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(57) Abstract: There is a provided a data processing system comprising: a processor operable in a plurality of modes and either a

& secure domain or a non-secure domain including: at least one secure mode being a mode in said domain; at least one non-secure

020

mode being a mode in said non-secure domain; and a monitor mode, wherein when said processor is executing a program in a secure
mode said program has access to secure data which in not accessible when said processor is operating in a non-secure mode; and
switching between said secure mode and said non-secure mode takes place via said monitor mode, said processor being operable at

least partially in said monitor mode to execute a monitor program to manage switching between said secure mode and said non-secure

mode.
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PROCESSOR SWITCHING BETWEEN SECURE AND NON-SECURE MODES

This invention relates to a data processing system. More particularly, this
invention relates to the control of switching between secure and non-secure

processing modes in a data processing system.

A data processing apparatus will typically include a processor for running
applications loaded onto the data processing apparatus. The processor will operate under
the control of an operating system. The data required to run any particular application
will typically be stored within a memory of the data processing apparatus. It will be
appreciated that the data may consist of the instructions contained within the application
and/or the actual data values used during the execution of those instructions on the

Processor.

There arise many instances where the data used by at least one of the
applications is sensitive data that should not be accessible by other applications that can
be run on the processor. An example would be where the data processing apparatus is a
smart card, and one of the applications is a security application which uses sensitive data,
such as for example secure keys, to perform validation, authentication, decryptioh and
the like. It is clearly important in such situations to ensure that such sensitive data is
kept secure so that it cannot be accessed by other applications that may be loaded onto
the data processing apparatus, for example hacking applications that have been loaded

onto the data processing apparatus with the purpose of seeking to access that secure data.

In known systems, it has typically been the job of the operating system developer
to ensure that the operating system provides sufficient security to ensure that the secure
data of one application cannot be accessed by other applications running under the
control of the operating system. However, as systems become more complex, the

general trend is for operating systems to become larger and more complex, and in such
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situations it becomes increasingly difficult to ensure sufficient security within the

operating system itself.

Examples of systems seeking to provide secure storage of sensitive data and to
provide protection against malicious program code are those described in United States
Patent Application US 2002/0007456 A1 and United States Patents US 6,282,657 B and
US 6,292,874 B.

Accordingly, it will be desirable to provide an improved technique for seeking to

retain the security of such secure data contained within the memory of the data

processing apparatus.

Viewed from one aspect the present invention provides apparatus for
processing data, said apparatus comprising:

a processor operable in a plurality of modes and a plurality of domains, said
plurality of domains comprising a secure domain and a non-secure domain, said
plurality of modes including:

at least one secure mode being a mode in said secure domain;

at least one non-secure mode being a mode in said non-secure domain;
and

a monitor mode, wherein

when said processor is executing a program in a secure mode said program has
access to secure data which is not accessible when said processor is operating in a
non-secure mode; and

switching between said secure mode and said non-secure mode takes place via
said monitor mode, said processor being operable at least partially in said monitor
mode to execute a monitor program to manage switching between said secure mode

and said non-secure mode.

The invention recognises that a critical aspect in controlling the security of a

system which is operable in both secure and non-secure modes is how switching
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between those secure and non-secure modes is controlled. In particular, the more
flexibility that is given in the way that such switching is performed, then the greater
the number of potential vulnerabilities in the security. The invention addresses this by
providing a system in which all switching between any secure mode and any non-
secure mode must take place via a monitor mode. The switch may be entirely
performed in the monitor mode or alternatively may use switches from monitor mode
to some secure modes (e.g. secure privileged modes) to perform some tasks associated
with the switch, such as context save/restore. Thus, providing the security of the
monitor mode or the secure kernal is not directly or indirectly breached, it will not be
possible to make an unauthorised switch between a non-secure mode and a secure
mode. This structure also allows the monitor mode to be made relatively simple since
its responsibilities may be restricted to those required to support switching between
the secure domain and the non-secure domain. Generally speaking, the simpler the
monitor mode is, the less vulnerable it is likgly to be to security breaches. The
monitor program (kernal) at least partially operates in the monitor mode to control the
switch between secure and non-secure domains — some parts of the monitor kernal

may execute in secure privileged modes instead of the monitor mode.

An example of an operation provided by the monitor mode as part of its
management of the switching between the secure domain and the non-secure domain
is that the monitor program (which runs at least partially in the monitor mode, but
may require switches to secure privileged modes to perform context save/restore or
other operations) is operable to flush at least a portion of a register bank of the
processor which is shared between the secure domain and the non-secure domain.
This prevents any data present in the registers in the secure domain being left within
those registers when the switch to the non-secure domain is made and thus

inadvertently allowing that data to become accessible in the non-secure domain.

As an alternative possible embodiment separate non-secure and secure register
banks may be provided. This approach has some advantages in terms of reducing the

amount of time needed to switch between the secure domain and the non-secure
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domain, but has associated with it an additional hardware requirement penalty as well

as making it less convenient to pass data from the non-secure domain to the secure

domain as may be required.

A switch between the secure domain and the non-secure domain may be
initiated in a variety of different ways, but these will desirably share the feature that
they are all issued to one of one or more fixed positions within the monitor program
operating in the monitor mode for servicing. Controlling the possible entry points

into the monitor program to a small number of fixed points increases security.

In contrast, in the secure domain secure privileged modes may switch to the
monitor modes using the normal mechanisms that apply to switching to secure user
modes in a way that facilitates context switching and allow the software running in
the monitor mode to be advantageously simplified. The secure privileged modes have

a similar security status to the monitor mode.

In one preferred form of the invention, the switch takes the form of a call

made to a fixed point within the monitor program.

In another preferred form of the invention, the switch is triggered by any
attempt by a program other than whilst'in monitor mode to change the system
between secure domain and the non-secure domain, such as by writing to stored
security status variables or program status variables. Such attempts may be trapped

by hardware and serve to trigger a call to a fixed point within the monitor program.

When entry to the monitor mode is initiated from a non-secure mode, then the
processor may be arranged to store a program counter value to be restored when
returning to the non-secure mode such that processing will resume at the point at
which it ceased. A similar storage of state may be performed for one. or more

processor status values that need to be restored when returning to the non-secure

mode.
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One problem that can arise is that an exception may occur whilst the processor
is in a secure mode that requires switching to a non-secure mode in order that the
exception may be properly serviced. In such circumstances, the switching between
the secure mode and the non-secure mode is via the monitor mode, as is normal, and
the monitor mode is responéible for restarting the secure processing at the appropriate
point rather than relying upon the non-secure mode to resume the secure mode
processing since this could allow the non-secure mode to obtain some knowledge of
the secure world concerning, for example, the program counter value or processor
status register values at the point at which the exception occurred whilst the system

was in the secure mode.

One way of providing a clear divide between the secure domain and the non-
secure domain is to associate a secure status flag with the system. The control-of the
secure status flag may then be concentrated in the monitor mode by providing that the

secure status flag is only writeable in the monitor mode.

A preferred way in which the system of the present invention may be used is
to provide a non-secure operating system that controls the processor when operating
in the non-secure modes and a secure operating system (which may be in some cases
a cut-down secure kernel) which controls the processor when operating in the secure

modes. The monitor program may advantageously be made part of the secure

operating system.

Preferred embodiments of the invention recognise that potential vulnerabilities
of the security of the system may arise through interruption of the monitor program
whilst it is controlling the switching between the secure domain and the non-secure
domain. Accordingly, in preferred embodiments of the invention at least one of the
exception conditions which can trigger exception processing (interruption of normal

program flow) is disabled when in the monitor mode.
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In order to improve the speed with which switching between security domains
may be made via the monitor mode, some embodiments of the invention when the
cost/benefit considerations so favour provide dedicated registers (shadow registers)
which substitute for corresponding general purpose registers within a register bank of
the processor when the monitor mode is entered. Thus, such dedicated registers may
be immediately available for use by the monitor program allowing the monitor
program to avoid the need to save existing register contents before performing its own
operations and accordingly reduce the time that needs to be spent in the monitor mode
to accomplish the switching. When exceptions are disabled in the monitor mode it is

particularly significant to reduce the time that needs to be spent in the monitor mode.

The way in which exceptions are dealt with in the context of the system as a
whole is significant as exceptions, such as interrupts, present a potential vulnerability
to the security of the system as a whole. In order to allow the way in which the
system responds to exceptions to be tailored to the particular circumstances, preferred
embodiments of the invention provide an exception trap mask register storing one or
more parameters specifying which exceptions should be handled by an exception
handler executing in the mode and which exceptions should be handled by an
exception handler executing in a mode within the current domain when the exception
occurred. Thus, depending upon the type of exception arising the system may be
forced to switch to the secure domain in order to deal with that exception or may
alternatively be left in the current, ‘possibly non-secure, domain. The monitor mode
has the ability to switch security domain and maybe regarded as a secure mode since
the secure status flag is settable in this mode and the overall security of the system can
be considered to reside in the security of the monitor mode. The secure status of the
system can in some ways be considered as an OR of the secure status flag and
whether or not the system is in monitor mode. Certain exceptions may be configured
to be forced to be handled in the monitor mode. Alternatively, an exception may be
left to be dealt with by an exception handler operating in whatever is the current

secure or non-secure mode of the system.
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Preferred embodiments of the invention provide a special purpose monitor
mode entry instruction to which the hardware can be made responsive to enter the
monitor mode and start executing the monitor program at a predetermined location.
Such a monitor mode entry instruction can take the form of a mode switching
software interrupt with an associated mode switching software interrupt vector. It is
particularly advantageous to arrange that a main way that the monitor mode may be
entered is by using such an instruction and arranging the behaviour of the instruction
to force the hardware to respond in a clearly and tightly defined manner, such as

starting execution of a monitor program at a fixed point.

It will be appreciated that within the secure domain and the non-secure domain
a variety of different processing modes may be provided. It is mot necessarily
required that the same mode(s) need be provided in both domains. Examples of
suitable modes are a supervisor mode, a system mode, an abort exception mode, an

undefined exception mode, an interrupt mode, a fast interrupt mode and a user mode.

In preferred embodiments the processor is operable in at least one privileged
secure mode within said secure domain which cannot change from said secure domain
to said non-secure domain, said privileged secure mode having privilege rights
permitting a change from said privileged secure mode into said monitor mode without

a redirection of program execution point.

A monitor program is primarily responsible for managing changes between the
secure and non-secure domains in either direction. The monitor program executes at
least partially in the monitor mode. For example, the monitor program may execute
partly in the monitor mode and partly in a secure mode. A secure kernel executes in
the privileged secure mode. By allowing the privileged secure mode to switch to the
monitor mode, the monitor program may be written more simply with some functions
transferred to the secure kernel even though that may increase the complexity of the
secure kernel. Making the monitor program simpler enhances its security in that it is

easier to prove it is secure: ie. it does only what it is intended to do which is
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important because it straddles the secure and non-secure domains. The secure kernal
however executes only in the secure domain. The monitor program can save state of
the secure privileged modes by switching into those bodes since it can then switch

back to monitor mode.

In preferred embodiments the processor is operable to change a security flag to
change between the secure domain and the non-secure domain, this security flag
being non-write accessible outside of the monitor mode. It will be appreciated that

the security flag may or may not be read-accessible from outside of the monitor mode.

Whilst the present technique allows a change from the privileged secure mode
into the monitor mode without a redirection of program execution, preferred
embodiments are also responsive to a software interrupt instruction to perform a
switch into the monitor mode, but in this case there is a redirection of program
execution point as specified by an interrupt vector associated with the software
interrupt instruction. This software interrupt mechanism is less flexible than the entry
provided from the privileged secure mode since with the software interrupt
mechanism program flow is forced to pass through the interrupt mechanism. The
software interrupt mechanism can be called from secure or non-secure privileged

modes with a reduced risk to security since the code of the interrupt routine can be

closely controlled.

Whilst it is possible that the secure domain includes only the privileged secure
mode, preferred embodiments will typically include at least one privileged non-secure
mode from which a switch to the monitor mode cannot be made without a redirection
of program execution point. A multiplicity of modes within the secure domain
facilitates the proper structuring and organisation of an operating system executing

within the secure domain.

In preferred embodiments of the invention upon a reset the processor enters a

privileged secure mode. Resetting into a privileged secure mode has a variety of
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different advantages, such as allowing easier backwards compatibility with non-
security aware operating systems in non-secure environments. By resetting into a
privileged secure mode such a security insensitive system can remain in the secure
domain even though it does not require secure operation. When the system is security
aware, booting in the privileged secure mode also allows the possibility of the bulk of
the code and support for boot operations being provided by the secure kernal within
the privileged secure mode enabling the monitor program executing within the
monitor mode to be kept in a simple form whereby its security can be more readily

assured.

In order to allow a proper equivalence between the monitor mode and the
privileged secure mode, preferred embodiments are such that memory regions

accessible in the monitor mode are also accessible in the privileged secure mode.

Viewed from another aspect the present invention provides a method of
processing data, said method comprising the steps of:
executing a program with a processor operable in a plurality of modes and a
plurality of domains, said plurality of domains comprising a secure domain or a non-
secure domain, said plurality of modes including:
at least one secure mode being a mode in said secure domain;
at least one non-secure mode being a mode in said non-secure domain;
and
a monitor mode, wherein
when said processor is executing a program in a secure mode said program has
access to secure data which is not accessible when said processor is operating in a
non-secure mode; and
switching between said secure mode and said non-secure mode via said
monitor mode, said processor executing a monitor program at least partially in said

monitor mode to manage switching between said secure mode and said non-secure

mode,
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The present invention will be described further, by way of example only, with

reference to preferred embodiments thereof as illustrated in the accompanying

drawings, in which:

Figure 1 is a block diagram schematically illustrating a data processing

apparatus in accordance with preferred embodiments of the present invention,;

Figure 2 schematically illustrates different programs operating in a non-secure

domain and a secure domain;

Figure 3 schematically illustrates a matrix of processing modes associated

with different security domains;

Figures 4 and 5 schematically illustrate different relationships between

processing modes and security domains;

Figure 6 illustrates one programmer’s model of a register bank of a processor

depending upon the processing mode;

Figure 7 illustrates an example of providing separate register banks for a

secure domain and a non-secure domain;

Figure 8 schematically illustrates a plurality of processing modes with

switches between security domains being made via a separate monitor mode;

Figure 9 schematically illustrates a scenario for security domain switching

using a mode switching software interrupt instruction;

Figure 10 schematically illustrates one example of how non-secure interrupt

requests and secure interrupt requests may be processed by the system;
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Figures 11A and 11B schematically illustrate an example of non-secure
interrupt request processing and an example of secure interrupt request processing in

accordance with Figure 10;

Figure 12 illusirates an alternative scheme for the handling of non-secure
interrupt request signals and secure interrupt request signals compared to that

illustrated in Figure 10;

Figures 13A and 13B illustrate example scenarios for dealing with a non-
secure interrupt request and a secure interrupt request in accordance with the scheme

illustrated in Figure 12;
Figure 14 is an example of a vector interrupt table;

Figure 15 schematically illustrates multiple vector interrupt tables associated

with different security domains;
Figure 16 schematically illustrates an exception control register;

Figure 17 is a flow diagram illustrating how an instruction attempting to
change a processing status register in a manner that alters the security domain setting
can generate a separate mode change exception which in turn triggers entry into the

monitor mode and running of the monitor program;

Figure 18 schematically shows a thread of control of a processor operatihg ina

plurality of modes, wherein a task in monitor mode is interrupted;

Figure 19 schematically shows a different thread of control of a processor

operating in a plurality of modes;
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Figure 20 schematically shows a further thread of control of a processor

operating in a plurality of modes, wherein interrupts are enabled in monitor mode;

Figures 21 to 23 illustrate a view of different processing modes and scenario

5  for switching between secure and non-secure domains in accordance with another

example embodiment(s);

Figure 24 schematically illustrates the concept of adding a secure processing
option to a traditional ARM core;

10
Figure 25 schematically illustrates a processor having a secure and non-secure

domain and reset;

Figure 26 schematically illustrates the delivering of processing requests to a

15  suspended operating system using a software faked interrupt;

Figure 27 schematically illustrates another example of the delivering of a

processing request to a suspended operating system via a software faked interrupt;

20 Figure 28 is a flow diagram schematically illustrating processing performed

upon receipt of a software faked interrupt of the type generated in Figures 26 and 27;

Figures 29 and 30 schematically illustrate task following by a secure operating
system to track possible task switches made by a non-secure operating system;

25
Figure 31 is a flow diagram schematicaily illustrating the processing

performed upon receipt of a call at the secure operating system of Figures 29 and 30;
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Figure 32 is a diagram schematically illustrating the problem of interrupt
priority inversion which may occur in a system having multiple operating systems

where different interrupts may be handled by different operating systems;

Figure 33 is a diagram schematically illustrating the use of stub interrupt

handlers to avoid the problem illustrated in Figure 32; and

Figure 34 schematically illustrates how different types and priorities of
interrupts may be handled depending upon whether or not they can be interrupted by

an interrupt which will be serviced using a different operating system;

Figure 35 illustrates how the processor configuration data is overridden with

monitor mode specific processor configuration data when the processor is operating in

monitor mode;

Figure 36 is a flow diagram illustrating how the processor configuration data
is switched when transitioning between the secure domain and the non-secure domain

in accordance with one embodiment to the present invention;

Figure 37 is a diagram illustrating the memory management logic used in one

embodiment of the present invention to control access to memory;

Figure 38 is a block diagram illustrating the memory management logic of a

second embodiment of the present invention used to control access to memory;

Figure 39 is a flow diagram illustrating the process performed in one
embodiment of the present invention within the memory management logic to process

a memory access request that specifies a virtual address;
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Figure 40 is a flow diagram illustrating the process performed in one
embodiment of the present invention within the memory management lo gic to process

a memory access request that specifies a physical address;

Figure 41 schematically illustrates how the partition checker of preferred
embodiments is operable to prevent access to a physical address within secure
memory when the device issuing the memory access request is operating in a non-

secure mode;

Figure 42 is a diagram illustrating the use of both a non-secure page table and

a secure page table in preferred embodiments of the present invention;

Figure 43 is a diagram illustrating two forms of flag used within the main

translation lookaside buffer (TLB) of preferred embodiments;

Figure 44 illustrates how memory may be partitioned after a boot stage in one

embodiment of the present invention;

Figure 45 illustrates the mapping of the non-secure memory by the memory

management unit following the performance of the boot partition in accordance with

an embodiment of the present invention;

Figure 46 illustrates how the rights of a part of memory can be altered to allow
a secure application to share memory with a non-secure application in accordance

with an embodiment of the present invention;

Figure 47 illustrates how devices may be connected to the external bus of the

data processing apparatus in accordance with one embodiment of the present

invention;
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Figure 48 is a block diagram illustrating how devices may be coupled to the

external bus in accordance with the second embodiment of the présent invention;

Figure 49 illustrates the arrangement of physical memory in embodiments where

a single set of page tables is used;

Figure 50A illustrates an arrangement in which two MMUs are used to perform

virtual to physical address translation via an intermediate address;

Figure 50B illustrates an alternative arrangement in which two MMUs are used

to perform virtual to physical address translation via an intermediate address;

Figure 51 illustrates, by way of example, the correspondence between physical
address space and intermediate address space for both the secure domain and the non-

secure domain;

Figure 52 illustrates the swapping of memory regions between secure and non-

secure domains through manipulation of the page tables associated with the second

MMU;

Figure 53 is an embodiment illustrating an implementation using a single MMU,
and where a miss in the main TLB causes an exception to be invoked to determine the

virtual to physical address translation;

Figure 54 is a flow diagram illustrating the process performed by the processor

core in order to action an exception issued upon occurrence of a miss in the main TLB of

the MMU of Figure 53;

Figure 55 is a block diagram illustrating components provided within a data

processing apparatus of one embodiment, in which the cache is provided with
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information as to whether the data stored in individual cache lines is secure data or non-

secure data;

Figure 56 illustrates the construction of the memory management unit illustrated

in Figure 55;

Figure 57 is a flow diagram illustrating the processing performed within the data

processing apparatus of Figure 55 to process a NON-SECUre MEemory access request;

Figure 58 is a flow diagram illustrating the processing performed within the data

processing apparatus of Figure 55 in order to process a secure memory access request,

Figure 59 schematically shows possible granularity of monitoring functions

for different modes and applications running on a processor;
Figure 60 shows possible ways of initiating different monitoring functions;

Figure 61 shows a table of control values for controlling availability of

different monitoring functions;
Figure 62 shows a positive-edge triggered FLIP-FLOP view;
Figure 63 a scan chain cell;
Figure 64 shows a plurality of scan chain cells in a scan chain;
Figure 65 shows a debug TAP controller;
Figure 66A shows a debug TAP controller with a JADI input;

Figure 66B shows a scan chain cell with a bypass register;
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Figure 67 schematically illustrates a processor comprising a core, scan chains

and a Debug Status and Control Register;

Figure 68 schematically illustrates the factors controlling debug or trace

initialisation;
Figures 69A and 69B show a summary of debug granularity;

Figure 70 schematically illustrates the granularity of debug while it is running;

and

Figure 71A and 71B show monitor debug when debug is enabled in secure

world and when it is not enabled respectively.

Figure 1 is a block diagram illustrating a data processing apparatus in
accordance with preferred embodiments of the present invention. The data processing
apparatus incorporates a processor core 10 within which is provided an arithmetic
logic unit (ALU) 16 arranged to execute sequences of instructions. Data required by
the ALU 16 is stored within a register bank 14. The core 10 is provided with various
monitoring functions to enable diagnostic data to be captured indicative of the
activities of the processor core. As an example, an Embedded Trace Module (ETM)
22 is provided for producing a real time trace of certain activities of the processor
core in dependence on the contents of certain control registers 26 within the ETM 22
defining which activities are to be traced. The trace signals are typically output to a
trace buffer from where they can subsequently be analysed. A vectored interrupt
controller 21 is provided for managing the servicing of a plurality of interrupts which

may be raised by various peripherals (not illustrated).

Further, as shown in Figure 1, another monitoring functionality that can be

provided within the core 10 is a debug function, a debugging application external to
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the data processing apparatus being able to communicate with the core 10 via a Joint
Test Access Group (JTAG) controller 18 which is coupled to one or more scan chains
12. Information about the status of various parts of the processor core 10 can be’
output via the scan chains 12 and the JTAG controller 18 to the external debugging
application. An In Circuit Emulator (ICE) 20 is used to store within registers 24
conditions identifying when the debug functions should be started and stopped, and

hence for example will be used to store breakpoiﬁts, watchpoints, etc.

The core 10 is coupled to a system bus:40 via memory management logic 30
which is arranged to manage memory access requests issued by the core 10 for access
to locations in memory of the data processing apparatus. Certain parts of the memory
may be embodied by memory units connected directly to the system bus 40, for
example the Tightly Coupled Memory (TCM) 36, and the cache 38 illustrated in
Figure 1. Additional devices may also be provided for accessing such memory, for
example a Direct Memory Access (DMA) controller 32. Typically, various control
registers 34 will be provided for defining certain control parameters of the various
clements of the chip, these control registers also being referred to herein as

coprocessor 15 (CP 15) registers.

The chip containing the core 10 may be coupled to an external bus 70 (for
example a bus operating in accordance with the “Advanced Microcontroller Bus
Architecture” (AMBA) specification developed by ARM Limited) via an external bus
interface 42, and various devices may be connected to the external bus 70. These
devices may include master devices such as a digital signal processor (DSP) 50, or a
direct memory access (DMA) controller 52, as well as various slave devices such as
the boot ROM 44, the screen driver 46, the external memory 56, an input/output (/O)
interface 60 or a key storage unit 64. These various slave devices illustrated in Figure
1 can all be considered as incorporating parts of the overall memory of the data
processing apparatus.  For example, the boot ROM 44 will form part of the
addressable memory of the data processing apparatus, as will the external memory 56.

Further, devices such as the screen driver 46, I/O interface 60 and key storage unit 64
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will all include internal storage elements such as registers or buffers 48, 62, 66,
respectively, which are all independently addressable as part of the overall memory of
the data processing apparatus. As will be discussed in more detail later, a part of the
memory, e.g. part of external memory 56, will be used to store one or more page

tables 58 defining information relevant to control of memory accesses.

As will be appreciated by those skilled in the art, the external bus 70 will
typically be provided with arbiter and decoder logic 54, the arbiter being used to
arbitrate between multiple memory access requests issued by multiple master devices,
for example the core 10, the DMA 32, the DSP 50, the DMA 52, etc, whilst the
decoder will be used to determine which slave device on the external bus should

handle any particular memory access request.

Whilst in some embodiments, the external bus may be provided externally to the
chip containing the core 10, in other embodiments the external bus will be provided
on-chip with the core 10. This has the benefit that secure data on the external bus is
easier to keep seéure than when the external bus is off-chip; when the external bus is

off-chip, data encryption techniques may be used to increase the security of secure

data.

Figure 2 schematically illustrates various programs running on a processing
system having a secure domain and a non-secure domain. The system is provided
with a monitor program 72 which executes at least partially in a monitor mode. In
this example embodiment security status flag is write accessible only within the
monitor mode and may be written by the monitor program 72. The monitor program
72 is responsible for managing all changes between the secure domain and the non-
secure domain in either direction. From a view external to the core the monitor mode

is always secure and the monitor program is in secure memory.

Within the non-secure domain there is provided a non-secure operating system

74 and a plurality of non-secure application programs 76, 78 which execute in co-
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operation with the non-secure operating system 74. In the secure domain, a secure
kernel program 80 is prévided. The secure kernel program 80 can be considered to
form a secure operating system. Typically such a secure kemnel program 80 will be
designed to provide only those functions which are essential to processing activities
which must be provided in the secure domain such that the secure kernel 80 can be as
small and simple as possible since this will tend to make it more secure. A plurality

of secure applications 82, 84 are illustrated as executing in combination with the

secure kernel 80.

Figure 3 illustrates a matrix of processing modes associated with different
security domains. In this particular example the processing modes are symmetrical
with respect to the security domain and accordingly Mode 1 and Mode 2 exist in both

secure and non-secure forms.

The monitor mode has the highest level of security access in the system and in
this example embodiment is the only mode entitled to switch the system between the
non-secure domain and the secure domain in either direction. Thus, all domain
switches take place via a switch to the monitor mode and the execution of the monitor

program 72 within the monitor mode.

Figure 4 schematically illustrates another set of non-secure domain processing
modes 1, 2, 3, 4 and secure domain processing modes a, b, c. In contrast to the
symmetric arrangement of Figure 3, Figure 4 shows that some of the processing
modes may not be present in one or other of the security domains. The monitor mode
86 is again illustrated as straddling the non-secure domain and the secure domain.
The monitor mode 86 can be considered a secure processing mode, since the secure
status flag may be changed in this mode and monitor program 72 in the monitor mode
has the ability to itself set the security status flag it effectively provides the ultimate

level of security within the system as a whole.
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Figure 5 schematically illustrates another arrangement of processing modes
with respect to security domains. In this arrangement both secure and non-secure
domains are identified as well as a further domain. This further domain may be such
that it is isolated from other parts of a system in a way that it does not need to interact
with either of the secure domain or non-secure domain illustrated and as such the

issue of to which of these it belongs to is not relevant.

As will be appreciated a processing system, such as a MiCroprocessor is
normally provided with a register bank 88 in which operand values may be stored.
Figure 6 illustrates a programmer’s model view of an example register bank with
dedicated registers being provided for certain of the register numbers in certain of the
processing modes. More particularly, the example of Figure 6 is an extension of the
known ARM register bank (e.g. as provided in ARM7 processors of ARM Limited,
Cambridge, England) which is provided with a dedicated saved program status
register, a dedicated stack pointer register and a dedicated link register R14 for each
processing mode, but in this case extended by the provision of a monitor mode. As
illustrated in Figure 6, the fast interrupt mode has additional dedicated registers
provided such that upon entry of the fast interrupt mode there is no need to save and
then restore register contents from other modes. The monitor mode may in alternative
embodiments also be provided with dedicated further registers in a similar manner to
the fast interrupt mode so as to speed up processing of a security domain switch and

reduce system latency associated with such switches.

Figure 7 schematically illustrates another embodiment in which the register
bank 88 is provided in the form of two complete and separate register banks that are
respectively used in the secure domain and the non-secure domain. This is one way in
which secure data stored within registers operable in the secure domain can be
prevented from becoming accessible when a switch is made to the non-secure domain.
However, this arrangement hinders the possibility of passing data from the non-secure

domain to the secure domain as may be permitted and desirable by using the fast and
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efficient mechanism of placing it in a register which is accessible in both the non-

secure domain and the secure domain.

An important advantage of having secure register bank 1s to avoid the need for
flushing the contents of registers before switching from one world to the other. If
Jatency is not a critical issue, a simpler hardware system with no duplicated registers
for the secure domain world may be used, e.g. Figure 6. The monitor mode is
responsible switching from one domain to the other. Restoring context, saving
previous context, as well as flushing registers is performed by a monitor program at
least partially executing in monitor mode. The system behaves thus like a
virtualisation model. This type of embodiment is discussed further below. Reference
should be made to, for example, the programmer’s model of the ARM7 upon which

the security features described herein build.

Processor Modes

Instead of duplicating modes in secure world, the same modes support both
secure and non-secure domains (see Figure 8). Monitor mode is aware of the current
status of the core, either secure or non-secure (e.g. as read from an S bit stored is a

coprocessor configuration register).

In the Figure 8, whenever an SMI (Software Monitor Interrupt instruction)

occurs, the core enters monitor mode to switch properly from one world to the other.
With reference to Figure 9 in which SMIs are permitted from user mode:

1. The scheduler launches thread 1

2. Thread 1 needs to perform a secure function => SMI secure call, the core
enters monitor mode. Under hardware control the current PC and CPSR (current
processor status register) are stored in R14_mon and SPSR_mon (saved processor

status register for the monitor mode) and IRQ/FIQ interrupts are disabled.
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3. The monitor program does the following tasks:

- The S bit is set (the secure status flag).

- Saves at least R14 mon and SPSR_mon in a stack so that non-secure context
cannot be lost if an exception occurs whilst the secure application is running.

- Checks there is a new thread to launch: secure thread 1. A mechanism (via
thread ID table in some example embodiments) indicates that thread 1 is active
in the secure world.

- IRQ/FIQ interrupts are re-enabled. A secure application can then start in

secure user mode.

4, Secure thread 1 runs until it finishes, then branches (SMI) onto the ‘return

from secure’ function of the monitor program mode (IRQ/FIQ interrupts are then

disabled when the core enters monitor mode)

5. The ‘return from secure’ function does the following tasks:

- indicates that secure thread 1 is finished (e.g., in the case of a thread ID table,
remove thread 1 from the table).

- Restore from stack non-secure context and flush required registers, so that no
secure data can be read once return has been made to the non-secure domain.

- Then branches back to the non-secure domain with a SUBS instruction (this

restores the program counter to the correct point and updates the status flags),

restoring the PC (from restored R14_mon) and CPSR (from SPSR_mon). So, the
return point in the non-secure domain is the instruction following the previously

executed SMI in thread 1.
6. Thread 1 executes until the end, then gives the hand back to the scheduler.

Some of the above functionality may be split between the monitor program

and the secure operating system depending upon the particular embodiment.

In other embodiments it may be desired not to allow SMls to occur in user

modes.
Secure World Entry

Reset



10

15

20

25

30

WO 2004/046924 PCT/GB2003/004615

24

When a hardware reset occurs, the MMU is disabled and the ARM core
(processor) branches to secure supervisor mode with the S bit set. Once the secure
boot is terminated an SMI to go to monitor mode may be executed and the monitor
can switch to the OS in non-secure world (non-secure sve mode) if desired. If it is
desired to use a legacy OS this can simply boot in secure supervisor mode and ignore

the secure state.

SMI INSTRUCTION

This instruction (a mode switching software interrupt instruction) can be

called from any non-secure modes in the non-secure domain (as previously mentioned
it may be desired to restrict SMls to privileged modes), but the target entry point
determined by the associated vector is always fixed and within monitor mode. Its up
to the SMI handler to branch to the proper secure function that must be run (e.g.
controlled by an operand passed with the instruction).

Passing parameters from non-secure world to secure world can be performed

using the shared registers of the register bank within a Figure 6 type register bank.

When a SMI occurs in non-secure world, the ARM core may do the following

actions in hardware:

- Branch to SMI vector (in secure memory access is allowed since you will now

be in monitor mode) into monitor mode

- Save PC into R14 _mon and CPSR into SPSR_mon
- Set the S bit using the monitor program

- Start to execute secure exception handler in monitor mode (restore/save

context in case of multi-threads)

- Branch to secure user mode (or another mode, like svc mode) to execute the

appropriate function

- IRQ and FIQ are disabled while the core is in monitor mode (latency is

increased)
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Secure World Exit

There are two possibilities to exit secure world:
- The secure function is finished and we return into previous non-secure mode
that had called this function.

- The secure function is interrupted by a non-secure exception (e.g.

IRQ/FIQ/SMI).

Normal End of Secure Function

The secure function terminates normally and we need to resume an application
in the non-secure world at the instruction just after the SMI. In the secure user mode,
a ‘SMI’ instruction is performed to return to monitor mode with the appropriate
parameters corresponding to a ‘return from secure world’ routine. At this stage, the
registers are flushed to avoid leakage of data between non-secure and secure worlds,
then non-secure context general purpose registers are restored and non-secure banked
registers are updated with the value they had in non-secure world. R14 mon and
SPSR_mon thus get the appropriate values to resume the non-secure application after

the SMI, by executing a ‘MOVS PC, R14’ instruction.

Exit of Secure Function Due to a Non-Secure Exception

In this case, the secure function is not finished and the secure context must be

saved before going into the non-secure exception handler, whatever the interrupts are

that need to be handled.

Secure Interrupts

There are several possibilities for secure interrupts.

Two possible solutions are proposed which depend on:
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What kind of interrupt it is (secure or non-secure)
What mode the core is in when the IRQ occurs (either in secure or in non-

secure world)

Solution One

In this solution, two distinct pins are required to support secure and non-secure

interrupts.

While in Non Secure world, if

an IRQ occurs, the core goes to IRQ mode to handle this interrupt as in ARM
cores such as the ARM7

a SIRQ occurs, the core goes to monitor mode to save non-secure context and

then to a secure IRQ handler to deal with the secure interrupt.

While in Secure world, if

an SIRQ occurs, the core goes to the secure IRQ handler. The core does not

leave the secure world

an IRQ occurs, the core goes to monitor mode where secure context is saved,

then to a non-secure IRQ handler to deal with this non-secure interrupt.

In other words, when an interrupt that does not belong to the current world

occurs, the core goes directly to monitor mode, otherwise it stays in the current world

(see Figure 10).

1.

TRQ Occurring in Secure World

See Figure 11A:

The scheduler launches thread 1.
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2. Thread 1 needs to perform a secure function => SMI secure call, the core

enters monitor mode. Current PC and CPSR are stored in R14_mon and SPSR_mon,

IRQ/FIQ are disabled.
3. The monitor handler (program) does the following tasks:
- The S bit is set.

- Saves at least R14 mon and SPSR mon in a stack (and possibly other
registers are also pushed) so that non-secure context cannot be lost if an
exception occurs whilst the secure application is running.

- Checks there is a new thread to launch: secure thread 1. A mechanism (via
thread ID table) indicates that thread 1 is active in the secure world.

- Secure application can then start in the secure user mode. TIRQ/FIQ are then

re-enabled.

4. An IRQ occurs while secure thread 1 is running. The core jumps directly to

monitor mode (specific vector) and stores current PC in R14_mon and CPSR in

SPSR._mon in monitor mode, (IRQ/FIQ are then disabled).

5. Secure context must be saved, previous non-secure context is restored. The

monitor handler may be to IRQ mode to update R14_irq/SPSR_irq with appropriate

values and then passes control to a non-secure IRQ handler.

6. The IRQ handler services the IRQ, then gives control back to thread 1 in the

non-secure world. By restoring SPRS_irq and R14_irq into the CPSR and PC, thread

1 is now pointing onto the SMI instruction that has been interrupted.

7. The SMI instruction is re-executed (same instruction as 2).

8. The monitor handler sees this thread has previously been interrupted, and

restores the thread 1 context. It then branches to secure thread 1 in user mode,

pointing onto the instruction that has been interrupted.

9. Secure thread 1 runs until it finishes, then branches onto the ‘return from

secure’ function in monitor mode (dedicated SMI).

10.  The ‘return from secure’ function does the following tasks:

- indicates that secure thread 1 is finished (i.e., in the case of a thread ID table,
remove thread 1 from the table).
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- restore from stack non-secure context and flush required registers, so that no
secure data can be read once a return is made to non-secure world.

- branches back to the non-secure world with a SUBS instruction, restoring the

PC (from restored R14_mon) and CPSR (from SPSR_mon). So, the return point in

the non-secure world should be the instruction following the previously executed SMI

in thread 1.
11.  Thread 1 executes until the end, then gives control back to the scheduler.

SIRQ Occurring in Non-Secure World

See Figure 11B:
1. The schedule launches thread 1
2. A SIRQ occurs while secure thread 1 is running. The core jumps directly to

monitor mode (specific vector) and stores current PC in R14 mon and CPSR in
SPSR_mon in monitor mode, IRQ/FIQ are then disabled.

3. Non-Secure context must be saved, then the core goes to a secure IRQ
handler.

4, The TRQ handler services the SIRQ, then gives control back to the monitor
mode handler using an SMI with appropriate parameters.

5. The monitor handler restores non-secure context so that a SUBS instruction
makes the core return to the non-secure world and resumes the interrupted thread 1.

6. Thread 1 executes until the end, then gives the hand back to the scheduler.

The mechanism of Figure 11A has the advantage of providing a deterministic
way to enter secure world. However, there are some problems associated with
interrupt priority: e.g. while a SIRQ is running in secure interrupt handler, a non-
secure IRQ with higher priority may occur. Once the non-secure IRQ is finished,

there is a need to recreate the SIRQ event so that the core can resume the secure

interrupt.

Solution Two
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In this mechanism (See Figure 12) two distinct pins, or only one, may support

secure and non-secure interrupts. Having two pins reduces interrupt latency.

While in Non Secure world, if
- an IRQ occurs, the core goes to IRQ mode to handle this interrupt like in
ARMY7 systems
- a SIRQ occurs, the core goes to an IRQ handler where an SMI instruction will
make the core branch to monitor mode to save non-secure context and then to a secure

IRQ handler to deal with the secure interrupt.

While in a Secure world, if
- a SIRQ occurs, the core goes to the secure IRQ handler. The core does not
leave the secure world
- an IRQ occurs, the core goes to the secure IRQ handler where an SMI
instruction will make the core branch to monitor mode (where secure context is

saved), then to a non-secure IRQ handler to deal with this non-secure interrupt.

IRQ Occurring In Secure World
See Figure 13A:

1. The schedule launches thread 1.
2. Thread 1 needs to perform a secure function => SMI secure call, the core

enters monitor mode. Current PC and CPSR are stored in R14_mon and SPSR_mon,

IRQ/FIQ are disabled.
3. The monitor handler does the following tasks:
- The S bit is set.

- Saves at least R14 mon and SPSR_mon in a stack (eventually other registers)
so that non-secure context cannot be lost if an exception occurs whilst the
secure application is running.

- Checks there is a new thread to launch: secure thread 1. A mechanism (via

thread ID table) indicates that thread 1 is active in the secure world.
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- Secure application can then start in the secure user mode. IRQ/FIQ are re-

enabled.

4. An IRQ occurs while secure thread 1 is running. The core jumps directly to

secure IRQ mode.

5. The core stores current PC in R14 irq and CPSR in SPSR irq. The IRQ

handler detects this is a non-secure interrupt and performs a SMI to enter monitor

mode with appropriate parameters.

6. Secure context must be saved, previous non-secure context is restored. The

monitor handler knows where the SMI came from by reading the CPSR. It can also

go to IRQ mode to read R14_irg/SPSR_irq to save properly secure context. It can

also save in these same registers the non-secure context that must be restored once the

IRQ routine will be finished.

7. The IRQ handler services the IRQ, then gives control back to thread 1 in the

non-secure world. By restoring SPRS_irq and R14_irq into the CPSR and PC, the

core is now pointing onto the SMI instruction that has been interrupted.

8. The SMI instruction is re-executed (same instruction as 2).

9. The monitor handler sees this thread has previously been interrupted, and

restores the thread 1 context. It then branches to secure thread 1 in user mode,

pointing to the instruction that has been interrupted.

10. Secure thread 1 runs until it finishes, then branches onto the ‘return from

secure’; function in monitor mode (dedicated SMI).

11.  The ‘return from secure’ function does the following tasks:

- indicates that secure thread 1 is finished (i.e., in the case of a thread ID table,
remove thread 1 from the table).

- restores from stack non-secure context and flushes required registers, so that
no secure information can be read once we return in non-secure world.

- branches back to the non-secure world with a SUBS instruction, restoring the

PC (from restored R14_mon) and CPSR (from SPSR._mon). The return point in the

non-secure world should be the instruction following the previously executed SMI in

thread 1.
12.  Thread 1 executes until the end, then gives the hand back to the scheduler.
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SIRQ Occurring in Non-Secure World
See Figure 13B:

1. The schedule launches thread 1.

2. A SIRQ occurs while secure thread 1 is running.

3. The core jumps directly irq mode and stores current PC in R14 irq and CPSR
in SPSR_irq. IRQ is then disabled. The IRQ handler detects this is a SIRQ and
performs a SMI instruction with appropriate parameters.

4. Once in monitor mode, non-secure context must be saved, then the core goes
to a secure IRQ handler.

5. The secure IRQ handler services the SIRQ service routine, then gives control
back to monitor with SMI with appropriate parameters.

6. The monitor handler restores non-secure context so that a SUBS instruction
makes the core returns to non-secure world and resumes the interrupted IRQ handler.
7. The IRQ handler may then return to the non-secure thread by performing a
SUBS.

8. Thread 1 executes until the end, then gives control back to the scheduler.

With the mechanism of Figure 12, there is no need to recreate the SIRQ event
in the case of nested interrupts, but there is no guarantee that secure interrupts will be

performed.

Exception Vectors

At least two physical vector tables are kept (although from a virtual address
point of view they may appear as a single vector table), one for the non-secure world
in non-secure memory, the one for the secure world in secure memory (not accessible
from non-secure world). The different virtual to physical memory mappings used in
the secure and non-secure worlds effectively allow the same virtual memory

addresses to access different vector tables stored in physical memory. The monitor
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mode may always use flat memory mapping to provide a third vector table in physical

memory.

If the interrupts follow the Figure 12 mechanism, there would be the following

vectors shown in Figure 14 for each table. This vector set is duplicated in both secure

and non-secure Memory.

Exception Vector Offset Corresponding Mode

Reset 0x00 Supervisor Mode (S bit set)
Uﬁdef 0x04 Monitor mode/Undef mode
SWI 0x08 Supervisor mode/Monitor mode
Prefetch Abort 0x0C Abort mode/Monitor mode
Data Abort 0x10 Abort mode/Monitor Mode
IRQ/SIRQ 0x18 IRQ mode

FIQ 0x1X FIQ mode

SMI 0x20 Undef mode/Monitor mode

NB. The Reset entry is only in the secure vector table. When a Reset is
performed in non secure world, the core hardware forces entry of supervisor mode

and setting of the S bit so that the Reset vector can be accessed in secure memory.

Figure 15 illustrates three exception vector tables respectively applicable to a
secure mode, a non-secure mode and the monitor mode. These exception vector
tables may be programmed with exception vectors in order to match the requirements
and characteristics of the secure and non-secure operating systems. Each of the
exception vector tables may have an associated vector table base address register
within CP15 storing a base address pointing to that table within memory. When an
exception occurs the hardware will reference the vector table base address register
corresponding to the current state of the system to determine the base address of the

vector table to be used. Altematively, the different virtual to physical memory
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mappings applied in the different modes may be used to separate the three different
vector table stored at different physical memory addresses. As illustrated in Figure
16, an exception trap mask register is provided in a system (configuration controlling)
coprocessor (CP15) associated with the processor core. This exception trap mask
register provides flags associated with respective exception types. These flags
indicate whether the hardware should operate to direct processing to either the vector
for the exception concerned within its current domain or should force a swiich to the

monitor mode (which is a type of secure mode) and then follow the vector in the

" monitor mode vector table. The exception trap mask register (exception control

register) is only writable from the monitor mode. It may be that read access is also
prevented to the exception trap mask register when in a non-secure mode. It will be
seen that the exception trap mask register of Figure 16 does not include a flag for the
reset vector as the system is configured to always force this to jump to the reset vector
in the secure supervisor mode as specified in the secure vector table in order to ensure
a secure boot and backwards compatibility. It will be seen that in Figure 15, for the
sake of completeness, reset vectors have been shown in the vector tables other than

the secure supervisor mode secure vector table.

Figure 16 also illustrates that the flags for the different exception types within
the exception trap mask register are pro grammable, such as by the monitor program
during secure boot.  Alternatively, some or all of the flags may in certain
implementations be provided by physical input signals, e.g. the secure interrupt flag
SIRQ may be hardwired to always force monitor mode entry and execution of the
corresponding monitor mode secure interrupt request vector when a secure interrupt
signal is received. Figure 16 illustrates only that portion of the exception trap register
concerned with non-secure domain exceptions, a similar set of programmable bits will

be provided for secure domain exceptions.

Whilst it will be understood from the above that at one level the hardware acts
to either force an interrupt to be serviced by the current domain exception handler or

the monitor mode exception handler depending upon the exception control register
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flags, this is only the first level of control that is applied. As an example, it is possible
for an exception to occur in the secure mode, the secure mode exception vector to be
followed to the secure mode exception handler, but this secure mode exception
handler then decide that the exception is of a nature that it is better dealt with by the
non-secure exception handler and accordingly utilise an SMI instruction to switch to
the non-secure mode and invoke the non-secure exception handler. The converse is
also possible where the hardware might act to initiate the non-secure exception
handler, but this then execute instructions which direct processing to the secure

exception handler or the monitor mode exception handler.

Figure 17 is a flow diagram schematically illustrating the operation of the
system so as to support another possible type of switching request associated with a
new type of exception. At step 98 the hardware detects any instruction which is
attempting to change to monitor mode as indicate in a current program status register
(CPSR). When such an attempt is detected, then a new type of exception is triggered,
this being referred to herein as a CPSR violation exception. The generation of this
CPSR violation exception at step 100 results in reference to an appropriate exception
vector within the monitor mode and the monitor program is run at step 102 to handle

the CPSR violation exception.

It will be appreciated that the mechanisms for initiating a switch between
secure domain and non-secure domain discussed in relation to Figure 17 may be
provided in addition to support for the SMI instruction previously discussed. This
exception mechanism may be provided to respond to unauthorised attempts to switch
mode as all authorised attempts should be made via an SMI instruction.
Alternatively, such a mechanism may be legitimate ways to switch between the secure
domain and the non-secure domain or may be provided in order to give backwards
compatibility with existing code which, for example, might seek to clear the
processing status register as part of its normal operation even though it was not truly
trying to make an unauthorised attempt to switch between the secure domain and the

non-secure domain.
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As described above, in general interrupts are disabled when the processor is
operating in monitor mode. This is done to increase the security of the system. When
an interrupt occurs the state of the processor at that moment is stored in interrupt
exception registers so that on completion of the interrupt function the processing of
the interrupted function can be resumed at the interrupt point. If this process were
allowed in monitor mode it could reduce the security of the monitor mode, giving a
possible secure data leakage path. For this reason interrupts are generally disabled in
monitor mode. However, one consequence of disabling interrupts during monitor

mode is that interrupt latency is increased.

Tt would be possible to allow interrupts in monitor mode if the state of the
processor executing the function was not stored. This can only be done if following
an interrupt the function is not resumed. Thus, the problem of interrupt latency in
monitor mode may be addressed by allowing interrupts in monitor mode only of .
functions that can be safely restarted. In this case, following an interrupt in monitor
mode, the data relating to the processing of the function is not stored but is thrown
away and the processor is instructed to start processing of the function from its
beginning once the interrupt has finished. In the above example this is a simple thing
to do as the processor simply returns to the point at which it switched to monitor
mode. Tt should be noted that restarting a function is only possible for certain
functions that can be restarted and still produce repeatable results. If the function has
changed a state of the processor such that if it were restarted it would produce a
different result then it is not a good idea to restart the function. For this reason, only
those functions that are safely restartable can be interrupted in monitor mode, for

other functions the interrupts are disabled.

Figure 18 illustrates a way of dealing with an interrupt occurring in monitor
mode according to an embodiment of the present invention. An SMI occurs during
processing of task A in a non-secure mode and this switches the processor to monitor

mode. The SMI instruction makes the core enter the Monitor mode through a
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dedicated non-secure SMI vector. The current state of the PC is saved, the s bit is set

and interrupts are disabled. Generally, LR_mon and SPSR_mon are used to save the

PC and CPSR of the non secure mode.

A function, function C is then initiated in monitor mode. The first thing
function C does is to enable the interrupts, function C is then processed. If an
interrupt occurs during the processing of function C, the interrupts are not disabled so
the interrupt is accepted and performed. However, the monitor mode indicator
indicates to the processor that following an interrupt, the function is not to be
resumed, but rather restarted. Alternatively, this may be indicated to the processor by
a separate control parameter. Thus, following an interrupt the interrupt exception
vectors are updated with the values of LR_mon and SPSR_mon and the current state

of the processor is not stored.

As is shown in Figure 18 following completion of the interrupt task, task B,
the processor reads the address of the SMI instruction which has been copied to the

interrupt register and performs an SMI and starts to process function C again.

The above process only works if function C is restartable, that is to say if
restarting process C will result in repeatable processing steps. This will not be the
case if function C has changed any of the states of the processor such as the stack
pointer that may affect its future processing. A function that is repeatable in this way
is said to have idempotence. One way of dealing with the problem of a function not
having idempotence is to rearrange the code defining the function in such a way that
the first portion of the code has idenipotence and once it is no longer possible to
arrange the code to have idempotence interrupts are disabled. For example, if code C
involves writing to the stack, it may be possible to do so without updating the stack
pointer at least at first. Once it is decided that the code can no longer feasibly be
safely restarted, then the code for function C can instruct the processor to disable

interrupts and then it can update the stack pointer to the correct position. This is
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shown in Figure 18 where interrupts are disabled a certain way through the processing

of function C.

Figure 19 illustrates a slightly different example. In this example, a certain
way through the processing of task C, a further control parameter is set. This
indicates that the following portion of task C is not strictly idempotent, but can be
safely restarted provided that a fix-up routine is run first. This fix-up routine acts to
restore a state of the processor to how it was at the start of task C, such that task C can
be safely restarted and produce the same processor state at the end of the task as it
would have done had it not been interrupted. In some embodiments at the point that
the further control parameter is set interrupts may be disabled for a short while while
some states of the processor are amended such as the stack pointer being updated.

This allows the processor to be restored to an idempotent state later.

When an interrupt occurs after the further control parameter has been set, then
there are two possible ways to proceed. Either the fix-up routine can be performed
immediately (at F1) and then the interrupt can be processed, or the interrupt can be
processed immediately and following completion of the interrupt, the SMI is executed
and then prior to restarting task C the fix-up routine is performed (at F2). As can be
seen, in both of these embodiments the fix-up routine is performed in monitor mode,
and thus execution in the non-secure domain, which is not aware of the secure domain

or of the monitor mode is not affected.

- As can be seen from Figure 19, a first portion of code C has idempotence and
can be restarted following an interrupt. A second portion is restartable provided a fix-
up routine is run first, and this is indicated by setting a “further” control parameter,
and a final portion of the code cannot be restarted and thus, interrupts are disabled

before this code is processed.

Figure 20 illustrates an alternative example, in this case, which is different to

other embodiments, interrupts are enabled during the monitor mode. Functions



10

15

20

25

30

WO 2004/046924 PCT/GB2003/004615

38

running in the monitor mode then act to disable interrupts as soon as they are no
longer safely restartable. This is only possible if all functions interrupted in monitor

mode are restarted rather than resumed.

There are several ways that it can be ensured that all functions running in a
certain mode are restarted rather than resumed when interrupted. One way is by
adding a new processor state in which interrupts save the address of the start of the
instruction sequence rather than the address of the interrupted instruction. In this case
monitor mode would then always be run in this state. An alternative way is by
preloading the address of the start of a function to the interrupt exception register at
the start of each function and disabling subsequent writing of the state of the

processor following interrupt to mterrupt exception registers.

In the embodiment illustrated in Figure 20 restarting of the functions may be
done immediately following termination of the interrupt function or it may be done

following a fix-up routine, if that is required to make the function safely restartable.

Although the above described way of dealing with interrupt latency has been
described with respect to a system having secure and non-secure domains and a
monitor mode, it is clearly applicable to any system which has functions that should
not be resumed for a particular reason. Generally such functions operate by disabling
interrupts which increase interrupt latency. Amending the functions to be restartable
and controlling the processor to restart them following an interrupt allows the
interrupts to be enabled for at least a portion of the processing of the function and
helps reduce interrupt latency. For example normal context switching of an operating
system.

Access to secure and non-secure memory

As described with reference to Figure 1, the data processing apparatus has
memory, which includes, inter alia, the TCM 36, cache 38, ROM 44, memory of slave
devices and external memory 56. As described with reference to Figure 37 for

example, memory is partitioned into secure and non-secure memory. It will be
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appreciated that there will not typically be any physical distinction between the secure
memory regions and non-secure memory regions of the memory at the time of
fabrication, but that these regions will instead be defined by a secure operating system of
the data processing apparatus when operating in the secure domain. -Hence, any physical
part of the memory device may be allocated as secure memory, and any physical part

may be allocated as non-secure memory.

As described with reference to Figures 2 to 5, the processing system has a
secure domain and a non-secure domain. In the secure domain, a secure kernel
program 80 is provided and which executes in a secure mode. A monitor program 72
is provided which straddles the secure and non-secure domains and which executes at
least partly in a monitor mode. In embodiments of the invention the monitor program
executes partly in the monitor mode and partly in a secure mode. As shown in for
example Figure 10, there are a plurality of secure modes including, inter alia, a

supervisor mode SVC.

The monitor program 72 is responsible for managing all changes between the
secure and mon-secure domains in either direction. Some of its functions are
described with reference to Figures 8 and 9 in the section "Processor Modes'. The
monitor program is responsive to a mode switching request SMI issued in the non-
secure mode to initiate a switch from the said non-secure mode to the said secure
mode and to a mode switching request SMI issued in the secure mode to initiate a
switch from the said secure mode to the said non-secure mode. As described in the
section 'Switching between worlds', in the monitor mode, switching takes place
switching at least some of the register from one of the secure and non-secure domains
to the other. That involves saving the state of a register existing in one domain and
writing a new state to the register (or restoring a previously saved state in the register)
in the other domain. As also described herein access to some registers may be

disabled when performing such a switch. Preferably, in monitor mode all interrupts

are disabled.
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Because the monitor mode in which the monitor program executes straddles
the secure and non-secure domains it is important that the monitor program is
provably secure: that is it implements only those functions it is intended to implement.
Tt is thus advantageous if the monitor program is a simple as possible. The secure
modes allow processes to execute only in the secure domain. In this embodiment of
the present invention, the privileged secure mode(s) and the monitor mode allows
access to the same secure and non-secure memory. By ensuring that the privileged
secure mode(s) 'see' the same secure and non-secure memory, functions which could
otherwise only be implemented in the monitor mode are transferred to the secure
mode allowing simplification of the monitor program. In addition, this allows a
process operating in a privileged secure mode to switch directly to monitor mode and
vice versa. A switch from a privileged secure mode to the monitor mode is permitted
and in the monitor mode a switch to the non-secure domain may be made. Non-
privileged secure modes must use an SMI to enter the monitor mode. The system
enters the privileged secure mode following a reset. Switches between the monitor
mode and the privileged secure mode and back are made to facilitate state saving

when moving between domains.

Tn other embodiments access to the S flag may be allowed from within secure
privileged modes as well as from within the monitor mode. If secure privileged
modes are allowed to switch the processor into monitor mode whilst maintaining
control of the program flow, then such secure privileged modes already effectively
have the ability to change the S flag (bit). Thus, the additional complexity of
providing that the S flag can only be changed within the monitor mode is not justified.
The S flag can instead be stored in the same way as other configuration flags which
may be changed by one or more secure privileged modes. Such embodiments where
the S flag may be changed within one of more secure privileged modes are included

within the current techniques.

Returning to the previously discussed example embodiment, the apparatus has

a processor core 10 which defines the modes and defines the privilege levels of the
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modes; i.e. the set of functions which any mode allows. Thus the processor core 10 is
arranged in known manner to allow the secure modes and the monitor mode access to
secure and non-secure memory and the secure modes access to all memory to which
the monitor mode allows access and to allow a process operating in any privileged
secure mode to switch directly to monitor mode and vice versa. The processor core 10

is preferably arranged to allow the following.

In one example of the apparatus, the memory is partitioned into secure
memory and non-secure memory, and both secure and non-secure memory is
accessible only in the monitor and secure modes. Preferably, the non-secure memory

is accessible in monitor mode, a secure mode and a non-secure mode.

In another example of the apparatus, in the monitor mode and one or more of
the secure modes, access to the non-secure memory is denied to the secure mode; and
in non-secure mode access to the non-secure memory is denied to the secure and
monitor modes. Thus secure memory is accessed only in monitor and secure modes

and non-secure memory is accessed only by non-secure modes increasing security.

In examples of the apparatus, resetting or booting of the apparatus may be
performed in the monitor mode which may be regarded as a mode which is more
privileged than a secure mode. privileged mode. However, in many examples of the
apparatus are arranged to provide resetting or booting in a secure mode which is
possible because of the direct switching allowed between the secure mode and the

monitor mode.

As described with reference to Figure 2, in the secure domain, and in a secure
mode, a secure kernel 80 (or operating system) functions, and one or more secure
application programs 82, 84 may be run under the secure kernel 80. The secure kernel
and/or the secure application program or any other program code running in a secure

mode is allowed access to both secure and non-secure memory.
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Whilst examples of this invention have been described with reference to
apparatus having a processor, the invention may be implemented by a computer
program which when run on a suitable processor configure s the processor to operate

as described in this section.

A description of an alternative embodiment(s) of the present technique
considered from a programmer’s model view is given below in relation to Figures 21

to 23 as follows:

In the following description, we will use the following terms that must be
understood in the context of an ARM processor as designed by ARM Limited, of
Cambridge, England.

- S bit : Secure state bit, contained in a dedicated CP15 register.

. “Secure/Non-Secure state’. This state is defined by the S bit value. It indicates
whether the core may access the Secure world (when it is in Secure state, i.e. S=1) or is
restricted to the Non-secure world only (S=0). Note that the Monitor mode (see further)
overrides the S bit status. ‘

- "Non-Secure World' groups all hardware/software accessible to non-secure
applications that do not require security.

- 'Secure World' groups all hardware/software (core, memory...) that is only
accessible when we execute secure code.

- Monitor mode: new mode that is responsible for switching the core between the

Secure and Non-secure state.

As a brief summary
- The core can always access the Non-secure world.
- The core can access the Secure world only when it is in Secure state or
Monitor mode.
- SMI: Sofiware Monitor Interrupt: New instruction that will make the core enter
the Monitor mode through a dedicated SMI exception vector. 'Thread ID" is the
identifier associated to each thread (controlled by an OS). For some types of OS where
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the OS runs in non-secure world, each time a secure function is called, it will be
necessary to pass as a parameter the current thread ID to link the secure function to its
calling non-secure application. The secure world can thus support multi-threads.

- Secure Interrupt defines an interrupt generated by a Secure peripheral.
Programmer’s model

Carbon Core Overview

The concept of the Carbon architecture, which is the term used herein for
processors using the present techniques, consists in separating two worlds, one secure

and one non-secure. The secure world must not leak any data to non-secure world.

In the proposed solution, the secure and non-secure states will share the same
(existing) register bank. As a consequence, all current modes present in ARM cores

(Abort, Undef, Irq, User, ...) will exist in each state.

The core will know it operates in secure or non-secure state thanks to a new

state bit, the S (secure) bit, instantiated in a dedicated CP13 register.

Controlling which instruction or event is allowed to modify the S bit, i.e. to
change from one state to the other, is a key feature of the security of the system. The
current solution proposes to add a new mode, the Monitc;r mode, that will “supervise”
switching between the two states. The Monitor mode, by writing to the appropriate
CP15 register, would be the only one allowed to alter the S bit.

Finally, we propose to add some flexibility to the exception handling. All
exceptions, apart from the reset, would be handled either in the state where they
happened, or would be directed to the Monitor mode. This would be left configurable
thanks to a dedicated CP15 register.

The details of this solution are discussed in the following paragraphs.
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Processor state and modes

Carbon new features

Secure or Non-secure state (S bit)

One major feature of the Carbon core is the presence of the S bit, which
indicates whether the core is in a Secure (S=1) or Non-secure (S=0) state. When in
Secure state, the core would be able to access any data in the Secure or Non-secure

worlds. When in Non-Secure state, the core would be restricted to the Non-secure

world only.

The only exception to this rule concerns the Monitor mode, which overrides
the S bit information. Even when S=0, the core will perform Secure privileged

accesses when it is in Monitor mode. See next paragraph, Monitor mode, for further

information

The S bit can only be read and written in Monitor mode. Whatever the S bit
value, if any other mode tries to access it, this will be either ignored or result in an

Undefined exception.

All exceptions, apart from Reset, have no effect on the Secure state bit. On
Reset, the S bit will be set, and the core will start in Supervisor mode. Refer to the

boot section for detailed information.

Secure/Nonsecure states are separate and operate independently of the

ARM/Thumb/Java states.

Monitor mode
One other important feature of the Carbon system is the creation of a new
mode, the Monitor mode. This will be used to control the core switching between the

Secure and Non-secure states . It will always be considered as a secure mode, i.e.
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whatever the value of the S bit, the core will always perform Secure Privileged

accesses to the external world when it is in Monitor mode.

Any Secure privileged mode (i.e. privileged modes when S=1) would be able
to switch to Monitor mode by simply writing the CPSR mode bits (MSR, MOVS, or
equivalent instruction). However, this would be forbidden in any Non-secure mode or
Secure user mode. If this ever happens, the instruction would be ignored or cause an

exception.

There may be a need for a dedicated CPSR violation exception. This exception
would be raised by any attempt to switch to Monitor mode by directly writing the

CPSR from any Non-secure mode or Secure user mode.

All exceptions except Reset are in effect disabled when Monitor mode is
active:
e all interrupts are masked;
e all memory exceptions are either ignored or cause a fatal exception.

e undefined/SWI/SMI are ignored or cause a fatal exception.

When entering Monitor mode, the interrupts are automatically disabled and
the system monitor should be written such that none of the other types of exception

can happen while the system monitor is running.

Monitor mode needs to have some private registers. This solution proposes
that we only duplicate the minimal set of registers, i.e R13 (sp_mon), R14 (Ir_mon)

and SPSR (spsr_mon).

In Monitor mode, the MMU will be disabled (flat address map) as well as the
MPU or partition checker (the Monitor mode will always perform secure privileged

external accesses). However, specially programmed MPU region attributes
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(cacheability, ...) would still be active. As an alternative the Monitor mode may use

whatever mapping is used by the secure domain.

New instruction

This proposal requires adding one new instruction to the existing ARM

instruction set.

The SMI (Software Monitor Interrupt) instruction would be used to enter the
Monitor mode, branching at a fixed SMI exception vector. This instruction would be

mainly used to indicate to the Monitor to swap between the Non-secure and Secure

State.

As an alternative (or in addition) it would be possible to add a new instruction
to allow the Monitor mode to save/restore the state of any other mode onto/from the

Monitor stack to improve context switching performance.

Processor Modes

As discussed in the previous paragraph, only one new mode is added in the
core, the Monitor mode. All existing modes remain available, and will exist both in
the secure and non-secure states.

In fact, Carbon users will see the structure illustrated in Figure 21.

Processor Registers

This embodiment proposes that the secure and the non-secure worlds share the
same register bank. This implies that, when switching from one world to the other
through the Monitor mode, the system monitor will need to save the first world

context, and create (or restore) a context in the second world.

Passing parameters becomes an easy task: any data contained in a register in
the first world will be available in the same register in the second world once the

system monitor has switched the S bit.
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However, apart from a limited number of registers dedicated to passing
parameters, which will need to be strictly controlled, all other registers will need to be
flushed when passing from Secure to Non-secure state in order to avoid any leak of

Secure data. This will need to be ensured by the Monitor kernel.

The possibility of implementing a hardware mechanism or a new instruction to
directly flush the registers when switching from Secure to Non-secure state is also a

possibility.

Another solution proposed involves duplicating all (or most of) the existing
register bank, thus having two physically separated register banks between the Secure
and Non-secure state. This solution has the main advantage of clearly separating the
secure and non-secure data contained in the registers. It also allows fast context
switching between the secure and non-secure states. However, the drawback is that
passing parameters through registers becomes difficult, unless we create some

dedicated instructions to allow the secure world access the non-secure registers

Figure 22 illustrates the available registers depending on the processor mode.

Note that the processor state has no impact on this topic.

Exceptions

Secure interrupts

Current Solution .

It is currently proposed to keep the same interrupt pins as in the current cores,
i.e. IRQ and FIQ. In association with the Exception Trap Mask register (defined later
in the document), there should be sufficient flexibility for any system to implement

and handle different kind of intef;ﬁpts.

VIC enhancement
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We could enhance the VIC (Vectored Interrupt Controller) in the following
way: the VIC may contain one Secure information bit associated to each vectored
address. This bit would be programmable by the Monitor or Secure privileged modes
only. It would indicate whether the considered interrupt should be treated as Secure,

5  and thus should be handled on the Secure side.

We would also add two new Vector Address registers, one for all Secure
Interrupts happening in Non-Secure state, the other one for all Non-Secure interrupts
happening in Secure state.

10
The S bit information contained in CP15 would be also available to the VIC as

anew VIC input.

The following table summarizes the different possible scenarios, depending on
15  the status of the incoming interrupt (Secure or Non-secure, indicated by the S bit
associated to each interrupt line) and the state of the core (S bit in CP15 = S input

signal on the VIC).

Core in secure state Core in Non-secure state

(CP15 — S=1) (CP15 - S=0)
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Secure

I[nterrupt

No need to switch between worlds.
The VIC directly presents to the core the

Secure address associated to the interrupt line.

where it should find the associated ISR.

The core simply has to branch at this addressithe address contained in the Vecto

The VIC has no Vector associate
to this interrupt in the Non-secure

domain. It thus presents to the corg

address register dedicated to all
Secure interrupts occurring in Non-
secure world. The core, still in Non-
secure world, then branches to this
address, where it should find an|
SMI instruction to switch to Secure
world. Once in Secure world, it
would be able to have access to the]

correct ISR.

Non-
Secure

‘ Interrupt

The VIC has no Vector associated to this

interrupt in the Secure domain. It thus

o need to switch between worlds.

The VIC directly presents to the

Presents to the core the address contained 1

world. The core, still in Secure world, the

branches to this address, where it should find|

able to have access to the correct ISR.

the Vector address register dedicated to allassociated to the interrupt line. The

Non-secure interrupts occurring in Securecore simply has to branch at this

an SMI instruction to switch to Non-secure

world. Once in Non-secure world, it would bej

core the Non-secure address

address where it should find the

associated Non-secure ISR.

Exception handling configurability

In order to improve Carbon flexibility, a

new register, the Exception Trap

Mask, would be added in CP15. This register would contain the following bits:

Bit 0: Undef exception

Bit 1: SWI exception

Bit 2: Prefetch abort exception
Bit 3: Data abort exception

(Non-secure state)
(Non-secure state)
(Non-secure state)

(Non-secure state)
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- Bit 4: IRQ exception (Non-secure state)

- Bit 5: FIQ exception (Non-secure state)

- Bit 6: SMI exception (both Non-secure/Secure states)
- Bit 16: Undef exception (Secure state)

- Bit 17: SWI exception (Secure state)

- Bit 18: Prefetch abort exception (Secure state)

- Bit 19: Data abort exception (Secure state)

- Bit 20: IRQ exception (Secure state)

- Bit 21: FIQ exception (Secure state)

The Reset exception does not have any corresponding bit in this register. Reset

will always cause the core to enter the Secure supervisor mode through its dedicated

vector.

If the bit is set, the corresponding exception makes the core enter the Monitor
mode. Otherwise, the exception will be handled in its corresponding handler in the

world where it occurred.

This register would only be visible in Monitor mode. Any instruction trying to

access it in any other mode would be ignored.

This register should be initialized to a system-specific value, depending upon

whether the system supports a monitor or not. This functionality could be controlled

by a VIC.

Exception vectors tables

As there will be separate Secure and Non-secure worlds, we will also need

separate Secure and Non-secure exception vectors tables.
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Moreover, as the Monitor can also trap some exceptions, we may also need a

third exception vectors table dedicated to the Monitor.

The following table summarizes those three different exception vectors tables:

S
In non-secure memory:
ddress xception ode lAutomatically accessed when

0x00 - -

0x04 Undef Undef Undefined instruction executed when core is
in Non-Secure state and Exception Trap
Mask reg [Non-secure Undef]=0

0x08 SWI Supervisor SWI instruction executed when core is in|
Non-Secure state and Exception Trap Mask
reg [Non-secure SVVI]=O

0x0C Prefetch Abort Abort /Aborted instruction when core is in Non-
Secure state and Exception Trap Mask reg
[Non-secure PAbort]=0

0x10 Pata Abort Abort FAborted data when core is in Non-Secure
state and Exception Trap Mask reg [Non-
secure DAbort]=0

0x14 Reserved

0x18 TRQ TRQ TIRQ pin asserted when core is in Non-
Secure state and Exception Trap Mask reg
[Non-secure IRQJ=0

0x1C FIQ FIQ FIQ pin asserted when core is in Non-
Secure state and Exception Trap Mask reg
[Non-secure FIQ]=0

In secure memory:

Address xception F\’Iode Automatically accessed when
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0x00 Reset™ Supervisor [Reset pin asserted

0x04 ndef Undef Undefined instruction executed when core is
in Secure state and Exception Trap Maslﬁ
reg [Secure Undef]=0

0x08 SWI Supervisor |SWI instruction executed when core is in
Secure state and Exception Trap Mask reg
[Secure SWI]=0

0x0C Prefetch Abort IAbort Aborted instruction when core is in Securﬁ
state and Exception Trap Mask reg [Secure
FAbort]=0

0x10 Data Abort Abort Aborted data when core is in Secure state
and Exception Trap Mask reg [Secure
Dabort]=0

0x14 Reserved

0x18 RQ Q [RQ pin asserted when core is in Secure
state and Exception Trap Mask reg [Secure ‘
RQ]=0

0x1C FIQ FIQ FIQ pin asserted when core is in Secur

state and Exception Trap Mask reg [Secure
FIQ]=0

* Refer to “Boot” section for further explanation on the Reset mechanism

In Monitor memory (flat mapping):

Address [Exception Mode Automatically accessed when
0x00 . .
0x04 Undef Monitor Undefined instruction executed when

Core is in Secure state and Exception Trap,
Mask reg [Secure Undef]=1
Core is in Non-secure state and Exception]

Trap Mask reg [Non-secure Undef]=1




WO 2004/046924

PCT/GB2003/004615

53

0x08

SWI

onitor

SWI instruction executed when

Core is in Secure state and Exception Trap
Mask reg [Secure SWIJ=1

Core is in Non-secure state and Exception

Trap Mask reg [Non-secure SWIJ=1

0x0C

FPrefetch Abort

Monitor

Aborted instruction when

Core is in Secure state and Exception Trap
Mask reg [Secure IAbort]=1

Core is in Non-secure state and Exception

Trap Mask reg [Non-secure Iabort]=1

0x10

Data Abort

Nonitor

Aborted data when

Core is in Secure state and Exception Trap|
Mask reg [Secure PAbort}=1

Core is in Non-secure state and Exception|

Trap Mask reg [Non-secure Pabort}=1

0x14

SMI

Monitor

0x18

[RQ

Monitor

- IRQ pin asserted when

core is in Secure state and Exception Trap
Mask reg [Secure IRQ]=1

core is in Non-secure state and Exception|

[Trap Mask reg [Non-secure IRQJ=1

0x1C

FIQ

Monitor

- FIQ pin asserted when

core is in Secure state and Exception Trap|
Mask reg [Secure FIQ]=1

core is in Non-secure state and Exception

Trap Mask reg [Non-secure FIQ]=1

In Monitor mode, the exceptions vectors may be duplicated, so that each

exception will have two different associated vector:

One for the exception arising in Non-secure state

One for the exception arising in Secure state
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This may be useful to reduce the exception latency, because the monitor

kernel does not have any more the need to detect the originating state where the

exception occurred.

Note that this feature may be limited to a few exceptions, the SMI being one

of the most suitable candidates to improve the switching between the Secure and Non-

secure states.

Switching between worlds
When switching between states, the Monitor mode must save the context of

the first state on its Monitor stack, and restore the second state context from the

Monitor stack.

The Monitor mode thus needs to have access to any register of any other

modes, including the private registers (r14, SPSR, ..).

To handle this, the proposed solution consists in giving any privilege mode in

Secure state the rights to directly switch to Monitor mode by simply writing the

CPSR.

With such a system, switching between worlds is performed as follows:
- enter Monitor mode
- set the S bit
- switch to supervisor mode - save the supervisor registers on the MONITOR
stack (of course the supervisor mode will need to have access to the Monitor stack
pointer, but this can be easily done, for example by using a common register (RO to RS))
- switch to System mode - save the registers (=same as the user mode) on the
Montitor stack
- IRQ registers on the Monitor stack

etc ... for all modes
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Once all private registers of all modes are saved, revert to Monitor mode with a

simple MSR instruction (= simply write Monitor value in the CPSR mode field).

The other solutions have also been considered:

Add a new instruction that would allow the Monitor to save other modes' private

registers on its own stack.

Implement the Monitor as a new "state", i.e. being able to be in Monitor state (to

have the appropriate access rights) and in IRQ (or any other) mode, to see the IRQ (or

any other) private registers.

mode.

Basic Scenario (See Figure 23)

Thread 1 is running in non-secure world (Sbit=0)

This thread needs to perform a secure function => SMI instruction.

The SMI instruction makes the core enter the Monitor mode through a non-
secure SMI vector.

LR_mon and SPSR_mon are used to save the PC and CPSR of the non secure

At this stage the S bit remains unchanged, although the system is now in a
secure state.

The monitor kernel saves the non-secure context on the monitor.

It also pushes LR_mon and SPSR_mon.

The monitor kernel then changes the “S” bit by writing into the CP15 register.
In this embodiment the monitor kernel keeps track that a “secure thread 1”
will be started in the secure world (e.g. by updating a Thread ID table).
Finally, it exits the monitor mode and switches to secure supervisor mode
(MOVS instruction after having updated LR_mon and SPSR_mon?).

The secure kernel dispatches the application to the right secure memory
location, then switches to user mode (e.g. using a MOVS).

The secure function in executed in secure user mode. Once finished, it calls

an “exit” function by performing an appropriate SWI.
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5. The SWI instruction makes the core enter the secure svc mode through a
dedicated SWI vector, that in turn performs the “exit” function. This “exit”
function ends with an “SMI” to switch back to monitor mode.

6. The SMI instruction makes the core enter the monitor mode through a
dedicated secure SMI vector.

LR_mon and SPSR_mon are used to save the PC and CPSR of the Secure sve
mode.

The S bit remains unchanged (i.e. Secure State).

The monitor kernel registers the fact that secure thread 1 is finished (removes
the secure thread 1 ID from the thread ID table?).

It then changes the “S” bit by writing into the CP15 register, returning to non-
secure state.

The monitor kernel restores the non-secure context from the monitor stack.

It also load the LR_mon and CPSR_mon previously saved in step 2.

Finally, it exits monitor mode with a SUBS, that will make the core return in
non-secure user mode, on the instruction

7. Thread 1 can resume normally.

Referring to Figure 6, all of the registers are shared between the secure and
non-secure domains In monitor mode, switching takes place switching the registers
from one of the secure and non-secure domains to the other. That involves saving the
state of a register existing in one domain and writing a new state to the register (or
restoring a previously saved state in the register) in the other domain as is also

described in the section 'Switching between Worlds' above.

It is desirable to reduce the time taken to perform this switch. To reduce the
time taken to perform the switch, the shared registers are disabled when switching
between the secure and non-secure domains retaining unchanged the data values
stored therein. For example, consider a switch from the non-secure domain to the
secure domain. Assume that for example the FIQ registers shown in Figure 6 are not

needed in the secure world. Thus, those registers are disabled and there is no need to
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switch them to the secure domain and there is no need to save the contents of those

registers.

Disabling of the registers may be achieved in several ways. One way is to
lock out the mode which uses those registers. That is done by writing a control bit in a

CP15 register indicating the disabling of that mode.

Alternatively, access to the registers may be disabled on an instruction by
instruction basis again by writing control bits in a CP15 register. The bits written in
the CP15 register relate explicitly to the register, not the mode, so the mode is not

disabled but access to the register in the mode is disabled.

The FIQ registers store data associated with a fast interrupt. If the FIQ
register(s) are disabled and a fast interrupt occurs, the processor signals an exception
in the monitor. In response to an exception, the monitor mode is operable to save any
data values associated with one domain and stored in the said disabled register and to

load into that register new data values associated with the other domain and then re-

enable the FIQ mode registers.

The processor may be arranged so that when in the monitor mode all banked
registers are disabled when the processor switches domains. Alternatively, the
disabling of the registers may be selective in that some predetermined ones of the
shared registers are disabled when switching domains and others may be disabled at

the choice of the programmer.

The processor may be arranged so that when switching domains in the monitor
mode, one or more of the shared registers are disabled, and one or more others of the
shared registers have their data saved when existing one domain, and have new data

loaded in the other domain. The new data may be null data.
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Figure 24 schematically illustrates the concept of adding a secure processing
option to a traditional ARM core. The diagram schematically shows how a processor
that contains a secure processing option can be formed by adding a secure processing
option to an existing core. If the system is to be backwards compatible with an
existing legacy operating systern, it is intuitive to think of the legacy system operating
in the traditional non-secure part of the processor. However, as is shown
schematically in the lower part of the Figure and is detailed further below, it is in fact

in the secure portion of the system that a legacy system operates.

Figure 25 shows a processor having a secure and non-secure domain and
illustrating reset and is similar to Figure 2. Figure 2 illustrates a processor that is
adapted to run a security sensitive type of operation with a secure OS system
controlling processing in the secure domain and a non-secure OS system controlling
processing in the non-secure domain. The processor is however also backwards
compatible with a traditional legacy operating system and thus, the processor may

operate in a security insensitive way using a legacy operating system.

As is shown in Figure 25, the reset is in the secure domain, and whatever the
type of operation reset occurs here with the S-bit or security status flag set. In the
case of a security insensitive type of operation, reset occurs in the secure domain and
processing then continues within the secure domain. The legacy operating system

controlling processing is however unaware of the security aspects of the system.

As is shown in Figure 25 reset is performed to set the address at which to start
processing within the secure supervisor mode whether processing is to be secure
sensitive or is in fact secure insensitive. Once reset has been performed the additional

tasks present in a boot or reboot mechanism are then performed. The boot mechanism

is described below.

Boot mechanism

The boot mechanism must respect the following features:



10

15

20

25

30

WO 2004/046924 PCT/GB2003/004615

59

- Keep compatibility with legacy OSes.

- Boot in most privileged mode to ensure the security of the system.
As a consequence, Carbon cores will boot in Secure Supervisor mode.
The different systems will then be:

- For systemé wanting to run legacy OSes, the S bit is not taken into account
and the core will just see it boots in Supervisor mode.

- For systems wanting to use the Carbon features, the core boots in Secure
privileged mode which should be able to configure all secure protections in the

system (potentially after swapping to Monitor mode)

With respect to the details of the boot mechanism given above the processor of
embodiments of the present invention resets the processor to start processing in the
secure supervisor mode in all cases. In the case of a security insensitive type of
operation the operating system is in effect operating in the secure aomain although
security is not here an issue, because the S bit is set (although the operating system is
unaware of this). This has the advantage that parts of the memory that are

inaccessible from the non-secure domain are accessible in this situation.

Booting in secure supervisor mode in all cases is also advantageous in security
sensitive systems as it helps ensure the security of the system. In secure sensitive
systems, the address provided at boot points to where the boot program is stored in
secure supervisor mode and thus, enables the system to be configured as a secure
system and to switch to monitor mode. Switching from secure supervisor mode to
monitor mode is allowed in general and enables the secure system at an appropriate

time to start processing in monitor mode to initialise monitor mode configuration.

Figure 26 illustrates at step 1 a non-secure thread NSA being executed by a
non-secure operating system. At step 2 the non-secure thread NSA makes a call to the
secure domain via the monitor mode running a monitor mode program at step 3. The
monitor mode program changes the S-bit to switch domain and performs any

necessary context saving and context restoring prior to moving to the secure operating
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system at step 5. The corresponding secure thread SA is then executed before it is
subject to an interrupt irq at step 6. The interrupt handling hardware triggers a return
to the monitor mode at step 7 where it is determined as to whether the interrupt will
be handled by the secure operating system or the non-secure operating system. In this
case, the interrupt is handled by the non-secure operating system starting at step 9.
When this interrupt has been handled by the non-secure operating system, the non-
secure thread NSA is resumed as the current task in the non-secure operating system
prior to a normal thread switching operation at step 11. This thread switching may be
the result of a timing event or the like. A different thread NSB is executed in the non-
secure domain by the non-secure operating system at step 12 and this then makes a
call to the secure domain via the monitor domain/program at step 14. The monitor
program at step 7 has stored a flag, used some other mechanism, to indicate that the
secure operating system was last suspended as a result of an interrupt rather than
having been left because a secure thread had finished execution or due to a normal
request to leave. Accordingly, since the secure operating system was suspended by an
interrupt, the monitor program at step 15 re-enters the secure operating system using a
software faked interrupt which specifies a return thread ID (e.g. an identifier of the
thread to be started by the secure operating system as requested by the non-secure
thread NSB, as well as other parameter data). These parameters of the software faked

interrupt may be passed as register values.

The software faked interrupt triggers a return interrupt handler routine of the
secure operating system at step 15. This return interrupt handler routine examines the
return thread ID of the software faked interrupt to determine whether or not this
matches the thread ID of the secure thread SA which was interrupted the last time the
secure operating system was executed prior to its suspension. In this case, there is not
a match and accordingly at step 16 the secure operating system is triggered to perform
a thread switch to the return thread as specified by the non-secure thread NSB after
the cbntext of the secure thread SA has been saved. The secure thread SA can then

later be restarted from the point at which it was interrupted as required.
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Figure 27 schematically illustrates another example of the type of behaviour
illustrated in Figure 26. In this example whilst processing proceeds under control of
the non-secure operating system to handle the irq, there is no non-secure thread switch
and accordingly when the software faked interrupt is received by the‘ return interrupt
handler of the secure operating system it determines that no thread switch is required

and simply resumes the secure thread SA at step 15.

Figure 28 is a flow diagram schematically illustrating the processing
performed by the return thread handler. At step 4002 the return thread handler is
started. At step 4004 the return thread identifier from the software faked interrupt is
examined and compared with the currently executing secure thread when the secure
operating system was suspended. If these match, then processing proceeds to step
4006 at which the secure thread is resumed. If the comparison at step 4004 is not
matched, then processing proceeds to step 4008 at which the context of the old secure
thread is saved, (for subsequent resumption) prior to a switch being made to the new
secure thread at step 4010. The new thread might already be under way and so step

4010 is a resumption.

Figure 29 schematically illustrates processing whereby a slave secure
operating system may follow task switches performed by a master non-secure
operating system. The master non-secure operating system may be a legacy operating
system with no mechanisms for communicating and co-ordinating its- activities to
other operating systems and accordingly operate only as a master. As an initial entry
point in Figure 29 the non-secure operating system is executing a non-secure thread
NSA. This non-secure thread NSA makes a call to a secure thread which is to be
executed by the secure operating system using a software interrupt, an SMI call. The
SMI call goes to a monitor program executing in a monitor mode at step 2 whereupon
the monitor program performs any necessary context saving and switching before
passing the call onto the secure operating system at step 4. The secure operating
system then starts the corresponding secure thread SA. This secure thread may return

control via the monitor mode to the non-secure operating system, such as as a result of
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a timer event or the like. When the non-secure thread NSA again passes control to the
secure operating system at step 9 it does so by reissuing the original software
interrupt. The software interrupt includes the non-secure thread ID identifying NSA,
the secure thread ID of the target secure thread to be activated, i.e. the thread ID

identifying secure thread SA as well as other parameters.

When the call generated at step 9 is passed on by the monitor program and
received at step 12 in the secure domain by the secure operating system, the non-
secure thread ID can be examined to determine whether or not there has been a
context switch by the non-secure operating system. The secure thread ID of the target
thread may also be examined to see that the correct thread under the secure operating
system is restarted or started as a new thread. In the example of Figure29, no thread

switch is required in the secure domain by the secure operating system.

Figure 30 is similar to Figure 29 except that a switch in thread occurs at step 9
in the non-secure domain under control of the non-secure operating system.
Accordingly, it is a different non-secure thread NSB which makes the software
interrupt call across to the secure operating system at step 11. At step 14, the secure
operating system recognises the different thread ID of the non-secure thread NSB and
accordingly performs a task switch involving saving the context of the secure thread

SA and starting the secure thread SB.

Figure 31 is a flow diagram schematically illustrating processing performed by
the secure operating system when receiving a software interrupt as a call to start a
thread or resume a thread of the secure operating system. At step 4012 the call is
received. At step 4014 the parameters of the call are examined to determine if they
match the currently active secure thread upon the secure operating system. If a match
occurs, then this secure thread is restarted at step 4016. If a match does not occur,
then processing proceeds to step 4018 where a determination is made as to whether or
not the newly requested thread is available. The newly requested thread might be

unavailable due to a reason such as it being or requiring an exclusive resource which
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is already in use by some other thread executing on a secure operating system. In
such a case, the call is rejected at step 4020 with an appropriate message being
returned to the non-secure operating system. If the determination at step 4018 is that
the new thread is available, then processing proceeds to step 4022 at which the
context of the old secure thread is saved for possible later resumption. At step 4024 a
switch is made to the new secure thread as specified in the software interrupt call

made to the secure operating system.

Figure 32 schematically illustrates operation whereby a priority inversion may
occur when handling interrupts within a system having multiple operating systems

with different interrupts being handled by different operating systems.

Processing starts with the secure operating system executing a secure thread
SA. This is then interrupted by a first interrupt Intl. This triggers the monitor
program within the monitor mode to determine whether or not the interrupt is to be
handled in the secure domain or the non-secure domain. In this case, the interrupt is
to be handled in the secure domain and processing is returned to the secure operating
system and the interrupt handling routine for interrupt Intl is started. Partway
through execution of the interrupt handling routine for Intl, a further interrupt Int2 is
received which has a higher priority. Thus, the interrupt handler for Int 1 is stopped
and the monitor program in the monitor mode used to determine where the interrupt
Int2 is to be handled. In this case the interrupt Int2 is to be handled by the non-secure
operating system and accordingly control is passed to the non-secure operating system
and the interrupt handler for Int2 started. When this interrupt handler for the interrupt
Int2 has completed, the non-secure operating system has no information indicating
that there is a pending interrupt Intl for which servicing has been suspended in the
secure domain. Accordingly, the non-secure operating system may perform some
further processing, such as a task switch or the starting of a different non-secure

thread NSB, whilst the original interrupt Int1 remains unserviced.
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Figure 33 illustrates a technique whereby the problems associated with the
operation of Figure 32 may be avoided. When the interrupt Intl occurs, the monitor
program passes this to the non-secure domain where a stub interrupt handler is started.
This stub interrupt handler is relatively small and quickly returns processing to the
secure domain via the monitor mode and iriggers an interrupt handler for the interrupt
Intl within the secure domain. The interrupt Intl is primarily processed within the
secure domain and the starting of the stub interrupt handler in the non-secure domain
can be regarded as a type of placeholder to indicate to the non-secure domain that the

interrupt is pending in the secure domain.

The interrupt handler in the secure domain for the interrupt Intl is again
subject to a high priority Int2. This triggers execution of the interrupt handler for the
interrupt Int2 in the non-secure domain as before. However, in this case, when that
interrupt handler for Int2 has finished, the non-secure operating system has data
indicating that the stub interrupt handler for interrupt Intl is still outstanding and
accordingly will resume this stub interrupt handler. This stub interrupt handler will
appear as if it were suspended at the point at which it made its call back to the secure
domain and accordingly this call will be re-executed and thus the switch made to the
secure domain. Once back in the secure domain, the secure domain can itself re-start
the interrupt handler for the interrupt Intl at the point at which it was suspended.
When the interrupt handler for the interrupt Intl has completed within the secure
domain, a call is made back to the non-secure domain to close down the stub interrupt

handler in the non-secure domain before the originally executing secure thread SA is

resumed.

Figure 34 schematically illustrates different types of interrupt with their
associated priorities and how they may be handled. High priority interrupts may be
handled using purely secure domain interrupt handlers providing there is no higher
priority interrupt that is handled by the non-secure domain. Once there is an interrupt
having a priority higher than subsequent interrupts and which is handled in the non-

secure domain, then all lower interrupts must either be handled purely in the non-
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secure domain or utilise the stub interrupt handler technique illustrated in Figure 33
whereby the non-secure domain can keep track of these interrupts even though their

main handling is occurring within the secure domain.

As mentioned earlier, the monitor mode is used to perform switching between
the secure domain and the non-secure domain. In embodiments where registers are
shared between the two different domains, this involves saving the state within those
registers into memory, and then loading the new state for the destination domain from
memory into those registers. For any registers which are not shared between the two
domains, the state need not be saved away, since those registers will not be accessed
by the other domain, and switching between the states is implemented as a direct
result of switching between the secure and non-secure domains (i.e. the value of the S

bit stored in one of the CP15 registers determines which of the non-shared registers

are used)

Part of the state that needs to be switched whilst in the monitor mode is the
processor configuration data controlling access to memory by the processor. Since
within each domain there is a different view of the memory, for example the secure
domain having access to secure memory for storing secure data, this secure memory
not being accessible from the non-secure domain, it is clear that the processor

configuration data will need to be changed when switching between the domains.

As illustrated in Figure 35, this processor configuration data is stored within
the CP15 registers 34, and in one embodiment these registers are shared between the
domains. Hence, when the monitor mode is switched between the secure domain and
the non-secure domain, the processor configuration data currently in the CP15
registers 34 needs to be switched out of the CP15 registers into memory, and

processor configuration data relating to the destination domain needs to be loaded into

the CP15 registers 34.
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Since the processor configuration data in the CP15 registers typically has én
immediate effect on the access to memory within the system, then it is clear that these
settings would become immediately effective as they are updated by the processor
whilst operating in the monitor mode. However, this is undesirable since it is
desirable for the monitor mode to have a static set of processor configuration data that

_control access to memory whilst in monitor mode.

Accordingly, as shown in Figure 35, in one embodiment of the present
invention monitor mode specific processor configuration data 2000 is provided, which
can be used to override the processor configuration data in the CP15 registers 34
whilst the processor is operating in the monitor mode. This is achieved in the
embodiment illustrated in Figure 35 through the provision of a multiplexer 2010
which receives at its inputs both the processor configuration data stored in the CP15
registers and the monitor mode specific processor configuration data 2000.
Furthermore, the multiplexer 2010 receives a control signal over path 2015 indicating
whether the processor is currently operating in the monitor mode or not. If the
processor is not operating in the monitor mode, then the processor configuration data

“in the CP15 registers 34 is output to the system, but in the event that the processor is
operating in the monitor mode, the multiplexer 2010 instead outputs the monitor
mode specific processor configuration data 2000 to ensure that a consistent set of
processor configuration data is applied while the processor is operating in the monitor

mode.

The monitor mode specific processor configuration data can be hard-coded
within the system, thereby ensuring that it cannot be manipulated. However, it is
possible that the monitor mode specific processor configuration data 2000 could be
made programmable without compromising security, provided that that monitbr mode
specific processor configuration data could only be modified by the processor when
operating in a secure privileged mode. This would allow some flexibility as to the
setting of the monitor mode specific processor configuration data. If the monitor

mode specific processor configuration data is arranged to be programmable, that
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configuration data can be stored in any appropriate place within the system, for

example within a separate set of registers within the CP15 registers 34.

Typically, the monitor mode specific processor configuration data will be set
so as to provide a very secure environment for operation of the processor in the
monitor mode. Hence, in the above-described embodiment, the monitor mode
specific processor configuration data may specify that the memory management unit
30 is disabled whilst the processor is operating in the monitor mode, thereby disabling
any virtual to physical address translation that might otherwise be applied by the
memory management unit. In such a situation, the processor will always be arranged
to directly issue physical addresses when issuing memory access requests, i.e. flat
mapping will be employed. This ensures that the processor can reliably access
memory whilst operating in the monitor mode, irrespective of whether any virtual to

physical address mappings have been tampered with.

The monitor mode specific processor configuration data would also typically
specify that the processor is allowed to access the secure data whilst the processor is
operating in the monitor mode. This is preferably specified by memory permission
data taking the form of a domain status bit, this domain status bit having the same
value that would be specified for the corresponding domain status bit (“S™ bit) within
the secure processor configuration data. Hence, irrespective of the actual value of the
domain status bit stored within the CP15 registers, that value will get overridden by
the domain status bit specified by the monitor mode specific processor configuration

data, to ensure that the monitor mode has access to secure data.

The monitor mode specific processor configuration data may also specify
other data used to control access to parts of the memory. For example, the monitor
mode specific processor configuration data may specify that the cache 38 is not to be

used to access data whilst the processor is operating in the monitor mode.
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In the embodiment described above, it has been assurned that all of the CP15
registers containing processor configuration data are shared between the domains.
However, in an alternative embodiment, a number of the CP15 registers are “banked”,
so that for example there are two registers for storing a particular item of processor
configuration data, one register being accessible in the non-secure domain and
containing the value of that item of processor configuration data for the non-secure
domain, and the other register being accessible in the secure domain and containing

the value of that item of processor configuration data for the secure domain.

One CP15 register that will not be banked is the one containing the “S” bit, but
in principle any of the other CP15 registers may be banked if desired. In such
embodiments, the switching of the processor configuration data by the monitor mode
involves switching out of any shared CP15 registers into memory the processor
configuration data currently in those shared registers, and loading into those shared
CP15 registers the processor configuration data relating to the destination domain.
For any banked registers, the processor configuration data need not be stored away to
memory, and instead the switching will occur automatically as a result of changing

the S bit value stored in the relevant shared CP15 register.

As mentioned earlier, the monitor mode processor configuration data will
include a domain status bit which overrides that stored in the relevant CP15 register
but has the same value as that used for the domain status bit used in the secure domain
(i.e. an S bit value of 1 in the above described embodiments). When a number of the
CP15 registers are banked, this means that at least part of the monitor mode specific
processor configuration data 2000 in Figure 35 can be derived from the secure
processor configuration data stored in banked registers since those registers contents

are not written out to memory during the switching process.

Hence, as an example, since the monitor mode specific processor
configuration data will specify a domain status bit to override that which is otherwise

used when not in monitor mode, and in preferred embodiments this has the same
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value as that used in the secure domain, this means that the logic that selects which of
the banked CP15 registers are accessible will allow the secure banked CP15 registers
to be accessed. By allowing the monitor mode to use this secure processor
configuration data as the relevant part of the monitor mode specific processor
configuration data, a saving in resource can be realised since it is no longer necessary
to provide a separate set of registers for those items of monitor mode specific

processor configuration data.

Figure 36 is a flow diagram illustrating the steps performed to switch the
processor configuration data when a transition between one domain and the other is
required. As mentioned previously, an SMI instruction is issued in order to instigate
the transition between domains. Accordingly, at step 2020, the issuance of an SMI
instruction is awaited. When an SMI instruction is received, the processor proceeds
to step 2030, where the processor begins running the monitor program in monitor
mode, this causing the monitor mode specific processor configuration data to be used
as a result of the control signal on path 2015 into the multiplexer 2010 causing the
multiplexer to switch to that monitor mode specific processor configuration data. As
mentioned earlier, this can be a self-contained set of data, or certain parts of it may be

derived from the secure processor configuration data stored in banked registers.

Thereafter, at step 2040, the current state is saved from the domain issuing the
SMI instruction into memory, this including saving from any shared CP15 registers
the state of the processor configuration data relevant to that domain. Typically, there
will be a portion of memory set aside for the storage of such state. Then, at step 2050,
the state pointer is switched to point to the portion of memory that contains the
corresponding state for the destination domain. Hence, typically, there will be two
portions of memory allocated for storing state information, one allocated for storing

the state for the non-secure domain, and one allocated for storing the state for the

secure domain.
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Once the state pointer has been switched at step 2050, that state now pointed
to by the state pointer is loaded into the relevant shared CP15 registers at step 2060,
this including loading in the relevant processor configuration data for the destination
domain. Thereafter, at step 2070, the monitor program is exited, as is the monitor

mode, and the processor then switches to the required mode in the destination domain.

Figure 37 illustrates in more detail the operation of the memory management
logic 30 of one embodiment of the present invention. The memory management logic
consists of a Memory Management Unit (MMU) 200 and a Memory Protection Unit
(MPU) 220. Any memory access request issued by the core 10 that specifies a virtual
address will be passed over path 234 to the MMU 200, the MMU 200 being
responsible for performing predetermined access control functions, more particularly
for determining the physical address corresponding to that virtual address, and for

resolving access permission rights and determining region attributes.

The memory system of the data processing apparatus comsists of secure
memory and non-secure memory, the secure memory being used to store secure data
that is intended only to be accessible by the core 10, or one or more other master
devices, when that core or other device is operating in a secure mode of operation,

and is accordingly operating in the secure domain.

In the embodiment of the present invention illustrated in Figure 37, the
policing of attempts to access secure data in secure memory by applications running
on the core 10 in non-secure mode is performed by the partition checker 222 within
the MPU 220, the MPU 220 being managed by the secure operating system, also

referred to herein as the secure kernel.

In accordance with preferred embodiments of the present invention a non-
secure page table 58 is provided within non-secure memory, for example within a
non-secure memory portion of external memory 56, and is used to store for each of a

number of non-secure memory regions defined within that page table a corresponding
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descriptor. The descriptor contains information from which the MMU 200 can derive
access control information required to enable the MMU to perform the predetermined

access control functions, and accordingly in the embodiment described with reference

" to Figure 37 will provide information about the virtual to physical address mapping,

the access permission rights, and any region attributes.

Furthermore, in accordance with the preferred embodiments of the present
invention, at least one secure page table 58 is provided within secure memory of the
memory system, for example within a secure part of external memory 56, which again
for a number of memory regions defined within the table provides an associated
descriptor. When the processor is operating in a non-secure mode, the non-secure
page table will be referenced in order to obtain relevant descriptors for use in
managing memory accesses, whilst when the processor is operating in secure mode,

descriptors from the secure page table will be used.

The retrieval of descriptors from the relevant page table into the MMU
proceeds as follows. In the event that the memory access request issued by the core
10 specifies a virtual address, a lookup is performed in the micro-TLB 206 which
stores for one of a number of virtual address portions the corresponding physical
address portions obtained from the relevant page table. Hence, the micro-TLB 206
will compare a certain portion of the virtual address with the corresponding virtual
address portion stored within the micro-TLB to determine if there is a match. The
portion compared will typically be some predetermined number of most significant
bits of the virtual address, the number of bits being dependent on the granularity of
the pages within the page table 58. The lookup performed within the micro-TLB 206
will typically be relatively quick, since the micro-TLB 206 will only include a

relatively few number of entries, for example eight entries

In the event that there is no match found within the micro-TLB 206, then the
memory access request is passed over path 242 to the main TLB 208 which contains a

number of descriptors obtained from the page tables. As will be discussed in more
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detail later, descriptors from both the non-secure page table and the secure page table
can co-exist within the main TLB 208, and each entry within the main TLB has a
corresponding flag (referred to herein as a domain flag) which is settable to indicate
whether the corresponding descriptor in that entry has been obtained from a secure
page table or a non-secure page table. In any embodiments where all secure modes of
operation specify physical addresses directly within their memory access requests, it will
be appreciated that there will not be a need for such a flag within the main TLB, as the

main TLB will only store non-secure descriptors.

Within the main TLB 208, a similar lookup process is performed to determine
whether the relevant portion of the virtual address issued within the memory access
request corresponds with any of the virtual address portions associated with
descriptors in the main TLB 208 that are relevant to the particular mode of operation.
Hence, if the core 10 is operating in non-secure mode, only those descriptors within
the main TLB 208 which have been obtained from the non-secure page table will be
checked, whereas if the core 10 is operating in secure mode, only the descriptors

within the main TLB that have been obtained from the secure page table will be

checked.

If there is a hit within the main TLB as a result of that checking process, then
the access control information is extracted from the relevant descriptor and passed
back over path 242. In particular, the virtual address portion and the corresponding
physical address portion of the descriptor will be routed over path 242 to the micro-
TLB 206, for storage in an entry of the micro-TLB, the access permission rights will
be loaded into the access permission logic 202, and the region attributes will be
loaded into the region attribute logic 204. The access permission logic 202 and region
attribute logic 204 may be separate to the micro-TLB, or may be incorporated within

the micro-TLB.

At this point, the MMU 200 is then able to process the memory access request
since there will now be a hit within the micro-TLB 206. Accordingly, the micro-TLB
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206 will generate the physical address, which can then be output over path 238 onto
the system bus 40 for routing to the relevant memory, this being either on-chip
memory such as the TCM 36, cache 38, etc, or one of the external memory units
accessible via the external bus interface 42. At the same time, the access permission
logic 202 will determine whether the memory access is allowed, and will issue an
abort signal back to the core 10 over path 230 if it determines that the core is not
allowed to access the specified memory location in its current mode of operation. For
example, certain portions of memory, whether in secure memory or non-secure
memory, may be specified as only being accessible by the core when that core is
operating in supervisor mode, and accordingly if the core 10 is seeking to access such
a memory location when in, for example, user mode, the access permission logic 202
will detect that the core 10 does not currently have the appropriate access rights, and
will issue the abort signal over path 230. This will cause the memory access to be
aborted. Finally, the region attribute logic 204 will determine the region attributes for
the particular memory access, such as whether the access is cacheable, bufferable, etc,
and will issue such signals over path 232, where they will then be used to determine
whether the data the subject of the memory access request can be cached, for example

within the cache 38, whether in the event of a write access the write data can be

buffered, etc.

In the event that there was no hit within the main TLB 208, then the
translation table walk logic 210 is used to access the relevant page table 58 in order to
retrieve the required descriptor over path 248, and then pass that descriptor over path
246 to the main TLB 208 for storage therein. The base address for both the non-
secure page table and the secure page table will be stored within registers of CP15 34,
and the current domain in which the processor core 10 is operating, i.e. secure domain
or non-secure domain, will also be set within a register of CP15, that domain status
register being set by the monitor mode when a transition occurs between the non-
secure domain and the secure domain, or vice versa. The content of the domain status
register will be referred to herein as the domain bit. Accordingly, if a translation table

walk process needs to be performed, the translation table walk logic 210 will know in
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which domain the core 10 is executing, and accordingly which base address to use to
access the relevant table. The virtual address is then used as an offset to the base
address in order to access the appropriate entry within the appropriate page table in

order to obtain the required descriptor.

Once the descriptor has been retrieved by the translation table walk logic 210,
and placed within the main TLB 208, a hit will then be obtained within the main TLB,
and the earlier described process will be invoked to retrieve the access control
information, and store it within the micro-TLB 206, the access permission logic 202

and the region attribute logic 204. The memory access can then be actioned by the
MMU 200.

As mentioned earlier, in preferred embodiments, the main TLB 208 can store
descriptors from both the secure page table and the non-secure page table, but the
memory access requests are only processed by the MMU 200 once the relevant
information is stored within the micro-TLB 206. In preferred embodiments, the
transfer of information between the main TLB 208 and the micro-TLB 206 is
monitored By the partition checker 222 located within the MPU 220 to ensure that, in
the event that the core 10 is operating in a non-secure mode, no access conirol
information is transferred into the micro-TLB 206 from descriptors in the main TLB

208 if that would cause a physical address to be generated which is within secure

memory.

The memory protection unit is managed by the secure operating system, which
is able to set within registers of the CP15 34 partitioning information defining the
partitions between the secure memory and the non-secure memory. The partition
checker 222 is then able to reference that partitioning information in order to
determine whether access control information is being transferred to the micro-TLB
206 which would allow access by the core 10 in a non-secure mode to secure
memory. More particularly, in preferred embodiments, when the core 10 is operating

in a non-secure mode of operation, as indicated by the domain bit set by the monitor
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mode within the CP15 domain status register, the partition checker 222 is operable to
monitor via path 244 any physical address portion seeking to be retrieved into the
micro-TLB 206 from the main TLB 208 and to determine whether the physical
address that would then be produced for the virtual address based on that physical
address portion would be within the secure memory. In such circumstances, the
partition checker 222 will issue an abort signal over path 230 to the core 10 to prevent

the memory access from taking place.

It will be appreciated that in addition the partition checker 222 can be arranged
to actually prevent that physical address portion from being stored in the micro-TLB
206 or alternatively the physical address portion may still be stored within the micro-
TLB 206, but part of the abort process would be to remove that incorrect physical
address portion from the micro-TLB 206, for example by flushing the micro-TLB

206.

Whenever the core 10 changes via the monitor mode between a non-secure
mode and a secure mode of operation, the monitor mode will change the value of the
domain bit within the CP15 domain status register to indicate the domain into which
the processor’s operation is changing. As part of the transfer process between
domains, the micro-TLB 206 will be flushed and accordingly the first memory access
following a transition between secure domain and non-secure domain will produce a
miss in the micro-TLB 206, and require access information to be retrieved from main

TLB 208, either directly, or via retrieval of the relevant descriptor from the relevant

page table.

By the above approach, it will be appreciated that the partition checker 222
will ensure that when the core is operating in the non-secure domain, an abort of a
memory access will be generated if an attempt is made to retrieve into the micro-TLB

206 access control information that would allow access to secure memory.
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If in any modes of operation of the processor core 10, the memory access
request is arranged to specify directly a physical address, then in that mode of
operation the MMU 200 will be disabled, and the physical address will pass over path
236 into the MPU 220. In a secure mode of operation, the access permission logic
224 and the region attribute logic 226 will perform the necessary access permission
and region attribute analysis based on the access permission rights and region
attributes identified for the corresponding regions within the partitioning information.
registers within the CP15 34. If the secure memory location seeking to be accessed is
within a part of secure memory only accessible in a certain mode of operation, for
example secure privileged mode, then an access attempt by the core in a different
mode of operation, for example a secure user mode, will cause the access permission
logic 224 to generate an abort over path 230 to the core in the same way that the
access permission logic 202 of the MMU would have produced an abort in such
circumstances. Similarly, the region attribute logic 226 will generate cacheable and
bufferable signals in the same way that the region attribute logic 204 of the MMU
would have generated such signals for memory access requests specified with virtual
addresses. Assuming the access is allowed, the access request will then proceed over
path 240 onto the system bus 40, from where it is routed to the appropriate memory

unit.

For a non-secure access where the access request specifies a physical address,
the access request will be routed via path 236 into the partition checker 222, which
will perform partition checking with reference to the partitioning information in the
CP15 registers 34 in order to determine whether the physical address specifies a
location within secure memory, in which event the abort signal will again be

generated over path 230.

The above described processing of the memory management logic will now be
described in more detail with reference to the flow diagrams of Figures 39 and 40.
Figure 39 illustrates the situation in which the program running on the core 10

generates a virtual address, as indicated by step 300. The relevant domain bit within
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the CP15 domain status register 34 as set by the monitor mode will indicate whether
the core is currently running in a secure domain or the non-secure domain. In the
event that the core is running in the secure domain, the process branches to step 302,
where a lookup is performed within the micro-TLB 206 to see if the relevant portion
of the virtual address matches with one of the virtual address portions within the
micro-TLB. In the event of a hit at step 302, the process branches directly to step
312, where the access permission logic 202 performs the necessary access permission
analysis. At step 314, it is then determined whether there is an access permissi;)n
violation, and if there is the process proceeds to step 316, where the access permission
logic 202 issues an abort over path 230. Otherwise, in the absence of such an access
permission violation, the process proceeds from step 314 to step 318, where the
memory access proceeds. In particular the region attribute logic 204 will output the
necessary cacheable and bufferable attributes over path 232, and the micro-TLB 206

will issue the physical address over path 238 as described earlier.

If at step 302 there is a miss in the micro-TLB, then a lookup process is
performed within the main TLB 208 at step 304 to determine whether the required
secure descriptor is present within the main TLB. If not, then a page table walk
process is executed at step 306, whereby the translation table walk logic 210 obtains
the required descriptor from the secure page table, as described earlier with reference
to Figure 37. The process then proceeds to step 308, or proceeds directly to step 308

from step 304 in the event that the secure descriptor was already in the main TLB

208.

At step 308, it is determined that the main TLB now contains the valid tagged
secure descriptor, and accordingly the process proceeds to step 310, where the micro-
TLB is loaded with the sub-section of the descriptor that contains the physical address
portion. Since the core 10 is currently running in secure mode, there is no need for

the partition checker 222 to perform any partition checking function.
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The process then proceeds to step 312 where the remainder of the memory

access proceeds as described earlier.

In the event of a non-secure memory access, the process proceeds from step
300 to step 320, where a lookup process is performed in the micro-TLB 206 to
determine whether the corresponding physical address portion from a non-secure
descriptor is present. If it is, then the process branches directly to step 336, where the
access permission rights are checked by the access permission logic 202. It is
important to note at this point that if the relevant physical address portion is within the
micro-TLB, it is assumed that there is no security violation, since the partition
checker 222 effectively polices the information prior to it being stored within the
micro-TLB, such that if the information is within the micro-TLB, it is assumed to be
the appropriate non-secure information. Once the access permission has been
checked at step 336, the process proceeds to step 338, where it is determined whether
there is any violation, in which event an access permission fault abort is issued at step
316. Otherwise, the process proceeds to step 318 where the remainder of the memory

access is performed, as discussed earlier.

In the event that at step 320 no hit was located in the micro-TLB, the process
proceeds to step 322, where a lookup process is performed in the main TLB 208 to
determine whether the relevant non-secure descriptor is present. If not, a page table
walk process is performed at step 324 by the translation table walk logic 210 in order
to retrieve into the main TLB 208 the necessary non-secure descriptor from the non-
secure page table. The process then proceeds to step 326, or proceeds directly to step
326 from step 322 in the event that a hit within the main TLB 208 occurred at step
322. At step 326, it is determined that the main TLB now contains the valid tagged
non-secure descriptor for the virtual address in question, and then at step 328 the
partition checker 222 checks that the physical address that would be generated from
the virtual address of the memory access request (given the physical address portion
within the descriptor) will point to a location in non-secure memory. Ifnot, i.e. if the

physical address points to a location in secure memory, then at step 330 it is
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determined that there is a security violation, and the process proceeds to step 332

where a secure/non-secure fault abort is issued by the partition checker 222.

If however the partition checker logic 222 determines that there is no security
violation, the process proceeds to step 334, where the micro-TLB is loaded with the
sub-section of the relevant descriptor that contains the physical address portion,
whereafter at step 336 the memory access is then processed in the earlier described

manner.

The handling of memory access requests that directly issue a physical address
will now be described with reference to Figure 40. As mentioned earlier, in this
scenario, the MMU 200 will be deactivated, this preferably being achieved by the
setting within a relevant register of the CP15 registers an MMU enable bit, this setting
process being performed by the monitor mode. Hence, at step 350 the core 10 will
generate a physical address which will be passed over path 236 into the MPU 220.
Then, at step 352, the MPU checks permissions to verify that the memory access
being requested can proceed given the current mode of operation, i.e. user, supervisor,
etc. Furthermore, if the core is operating in non-secure mode, the partition checker
222 will also check at step 352 whether the physical address is within non-secure
memory. Then, at step 354, it is determined whether there is a violation, i.e. whether
the access permissionﬁ processing has revealed a violation, or if in non-secure mode,
the partition checking process has identified a violation. If either of these violations
occurs, then the process proceeds to step 356 where an access permission fault abort
is generated by the MPU 220. It will be appreciated that in certain embodiments there
may be no distinction between the two types of abort, whereas in alternative
embodiments the abort signal could indicate whether it relates to an access permission

fault or a security fault.

If no violation is detected at step 354, the process proceeds to step 358, where

the memory access to the location identified by the physical address occurs.
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In preferred embodiments only the monitor mode is arranged to generate
physical addresses directly, and accordingly in all other cases the MMU 200 will be
active and generation of the physical address from the virtual address of the memory

access request will occur as described earlier.

Figure 38 illustrates an alternative embodiment of the memory management
logic in a situation where all memory access requests specify a virtual address, and
accordingly physical addresses are not generated directly in any of the modes of
operation. In this scenario, it will be appreciated that a separate MPU 220 is not
required, and instead the partition checker 222 can be incorporated within the MMU
200. This change aside, the processing proceeds in exactly the same manner as

discussed earlier with reference to Figures 37 and 39.

It will be appreciated that various other options are also possible. For example,
assuming memory access requests may be issued by both secure and non-secure
modes specifying virtual addresses, two MMUs could be provided, one for secure
access requests and one for non-secure access requests, i.e. MPU 220 in Figure 37
could be replaced by a complete MMU. In such cases, the use of flags with the main
TLB of each MMU to define whether descriptors are secure or non-secure would not
be needed, as one MMU would store non-secure descriptors in its main TLB, and the
other MMU would store secure descriptors in its main TLB. Of course, the partition
checker would still be required to check whether an access to secure memory is being

attempted whilst the core is in the non-secure domain.

If, alternatively, all memory access requests directly specified physical
addresses, an alternative implementation might be to use two MPUs, one for secure
access requests and one for non-secure access requests. The MPU used for non-
secure access requests would have its access requests policed by a partition checker to

ensure accesses to secure memory are not allowed in non-secure modes.
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As a further feature which may be provided with either the Figure 37 or the
Figure 38 arrangement, the partition checker 222 could be arranged to perform some
partition checking in order to police the activities of the translation table walk logic
210. In particular, if the core is currently operating in the non-secure domain, then the
partition checker 222 could be arranged to check, whenever the translation table walk
logic 210 is seeking to access a page table, that it is accessing the non-secure page
table rather than the secure page table. If a violation is detected, an abort signal
would preferably be generated. Since the translation table walk logic 210 typically
performs the page table lookup by combining a page table base address with certain
bits of the virtual address issued by the memory access request, this partition checking
may involve, for example, checking that the translation table walk logic 210 is using a
base address of a non-secure page table rather than a base address of a secure page

table.

Figure 41 illustrates schematically the process performed by the partition
checker 222 when the core 10 is operating in a non-secure mode. It will be
appreciated that in normal operation a descriptor obtained from the non-secure page
table should describe a page mapped in non-secure memory only. However, in the
case of software attack, the descriptor may be tampered with in order that it now
describes a section that contains both non-secure and secure regions of memory.
Hence, considering the example in Figure 41, the corrupted non-secure descriptor
may cover a page that includes non-secure areas 370, 372, 374 and secure areas 376,
378, 380. If the virtual address issued as part of the memory access request would
then correspond to a physical address in a secure memory region, for example the
secure memory region 376 as illustrated in Figure 41, then the partition checker 222 is
arranged to generate an abort to prevent that access taking place. Hence, even though
the non-secure descriptor has been corrupted in an attempt to gain access to secure
memory, the partition checker 222 prevents the access taking place. In contrast, if the
physical address that would be derived using this descriptor corresponds to a non-
secure memory region, for example region 374 as illustrated in Figure 41, then the

access control information loaded into the micro-TLB 206 merely identifies this non-
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secure region 374. Hence, accesses within that non-secure memory region 374 can
occur but no accesses into any of the secure regions 376, 378 or 380 can occur. Thus,
it can be seen that even though the main TLB 208 may contain descriptors from the
non-secure page table that have been tampered with, the micro-TLB will only contain

physical address portions that will enable access to non-secure memory regions.

As described earlier, in embodiments where both non-secure modes and
secure modes may generate memory access requests specifying virtual addresses, then
the memory preferably comprises both a non-secure page table within non-secure
memory, and a secure page table within secure memory. When in non-secure mode,
the non-secure page table will be referenced by the translation table walk logic 210,
whereas when in secure mode, the secure page table will be referenced by the
translation table walk logic 210. TFigure 42 illustrates these two page tables. As
shown in Figure 42, the non-secure memory 390, which may for example be within
external memory 56 of Figure 1, includes within it a non-secure page table 395
specified in a CP15 register 34 by reference to a base address 397. Similarly, within
secure memory 400, which again may be within the external memory 56 of Figure 1,
a corresponding secure page table 405 is provided which is specified within a
duplicate CP15 register 34 by a secure page table base address 407. Each descriptor
within the non-secure page table 395 will point to a corresponding non-secure page in
non-secure memory 390, whereas each descriptor within the secure page table 405
will define a corresponding secure page in the secure memory 400. In addition, as
will be described in more detail later, it is possible for certain areas of memory to be

shared memory regions 410, which are accessible by both non-secure modes and

secure modes.

Figure 43 illustrates in more detail the lookup process performed within the
main TLB 208 in accordance with preferred embodiments. As mentioned earlier, the
main TLB 208 includes a domain flag 425 which identifies whether the corresponding
descriptor 435 is from the secure page table or the non-secure page table. This

ensures that when a lookup process is performed, only the descriptors relevant to the
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particular domain in which the core 10 is operating will be checked. Figure 43
illustrates an example where the core is running in the secure domain, also referred to
as the secure world. As can be seen from Figure 43, when a main TLB 208 lookup is
performed, this will result in the descriptors 440 being ignored, and only the
descriptors 445 being identified as candidates for the lookup process.

In accordance with preferred embodiments, an additional process ID flag 430,
also referred to herein as the ASID flag, is provided to identify descriptors from
process specific page tables. Accordingly, processes P1, P2 and P3 may each have
corresponding page tables provided within the memory, and further may have
different page tables for non-secure operation and secure operation. Further, it will be
appreciated that the processes P1, P2, P3 in the secure domain may be entirely -
separate processes to the processes P1, P2, P3 in the non-secure domain.
Accordingly, as shown in Figure 43, in addition to checking the domain when a main

TLB lookup 208 is required, the ASID flag is also checked.

Accordingly, in the example in Figure 43 where in the secure domain, process
P1 is executing, this lookup process identifies just the two entries 450 within the main
TLB 208, and a hit or miss is then generated dependent on whether the virtual address
portion within those two descriptors matches with the corresponding portion of the
virtual address issued by the memory access request. If it does, then the relevant
access control information is extracted and passed to the micro-TLB 206, the access
permission logic 202 and the region attribute logic 204. Otherwise, a miss occurs,
and the translation table walk logic 210 is used to retrieved into the main TLB 208 the
required descriptor from the page table provided for secure process P1. As will be
appreciated by those skilled in the art, there are many techniques for managing the
content of a TLB, and accordingly when a new descriptor is retrieved for storage in
the main TLB 208, and the main TLB is already full, any one of a number of known
techniques may be used to determine which descriptor to evict from the main TLB to

make room for the new descriptor, for example least recently used approaches, etc.
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It will be appreciated that the secure kernel used in secure modes of operation
may be developed entirely separately to the non-secure operating system. "However,
in certain cases the secure kernel and the non-secure operating system development
may be closely linked, and in such situations it may be appropriate to allow secure
applications to use the non-secure descriptors. Indeed, this will allow the secure
applications to have direct access to non-secure data (for sharing) by knowing only
the virtual address. This of course presumes that the secure virtual mapping and the
non-secure virtual mapping are exclusive for a particular ASID. In such scenarios,
the tag introduced previously (i.e. the domain flag) to distinguish between secure and
non-secure descriptors will not be needed. The lookup in the TLB is instead then

performed with all of descriptors available.

In preferred embodiments, the choice between this configuration of the main
TLB, and the earlier described configuration with separate secure and non-secure
descriptors, can be set by a particular bit provided within the CP15 control registers.

In preferred embodiments, this bit would only be set by the secure kernel.

In embodiments where the secure application were directly allowed to use a
non-secure virtual address, it would be possible to make a non-secure stack pointer
available from the secure domain. This can be done by copying a non-secure register
value identifying the non-secure stack pointer into a dedicated register within the
CP15 registers 34. This will then enable the non-secure application to pass

parameters via the stack according to a scheme understood by the secure application.

As described earlier, the memory may be partitioned into non-secure and
secure parts, and this partitioning is controlled by the secure kemel using the CP15
registers 34 dedicated to the partition checker 222. The basic partitioning approach is
based on region access permissions as definable in typical MPU devices.
Accordingly, the memory is divided into regions, and each region is preferably
defined with its base address, size, memory attributes and access permissions.

Further, when overlapping regions are programmed, the attributes of the upper region
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take highest priority. Additionally, in accordance with preferred embodiments of the
present invention, a new region attribute is provided to define whether that
corresponding region is in secure memory or in non-secure memory. This new region
attribute is used by the secure kernel to define the part of the memory that is to be

protected as secure memory.

At the boot stage, a first partition is performed as illustrated in Figure 44. This
initial partition will determine the amount of memory 460 allocated to the non-secure
world, non-secure operating system and non-secure applications. This amount
corresponds to the non-secure region defined in the partition. This information will
then be used by the non-secure operating system for its memory management. The
rest of the memory 462, 464, which is defined as secure, is unknown by the non-
secure operating system. In order to protect integrity in the non-secure world, the
non-secure memory may be programmed with access permission for secure privileged
modes only. Hence, secure applications will not corrupt the non-secure ones. As can
be seen from Figure 44, following this boot stage partition, memory 460 is available
for use by the non-secure operating system, memory 462 is available for use by the

secure kernel, and memory 464 is available for use by secure applications.

Once the boot stage partition has been performed, memory mapping of the
non-secure memory 460 is handled by the non-secure operating system using the
MMU 200, and accordingly a series of non-secure pages can be defined in the usual

manner. This is illustrated in Figure 45.

If a secure application needs to share memory with a non-secure application,
the secure kemel can change the rights of a part of the memory to transfer artificially
data from one domain to the other. Hence, as illustrated in Figure 46, the secure
kernel can, after checking the integrity of a non-secure page, change the rights of that

page such that it becomes a secure page 466 accessible as shared memory.
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When the partition of the memory is changed, the micro-TLB 206 needs to be
flushed. Hence, in this scenario, when a non-secure access subsequently occurs, a
miss will occur in the micro-TLB 206, and accordingly a new descriptor will be
loaded from the main TLB 208. This new descriptor will subsequently be checked by
the partition checker 222 of the MPU as it is attempted to retrieve it into the micro-
TLB 206, and so will be consistent with the new partition of the memory.

In preferred embodiments, the cache 38 is virtual-indexed and physical-
tagged. Accordingly, when an access is performed in the cache 38, a lookup will have
already been performed in the micro-TLB 206 first, and accordingly access
permissions, especially secure and non-secure permissions, will have been checked.
Accordingly, secure data cannot be stored in the cache 38 by non-secure applications.
Access to the cache 38 is under the control of the partition checking performed by the
partition checker 222, and accordingly no access to secure data can be performed in

non-secure mode.

However, one problem that could occur would be for an application in the
non-secure domain to be able to use the cache operations register to invalidate, clean,
or flush the cache. It needs to be ensured that such operations could not affect the
security of the system. For example, if the non-secure operating system were to
invalidate the cache 38 without cleaning it, any secure dirty data must be written to
the external memory before being replaced. Preferably, secure data is tagged in the

cache, and accordingly can be dealt with differently if desired.

In preferred embodiments, if an “invalidate line by address” operation is
executed by a non-secure program, the physical address is checked by the partition
checker 222, and if the cache line is a secure cache line, the operation becomes a
“clean and invalidate” operation, thereby ensuring that the security of the system is
maintained. Further, in preferred embodiments, all “invalidate line by index”

operations that are executed by a non-secure program become “clean and invalidate
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by index” operations. Similarly, all “invalidate all” operations executed by a non-

secure program become “clean and invalidate all” operations.
p p

Furthermore, with reference to Figure 1, any access to the TCM 36 by the
DMA 32 is controlled by the micro-TLB 206. Hence, when the DMA 32 performs a
lookup in the TLB to translate its virtual address into a physical one, the earlier
described flags that were added in the main TLB allow the required security checking
to be performed, just as if the access request had been issued by the core 10. Further,
as will be discussed later, a replica partition checker is coupled to the external bus 70,
preferably being located within the arbiter/decoder block 54, such that if the DMA 32
directly accesses the memory coupled to the external bus 70 via the external bus
interface 42, the replica partition checker connected to that external bus checks the
validity of the access. Furthermore, in certain preferred embodiments, it would be
possible to add a bit to the CP15 registers 34 to define whether the DMA controller 32
can be used in the non-secure domain, this bit only being allowed to be set by the

secure kernel when operating in a privileged mode.

Considering the TCM 36, if secure data is to placed within the TCM 36, this
must be handled with care. As an example, a scenario could be imagined where the
non-secure operating system programs the physical address range for the TCM
memory 36 so that it overlaps an external securé memory part. If the mode of
operation then changes to a secure mode, the secure kernel may cause data to be
stored in that overlapping part, and typically the data would be stored in the TCM 36,
since the TCM 36 will typically have a higher priority than the external memory. If
the non-secure operating system were then to change the setting of the physical
address space for the TCM 36 so that the previous secure region is now mapped in a
non-secure physical area of memory, it will be appreciated that the non-secure
operating system can then access the secure data, since the partition checker will see
the area as non-secure and won’t assert an abort. Hence, to summarise, if the TCM is

configured to act as normal local RAM and not as SmartCache, it may be possible for
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the non-secure operating system to read secure world data if it can move the TCM

base register to non-secure physical address.

To prevent this kind of scenario, a control bit is in preferred embodiments
provided within the CP15 registers 34 which is only accessible in secure privilege
modes of operation, and provides two possible configurations. In a first
configuration, this control bit is set to “1”, in which event the TCM can only be
controlled by the secure privilege modes. Hence, any non-secure access attempted to
the TCM control registers within the CP15 34 will cause an undefined instruction
exception to be entered. Thus, in this first configuration, both secure modes and non-
secure modes can use the TCM, but the TCM is controlled only by the secure
privilege mode. In the second configuration, the control bit is set to “0”, in which
event the TCM can be controlled by the non-secure operating system. In this case, the
TCM is only used by the non-secure applications. No secure data can be stored to or
loaded from the TCM. Hence, when a secure access is performed, no look-up is

performed within the TCM to see if the address matched the TCM address range.

By default, it is envisaged that the TCM would be used only by non-secure
operating systems, as in this scenario the non-secure operating system would not need

to be changed.

As mentioned earlier, in addition to the provision of the partition checker 222
within the MPU 220, preferred embodiments of the present invention also provide an
analogous partition checking block coupled to the external bus 70, this additional
partition checker being used to police accesses to memory by other master devices,
for example the digital signal processor (i)SP) 50, the DMA controller 52 coupled
directly to the external bus, the DMA controller 32 connectable to the external bus via
the external bus interface 42, etc. Indeed in some embodiments, as will be discussed
later, it is possible to solely have a partition checking block coupled to the external (or
device) bus, and not to provide a partition checker as part of the memory management

logic 30. In some such embodiments, a partition checker may optionally be provided
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as part of the memory management logic 30, in such instances this partition checker
be considered as a further partition checker provided in addition to the one coupled to

the device bus.

As mentioned earlier, the entire memory system can consist of several
memory units, and a variety of these may exis;t on the extema‘ll bus 70, for example the
external memory 56, boot ROM 44, or indeed buffers or registers 48, 62, 66 within
peripheral devices such as the screen driver 46, I/O interface 60, key storage unit 64,
etc. Furthermore, different parts of the memory system may need to be defined as
secure memory, for example it may be desired that the key buffer 66 within the key
storage unit 64 should be treated as secure memory. If an access to such secure
memory were to be attempted by a-device coupled to the external bus, then it is clear
that the earlier described memory management logic 30 provided within the chip

containing the core 10 would not be able to police such accesses.

Figure 47 illustrates how the additional partition checker 492 coupled to the
external bus, also referred to herein as the device bus, is used. The external bus
would typically be arranged such that whenever memory access requests were issued
onto that external bus by devices, such as devices 470, 472, those memory access
requests would also include certain signals on the external bus defining the mode of
operation, for example privileged, user, etc. In accordance with preferred
embodiments of the present invention the memory access request also involves
issuance of a domain signal onto the external bus to identify whether the device is
operating in secure mode or non-secure mode. This domain signal is preferably
issued at the hardware level, and in preferred embodiments a device capable of
operating in secure or non-secure domains will include a predetermined pin for
outputting the domain signal onto path 490 within the external bus. For the purpose
of illustration, this path 490 is shown separately to the other signal paths 488 on the

external bus.
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This domain signal, also referred to herein as the “S bit” will identify whether
the device issuing the memory access request is operating in secure domain or non-
secure domain, and this information will be received by the partition checker 492
coupled to the external bus. The partition checker 492 will also have access to the
partitioning information identifying which regions of memory are secure or non-
secure, and accordingly can be arranged to only allow a device to have access to a

secure part of memory if the S bit is asserted to identify a secure mode of operation.

By default, it is envisaged that the S bit would be unasserted, and accordingly
a pre-existing non-secure device, such as device 472 illustrated in Figure 47, would
not output an asserted S bit and accordingly would never be granted access by the
partition checker 492 to any secure parts of memory, whether that be within registers
or buffers 482, 486 within the screen driver 480, the I/O interface 484, or within the

external memory 474.

For the sake of illustration, the arbiter block 476 used to arbitrate between
memory access requests issued by master devices, such as devices 470, 472, is
illustrated separately to the decoder 478 used to determine the appropriate memory
device to service the memory access request, and separate from the partition checker
492. However, it will be appreciated that one or more of these components may be

integrated within the same unit if desired.

Figure 48 illustrates an alternative embodiment, in which a partition checker
492 is not provided, and instead each memory device 474, 480, 484 is arranged to
police its own memory access dependent on the value of the S bit. Accordingly, if
device 470 were to assert a memory access request in non-secure mode to a register
482 within the screen driver 480 that was marked as secure memory, then the screen
driver 480 would determine that the S bit was not asserted, and would not process the
memory access request. Accordingly, it is envisaged that with appropriate design of
the various memory devices, it may be possible to avoid the need for a partition

checker 492 to be provided separately on the external bus.
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In the above description of figures 47 and 48, the “S bit” is said to identify
whether the device issuing the memory access request is operating in secure domain
or non-secure domain. Viewed another way, this S bit can be seen to indicate whether

the memory access request pertains to the secure domain or the non-secure domain.

In the embodiments described with reference to Figures 37 and 38, a single
MMU, along with a single set of page tables, was used to perform virtual to physical
address translation. With such an approach, the physical address space would typically
be segmented between non-secure memory and secure memory in a simplistic manner
such as illustrated in Figure 49. Here a physical address space 2100 includes an address
space starting at address zero and extending to address Y for one of the memory units
within the memory system, for example the external memory 56. For each memory unit,
the addressable memory would typically be sectioned into two parts, a first part 2110

being allocated as non-secure memory and a second part 2120 being allocated as secure

memory.

With such an approach, it will be appreciated that there are certain physical
addresses which are not accessible to particular domain(s), and these gaps would be
apparent to the operating system used in those domain(s). Whilst the operating system
used in the secure domain will have knowledge of the non-secure domain, and hence
will not be concerned by this, the operating system in the non-secure domain should
ideally not need to have any knowledge of the presence of the secure domain, but instead

should operate as though the secure domain were not there.

As a further issue, it will be appreciated that a non-secure operating system will
see its address space for the external memory as starting at address zero and extending to
address X, and the non-secure operating system need know nothing about the secure
kernel and in particular the presence of the secure memory extending from address X+1
up to address Y. In contrast, the secure kernel will not see its address space beginning at

address zero, which is not what an operating system would typically expect.
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One embodiment which alleviates the above concerns by allowing the secure
memory regions to be completely hidden from the non-secure operating system’s view
of its physical address space, and by enabling both the secure kernel in the secure
domain and the non-secure operating system in the non-secure domain to see their
address space for external memory as beginning at address zero is illustrated
schematically in Figure 51. Here, the physical address space 2200 is able to be
segmented at the page level into either secure or non-secure segments. In the example
illustrated in Figure 51, the address space for the external memory is shown as being
segmented into four sections 2210, 2220, 2230, and 2240, consisting of two secure

memory regions and two non-secre memory regions.

Rather than transitioning between the virtual address space and the physical
address space via a single page table conversion, two separate layers of address
translation are performed with reference to a first page table and a second page table,
thereby enabling the concept of an intermediate address space to be introduced which
can be arranged differently, dependent on whether the processor is in the secure domain
or the non-secure domain. More particularly, as illustrated in Figure 51, the two secure
memory regions 2210 and 2230 in the physical address space can be mapped to the
single region 2265 in the intermediate address space for the secure domain by use of
descriptors provided within a secure page table within the set of page tables 2250. As far
as the operating system running on the processor is concerned, it will see the
intermediate address space as being the physical address space, and will use an MMU to

convert virtual addresses into intermediate addresses within the intermediate address

space.

Similarly, an intermediate address space 2270 can be configured for the non-
secure domain, in which the two non-secure memory regions 2220 and 2240 in the
physical address space are mapped to the non-secure region 2275 in the intermediate
address space for the non-secure domain via corresponding descriptors in a non-secure

page table within the set of page tables 2250.
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In one embodiment, the translation of virtual addresses into physical addresses
via intermediate addresses is handled using two separate MMUs as illustrated in Figure
50A. Each of the MMUs 2150 and 2170 in Figure 50A can be considered as being
constructed in a similar manner to the MMU 200 shown in Figure 37, but for the sake of

ease of illustration certain detail has been omitted in Figure 50A.

The first MMU 2150 includes a micro-TLB 2155, a main TLB 2160 and
translation table walk logic 2165, while similarly the second MMU 2170 includes a
micro-TLB 2175, a main TLB 2180 and translation table walk logic 2185. The first
MMU may be controlled by the non-secure operating system when the processor is
operating in the non-secure domain, or by the secure kernel when the processor is
operating in the secure domain. However, in preferred embodiments, the second MMU

is only controllable by the secure kernel, or by the monitor program.

When the processor core 10 issues a memory access request, it will issue a
virtual address over path 2153 to the micro-TLB 2155. The micro-TLB 2155 will store
for a number of virtual address portions corresponding intermediate address portions
retrieved from descriptors stored within the main TLB 2160, the descriptors in the main
TLB 2160 having been retrieved from page tables in a first set of page tables associated
with the first MMU 2150. If a hit is detected within the micro-TLB 2155, then the
micro-TLB 2155 can issue over path 2157 an intermediate address corresponding to the
virtual address received over path 2153. If there is no hit within the micro-TLB 2155,
then the main TLB 2160 will be referenced to see if a hit is detected within the main
TLB, and if so the relevant virtual address portion and corresponding intermediate
address portion will be retrieved into the micro-TLB 2155, whereafter the intermediate

address can be issued over path 2157.

If there is no hit within the micro-TLB 2155 and the main TLB 2160, then the
translation table walk logic 2165 is used to issue a request for the required descriptor

from a predetermined page table in a first set of page tables accessible by the first MMU
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2150. Typically, there may be page tables associated with individual processes for both
secure domain or non-secure domain, and the intermediate base addresses for those page
tables will be accessible by the translation table walk logic 2165, for example from
appropriate registers within the CP15 registers 34. Accordingly, the translation table
walk logic 2165 can issue an intermediate address over path 2167 to request a descriptor

from the appropriate page table.

The second MMU 2170 is arranged to receive any intermediate addresses
output by the micro-TLB 2155 over path 2157, or by the translation table walk logic
2165 over path 2167, and if a hit is detected within the micro-TLB 2175, the micro-TLB
can then issue the required physical address over path 2192 to memory to cause the
required data to be retrieved over the data bus 2190. In the event of an intermediate
address issued over path 2157, this will cause the required data to be returned to the core
10, whilst for an intermediate address issued over path 2167, this will cause the required

descriptor to be returned to the first MMU 2150 for storage within the main TLB 2160.

In the event of a miss in the micro-TLB 2175, the main TLB 2180 will be
referenced, and if there is a hit within the main TLB, the required intermediate address
portion and corresponding physical address portion will be returned to the micro-TLB
2175, to then enable the micro-TLB 2175 to issue the required physical address over
path 2192.  However, in the absence of a hit in either the micro-TLB 2175 or the
main TLB 2180, then the translation table walk logic 2185 will be arranged to output a
request over path 2194 for the required descriptor from the relevant page table within a
second set of page tables associated with the second MMU 2170. This second set of
page tables includes descriptors which associate intermediate address portions with
physical address portions, and typically there will be at least one page table for secure
domain and one page table for non-secure domain. When a request is issued over path
2194, this will result in the relevant descriptor from the second set of page tables being

returned to the second MIMU 2170 for storing within the main TLB 2180.
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The operation of the embodiment illustrated in Figure 50A will now be
illustrated further by way of a specific example as set out below, in which the
abbreviation VA denotes virtual address, IA denotes intermediate address, and PA
denotes physical address:

1) Core issues VA = 3000 [IA = 5000, PA = 7000]

2) Miss in micro-TLB of MMU 1

3) Miss in main TLB of MMU 1
Page Table 1 Base Address = 8000 IA [PA = 10000]

4) Translation Table Walk logic in MMU 1 performs page table lookup

- issues IA = 8003

5) Miss in micro-TLB of MMU 2

6) Miss in main TLB of MMU 2
Page Table 2 Base Address = 12000 PA

7) Translation Table Walk Logic in MMU 2 performs page table lookup

- issues PA = 12008
“8000 IA = 10000 PA” returned as page table data

8) - stored in main TLB of MMU 2

9) - stored in micro-TLB of MMU 2

10) Micro-TLB in MMU 2 now has hit

- issues PA = 10003
“3000 VA = 5000 TA” returned as page table data

11) - stored in main TLB of MMU 1

12) - stored in micro-TLB of MMU 1

13) Micro-TLB in MMU 1 now has hit

issues IA = 5000 to perform data access

14) miss in micro-TLB of MMU 2

15) miss in main TLB of MMU 2

16) Translation Table Walk Logic in MMU 2 performs page table lookup

- issues PA = 12005
“5000 IA = 7000 PA” returned as page table data
17) - stored in main TLB of MMU 2



WO 2004/046924

10

15

20

25

30

PCT/GB2003/004615

96

18) - stored in micro-TLB of MMU 2
19) Micro-TLB in MMU 2 now has hit
- issues PA = 7000 to perform data access

20) Data at physical address 7000 returned to core
NEXT TIME CORE ISSUES A MEMORY ACCESS REQUEST (say VA 3001..)

1) Core issues VA = 3001

2) Hit in micro-TLB of MMUT, request IA 5001 issued to MMU?2

3) Hit in micro-TLB on MMU2, request for PA 7001 issued to memory
4) Data at PA 7001 returned to core.

It will be appreciated that in the above example misses occur in both the micro-
TLB and the main TLB of both MMUs, and hence this example represents the ‘worst
case’ scenario. Typically, it would be expected that a hit would be observed in at least
one of the micro-TLBs or main TLBs, thereby significantly reducing the time taken to

retrieve the data.

Returning to Figure 51, the second set of page tables 2250 will typically be
provided within a certain region of the physical address space, in preferred embodiments
a secure region. The first set of page tables can be split into two types, namely secure
page tables and non-secure page tables. Preferably, the secure page tables will appear
consecutively within the intermediate address space 2265, as will the non-secure page
tables within the non-secure intermediate address space 2275. However, they need not
be placed consecutively within the physical address space, and accordingly, by way of
example, the secure page tables for the first set of page tables may be spread throughout
the secure regions 2210, 2230, and in a similar way the non-secure page tables may be

spread throughout the non-secure memory regions 2220 and 2240.

As mentioned previously, one of the main benefits of using the two-level

approach of two sets of page tables is that for both the operating system of the secure



10

15

20

25

30

WO 2004/046924 PCT/GB2003/004615

97

domain and the operating system of the non-secure domain the physical address space
can be arranged to start at zero, which is what would typically be expected by an
operating system. Additionally the secure memory regions can be completely hidden
from the non-secure operating System’s view of its “physical address” space, since it
sees as its physical address space the intermediate address space, which can be arranged

to have a contiguous sequence of intermediate addresses.

Additionally, the use of such an approach considerably simplifies the process of
swapping regions of memory between non-secure memory and secure memory. This is
illustrated schematically with reference to Figure 52. As can be seen in Figure 52, a
region of memory 2300, which may for example be a single page of memory, may exist
within the non-secure memory region 2220, and similarly a memory region 2310 may
exist within the secure memory region 2210. However, these two memory regions 2300
and 2310 can readily be swapped merely by changing the relevant descriptors within the
second set of page tables, such that the region 2300 now becomes a secure region
mapped to region 2305 in the intermediate address space of the secure domain, whilst
region 2310 now becomes a non-secure region mapped to the region 2315 in the
intermediate address space of the non-secure domain. This can occur entirely
transparently to the operating systems in both the secure domain the non-secure domain,
since their view of the physical address space is actually the intermediate address space
of the secure domain or non-secure domain, respectively. Hence, this approach avoids

any redefinition of the physical address space within each operating system.

An alternative embodiment of the present invention where two MMUEs are also
used, but in a different arrangement to that of Figure 50A, will now be described with
reference to Figure 50B. As can be seen from a comparison of Figure 50B with Figure
50A, the arrangement is almost identical, but in this embodiment the first MMU 2150 is
arranged to perform virtual address to physical address translation and the second MMU
is arranged to perform intermediate address to physical address translation. Hence,
instead of the path 2157 from the micro-TLB 2155 in the first MMU 2150 to the micro-
TLB 2175 in the second MMU 2170 used in the Figure 50A embodiment, the micro-
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TLB 2155 in the first MMU is instead arranged to output a physical address directly over
path 2192, as shown in Figure 50B. The operation of the embodiment illustrated in
Figure 50B will now be illustrated by way of the specific example as set out below,
which details the processing of the same core memory access request as illustrated

earlier for the Figure 50A embodiment:

1) Core issues VA = 3000 [ IA = 5000, PA = 7000 ]
2) Miss in micro-TLB and main TLB of MMU 1
Page Table 1 Base Address = 8000 IA [PA =10000)
3) Translation Table Walk logic in MMUT1 performs page table lookup
- issues IA = 8003
4) TA 8003 misses in micro-TLB and main TLB of MMU 2
Page Table 2 Base Address = 12000 PA
5) Translation Table Walk logic in MMU?2 performs page table lookup
- issues PA = 12008
"8000 IA == 10000 PA" returned as page table data
6) "8000 IA = 10000 PA" mapping stored in Main and micro-TLB of MMU2
7 Micro-TLB in MMU?2 can now translate the request from step (3) to PA 10003

and issues fetch
"3000 VA = 5000 IA" returned as page table data

NOTE: This translation is retained in temporary storage by MMU1, but not stored
directly in any TLB.
8) Translation table walk logic of MMU1 now issues request to MMU?2 for
IA=5000
9) TA 5000 misses in uTLB and main TLB of MMU 2
10)  Translation Table Walk logic in MMU2 performs page table lookup
- issues PA = 12005

"5000 JA = 7000 PA" returned as page table data
11)  MMU?2 stores "5000 IA = 7000 PA" in uTLB and main TLB. This translation
is also communicated to MMUTL.
12a) MMU2 issues the PA = 7000 access to memory
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12b) MMU1 combines the "3000 VA = 5000 IA" and the "5000 IA = 7000 PA”
descriptors to give a "3000 VA = 7000 PA" descriptor, which is stored in the main
TLB and micro-TLB of MMU 1.

13)  Data at PA 7000 is returned to the core.

NEXT TIME CORE ISSUES A MEMORY ACCESS REQUEST (say VA 3001..)

1 Core issues VA = 3001
2) Hit in micro-TLB of MMU1, MMU1 issues request for PA=7001

3) Data at PA 7001 is returned to the core.

As can bee seen from a comparison of the above example with that provided
for figure 50A, the main differences here are in step 7 where MMU1 does not store
the first table descriptor directly, and in step 12b (12a and 12b can happen at the same
time) where MMU1 also receives the IA->PA translation and does the combination

and stores the combined descriptor in its TLBs.

Hence, it can be seen that whilst this alternative embodiment still uses the two
sets of page tables to convert virtual addresses to physical addresses, the fact that the
micro-TLB 2155 and main TLB 2160 store the direct virtual address to physical address
translation avoids the need for lookups to be performed in both MMUs when a hit occurs
in either the micro-TLB 2155 or the main TLB 2160. In such cases the first MMU can

directly handle requests from the core without reference to the second MMU.

It will be appreciated that the second MMU 2170 could be arranged not to
include the fnicro-TLB 2175 and the main TLB 2180, in which case the page table walk
logic 2185 would be used for every request that needed handling by the second MMU.
This would save on complexity and cost for the second MMU, and might be acceptable
asswming the second MMU was only needed relatively infrequently. Since the first
MMU will need to be used for every request, it will typically be expedient to include the
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micro-TLB 2155 and main TLB 2160 in the first MMU 2150 to improve speed of
operation of the first MMU.

It should be noted that pages in the page tables may vary in size, and it is hence
possible that the descriptors for the two halves of the translation relate to different
sized pages. Typically, the MMUI pages will be smaller than the MMU?2 pages but

this is not necessarily the case. For example:

Table 1 maps 4Kb at 0x40003000 onto 0x00081000
Table 2 maps 1Mb at 0x00000000 onto 0x02000000

Here, the smallest of the two sizes must be used for the combined translation,

so the combined descriptor is
4Kb at 0x40003000 onto 0x02081000

However, where data is being swapped between worlds (as discussed earlier

with reference to Figure 52) it is possible that the reverse is true, for example:

Table 1 maps 1Mb at 0xc0000000 onto 0x00000000
Table 2 maps 4Kb at 0x00042000 onto 0x02042000

Now, a lookup at address 0xc0042010 from the core gives the mapping:
4Kb at 0xc0042000 onto 0x02042000

i.e. the smaller of the two sizes is always used for the combined mapping.

Note that in the second case the process is less efficient, since the (1Mb)
descriptor in table 1 will be repeatedly looked up and discarded as different 4Kb areas
are accessed. However, in a typical system the table 2 descriptors will be larger (as

in the first example) the majority of the time, which is more efficient (the 1Mb
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mapping can be recycled for other 4Kb pages which point into the appropriate section

of IA space).

As an alternative to employing two separate MMUs as illustrated in Figures
50A and 50B, a single MMU can be used as illustrated in Figure 53, where upon a miss
in the main TLB 2420, an exception is generated by the MMU, which then causes
software to be run within the core 10 to produce a virtual to physiCai address trénslation
based on a combination of descriptors from the two different sets of page tables. More
particularly, as shown in Figure 53, the core 10 is coupled to an MMU 2400, which
includes a micro-TLB 2410 and a main TLB 2420. When the core 10 issues a memory
access request, the virtual address is provided over path 2430, and if a hit is observed in
the micro-TLB, then the corresponding physical address is output directly over path
2440, causing the data to be returned over path 2450 into the core 10. However, if there
is a miss in the micro-TLB 2410, the main TLB 2420 is referenced and if the relevant
descriptor is contained within the main TLB the associated virtual address portion and
corresponding physical address portion are retrieved into the micro-TLB 2410,
whereafter the physical address can be issued over path 2440. However, if the main
TLB also produces a miss, then an exception is generated over path 2422 to the core.
The process performed within the core from receipt of such an exception will now be

described further with reference to Figure 54.

As shown in Figure 54, if a TLB miss exception is detected by the core at step
2500, then the core enters the monitor mode at a predetermined vector for that exception
at step 2510. This will then cause page table merging code to be run to perform the
remainder of the steps illustrated in Figure 54.

More particularly, at step 2520, the virtual address that was issued over path
2430, and that gave rise to the miss in both the micro-TLB 2410 and the main TLB 2420
(hereafter referred to as the faulting virtual address) is retrieved, whereafter at step 2530
the intermediate address for the required first descriptor is determined dependent on the

intermediate base address for the appropriate table within the first set of tables. Once
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that intermediate address has been determined (typically by some predetermined
combination of the virtual address with the intermediate base address), then the relevant
table within the second set of tables is referenced in order to obtain the corresponding
physical address for that first descriptor. Thereafter at step 2550 the first descriptor can

be fetched from memory in order to enable the intermediate address for the faulting

virtual address to be determined.

Then, at step 2560, the second table is again referenced to find a second
descriptor giving the physical address for the intermediate address of the faulting virtual
address. Thereafier at step 2570, the second descriptor is fetched to obtain the physical
address for the faulting virtual address.

Once the above information has been obtained, then the program merges the
first and second descriptors to generate a new descriptor giving the required virtual
address to physical address translation, this step being performed at step 2580. In a
similar manner to that described earlier with reference to Figure 50B, the merging
performed by the software again uses the smallest page table size for the combined
translation. Thereafter, at step 2590, the new descriptor is stored within the main TLB
2420, whereafter the process returns from the exception at step 2595.

Thereafter, the core 10 will be arranged to reissue the virtual address for the
memory access request over path 2430, which will still result in a miss in the micro-TLB
2410, but will now result in a hit in the main TLB 2420. Hence, the virtual address
portion and corresponding physical address portion can be retrieved into the micro-TLB
2410, whereafter the micro-TLB 2410 can then issue the physical address over path
2440, resulting in the required data being returned to the core 10 over path 2450.

It will be appreciated that, as alternative embodiments to those described earlier
with reference to figures S0A and 50B, one or both MMUs in those embodiments could
be managed by software using the principles described above with reference to figures

53 and 54.
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Irrespective of whether two MMUs are used as shown in Figures 50A or 50B, or
one MMU is used as shown in Figure 53, the fact that the second set of page tables is
managed by the processor when operating in monitor mode (or alternatively in a
privileged secure mode) ensures that those page tables are secure. As a result, when the
processor is in the non-secure domain it can only see non-secure memory, since it is only
the intermediate address space generated for the non-secure domain by the second set of
page tables that the processor can see when in the non-secure domain. As a result, there
is no need to provide a partition checker as part of the memory management logic 30
illustrated in Figure 1. However, a partition checker would still be provided on the

external bus to monitor accesses made by other bus masters in the system.

In the embodiments discussed earlier with reference to Figures 37 and 38, a
partition checker 222 was provided in association with the MMU 200, and accordingly
when an access is to be performed in the cache 38, a look-up will have already been
performed in the micro-TLB 206 first, and accordingly access permissions, especially
secure and non-secure permissions, would have been checked. Accordingly, in such
embodiments, secure data cannot be stored in the cache 38 by non-secure applications.
Access to the cache 38 is under the control of the partition checking performed by the

partition checker 222, and accordingly no access to secure data can be performed in non-

secure mode.

However, in an alternative embodiment of the present invention, a partition
checker 222 is not provided for monitoring accesses made over the system bus 40, and
instead the data processing apparatus merely has a single partition checker coupled to the
external bus 70 for monitoring accesses to memory units connected to that external bus.
In such embodiments, this then means that the processor core 10 can access any memory
units coupled directly to the system bus 40, for example the TCM 36 and the cache 38,
without those accesses being policed by the external partition checker, and accordingly
some mechanism is required to ensure that the processor core 10 does not access secure

data within the cache 38 or the TCM 36 whilst operating in a non-secure mode.
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Figure 55 illustrates a data processing apparatus in accordance with one
embodiment of the present invention, where a mechanism is provided to enable the
cache 38 and/or the TCM 36 to control accesses made to them without the need for any
partition checking logic to be provided in association with the MMU 200. As shown in
Figure 55, the core 10 is coupled via an MMU 200 to the system bus 40, the cache 38
and TCM 36 also being coupled to the system bus 40. The core 10, cache 38 and TCM
36 are coupled via the external bus interface 42 to the external bus 70, which as

illustrated in Figure 55 consists of an address bus 2620, a control bus 2630 and a data
bus 2640.

The core 10, MMU 200, cache 38, TCM 36 and external bus interface 42 can be
viewed as constituting a single device connected onto the external bus 70, also referred
to as a device bus, and other devices may also be coupled to that device bus, for example
the secure peripheral device 470 or the non-secure peripheral device 472. Also
connected to the device bus 70 will be one or more memory units, for example the
external memory 56. In addition, a bus control unit 2650 is connected to the device bus
70, and will typically include an arbiter 2652, a decoder 2654 and a partition checker
2656. For a general discussion of the operation of the components connected to the
device bus, reference should be made to the.earlier described Figure 47. In the earlier
described Figure 47, the arbiter, decoder and partition checker were shown as separate

blocks, but these elements work in the same manner when placed within a single control

block 2650.

The MMU 200 of Figure 55 is illustrated in more detail in Figure 56. By
comparison of Figure 56 with Figure 37, it can be seen that the MMU 200 is constructed
in exactly the same way as the MMU of Figure 37, the only difference being that a
partition checker 222 is not provided for monitoring data sent over path 242 between the
main TLB 208 and the micro-TLB 206. Ifthe processor core 10 issues a memory access
request that specifies a virtual address, then that memory access request will be routed

through the MMU 200, and will be processed as described earlier with reference to
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Figure 37, resulting in a physical address being output onto the system bus 40 over path
238 from the micro-TLB 206. If, in contrast, the memory access request directly
specifies a physical address, this will bypass the MMU 200, and instead will be routed
directly onto the system bus 40 via path 236. In one embodiment only when the
processor is operating in the monitor mode will it generate memory access requests that

directly specify physical addresses.

As will be recalled from the earlier description of the MMU 200, and in
particular from the description of Figure 43, the main TLB 208 will contain a number of
descriptors 435, and for each descriptor a domain flag 425 will be provided to identify
whether the corresponding descriptor is from a secure page table or a non-secure page
table. These descriptors 435 and associated domain flags 425 are illustrated
schematically within the MMU 200 of Figure 55.

When the core 10 issues a memory access request, this will result in a physical
address for that memory access request being output on the system bus 40 and typically
the cache 38 will then perform a look-up process to determine whether the data item
specified by that address is stored within the cache. Whenever a miss occurs within the
cache, i.e. it is determined that the data item subject to the access request is not stored
within the cache, a linefill procedure will be initiating by the cache in order to retrieve
from the external memory 56 a line of data that includes the data item the subject of the
memory access request. In particular, the cache will output via the EBI 42 a linefill
request onto the control bus 2630 of the device bus 70, with a start address being output
on the address bus 2620. In addition, an HPROT signal will be output over path 2632
onto the control bus 2630, which will include a domain signal specifying the mode of
operation of the core at the time the memory access request was issued. Hence, the
linefill process can be viewed as the propagation of the original memory access request

onto the external bus by the cache 38.

This HPROT signal will be received by the partition checker 2656, and

accordingly will identify to the partition checker whether the device requesting the



10

15

20

25

30

WO 2004/046924 PCT/GB2003/004615

106

specified data from the external memory 56 (in this case the device incorporating the
core 10 and the cache 38) was operating in the secure domain or the non-secure domain
at the time the memory access request was issued. The partition checker 2656 will also
have access to the partitioning information identifying which regions of memory are
secure or non-secure, and accordingly can determine whether the device is allowed to
have access to the data it is requesting. Hence, the partition checker can be arranged to
only allow a device to have access to a secure part of the memory if the domain signal
within the HPROT signal (also referred to herein as an S bit) is asserted to identify that

access to this data was requested by the device whilst operating in a secure mode of

operation.

If the partition checker determines that the core 10 is not allowed to have access
to the data requested, for example because the HPROT signal has identified that the core
was operating in a non-secure mode of operation, but the linefill request is seeking to
retrieve data from the external memory that is within a secure region of memory, then
the partition checker 2656 will issue an abort signal onto the control bus 2630, which
will be passed back over path 2636 to the EBI 42, and from there back to the cache 38,
resulting in an abort signal being issued over path 2670 to the core 10. However, if the
partition checker 2656 determines that the access is allowed, then it will output an S tag
signal identifying whether the data being retrieved from the external memory is secure
data or non-secure data, and this S Tag signal will be passed back via path 2634 to the
EBI 42, and from there back to the cache 38 to enable setting of the flag 2602 associated
with the cache line 2600 the subject of the linefill process.

At the same time, the control logic 2650 will authorise the external memory 56 to
output the linefill data requested, this data being passed back via the EBI 42 over path
2680 to the cache 38 for storing in the relevant cache line 2600. Hence, as a result of
this process, the chosen cache line within the cache 38 will be filled with data items from
the external memory 56, these data items including the data item that was the subject of
the original memory access request from the core 10. The data item the subject of the

memory access request from the core can then be returned to the core from the cache 38,
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or alternatively can be provided directly from the EBI 42 back to the core 10 over path
2660.

Since, in preferred embodiments, the original storage of data in a cache line will
occur as a result of the above described linefill process, the flag 2602 associated with
that cache line will be set based on the value provided by the partition checker 2656, and
that flag can then be used by the cache 38 to directly control any subsequent access to
the data items in that cache line 2600. Hence, if the core 10 subsequently issues a
memory access request that produces a hit in a particular cache line 2600 of the cache
38, the cache 38 will review the value of the associated flag 2602, and compare that
value with the current mode of operation of the core 10. In preferred embodiments, this
current mode of operation of the core 10 is indicated by a domain bit set by the monitor
mode within the CP 15 domain status register. Hence, cache 38 can be arranged to only
allow data items in a cache line that the corresponding flag 2602 indicates is secure data
to be accessed by the processor core 10 when the processor core 10 is operating in a
secure mode of operation. Any attempt by the core to access secure data within the
cache 38 whilst the core is operating in a non-secure mode will result in the cache 38

generating an abort signal over path 2670.

The TCM 36 can be set up in a variety of ways. In one embodiment, it can be set
up to act like a cache, and in that embodiment will be arranged to include a plurality of
lines 2610, each of which has a flag 2612 associated therewith in the same way as the
cache 38. Accesses to the TCM 36 are then managed in exactly the same way as
described earlier with reference to the cache 38, with any TCM miss resulting in a
linefill process being performed, as a result of which data will be retrieved into a
particular line 2610, and the partition checker 2656 will generate the required S tag value
for storing in the flag 2612 associated with that line 2610.

In an alternative embodiment, the TCM 36 may be set up as an extension of the
external memory 56 and used to store data used frequently by the processor, since access

to the TCM via the system bus is significantly faster than access to external memory. In
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such embodiments, the TCM 36 would not use the flags 2612, and instead a different
mechanism would be used to control access to the TCM. In particular, as described
earlier, in such embodiments, a control flag may be provided which is settable by the
processor when operating in a privileged secure mode to indicate whether the tightly
coupled memory is controllable by the processor only when executing in a privileged
secure mode or is controllable by the processor when executing in the at least one non-
secure mode. The control flag is set by the secure operating system, and in effect defines
whether the TCM is controlled by the privileged secure mode or by non-secure modes.
Hence, one configuration that can be defined is that the TCM is only controlled when the
processor is operating in a privileged secure mode of operation. In such embodiments,
any non-secure access attempted to the TCM control registers will cause an undefined

instruction exception to be entered.

In an alternative configuration, the TCM can be controlled by the processor
when operating in a non-secure mode of operation. In such embodiments, the TCM is
only used by the non-secure applications. No secure data can be stored to or loaded
from the TCM. Hence, when a secure access is performed, no look-up is performed

within the TCM to see if the address matched the TCM address range.

Figure 57 is a flow diagram illustrating the processing performed by the
apparatus of Figure 55 when a non-secure program operating on the processor core 10
generates a virtual address (step 2700). Firstly, at step 2705, a look-up is performed
within the micro-TLB 206, and if this results in a hit, the micro-TLB then checks access
permissions at step 2730. With reference to Figure 56, this process can be viewed as

being performed by the access permission logic 202.

If at step 2705, a miss occurs in the micro-TLB look-up, then a look-up is
performed in the main TLB 208 amongst the non-secure descriptors stored therein (step
2710). If this results in a miss, then a page table walk process is performed at step 2715
(which has been discussed in detail previously with reference to Figure 37), where after

at step 2720 it is determined that the main TLB contains the valid tagged non-secure
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descriptor. If the look-up at step 2710 produces a hit, then the process proceeds directly
to step 2720.

Thereafter, at step 2725, the micro-TLB is loaded with the section of the
descriptor which contains the physical address, whereafter at step 2730 the micro-TLB

checks the access permissions.

If at step 2730, it is determined that there is a violation of the access permissions,
then the process proceeds to step 2740, where an abort signal is issued over path 230 to
the processor core (analogous to path 2670 shown in Figure 55). However, assuming
there is no violation detected, then at step 2745 it is determined whether the access is
related to a cacheable data item. If not, then an external access is initiated at step 2790 to
seek to retrieve the data item from the external memory 56. At step 2795, the partition
checker 2656 will determine whether there is a secure partition violation, i.e. if the
processor core 10 is seeking to access a data item in secure memory whilst operating in a
non-secure mode, and if a violation is detected, then the partition checker 2656 will
generate an abort signal at step 2775. However, assuming there is no secure partition

violation, then the process proceeds to step 2785, where the data access takes place.

If at step 2745 it was determined that the data item being requested is cacheable,
then a cache look-up is performed at step 2750 within the cache, and if a hit is detected,
the cache then determines whether there is a secure line tag violation at step 2755.
Hence, at this stage, the cache will review the value of the flag 2602 associated with the
cache line containing the data item, and will compare the value of that flag with the
mode of operation of the core 10 to determine whether the core is entitled to access the
data item requested. If a secure line tag violation is detected, then the process proceeds
to step 2760, where a secure violation fault abort signal is generated by the cache 38 and
issued over path 2670 to the core 10. However, assuming there is no secure line tag

violation detected at step 2755, then the data access is performed at step 2785.
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If when the cache look-up is performed at step 2750 a cache miss occurs, then a
cache linefill is initiated at step 2765. At step 2770, the partition checker 2656 then
detects whether there is a secure partition violation, and if so issues an abort signal at
step 2775. However, assuming there is no secure partition violation detected, then the

cache linefill proceeds at step 2780, resulting in the data access completing at step 2785.

As illustrated in Figure 57, steps 2705, 2710, 2715, 2720, 2725, 2730 and 2735
are performed within the MMU, steps 2745, 2750, 2755, 2765, 2780 and 2790 are
performed by the cache, and steps 2770 and steps 2795 are performed by the partition

checker.

Figure 58 is a flow diagram showing the analogous process performed in the
event that a secure program executing on the core generates a virtual address (step 2800).
By comparison of Figure 58 with Figure 57, it will be appreciated that steps 2805
through 2835 performed within the MMU are analogous to the steps 2705 through 2735
described earlier with reference to Figure 57. The only difference is at step 2810, where
the look-up performed within the main TLB is performed in relation to any secure
descriptors stored within the main TLB, as a result of which at step 2820 the main TLB

contains valid tagged secure descriptors.

Within the cache, the cache no longer needs to look for any secure line tag
violation, since in the embodiment illustrated with reference to Figure 58, it is assumed
that the secure program can access both secure data and non-secure data. Accordingly, if
a hit occurs during the cache look-up at step 2850, then the process proceeds directly to

the data access step 2885.

Similarly, in the event that an external access to the external memory is required
(i.e. at steps 2865 or 2890), the partition checker need perform no partition checking,

since again it is assumed that the secure program can access either secure data or non-

secure data.
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The steps 2845, 2850, 2865, 2880 and 2890 performed within the cache are
analogous to the steps 2745, 2750, 2765, 2780 and 2790 described earlier with reference

to Figure 57.

Figure 59 shows different modes and applications running on a Processor.
The dashed lines indicate how different modes and/or applications can be separated
and isolated from one another during monitoring of the processor according to an

embodiment of the present invention.

The ability to monitor a processor to locate possible faults and discover why
an application is not performing as expected is extremely useful and many processors
provide such functions. The monitoring can be performed in a variety of ways

including debug and trace functions.

In the processor according to the present technique debug can operate in

several modes including halt debug mode and monitor debug mode. These modes are

intrusive and cause the program running at the time to be stopped. In halt debug

mode, when a breakpoint or watchpoint occurs, the core is stopped and isolated from
the rest of the system and the core enters debug state. On entry the core is halted, the
pipeline is flushed and no instructions are pre-fetched. The PC is frozen and any
interrupts (IRQ and FIQ) are ignored. Tt is then possible to examine the core internal
state (via the JTAG serial interface) as well as the state of the memory system. This
state is invasive to program execution, as it is possible to modify current mode,
change register contents, etc. Once Debug is terminated, the core exits from the
Debug State by scanning in the Restart instruction through the Debug TAP (test

access port). Then the program resumes execution.

In monitor debug mode, a breakpoint or watchpoint causes the core to enter
abort mode, taking prefetch or Data Abort vectors respectively. In this case, the core
is still in a functional mode and is not stopped as it is in Halt debug mode. The abort

handler communicates with a debugger application to access Pprocessor and
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coprocessor state or dump memory. A debug monitor program interfaces between the
debug hardware and the software debugger. If bit 11 of the debug status and control
register DSCR is set (see later), interrupts (FIQ and IRQ) can be inhibited. In monitor
debug mode, vector catching is disabled on Data Aborts and Prefetch Aborts to avoid
the processor being forced into an unrecoverable state as a result of the aborts that are
generated for the monitor debug mode. It should be noted that monitor debug mode is
a type of debug mode and is not related to monitor mode of the processor which is the

mode that supervises switching between secure world and non-secure world.

Debug can provide a snapshot of the state of a processor at a certain moment.
It does this by noting the values in the various registers at the moment that a debug
initiation request is received. These values are recorded on a scan chain (541, 544 of

Figure 67) and they are then serially output using a JTAG controller (18 or Figure 1).

An alternative way of monitoring the core is by trace. Trace is not intrusive
and records subsequent states as the core continues to operate. Trace runs on an
embedded trace macrocell (ETM) 22, 26 of Figure 1. The ETM has a trace port
through which the trace information is exported, this is then analysed by an external

trace port analyser.

The processor of embodiments of the present technique operates in two
separate domains, in the embodiments described these domains comprise secure and
non-secure domains. However, for the purposes of the monitoring functions, it will
be clear to the skilled person that these domains can be any two domains between
which data should not leak. Embodiments of the present technique are concerned
with preventing leakage of data between the two domains and monitoring functions
such as debug and trace which are conventionally allowed access to the whole system

are a potential source of data leakage between the domains.

In the example given above of a secure and non-secure domain or world,

secure data must not be available to the non-secure world. Furthermore, if debug is
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permitted, in secure world, it may be advantageous for some of the data within secure
world to be restricted or hidden. The hashed lines in Figure 59 shows some examples
of possible ways to segment data access and provide different levels of granularity. In
Figure 59, monitor mode is shown by block 500 and is the most secure of all the
modes and controls switching between secure and non-secure worlds. Below monitor
mode 500 there is a supervisor mode, this comprises secure supervisor mode 510 and
non-secure supervisor mode 520. Then there is non-secure user mode having
applications 522 and 524 and secure user mode with applications 512, 514 and 516.
The monitoring modes (debug and trace) can be controlled to only monitor non-secure
mode (to the left of hashed line 501). Alternatively the non-secure domain or world
and the secure user mode may be allowed to be monitored (left of 501 and the portion
right of 501 that lies below 502). In a further embodiment the non-secure world and
certain applications running in the secure user domain may be allowed, in this case
further segmentation by hashed lines 503 occurs. Such divisions help prevent leakage
of secure data between different users who may be running the different applications.
In some controlled cases monitoring of the entire system may be allowed. According
to the granularity required the following parts of the core need to have their access

controlled during monitoring functions.

There are four registers that can be set on a Debug event; the instruction Fault
Status Register (IFSR), Data Fault Status Register (DFSR), Fault Address Register
(FAR), and Instruction Fault Address Register (IFAR). These registers should be

flushed in some embodiments when going from secure world to non-secure world to

avoid any leak of data.

PC sample register: The Debug TAP can access the PC through scan chain 7.
When debugging in secure world, that value may be masked depending on the debug
granularity chosen in secure world. Tt is important that non-secure world, or non-
secure world plus secure user applications cannot get any value of the PC while the

core is running in the secure world.
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TLB entries: Using CP15 it is possible to read micro TLB entries and read and
write main TLB entries. We can also control main TLB and micro TLB loading and
matching. This kind of operation must be strictly controlled, particularly if secure

thread-aware debug requires assistance of the MMU/MPU.

Performance Monitor Control register: The performance control register gives
information on the cache misses, micro TLB misses, external memory requests,
branch instruction executed, etc. Non-secure world should not have access to this
data, even in Debug State. The counters should be operable in secure world even if

debug is disabled in secure world.

Debugging in cache system: Debugging must be non-intrusive in a cached
system. It is important is to keep coherency between cache and external memory.
The Cache can be invalidated using CP15, or the cache can be forced to be write-
through in all regions. In any case, allowing the modification of cache behaviour in

debug can be a security weakness and should be controlled.

Endianness: Non-secure world or secure user applications that can access to
debug should not be allowed to change endianness. Changing the endianness could
cause the secure kernel to malfunction. Endianness access is prohibited in debug,

according to the granularity.

Access of the monitoring functions to portions of the core can be controlled at
initiation of the monitoring function. Debug and trace are initialised in a variety of
ways. Embodiments of the present technique control the access of the monitoring
function to certain secure portions of the core by only allowing initialisation under

certain conditions.

Embodiments of the present technique seek to restrict entry into monitoring
functions with the following granularity:

By controlling seperately intrusive and observable (trace) debug;
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By allowing debug entry in secure user mode only or in the whole secure

world;

By allowing debug in secure user mode only and moreover taking account of

the thread ID (application running).

In order to control the initiation of a monitoring function it is important to be

aware of how the functions can be initiated. Figure 60 shows a table illustrating the

" possible ways of initiating a monitoring function, the type of monitoring function that

is initiated and the way that such an initiation instruction can be programmed.

Generally, these monitoring instructions can be entered via software or via
hardware, i.e. via the JTAG controller. In order to control the initiation of monitoring
functions, control values are used. These comprise enable bits which are condition
dependent and thus, if a particular condition is present, monitoring is only allowed to
start if the enable bit is set. These bits are stored on a secure register CP14 (debug
and status control register, DSCR), which is located in ICE 530 (see Figure 67).

In a preferred embodiment there are four bits that enable/disable intrusive and
observable debug, these comprise a secure debug enable bit, a secure trace enable bit,
a secure user-mode enable bit and a secure thread aware enable bit. These control
values serve to provide a degree of controllable granularity for the monitoring
function and as such can help stop leakage of data from a particular domain. Figure

61 provides a summary of these bits and how they can be accessed.

These control bits are stored in a register in the secure domain and access to
this register is limited to three possibilities. Software access is provided via ARM
coprocessor MRC/MCR instructions and these are only allowed from the secure
supervisor mode. Alternatively, software access can be provided from any other
mode with the use of an authentication code. A further alternative relates more to
hardware access and involves the instructions being written via an input port on the

JTAG. In addition to being used to input control values relating to the availability of
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monitoring functions, this input port can be used to input control values relating to

other functions of the processor.

Further details relating to the scan chain and JTAG are given below.

Register logic cell

Every integrated circuit (IC) consists of two kind of logic:
= Combinatory logic cells; like AND, OR, INV gates. Such gates or combination of
such gates is used to calculate Boolean expressions according to one or several
input signals.
» Register logic cells; like LATCH, FLIP-FLOP. Such cells are used to memorize
any signal value. Figure 62 shows a positive-edge triggered FLIP-FLOP view:

When positive-edge event occurs on the clock signal (CK), the output (Q)

received the value of the input (D); otherwise the output (Q) keeps its value in

memory.

Scan chain cell

For test or debug purpose, it is required to bypass functional access of register
Jogic cells and to have access directly to the contents of the register logic cells. Thus

register cells are integrated in a scan chain cell as shown in Figure 63.

In functional mode, SE (Scan Enable) is clear and the register cell works as a
single register cell. In test or debug mode, SE is set and input data can come from SI

input (Scan In) instead of D input.
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Scan chain

All scan chain cells are chained in scan chain as shown in Figure 64.

In functional mode, SE is clear and all register cells can be accessed normally
and interact with other logic of the circuit. In Test or Debug mode, SE is set and all
registers are chained between each other in a scan chain, Data can come from the first
scan chain cell and can be shifted through any other scan chain cell, at the cadence of

each clock cycle. Data can be shifted out also to see the contents of the registers.

TAP controller

A debug TAP controller is used to handle several scan chains. The TAP
controller can select a particular scan chain: it connects “Scan In” and “Scan Out”
signals to that particular scan-chain. Then data can be scanned into the chain, shifted,
or scanned out. The TAP controller is controlled externally by a JTAG port interface.
Figure 65 schematically illustrates a TAP controller

JTAG Selective Disable Scan Chain Cell

For security reasons, some registers might not be accessible by scan chain,
even in debug or test mode. A new input called JADI (JTAG Access Disable) can
allow removal dynamically or statically of a scan chain cell from a whole scan chain,
without modifying the scan chain structure in the integrated circuit. Figures 66A and

B schematically show this input.

If JADI is inactive (JADI = 0), whether in functional or test or debug mode,
the scan chain works as usual. If JADI is active (JADI = 1), and if we are in test or

debug mode, some scan chain cells (chosen by designer), may be “removed” from the
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scan chain structure. In order to keep the same number of scan-chain cell, the JTAG
Selective Disable Scan Chain Cell use a bypass register. Note that Scan Out (SO) and

scan chain cell output (Q) are now different.

Figure 67 schematically shows the processor including parts of the JTAG. In
normal operation instruction memory 550 communicates with the core and can under
_certain circumstances also communicate with register CP14 and reset the control

values. This is generally only allowable from secure supervisor mode.

When debug is initiated instructions are input via debug TAP 580 and it is
these that control the core. The core in debug runs in a step by step mode. Debug
TAP has access to CP14 via the core (in dependence upon an access control signal
input on the JSDAEN pin shown as JADI pin, JTAG ACCESS DISABLE INPUT in

Figure 45) and the control values can also be reset in this way.

Access to the CP14 register via debug TAP 580 is controlled by an access
control signal JSDAEN. This is arranged so that in order for access and in particular
write access to be allowed JSDAEN must be set high. During board stage when the
whole processor is being verified, JSDAEN is set high and debug is enabled on the
whole system. Once the system has been checked, the JSDAEN pin can be tied to
ground, this means that access to the control values that enable debug in secure mode
is now not available via Debug TAP 580. Generally processors in production mode
have JSDAEN tied to ground. Access to the control values is thus, only available via
the software route via instruction memory 550. Access via this route is limited to

secure supervisor mode or to another mode provided an authentication code is given

(see Figure 68).

Tt should be noted that by default debug (intrusive and observable — trace) are

only available in non-secure world. To enable them to be available in secure world

the control value enable bits need to be set.
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The advantages of this are that debug can always be initiated by users to run in
non-secure world. Thus, although access to secure world is not generally available to
users in debug this may not be a problem in marny cases because access to this world
s limited and secure world has been fully verified at board stage prior to being made
available. It is therefore foreseen that in many cases debugging of the secure world
will not be necessary. A secure supervisor can still initiate debug via the software

route of writing CP14 if necessary.

Figure 68 schematically shows the control of debug initialisation. In this
Figure a portion of the core 600 comprises a storage element 601 (which may be a
CP15 register as previously discussed) in which is stored a secure status bit S
indicative of whether the system is in secure world or not. Core 600 also comprises a
register 602 comprising bits indicative of the mode that the processor is running in,
for example user mode, and a register 603 providing a context identifier that identifies

the application or thread that is currently running on the core.

When a breakpoint is reached comparator 610, which compares a breakpoint
stored on register 611with the address of the core stored in register 612, sends a signal
to control logic 620. Control logic 620 looks at the secure state S, the mode 602 and
the thread (context identifier) 603 and compares it with the control values and
condition indicators stored on register CP14. If the system is not operating in secure
world, then a “enter debug” signal will be output at 630. If however, the system is
operating in secure world, the control logic 620 will look at the mode 602, and if it is
in user mode will check to see if user mode enable and debug enable bits are set. If
they are then debug will be initialised provided that a thread aware bit has not been

initialised. The above illustrates the hierarchical nature of the control values.

The thread aware portion of the monitoring control is also shown
schematically in Figure 68 along with how the control value stored in register CP14
can only be changed from secure supervisor mode (in this embodiment the processor

is in production stage and JSDAEN is tied to ground). From a secure uset mode,
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secure supervisor mode can be entered using an authentication code and then the

control value can be set in CP14.

Control logic 620 outputs an “enter debug” signal when address comparator
610 indicates that a breakpoint has been reached provided thread comparator 640
shows that debug is allowable for that thread. This assumes that the thread aware
initialisation bit is set in CP14. If the thread aware initialisation bit is set following a
breakpoint, debug or trace can only be entered if address and context identifiers match
those indicated in the breakpoint and in the allowable thread indicator. Following
initiation of a monitoring function, the capture of diagnostic data will only continue
while the context identifier is detected by comparator 640 as an allowed thread.
When a context identifier shows that the application running is not an allowed one,

then the capture of diagnostic data is suppressed.

It should be noted that in the preferred embodiment, there is some hierarchy
within the granularity. In effect the secure debug or trace enable bit is at the top,
followed by the secure user-mode enable bit and lastly comes the secure thread aware

enable bit. This is illustrated in Figures 69A and 69B (see below).

The control values held in the “Debug and Status Control” register (CP14)
control secure debug granularity according to the domain, the mode and the executing
thread. It is on top of secure supervisor mode. Once the “Debug and Status Control”
register CP14 is configured, it’s up to secure supervisor mode to program the

corresponding breakpoints, watchpoints, etc to make the core enter Debug State.

Figure 69A shows a summary of the secure debug granularity for intrusive

debug. Default values at reset are represented in grey colour.

Tt is the same for debug granularity concerning observable debug. Figure 69B

shows a summary of secure debug granularity in this case, here default values at reset

are also represented in grey colour.



10

15

20

25

30

WO 2004/04
/046924 PCT/GB2003/004615

121

Note that Secure user-mode debug enable bit and Secure thread-aware debug

enable bit are commonly used for intrusive and observable debug.

A thread aware initialisation bit is stored in register CP14 and indicates if
granularity by application is required. If the thread aware bit has been initialised, the
control logic will further check that the application identifier or thread 603 is one
indicated in the thread aware control value, if it is, then debug will be initialised. If
either of the user mode or debug enable bits are not set or the thread aware bit is set
and the application running is not one indicated in the thread aware conirol value,
then the breakpoint will be ignored and the core will continue doing what it was doing

and debug will not be initialised.

In addition to controlling initialisation of monitoring functions, the capture of
diagnostic data during a monitor function can also be controlled in a similar way. In
order to do this the core must continue to consider both the control values, i.e. the
enable bits stored in register CP14 and the conditions to which they relate during

operation of the monitoring function.

Figure 70 shows schematically granularity of a monitoring function while it is
running. In this case region A relates to a region in which it is permissible to capture
diagnostic data and region B relates to region in which control values stored in CP14

indicate that it is not possible to capture diagnostic data.

Thus, when debug is running and a program is operating in region A,
diagnostic data is output in a step-by-step fashion during debug. When operation
switches to Region B, where the capture of diagnostic data is not allowed, debug no
longer proceeds in a step by step fashion, rather it proceeds atomically and no data is
captured. This continues until operation of the program re-enters region A whereupon

the capture of diagnostic data starts again and debug continues running in a step-by-

step fashion.
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In the above embodiment, if secure domain is not enabled, a SMI instruction is

always seen as an atomic event and the capture of diagnostic data is suppressed.

Furthermore, if the thread aware initialisation bit is set then granularity of the

monitoring function during operation with respect to application also occurs.

With regard to observable debug or trace, this is done by ETM and is entirely
independent of debug. When trace is enabled ETM works as usual and when it is
disabled, ETM hides trace in the secure world, or part of the secure world depending
on the granularity chosen. One way 1o avoid ETM capturing and tracing diagnostic
data in the secure domain when this is not enabled is to stall ETM when the S-bit is
high. This can be done by combining the S-bit with the ETMPWRDOWN signal, so
that the ETM values are held at their last values when the core enters secure world.
The ETM should thus trace a SMI instruction and then be stalled until the core returns

to non-secure world. Thus, the ETM would only see non-secure activity.

A summary of some of the different monitoring functions and their granularity

is given below.

Intrusive debug at board stage
At board stage when the JSDAEN pin is not tied, there is the ability to enable
debug everywhere before starting any boot session. Similarly, if we are in secure

supervisor mode we have similar rights.

If we initialise debug in halt debug mode all registers are accessible (non-
secure and secure register banks) and the whole memory can be dumped, except the

bits dedicated to control debug.

Debug halt mode can be entered from whatever mode and from whatever

domain. Breakpoints and watchpoints can be set in secure or in non-secure memory.
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In debug state, it is possible to enter secure world by simply changing the S bit via an

MCR instruction.

As debug mode can be entered when secure exceptions occur, the vector trap
register is extended with new bits which are;

SMI vector trapping enable

Secure data abort vector trapping enable

Secure prefetch abort vector trapping enable

Secure undefined vector trapping enable.

In monitor debug mode, if we allow debug everywhere, even when an SMI is
called in non-secure world, it is possible to enter secure world in step-by-step debug.
When a breakpoint occurs in secure domain, the secure abort handler is operable to

dump secure register bank and secure memory.

The two abort handlers in secure and in non-secure world give their
information to the debugger application so that debugger window (on the associated
debug controlling PC) can show the register state in both secure and non-secure

worlds.

Figure 71A shows what happens when the core is configured in monitor debug
mode and debug is enabled in secure world. Figure 71B shows what happens when
the core is configured in monitor debug mode and the debug is disabled in secure

world. This later process will be described below.

Intrusive debug at production stage

In production stage when J SDAEN is tied and debug is restricted to non-
secure world, unless the secure supervisor determines otherwise, then the table shown
in Figure 71B shows what happens. In this case SMI should always be considered as

an atomic instruction, so that secure functions are always finished before entering

debug state.
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Entering debug halt mode is subject to the following restrictions:

External debug request or internal debug request is taken into account in non-
secure world only. If EDBGRQ (external debug request) is asserted while in secure
world, the core enters debug halt mode once secure function is terminated and the

core is returned in non-secure world.

Programming a breakpoint or watchpoint on secure memory has no effect and

the core is not stopped when the programmed address matches.

Vector Trap Register (details of this are given below) concerns non-secure

exceptions only. All extended trapping enable bits explained before have no effect.

Once in halt debug mode the following restrictions apply:

S bit cannot be changed to force secure world entry, unless secure debug is
enabled.

Mode bits can not be changed if debug is permitted in secure supervisor mode
only.

Dedicated bits that control secure debug cannot be changed.

If a SMI is loaded and executed (with system speed access), the core re-enters

debug state only when secure function is completely executed.

In monitor debug mode because monitoring cannot occur in secure world, the
secure abort handler does not need to support a debug monitor programme. In non
secure world, step-by-step is possible but whenever an SMI is executed secure
function is executed entirely in other words an XWSI only “step-over” is allowed
while “step-in” and “step-over” are possible on all other instructions. XWSI is thus

considered an atomic instruction.
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Once secure debug is disabled, we have the following restrictions:

Before entering monitor mode:

Breakpoints and watchpoints are only taken into account in non-secure world.
If bit S is set, breakpoints/watchpoints are bypassed. Note that watchpoints units are
also accessible with MCR/MRC (CP14) which is not a security issue as

breakpoint/watchpoint has no effect in secure memory.

BKPT are normally used to replace the instruction on which breakpoint is set.
This supposes to overwrite this instruction in memory by BKPT instruction, which

will be possible only in non-secure mode.

Vector Trap Register concerns non-secure exceptions only. All extended
trapping enable bits explained before have no effect. Data abort and Pre-feich abort

enable bits should be disabled to avoid the processor being forced in to an

unrecoverable state.

Via JTAG, we have the same restrictions as for halt mode (S bit cannot be

modified, etc)

Once in monitor mode (non-secure abort mode)

The non-secure abort handler can dump non-secure world and has no visibility
on secure banked registers as well as secure memory.

Executes secure functions with atomic SMI instruction

S bit cannot be changed to force secure world entry.

Mode bits can not be changed if debug is permitted in secure supervisor mode

only.

Note that if an external debug request (EDBGRQ) occurs,
In non-secure world, the core terminates the current instruction and enters then

immediately debug state (in halt mode).
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In secure world, the core terminates the current function and enters the Debug

State when it has returned in non-secure world.

The new debug requirements imply some modifications in core hardware. The
S bit must be carefully controlled, and the secure bit must not be inserted in a scan

chain for security reason.

In summary, in debug, mode bits can be altered only if debug is enabled in
secure supervisor mode. It will prevent anybody that has access to debug in the secure
domain to have access to all secure world by altering the system (modifying TBL
entries, etc). In that way each thread can debug its own code, and only its own code.
The secure kernel must be kept safe. Thus when entering debug while the core is

running in non-secure world, mode bits can only be altered as before.

Embodiments of the technique use a new vector trap register. If one of the
bits in this register is set high and the corresponding vector triggers, the processor
enters debug state as if a breakpoint has been set on an instruction fetch from the
relevant exception vector. The behaviour of these bits may be different according to

the value of Debug in Secure world Enable' bit in debug control register.

The mew vector trap register comprises the following bits: D_s_abort,

P_s_abort, S_undef, SMI, FIQ, IRQ, Unaligned, D_abort, P_abort, SWI and Undef.

o D _s abort bit: should only be set when debug is enabled in secure world and
when debug is configured in halt debug mode. In monitor debug mode, this bit
should never bit set. If debug in secure world is disabled, this bit has no effect
whatever its value.

e P s abort bit: same as D s abort bit.

o S_undef bit: should only be set when debug is enable in secure world. If debug in

secure world is disabled, this bit has no effect whatever its value is.



10

15

WO 200
4/046924 PCT/GB2003/004615

127

« SMI bit: should only be set when debug is enabled in secure world. If debug in
secure world is disabled, this bit has no effect whatever its value is.

e FIQ, IRQ, D_abort, P abort, SWI, undef bits: correspond to non-secure
exceptions, so they are valid even if debug in secure world is disabled. Note that
D_abort and P_abort should not be asserted high in monitor mode.

e Reset bit: as we enter secure world when reset occurs, this bit is valid only when

debug in secure world is enabled, otherwise it has no effect.

Although a particular embodiment of the invention has been described herein,
it will be apparent that the invention is not limited thereto, and that many
modifications and additions may be made within the scope of the invention. For
example, various combinations of the features of the following dependent could be
made with the features of the independent claims without departing from the scope of

the present invention.
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CLAIMS

1. Apparatus for processing data, said apparatus comprising:

a processor operable in a plurality of modes and a plurality of domains, said
plurality of domains comprising a secure domain Or a non-secure domain, said
plurality of modes including:

at least one secure mode being a mode in said secure domain;

at least one non-secure mode being a mode in said non-secure domain;
and

a monitor mode, wherein

when said processor is executing a program in a secure mode said program has
access to secure data which is not accessible when said processor is operating in a
non-secure mode; and

switching between said secure mode and said non-secure mode takes place via
said monitor mode, said processor being operable at least partially in said monitor
mode to execute a monitor program to manage switching between said secure mode

and said non-secure mode.

2. Apparatus as claimed in claim 1, wherein said processor includes a register
bank and said monitor program is operable to flush at least a portion of said register
bank shared between said secure mode and said non-secure mode when switching
from said secure mode to said non-secure mode such that no secure data held within
said register bank may pass from said secure mode to said non-secure mode other than

as permitted by said monitor program.

3. Apparatus as claimed in claim 1, wherein said processor includes a non-secure
register bank used when said processor is operating in said non-secure mode and a

secure register bank used when said processor is operating in said secure mode.
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4, Apparatus as claimed in any one of claims 1, 2 and 3, wherein when operating
in said non-secure mode a switch to said secure mode is made by a switch to one of

one or more fixed points within said monitor program.

5. Apparatus as claimed in any one of the preceding claims, wherein said secure
domain provides at least one secure privileged mode and at least one secure user
mode and when operating in a secure privileged mode a switch to said monitor mode

may be made using the same mechanisms as a switch to a secure user mode.

6. Apparatus as claimed in claim 5, wherein said switch uses a call made by a

program executing in said non-secure mode.

7. Apparatus as claimed in claim 6, wherein said call is made to a fixed point

within said monitor program.

8. Apparatus as claimed in claim 4, wherein said switch is triggered by an
attempt by a program other than whilst in said monitor mode to switch between said

non-secure mode and said secure mode.

9. Apparatus as claimed in claim 8, wherein any attempt by a program other than
whilst in said monitor mode to switch between said non-secure mode and said secure

mode is trapped and triggers a call to a fixed point in said monitor program.

10.  Apparatus as claimed in any one of the preceding claims, wherein when entry
to said monitor mode is initiated from said non-secure mode, said processor stores a
program counter value for use in restarting processing in said non-secure mode at a

point at which processing in said non-secure mode ceased.

11.  Apparatus as claimed in any one of the preceding claims, wherein when entry

to said monitor mode is initiated from said non-secure mode, said processor stores a
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processor status value for use in restoring said processor to a status matching that at a

point at which processing in said non-secure mode ceased.

12.  Apparatus as claimed in any one of the preceding claims, wherein when
processing in said secure mode is stopped such that exception processing in said non-
secure mode can take place, a switch to said non-secure mode is made via said
monitor mode and said exception processing is operable when finished to return

control to said monitor mode.

13.  Apparatus as claimed in any one of the 'preceding claims, wherein said
processor includes a secure status flag indicating of whether said processor is
operating in said secure domain or said non-secure domain, said secure status flag
being writable when said processor is operating in said monitor mode and said secure
status flag being non-writable being said processor is operating in other than said

monitor mode.

14. Apparatus as claimed in any one of the preceding claims, wherein a non-
secure operating system controls said processor when operating in said at least one

non-secure mode.

15.  Apparatus as claimed in any one of the preceding claims, wherein a secure

operating system controls said processor when operating in said at least one secure

mode.

16.  Apparatus as claimed in claim 15, wherein said monitor program is part of

said secure operating system.

17.  Apparatus as claimed in any one of the preceding claims, wherein said

processor is responsive to one or more exception conditions for triggering exception

processing.
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18.  Apparatus as claimed in claim 17, wherein in said monitor mode at least one

of said exception conditions is disabled.

19.  Apparatus as claimed in claim 2 and claim 18, wherein said processor has a
plurality of dedicated registers which substitute for corresponding general purpose
registers within said register bank when said monitor mode is entered such that said
plurality of dedicated registers are available for use by said monitor program without

overwriting data within said corresponding general purpose registers.

20.  Apparatus as claimed in any one of claims 17, 18 and 19, wherein an
exception trap mask register stores one or more parameters specifying which of said
exceptions should be handled by an exception handler executing in said monitor mode
and which of said exceptions should be handled by an exception handler executing in

a mode within a current one of said secure domain and said non-secure domain when

that exception occurs.

21.  Apparatus as claimed in any one of claims 17 to 20, wherein said processor is
responsive to a secure exception condition operable to trigger entry into said monitor

mode and execution of said monitor program.

22.  Apparatus as claimed in any one of the preceding claims, wherein said
processor is responsive to a monitor mode entry instruction to enter said monitor

mode and start executing said monitor program at a predetermined location.

23.  Apparatus as claimed in claim 22, wherein said monitor mode entry
instruction is a mode switching software interrupt instruction and said predetermined
location is a mode switching software interrupt vector associated with said mode

switching software interrupt instruction.

24.  Apparatus as claimed in claim 23, wherein different mode switching software

interrupt vectors are associated with said mode switching software interrupt
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instruction in dependence upon whether said processor is in a secure mode or a non-

secure mode.

25.  Apparatus as claimed in any one of the preceding claims, wherein said at least
one secure mode includes one or more of:

a secure supervisor mode;

a secure system mode;

a secure abort exception mode;

a secure undefined exception mode;

a secure interrupt mode;

a secure fast interrupt mode; and

a secure user mode.

26.  Apparatus as claimed in any one of the preceding claims, wherein said at least
one non-secure mode includes one or more of:

a non-secure supervisor mode;

a non-secure system mode;

a non-secure abort exception mode;

a non-secure undefined exception mode;

a non-secure interrupt mode;

a non-secure fast interrupt mode; and

a non-secure user mode.

27.  Apparatus as claimed in claim 1, wherein said processor is operable in at least
one privileged secure mode within said secure domain which cannot change from said
secure domain to said non-secure domain, said privileged secure mode having
privilege rights permitting a change from said privileged secure mode into said

monitor mode without a redirection of program execution point.

28.  Apparatus as claimed in claim 27, wherein when in said monitor mode, said

processor is operable to change a security flag to change between said secure domain
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and said non-secure domain, said security flag being non-write accessible outside of

said monitor mode.

29.  Apparatus as claimed in any one of claims 27 and 28, wherein said processor
is responsive to a software interrupt instruction to perform a switch into said monitor
mode with a redirection of program execution point as specified by an interrupt vector

associated with said software interrupt instruction.

30. Apparatus as claimed in any one of claims 27, 28 and 29, wherein said non-
secure domain includes at least one privileged non-secure more from which a change

into said monitor mode without a redirection of program execution point cannot be

made.

31.  Apparatus as claimed in any one of claims 27 to 30, wherein upon reset, said

processor enters said privileged secure mode.

32.  Apparatus as claimed in any one of claims 27 to 31, wherein before a change
from said secure domain to said non-secure domain, a monitor program executing in
said monitor mode makes a switch to said secure privileged mode to allow saving of
configuration data non-accessible from ‘within said monitor mode before said secure

privileged mode switches back to said monitor mode for said change to said non-

secure domain.

33.  Apparatus as claimed in any one of claims 27 to 32, wherein memory regions

accessible in said monitor mode is also accessible in said privileged secure mode.

34. A method of processing data, said method comprising the steps of:

executing a program with a processor operable in a plurality of modes and a
plurality of domains, said plurality of domains comprising a secure domain or a non-
secure domain, said plurality of modes including:

at least one secure mode being a mode in said secure domain;
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at least one non-secure mode being a mode in said non-secure domain;
and
a monitor mode, wherein
when said processor is executing a program in a secure mode said program has
access to secure data which is not accessible when said processor is operating in a
non-secure mode; and
switching between said secure mode and said non-secure mode via said
monitor mode, said processor executing a monitor program at least partially in said

monitor mode to manage switching between said secure mode and said non-secure

mode.

35. A method as claimed in claim 34, wherein said processor includes a register
bank and said monitor program flushes at least a portion of said register bank shared
between said secure mode and said non-secure mode when switching from said secure
mode to said non-secure mode such that no secure data held within said register bank
may pass from said secure mode to said non-secure mode other than as permitted by

said monitor program.

36. A method as claimed in claim 34, wherein said processor includes a non-
secure register bank used when said processor is operating in said non-secure mode

and a secure register bank used when said processor is operating in said secure mode.

37. A method as claimed in any one of claims 34, 35 and 36, wherein when
operating in said non-secure mode a switch to said secure mode is made by a switch

to one of one or more fixed points within said monitor program.

38. A method as claimed in any one of claims 34 to 37, wherein said secure
domain provides at least one secure privileged mode and at least one secure user
mode and when operating in a secure privileged mode a switch to said monitor mode

may be made using the same mechanisms as a switch to a secure user mode.
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39. A method as claimed in claim 37, wherein said switch uses a call made by a

program executing in said non-secure mode.

40. A method as claimed in claim 39, wherein said call is made to a fixed point

within said monitor program.

41. A method as claimed in claim 37, wherein said switch is triggered by an
attempt by a program other than whilst in said monitor mode to switch between said

non-secure mode and said secure mode.

42. A method as claimed in claim 41, wherein any attempt by a program other
than whilst in said monitor mode to switch between said non-secure mode and said

secure mode is trapped and triggers a call to a fixed point in said monitor program.

43. A method as claimed in any one of claims 34 to 42, wherein when entry to
said monitor mode is initiated from said non-secure mode, said processor stores a
program counter value for use in restarting processing in said non-secure mode at a

point at which processing in said non-secure mode ceased.

44. A method as claimed in any one of claims 34 to 43, wherein when entry to
said monitor mode is initiated from said non-secure mode, said processor stores a
processor status value for use in restoring said processor to a status matching that at a

point at which processing in said non-secure mode ceased.

45. A method as claimed in any one of claims 34 to 44, wherein when processing
in said secure mode is stopped such that exception processing in said non-secure
mode can take place, a switch to said non-secure mode is made via said monitor mode
and said exception processing is operable when finished to return control to said

monitor mode.
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46. A method as claimed in any one of claims 34 to 46, wherein said processor
includes a secure status flag indicating of whether said processor is operating in said
secure domain or said non-secure domain, said secure status flag being writable when
said processor is operating in said monitor mode and said secure status flag being

non-writable being said processor is operating in other than said monitor mode.

47. A method as claimed in any one of claims 34 to 46, wherein a non-secure

operating system controls said processor when operating in said at least one non-

secure mode.

48. A method as claimed in any one of claims 34 to 47, wherein a secure operating

system controls said processor when operating in said at least one secure mode.

49. A method as claimed in claim 48, wherein said monitor program is part of said

secure operating system.

50. A method as claimed in any one of claims 34 to 49, wherein said processor is

responsive to one or more exception conditions for triggering exception processing.

- 51. A method as claimed in claim 50, wherein in said monitor mode at least one of

said exception conditions is disabled.

52. A method as claimed in claim 35 and claim 51, wherein said processor has a
plurality of dedicated registers which substitute for corresponding general purpose
registers within said register bank when said monitor mode is entered such that said
plurality of dedicated registers are available for use by said monitor program without

overwriting data within said corresponding general purpose registers.

53, A method as claimed in any one of claims 50, 51 and 52, wherein an exception
trap mask register stores one or more parameters specifying which of said exceptions

should be handled by an exception handler executing in said monitor and which of
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said exceptions should be handled by an exception handler executing in a mode

within a current one of said secure domain and said non-secure domain when that

exception occurs.

54. A method as claimed in any one of claims 50 to 53, wherein said processor is
responsive to a secure exception condition operable to trigger entry into said monitor

mode and execution of said monitor program.

55. A method as claimed in any one of claims 34 to 54, wherein said processor is
responsive to a monitor mode entry instruction to enter said monitor mode and start

executing said monitor program at a predetermined location.

56. A method as claimed in claim 55, wherein said monitor mode entry instruction
is a mode switching software interrupt instruction and said predetermined location is
an mode switching software interrupt vector associated with said mode switching

software interrupt instruction.

57. A method as claimed in claim 56, wherein different mode switching software
interrupt vectors are associated with said mode switching software interrupt

instruction in dependence upon whether said processor is in a secure mode or a non-

secure mode.

58. A method as claimed in any one of claims 34 to 57, wherein said at least one
secure mode includes one or more of:

a secure supervisor mode;

a secure system mode;

a secure abort exception mode;

a secure undefined exception mode;

a secure interrupt mode;

a secure fast interrupt mode; and

a secure user mode.
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59. A method as claimed in any one of claims 34 to 58, wherein said at least one
non-secure mode includes one or more of:

a non-secure supervisor mode;

a non-secure system mode;

a non-secure abort exception mode;

a non-secure undefined exception mode;

a non-secure interrupt mode;

a non-secure fast interrupt mode; and

a non-secure user mode.

60. A method as claimed in claim 34, wherein said processor is operable in at least
one privileged secure mode within said secure domain which cannot change from said
secure domain to said non-secure domain, said privileged secure mode having
privilege rights permitting a change from said privileged secure mode into said

monitor mode without a redirection of program execution point.

61. A method as claimed in claim 60, wherein when in said monitor mode, said
processor is operable to change a security flag to change between said secure domain
and said non-secure domain, said security flag being non-write accessible outside of

said monitor mode.

62. A method as claimed in any one of claims 60 and 61, wherein said processor is
responsive to a software interrupt instruction to perform a switch into said monitor
mode with a redirection of program execution point as specified by an interrupt vector

associated with said software interrupt instruction.

63. A method as claimed in any one of claims 60, 61 and 62, wherein said non-
secure domain includes at least one privileged non-secure more from which a change

into said monitor mode without a redirection of program execution point cannot be

made.
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64, A method as claimed in any one of claims 60 to 63, wherein upon reset, said

processor enters said privileged secure mode.

65. A method as claimed in any one of claims 60 to 64, wherein before a change
from said secure domain to said non-secure domain, a monitor program executing in
said monitor mode makes a switch to said secure privileged mode to allow saving of
configuration data non-accessible from within said monitor mode before said secure

privileged mode switches back to said monitor mode for said change to said non-

secure domain.

66. A method as claimed in any one of claims 60 to 65, wherein memory regions

accessible in said monitor mode is also accessible in said privileged secure mode.

67. A computer program product having a computer program operable to control a

data processing apparatus in accordance with the method of any one of claims 34 to

66.
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