the procedure. For example, if a decision step doesn’t have
unique answers on line out connectors or if instructions exist that cannot be reached
via a unique path. The user is informed of this during the transformation process, and
is a useful tool for validation of the correctness within the definition of the underlying

task chart.

Active sequence display and execution (Steps 35-40)

A user who wishes to execute a task chart launches their web browser and accesses

the server 1. The user is presented with a login screen where they must enter a valid

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

-10-

username/password combination to access the system. The username is then used for

logging purposes during task execution.

The server 1 transmits in real time the generated JavaScript program 10 to end user
devices where it is executed (steps 35-40) by a standard web browser or other standard

JavaScript interpreter application.

The user device displays the task instructions as a series of sequential instructions
within a standard web browser window (Fig. 3). The device 3 displays only the path
within the task chart that the user is currently within, based on earlier decisions that
they have made while executing the task. It displays as many instruction tasks in
advance as are logically possible up to a future decision step. The user is allowed to
stop and restart a procedure in the same state during a subsequent session. The device
3 in real time logs and transmits back to the server 1 all decisions made and the

date/time of all instructions executed by the user.

When the page is interpreted by the device 3, metadata information on the process is
automatically interpreted and displayed by JavaScript functions of the transform code
15. The look of metadata information is described by style sheets which are referenced

by the HTML page.

After displaying the task metadata, the server 1 is queried to see if state information
for this procedure exists. If state information for the procedure exists this information
is loaded and is used to restart the procedures and outline in the State storage section.
Otherwise, the adjacency matrix 11 is analysed by the generated JavaScript routines
13 to determine the initial root instruction of the procedure. This step is marked as the
current instruction within the executing procedure. The adjacency matrix 11 is then
processed to determine a unique pathway up to a decision step. At a decision step no

further steps can be added to the procedure without user intervention.

The list of instruction steps that can be displayed is then transformed into a sequence
of HTML code fragments, each of which represents an instruction. The HTML code is
then dynamically inserted into the HTML DOM so that they are displayed in sequence

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

-11 -

on the HTML page to the user. The look of an instruction is defined by reference to an

external style sheet file.

The current instruction is highlighted with a different background colour. A current
instruction is the only instruction that the user can verify. To verify an instruction the
user can either click within the check box that is contained in each instruction or use a

predefined short cut to verify the current instruction.

When an instruction is verified (step 36), the current step is advanced to the next step
as determined by the unique path identified through the analysis of the adjacency
matrix 11. This new current step is then highlighted.

When a decision instruction is reached within an executing procedure and is the
current step, no further instructions are displayed in the web browser. The user must
choose the appropriate pathway to follow in the task chart for more steps to be
displayed. This is done by the user choosing an entry within a drop down list which is
displayed within an instruction representing a decision step. Each entry in the drop
down list is the value of text associated with a line connector coming out of the
decision instruction within the task chart. Once the user selects an entry and verifies
the decision step, the JavaScript code 13 can determine which pathway to follow
within the adjacency matrix 11. This pathway is then analysed to determine the
maximum number of instructions that can be displayed until the next decision step is
reached. These next block of steps are then displayed underneath the steps already
displayed.

With this approach, the instructions are displayed in the sequential manner for
execution. At no stage are instructions removed from the list. If the task chart loops
back to a previous step, the same steps are redisplayed further down the checklist

display.

At no stage during the execution process does the device 3 require communication
with the server 1 to retrieve further information about the process. Full information

about the process is contained with the HTML page.

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

-12-

The user can continue executing the process until an instruction is displayed which
has no line connectors coming out of it within the task chart description. This

represents a final instruction within the task.

Forced and Free Sequence Execution

The program 10 operates by default in a forced sequence execution. A single
instruction is defined as the current instruction. This is the only instruction that the
user can execute. However, there is also a “free” mode in which steps can be skipped.

This mode is mainly for training purposes.

The mode is selected using a toggle button displayed within a separate page within a
frameset. When executing a procedure in ‘forced’ sequence mode, all previous
instructions in the sequential display must be verified before the current instruction
can be verified. When executing a procedure in ‘free’ sequence mode, a user can
verify a current instruction without all previous instructions being verified. The user
can change the current instruction in ‘free’ sequence mode by clicking on any of the
procedure steps. In ‘forced’ sequence mode the user cannot change the current step
interactively. Within both modes if the user verifies a decision instruction, the next

series of appropriate instructions are displayed.

Loggin

The upload log code 16 provides for the logging of all instructions verified by the user
in real time by the server 1. Upon initialisation of the HTML page by the web client a
reference to a custom applet (the code 16), developed for this process, is inserted into
the HTML page. This applet is hidden from the user. The applet contains methods
which:

1. Can be called from JavaScript functions within the page

2. Can call JavaScript functions within the page.

The custom applet has two main categories of features.

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

-13 -

1. Methods for logging of user instruction verification

2. Methods for storage/retrieving of procedure state information.

Each time the user verifies a step, a JavaScript method within the HTML page is
called. This JavaScript method gathers information such as the username, date and
time of verification, unique instruction step identifier and passes this information via a
call to a method within the hidden applet. The applet takes this information, opens a
connection to the web server and calls a URL encoding this information as parameters
to the URL. The called URL invokes a Servlet which decodes the passed information
and stores the log information within a database on the web server. This mechanism
provides for real time transmission of task execution information for storage on a

centralised server.

State storage and recovery

The program 10 provides the ability to stop and restart the execution of a process by a
user at a later stage. If a user exits a process before reaching a final instruction,
JavaScript methods are called on exiting which creates the following information:

1. An array of all identifiers of instructions that have been displayed to the user.

2. Whether the instruction was verified or not.

3. Identifier of current instruction.

4. Username.

5. Procedure metadata

This information is then passed to a method within a hidden applet. The applet opens a
URL connection where the information is encoded and passed to a Servlet executing
on the web server. The Servlet decodes the information and stores this information
within an XML file on the web server. The file is named based on the procedure

metadata and user name.

When a process is initialised for display, the JavaScript methods call the hidden applet
to determine if a state file for this procedure and user exist on the server. The applet

connects via a URL to a Servlet which determines if a state file exists. If a state file

WO 2005/055103 PCT/IE2004/000166

10

-14 -

exists it is interpreted and returns the state information to the applet. The applet in turn
sends the information back to the calling JavaScript method. JavaScript methods are
then used to extract the information and recreate the instructions within the HTML
document alone with the verification state of each instruction. Finally the appropriate
instruction within the procedure is made the current instruction. The process is then

rendered from this point.

It will be appreciated that the invention provides for controlled performance of
processes at remote sites in a simple and convenient manner, together with real time

monitoring on a step-by-step basis.

The invention is not limited to the embodiments described but may be varied in

construction and detail.

WO 2005/055103 PCT/IE2004/000166

Claims
1.
5
10
2.
15
3.
20
4.
25 5.
6.
30

-15-

A method for process control, the method comprising:

an interpretation function (27) receiving a description of a process and
interpreting the process description to generate an active sequence program,
said active sequence program (10) comprising stored process flow data (11,

12) and analysis program code (13-16); and

a run-time processor (3) executing the active sequence program code (13-16)
to analyse said data and generate a sequence of instructions to advance the

process to completion in which a current instruction is automatically indicated.

A method as claimed in claim 1, wherein the process description is a flow

chart.

A method as claimed in claims 1 or 2, wherein the process description is
converted to mark-up language format, and the mark-up language is processed

to provide the active sequence program.

A method as claimed in claim 3, wherein the interpretation function (27)
processes the mark-up language to provide a document object model (DOM)

representation of the process description.

A method as claimed in claim 4, wherein the interpretation function (27)
processes each node of the document object model to determine if it relates to

an instruction step, to a decision step or to a link between steps.

A method as claimed in claim 5, wherein the interpretation function (27)
generates process flow data in the form of an adjacency matrix (11) defining

links between the steps.

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

10.

11.

12.

13.

14.

-16 -

A method as claimed in claim 6, wherein the interpretation function (27)
extracts text from each node representing an instruction step or a decision step

and saves the text strings in an addressable text record set (12).

A method as claimed in claim 7, wherein the interpretation function (27) saves
the adjacency matrix (11), the text record set (12) and pre-configured blocks of
analysis (13), feedback (14), and transform (15) program code to provide the

active sequence program.

A method as claimed in claims 7 or §, wherein the text records (12) are an

array of HTML strings.

A method as claimed in claim 9, wherein the strings are labelled according to a

number for the step.

A method as claimed in any preceding claim, wherein the interpretation
function (27) generates the active sequence program (10) in a format suitable
for download to the processor via a wide area network (2), and the method
comprises the further step of downloading it to a remote processor (3) via the

wide area network.

A method as claimed in claim 11, wherein the interpretation function (27)
operates in real time in response to a request from a remote client device (3)
and it generates the active sequence program (10) to be suitable to execute on

the processor of the requesting client device (3).

A method as claimed in any preceding claim, wherein the active sequence
program (10) is wrapped in a HTML page having a body element with a
reference to an initialisation script for initialisation of the program on the

Processor.

A method as claimed in any preceding claim, wherein the processor executes

the active sequence program (10) to:

WO 2005/055103 PCT/IE2004/000166

10

15

20

25

30

15.

16.

17.

18.

19.

20.

21.

-17 -

display (35) text for a current step;

display (35) a feedback prompt for a user to either indicate performance of the

step if it is an instruction step, or an answer if it is a decision step; and

receive feedback (36) and automatically determine a next step and display text

for the next step.

A method as claimed in claim 14, wherein the processor automatically time

stamps (37) each feedback input from a user.

A method as claimed in claim 15, wherein the processor automatically uploads

(37) the user feedback and time stamp to a remote server (1).

A method as claimed in claim 16, wherein the server is the same server (1) as

that which executes the interpretation function (27).

A method as claimed in claim 17, wherein the server maintains a monitoring

log (17) of performance of process steps with real-time time stamps.

A method as claimed in any preceding claim, wherein the processor can be

switched to a free mode in which steps can be skipped for training purposes.

A method as claimed in any of claims 14 to 19, wherein a transform (15) code
block of the active sequence program (10) receives a batch of analysed data
from an analysis code block (13), and determines a current step according to

inputs from a feedback code block (14).

A method as claimed in claim 20, wherein the transform code (15) uses style

sheets to change display characteristics.

WO 2005/055103 PCT/IE2004/000166

10

15

20

22.

23.

24.

25.

26.

27.

-18 -

A method as claimed in any preceding claim, wherein the processor
dynamically determines according to the process flow data the maximum

number of instructions which can be displayed.

A method as claimed in any preceding claim, wherein if the processor receives
an interrupt before it records performance of a final step of the process, it

automatically saves process status data set and uploads said data set to a server.

A method as claimed in claim 23, wherein the process status data set is passed
to a method within a hidden applet, and the hidden applet opens a URL

connection and encodes and transmits the status data to a servlet on the server.

A method as claimed in claims 23 or 24, wherein the processor automatically
checks with a server for existence of a relevant process status set when it

receives a request to activate a process.

A server whenever programmed to generate an active sequence program in a

method as claimed in any preceding claim.

A computer program product comprising software code for performing the
steps of a method of any preceding claim when executing on a digital

Processor.

WO 2005/055103

1/4

Sanitise
Temperature
probe before use
using disinfectant
wipes

Put on Gloves

Chilled

h 4

Place probe
between two packs
of chickens/turkeys/

fish & leave for 2
minutes to settle

Is it a chilled
or frozen

delivery
?

PCT/IE2004/000166

Frozen
\ 4

The temperature of
frozen foods should
be 18c or colder. Place
probe between 2 items
in the box and leave
for 2 minutes

l

Take temperature
reading

Take temperature
reading

Fig. A Prior Art

WO 2005/055103

17

Process
Control DB

10

Download
Active
Sequence

Program 10

2

L

PCT/IE2004/000166
2/4
Adjacency Matrix 12 Text Records
11 //
> Analysis X 14
Code
13—
Feedback
A Code
Transform
Code <
Upload Log
15 Code

N

Upload Log 16
Verifications 20

)

oooe
oooo
ooono

<J

Instruction 1

[]
D Instruction 2

Decision 1

I

Decision n

Instruction m

Fig. 1

WO 2005/055103 PCT/IE2004/000166

3/4

Flow Diagram 25

Editor J

Interpretation
L Function] Program Store 10

Initialization
Run-time i

Output
(“) Active Sequence J
P
r» Receive Feedback \)

oy

Verify, Record & J
Upload Log Verification

i 38

Modify Sequence \)

Another 39

Step
?

yes

40

END \) Fig. 2

WO 2005/055103

50

4/4

Title — Delivery Acceptance Procedure

Product Termperature should be checked on every
delivery prior to acceptance.

Sanitise Temperature probe before use using
disinfectant wipes.

Put on Gloves

Is it a chilled or frozen delivery?

] Place probe between two packs of
chickens/turkeys/fish and leave for 2 minutes to
settle.

[[] Take temperature reading,.

[Is it between 0 degrees centigrade and +5 degrees
centigrade (+/- 1¢)?

[Yes[]

Fig. 3

PCT/IE2004/000166

INTERNATIONAL SEARCH REPORT InterZional Application No
PCT71E2004/000166

A. CLASSIFICATION OF SUBJECT MATTER
TP R08F 17/60

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, IBM-TDB, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category © | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 4 831 580 A (YAMADA ET AL) 1-27
16 May 1989 (1989-05-16)

* Abstract *claims 1-4
column 2, 1ine 3 — Tine 59
X US 2002/165876 Al (ENGHAUSER PETER ET AL) 1-27
7 November 2002 (2002-11-07)

* Abstract *

paragraph ‘0001! - paragraph ‘0013!
claims 1-7

X WO 03/093988 Al (CEDAR POINT 1-27
COMMUNICATIONS INC; DEVINE, GEOFFREY;
QUIGLEY, PATRICK; WE)

13 November 2003 (2003-11-13)
abstract

claims 1-28

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents : . . N -
"T* later document published after the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underiying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

o " L "Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

*O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another

*P' document published prior to the international filing date but
later than the priority date claimed

inthe art.
*&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the intemational search report
25 January 2005 02/02/2005
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, TX. 31 651 epo nl,
Fax: (+31-70) 340-3016 Daman, M

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT S ———
PCT71E2004/000166

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Gitation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5 386 508 A (ITONORI ET AL) 1-27
31 January 1995 (1995-01-31)

* Abstract *

column 1, Tine 45 - column 2, line 29
A ' US 5 640 501 A (TURPIN ET AL) 1,26,27
17 June 1997 (1997-06-17)

* Abstract *

figures 1-34

column 1, Tine 66 - column 4, line 15

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

‘formation on patent family members

Inte}'nal Application No

PCT/1E2004/000166
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 4831580 A 16-05-1989 JP 62282301 A 08-12-1987

US 2002165876 Al 07-11-2002 DE 10110208 Al 19-09-2002
DE 50200344 D1 19-05-2004
EP 1237118 Al 04-09-2002

WO 03093988 Al 13-11-2003 WO 03094453 Al 13-11-2003
WO 03094459 Al 13-11-2003
US 2004008724 Al 15-01-2004
US 2003217190 Al 20-11-2003
US 2004008718 Al 15-01-2004
WO 2004051497 Al 17-06-2004

US 5386508 A 31-01-1995 JP 2035299 C 28-03-1996
JP 4104324 A 06-04-1992
JP 7072861 B 02-08-1995

US 5640501 A 17-06-1997 AT 158427 T 15-10-1997
CA 2054026 Al 01-05-1992
DE 69127672 D1 23-10-1997
DE 69127672 T2 07-05-1998
EP 0483664 A2 06-05-1992
us 5742836 A 21-04-1998
us 5745712 A 28-04-1998
us 5608898 A 04-03-1997

Form PCT/ISA/210 {patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

