/045704 A1 | IV 000 OO

ore

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 May 2006 (04.05.2006)

TR
O 000 O OO T

(10) International Publication Number

WO 2006/045704 A1l

(51) International Patent Classification:
GOGF 9/46 (2006.01)

(21) International Application Number:
PCT/EP2005/055240

(22) International Filing Date: 13 October 2005 (13.10.2005)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

10/974,514 27 October 2004 (27.10.2004) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KING-
DOM LIMITED [GB/GB]; PO Box 41 North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): MCKENNEY,
Paul [US/US]; 1975 NW Albion Court, Beverton, Oregon

97006 (US). RUSSELL, Paul [AU/AU]; 1/7 Adams
Street, Queanbeyan, New South Wales (AU). SARMA,
Dipankar [IN/IN]; 303E R.J. Garden Aparments 17th
E., Cross, Indiranager 2nd Stage, Bangalore, Karnatake
560038 (IN).

Agent: WALDNER, Philip; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,
SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

[Continued on next page]

(54) Title: READ-COPY UPDATE GRACE PERIOD DETECTION WITHOUT ATOMIC INSTRUCTIONS THAT GRACE-

FULLY HANDLES LARGE NUMBERS OF PROCESSORS

MULTIPROCESSOR COMPUTER SYSTEM

PROCESSOR PROCESSOR PROCESSOR
4, 4, 4, SHARED
UPDATER UPDATER UPDATER MEMORY
18, 18, 18, 8
SHARED
20 | Rev sussys RCU SUBSYS RCU SUBSYS e
20, 20, 20, .
CACHE CACHE CACHE
MEMORY MEMORY MEMORY
10 10, 10, MEMORY
CACHE CACHE CACHE CONTROLLER
CONTROLLER CONTROLLER CONTROLLER 14
12, 12 12,
SYSTEM BUS (6)

(57) Abstract: A method, system and computer program product for detecting a grace period without atomic instructions in a

ad-copy update subsystem or other processing environment that requires deferring removal of a shared data element until pre-
& existing references to the data element are removed. Detection of the grace period includes establishing a token to be circulated
& between processing entities sharing access to the data element. A grace period elapses whenever the token makes a round trip
o through the processing entities. A distributed indicator associated with each processing entity indicates whether there is a need to

perform removal processing on any shared data element. The distributed indicator is processed at each processing entity before the
latter engages in token processing. Token processing is performed only when warranted by the distributed indicator. In this way,
unnecessary token processing can be avoided when the distributed indicator does not warrant such processing.

WO 2006/045704 A1 1M1 A000H0 T 000 O 00000

RO, SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, For two-letter codes and other abbreviations, refer to the "Guid-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-
Published: ning of each regular issue of the PCT Gazette.

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240

READ-COPY UPDATE GRACE PERIOD DETECTION WITHOUT ATOMIC INSTRUCTIONS THAT
GRACEFULLY HANDLES LARGE NUMBERS OF PROCESSORS

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to computer systems and methods in
which data resources are shared among concurrent data consumers while
preserving data integrity and consistency relative to each consumer. More
particularly, the invention concerns improvements to a mutual exclusion
mechanism known as “read-copy update,” in which lock-free data read

operations run concurrently with data update operations.

Description of the Prior Art

By way of background, read-copy update is a mutual exclusion
technique that permits shared data to be accessed for reading without the
use of locks, writes to shared memory, memory barriers, atomic
instructions, or other computationally expensive synchronization
mechanisms, while still permitting the data to be updated (modify, delete,
insert, etc.) concurrently. The technique is well suited to
multiprocessor computing environments in which the number of read
operations (readers) accessing a shared data set is large in comparison to
the number of update operations (updaters), and wherein the overhead cost
of employing other mutual exclusion techniques (such as locks) for each
read operation would be high. By way of example, a network routing table
that is updated at most once every few minutes but searched many thousands
of times per second is a case where read-side lock acquisition would be

quite burdensome.

The read-copy update technique implements data updates in two
phases. In the first (initial update) phase, the actual data update is
carried out in a manner that temporarily preserves two views of the data
being updated. One view is the old (pre-update) data state that is
maintained for the benefit of operations that may be currently referencing
the data. The other view is the new (post-update) data state that is
available for the benefit of operations that access the data following the
update. In the second (deferred update) phase, the old data state is
removed following a “grace period” that is long enough to ensure that all
executing operations will no longer maintain references to the pre-update
data.

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240

Figs. 1A-1D illustrate the use of read-copy update to modify a data
element B in a group of data elements A, B and C. The data elements A, B,
and C are arranged in a singly-linked list that is traversed in acyclic
fashion, with each element containing a pointer to a next element in the
list (or a NULL pointer for the last element) in addition to storing some
item of data. A global pointer (not shown) is assumed to point to data
element A, the first member of the list. Persons skilled in the art will
appreciate that the data elements A, B and C can be implemented using any
of a variety of conventional programming constructs, including but not

limited to, data structures defined by C-language “struct” variables.

It is assumed that the data element list of Figs. 1A-1D is traversed
(without locking) by multiple concurrent readers and occasionally updated
by updaters that delete, insert or modify data elements in the list. 1In
Fig. 1A, the data element B is being referenced by a reader rl, as shown
by the vertical arrow below the data element. In Fig. 1B, an updater ul
wishes to update the linked list by modifying data element B. Instead of
simply updating this data element without regard to the fact that rl is
referencing it (which might crash rl), ul preserves B while generating an
updated version thereof (shown in Fig. 1C as data element B') and
inserting it into the linked list. This is done by ul acquiring a
spinlock, allocating new memory for B', copying the contents of B to B',
modifying B' as needed, updating the pointer from A to B so that it points
to B', and releasing the spinlock. All subsequent (post update) readers
that traverse the linked list, such as the reader r2, will thus see the
effect of the update operation by encountering B'. On the other hand, the
old reader rl will be unaffected because the original version of B and its
pointer to C are retained. Although rl will now be reading stale data,
there are many cases where this can be tolerated, such as when data
elements track the state of components external to the computer system
(e.g., network connectivity) and must tolerate old data because of

communication delays.

At some subsequent time following the update, rl will have continued
its traversal of the linked list and moved its reference off of B. 1In
addition, there will be a time at which no other reader process is
entitled to access B. It is at this point, representing expiration of the

grace period referred to above, that ul can free B, as shown in Fig. 1D.

Figs. 2A-2C illustrate the use of read-copy update to delete a data
element B in a singly-linked list of data elements A, B and C. As shown

in Fig. 2A, a reader rl is assumed be currently referencing B and an

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240

updater ul wishes to delete B. As shown in Fig. 2B, the updater ul
updates the pointer from A to B so that A now points to C. In this way,
rl is not disturbed but a subsequent reader r2 sees the effect of the
deletion. As shown in Fig. 2C, rl will subsequently move its reference

off of B, allowing B to be freed following expiration of the grace period.

In the context of the read-copy update mechanism, a grace period
represents the point at which all running processes having access to a
data element guarded by read-copy update have passed through a “quiescent
state” in which they can no longer maintain references to the data
element, assert locks thereon, or make any assumptions about data element
state. By convention, for operating system kernel code paths, a context
(process) switch, an idle loop, and user mode execution all represent
quiescent states for any given CPU (as can other operations that will not

be listed here).

In Fig. 3, four processes 0, 1, 2, and 3 running on four separate
CPUs are shown to pass periodically through quiescent states (represented
by the double vertical bars). The grace period (shown by the dotted
vertical lines) encompasses the time frame in which all four processes
have passed through one quiescent state. If the four processes 0, 1, 2,
and 3 were reader processes traversing the linked lists of Figs. 1A-1D or
Figs. 2A-2C, none of these processes having reference to the o0ld data
element B prior to the grace period could maintain a reference thereto
following the grace period. All post grace period searches conducted by
these processes would bypass B by following the links inserted by the
updater.

There are various methods that may be used to implement a deferred
data update following a grace period, including but not limited to the use
of callback processing as described in commonly assigned U.S. Patent No.
5,727,209, entitled “Apparatus And Method For Achieving Reduced Overhead
Mutual-Exclusion And Maintaining Coherency In A Multiprocessor System
Utilizing Execution History And Thread Monitoring.” The contents of U.S.

Patent No. 5,727,209 are hereby incorporated herein by this reference.

The callback processing technique contemplates that an updater of a
shared data element will perform the initial (first phase) data update
operation that creates the new view of the data being updated, and then
specify a callback function for performing the deferred (second phase)
data update operation that removes the old view of the data being updated.

The updater will register the callback function (hereinafter referred to

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240

as a “callback”) with a read-copy update subsystem so that it can be
executed at the end of the grace period. The read-copy update subsystem
keeps track of pending callbacks for each processor and monitors
per-processor guiescent state activity in order to detect when each
processor’s current grace period has expired. As each grace period
expires, all scheduled callbacks that are ripe for processing are

executed.

The successful implementation of read-copy update requires efficient
mechanisms for deducing the length of a grace period. One important class
of implementations passes a grace period token from one processor to the
next to signify that the end of a grace period has been reached for the
processor owning the token. The grace period token can be a distinguished
value that is expressly passed between processors. However, two memory
write accesses are required when using this technique -- one to remove the
token from its current owner and another to pass the token to its new
owner. A more efficient way of handling the grace period token is to pass
it implicitly using per-processor quiescent state counters and associated
polling mechanisms. According to this technique, whenever a processor
passes through a quiescent state, its polling mechanism inspects the
quiescent state counter of a neighboring processor to see if the
neighbor’s counter has changed since the current processor’s last grace
period. If it has, the current processor determines that a new grace
period has elapsed since it last had the token. It executes its pending
callbacks and then changes its quiescent state counter to an incrementally
higher value than that of its neighbor. The next processor then sees this
processor’s changed counter value, processes its pending callbacks, and
increments its own counter. This sequence continues, with the grace
period token ultimately making its way through all of the processors in

round-robin fashion.

Regardless of how the grace period token is implemented, each
processor only processes callbacks when it receives the token. Insofar as
the grace period token must travel through all other processors before
reaching the processor that is the current holder, the current processor
is always guaranteed that the other processors have passed through a
guiescent state since the last time the current processor owned the token,

thus ensuring that a grace period has elapsed.

Because grace period detection using token manipulation consumes
processor cycles as the processors pass through their quiescent states, it

is undesirable to incur such overhead unless there are pending callbacks

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240

in the read-copy update subsystem. For that reason, efficient token-based
read-copy update implementations use a shared indicator (i.e., a global
variable) that is tested before grace period token processing to determine
if the read-copy update subsystem is idle. If it is, the grace period
token does not need to be passed and the associated processing overhead
can be avoided. The shared indicator is typically a count of the number
of pending callbacks. Whenever a callback is registered at a given
processor, the shared indicator is manipulated to reflect the new
callback. Thereafter, when that callback is processed, the shared
indicator is again manipulated to reflect the removal of the callback from

the read-copy update subsystem.

A disadvantage of using a shared indicator to test for the existence
of pending callbacks is that atomic instructions, locks or other
relatively expensive mutual exclusion mechanisms must be invoked each time
the shared indicator is manipulated in order to synchronize operations on
the indicator by multiple processors. Moreover, conventional hardware
caching of the shared indicator by each processor tends to result in
communication cache misses and cache line bouncing. In the case of a
bitmap indicator, a further disadvantage is that a large number of

processors cannot be gracefully accommodated.

It is to solving the foregoing problems that the present invention
is directed. 1In particular, what is required is a new read-copy update
grace period detection technique that avoids unnecessary grace period
token processing without incurring the overhead of a shared indicator of

pending callback status.

Summary of the Invention

The foregoing problems are solved and an advance in the art is
obtained by a method, system and computer program product for detecting a
grace period without atomic instructions in a read-copy update subsystem
or other processing environment that requires deferring removal of a
shared data element until pre-existing references to the data element are
removed. Grace period detection includes establishing a token to be
circulated between processing entities sharing access to the shared data
element. A grace period can be determined to elapse whenever the token
makes a round trip through the processing entities. A distributed
indicator is associated with each of the processing entities that is
indicative of whether there is a need to perform removal processing on the

data element or on other data elements shared by the processing entities

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240

(e.g., whether there are pending callbacks warranting callback processing
if the invention is implemented in a callback-based read-copy update
system). The distributed indicator is processed at each of the processing
entities before engaging in token processing at the processing entities.
Token processing is performed at the processing entities only when
warranted by the distributed indicator. In this way, unnecessary token
processing can be avoided when the distributed indicator does not warrant

such processing.

In exemplary embodiments of the invention, the distributed
indicators are stored as local variables in the cache memories associated
with the processing entities (and replicated from one cache memory to
another during the course of processing via conventional cache coherence
mechanisms). In such embodiments, the distributed indicators can
represent different kinds of information depending on design preferences.
For example, the distributed indicators can alternatively represent the
number of processing entities that have pending requests to perform
updates to data elements shared by the processing entities, the total
number of updates, or a bitmap identifying the processing entities having

pending update requests.

The propagation of changes made to the distributed indicators by the
various processing entities can also be performed in different ways
according to design preferences. In exemplary embodiments, the processing
entities periodically consult a distributed indicator maintained by a
neighboring processing entity, and adjust the indicator as necessary to
reflect changes in data element removal request activity (e.g., callback
registrations) at the current processing entity. Whether there has been a
change in data element removal request activity can include determination
of various factors, such as whether there are a threshold number of
pending data element removal requests at one of the processing entities to
warrant circulation of the token. Alternatively, such determination could
be based on whether there are any pending data element removal requests at

one of the processing entities.

Brief Description of the Drawings

The foregoing and other features and advantages of the invention
will be apparent from the following more particular description of
exemplary embodiments of the invention, as illustrated in the accompanying

Drawings, in which:

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240

Figs. 1A-1D are diagrammatic representations of a linked list of
data elements undergoing a data element replacement according to a

conventional read-copy update mechanism;

Figs. 2A-2C are diagrammatic representations of a linked list of
data elements undergoing a data element deletion according to a

conventional read-copy update mechanism;

Fig. 3 is a flow diagram illustrating a grace period in which four

processes pass through a gquiescent state;

Fig. 4 is a functional block diagram showing a multiprocessor
computing system that represents one exemplary environment in which the

present invention can be implemented;

Fig. 5 is a functional block diagram showing a read-copy update
subsystem implemented by each processor in the multiprocessor computer

system of Fig. 4;

Fig. 6 is a functional block diagram showing a cache memory
associated with each processor in the multiprocessor computer system of

Fig. 4;

Fig. 7 is a table showing exemplary quiescent state counter values
in a hypothetical four-processor data processing system implementing

read-copy update;

Fig. 8 is a functional block diagram showing the four processors of
Fig. 7 as they pass a grace period token from time to time during

read-copy update processing;

Fig. 9 is a flow diagram showing the manipulation of a distributed
callback indicator implemented as a count of processors having pending
callbacks;

Fig. 10 is a table showing exemplary quiescent state counter values
and distributed callback indicator values in a hypothetical four-processor

data processing system implementing read-copy update;

Fig. 11 is a functional block diagram showing the four processors of
Fig. 10 as they pass a grace period token from time to time during

read-copy update processing;

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240

Fig. 12 is a flow diagram representing a modification of the flow

diagram of Fig. 9;

Fig. 13 is a flow diagram showing the manipulation of a distributed

callback indicator implemented as a count of pending callbacks;

Fig. 14 is a flow diagram showing the manipulation of a distributed
callback indicator implemented as a bitmap identifying processors having

pending callbacks; and
Fig. 15 is a diagrammatic illustration of storage media that can be
used to store a computer program product for implementing read-copy update

grace period detection functions in accordance with the invention.

Detailed Description of Exemplary Embodiments

Turning now to the figures, wherein like reference numerals
represent like elements in all of the several views, Fig. 4 illustrates an
exemplary computing environment in which the present invention may be
implemented. 1In particular, a symmetrical multiprocessor (SMP) computing
system 2 is shown in which multiple processors 4,, 4, . . . 4, are
connected by way of a common bus 6 to a shared memory 8. Respectively
associated with each processor 4;,, 4, . . . 4, is a conventional cache
memory 10,, 10, . . . 10, and a cache controller 12,, 12, . . . 12,. A
conventional memory controller 14 is associated with the shared memory 8.
The computing system 2 is assumed to be under the management of a single

multitasking operating system adapted for use in an SMP environment.

It is further assumed that update operations executed within kernel
or user mode processes, threads, or other execution contexts will
periodically perform updates on shared data sets 16 stored in the shared
memory 8. Reference numerals 18,, 18, . . . 18, illustrate individual data
update operations (updaters) that may periodically execute on the several
processors 4,, 4, . . . 4,. As described by way of background above, the
updates performed by the data updaters 18,, 18, . . . 18, can include
modifying elements of a linked list, inserting new elements into the list,
deleting elements from the list, and many other types of operations. To
facilitate such updates, the several processors 4,, 4, . . . 4, are
programmed to implement a read-copy update (RCU) subsystem 20, as by
periodically executing respective read-copy update instances 20;, 20,

20, as part of their operating system functions. Although not illustrated

in the drawings, it will be appreciated that the processors 4,, 4, . . . 4,

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240

also execute read operations on the shared data sets 16. Such read
operations will typically be performed far more often than updates,
insofar as this is one of the premises underlying the use of read-copy

update.

As shown in Fig. 5, each of the read-copy update subsystem instances
201, 20, . . . 20, includes a callback registration component 22. The
callback registration component 22 serves as an API (Application Program
Interface) to the read-copy update subsystem 20 that can be called by the
updaters 18, . . . 18, to register requests for deferred (second phase)
data element updates following initial (first phase) updates performed by
the updaters themselves. As is known in the art, these deferred update
requests involve the removal of stale data elements, and will be handled
as callbacks within the read-copy update subsystem 20. Each of the
read-copy update subsystem instances 20,, 20, . . . 20, additionally
includes a quiescent state counter manipulation and polling mechanism 24
(or other functionality for passing a token), together with a callback
processing system 26. Note that the functions 24 and 26 can be

implemented as part of a kernel scheduler, as is conventional.

The cache memories 10,, 10, . . . 10, associated with the processors
4,, 4, . . . 4, respectively store quiescent state counters 28,, 28,
28, and one or more callback queues 30,, 30, . . . 30,. The quiescent state
counters 28;, 28, . . . 28, are managed by the counter manipulation and
polling mechanism 24 (a token manipulator) for the purpose of passing a
grace period token among the processors 4,, 4, . . . 4,. It will be
appreciated that if some other form of token passing is used, the
guiescent state counters 28;, 28, . . . 28, will not be required. The
callback queues 30,, 30, . . . 30, are appended (or prepended) with new
callbacks as such callbacks are registered with the callback registration
component 22. The callback processing system 26 is responsible for
executing the callbacks referenced on the callback queues 30,, 30

30,, and then removing the callbacks as they are processed.

Figs. 7 and 8 illustrate how the quiescent state counters 28,, 28,
28, can be used to pass a grace period token between processors in an
exemplary four processor system as the processors pass through quiescent
states. Each column in Fig. 7 shows exemplary values for all processor
guiescent state counters at a given point in time. The shaded cells
indicate that the corresponding processor is the owner of the grace period

token. In each case, the owner is the processor whose counter has the

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
10

smallest value and whose neighbor has a counter value representing a

discontinuity relative to the token owner’s counter value.

The token passing technique represented by Figs. 7 and 8 is known in
the art and these figures are therefore labeled as “Prior Art.” As
described by way of background above, a given processor checks to see if
it owns the grace period token by referring to the quiescent state counter
maintained by one of neighbors (e.g., that processor whose processor
number is one greater than the current processor, modulo (%) the number of
processors). If the neighbor’s quiescent state counter has not changed
since the current processor’s last grace period (i.e., there is no
discontinuity in the counter values), the current processor determines
that a new grace period has not yet elapsed and resumes normal processing.
If the neighbor’s counter has changed since the current processor’s last
grace period (i.e., there is a discontinuity in the counter values), the
current processor determines that a new grace period has elapsed. It
processes its pending callbacks and increments its own quiescent state
counter to one greater than the neighbor’s value, thereby moving the
discontinuity in counter values to itself. By way of example, at time t=0
in Figs. 7, processor 3 that has the lowest quiescent state counter value
(1) sees a discontinuous counter value (4) at processor 0. This signifies
to processor 3 that there have been three (4-1) quiescent states
experienced by its peer processors since processor 3’s last grace period.
Processor 3 thus concludes that a new grace period has elapsed and that it
now has the grace period token. It performs callback processing and sets
its quiescent state counter value to 4+1=5. At time t=1, processor 2,
having a quiescent state counter value of 2, now sees the discontinuous
counter value 5 at processor 0. It determines that it has the grace
period token, performs callback processing, and sets its counter value to
5+1=6. Continuing this sequence, processor 1 obtains the grace period
token at time t=2 and processor 0 obtains the token at time t=3. At time
t=4, the token returns to processor 3 and the pattern repeats. As
additionally shown in Fig. 8, processor 3 will obtain the token (T) at
times t= 0, 4 and 8, processor 2 will obtain the token at times t=1 and 5,
processor 3 will obtain the token at times t=2 and 6, and processor 0 will

obtain the token at times t=3 and 7.

As also described by way of background above, prior art
implementations of read-copy update seek to avoid unnecessary token
processing by manipulating a global variable that serves as a shared
indicator of whether there are pending callbacks in the read-copy update

subsystem that require processing. For example, as disclosed in P.

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
11

McKenney et al., “Read Copy Update,” Ottawa Linux Symposium (2002), a
Linux implementation of read-copy update known as “rcu-sched” uses a
shared variable “rcu pending” that represents a count of the number of
pending callbacks in the read-copy update subsystem. The Linux atomic
increment primitive “atomic_ine” is invoked to increment rcu_pending when
a new callback is registered by way of the function call
“atomic_inc(&rcu_pending).” The Linux atomic decrement primitive
“atomic_dec” is then invoked to decrement rcu_pending after the callback
is processed by way of the function call “atomic_dec(&rcu_pending).” It
should also be pointed out that “rcu-sched” is an example of a read-copy
update implementation that uses a counter-based, grace period token

passing scheme as shown in Figs. 7 and 8.

In order to avoid the disadvantages associated with the use of
atomic operations (or other concurrency control mechanisms) to increment
and decrement a shared indicator of callback pendency, the present
invention proposes an alternative approach. As shown in Fig. 6, a
distributed callback indicator 32 can be maintained in the cache memory 10
of each of the processors 4;,, 4, . . . 4, and manipulated as a local
variable to reflect changes in the read-copy update subsystem 20. Each
distributed callback indicator 32 provides a representation of the state
of the read-copy update subsystem 20. An associated callback indicator
handling mechanism 34 (also shown in Fig. 6) within each of the read-copy
update subsystem instances 20,, 20, . . . 20, can then consult the local
distributed callback indicator 32 to determine whether grace period token
processing is required. The local distributed callback indicator 32 may
show that the read-copy update subsystem is idle, in which case the token
does not need to be passed. On the other hand, the local distributed
callback indicator 32 may show that there are callbacks pending in the
read-copy update subsystem, and that grace period token processing is

required at the current processor.

In order to keep the distributed callback indicators 32 current as
conditions change within the read-copy update subsystem 20, a propagation
technique that is somewhat analogous to the grace period token passing
scheme of Figs. 7 and 8 may be used. Other implementations would also be
possible. According to the propagation technique, as each of the
processors 4,, 4, . . . 4, passes through a quiescent state, its callback
indicator handling mechanism 34 consults the distributed callback
indicator 32 of a neighbor processor and adjusts its own local callback

indicator according to the neighbor’s wvalue, coupled with consideration of

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
12

the local callback history since the current processor’s last grace

period.

In one embodiment of the invention, the distributed callback
indicator 32 is implemented as a per-processor counter of the number of
processors having pending callbacks. These processors may be referred to
as “callback processors,” and the distributed callback indicator 32 may be
thought of as a callback processor counter. To manipulate this counter, a
processor checks to see if there has been any change in its local callback
state since this processor’s last grace period. If no change has
occurred, the current processor’s counter will be set to the same value as
a neighbor processor’s counter. If a processor’s callback history shows
that no local callbacks were registered the last time the grace period
token left this processor, but a requisite number of new local callbacks
have been registered since the last grace period, the current processor’s
counter will be incremented to one higher than the value of the neighbor
processor’s counter. If a processor’s callback history shows that local
callbacks were registered the last time the grace period token left this
processor, but a requisite number of new local callbacks have not been
registered since the last grace period, the current processor’s counter
will be decremented so as to be one lower than the value of the neighbor

processor’s counter.

In a second embodiment of the invention, the distributed callback
indicator 32 is implemented to track an indication of the total number of
pending callbacks. In that case, the distributed callback indicator 32
can be thought of as a callback counter. To manipulate this counter, a
processor compares the number of local callbacks that have been registered
since this processor’s last grace period to the number of local callbacks
that were registered the last time the grace period token left the
processor. The current processor’s counter is set to the value of a
neighbor processor’s counter with an adjustment to reflect the net gain or

loss of local callbacks.

In a third embodiment of the invention, the distributed callback
indicator 32 is implemented as a bitmap identifying processors that have
pending callbacks. To manipulate the bitmap, a processor determines if
there are a requisite number of local callbacks that have been registered
since the last time the grace period token left this processor. If there
are, the current processor’s bitmap is set to correspond to a neighbor
processor’s bitmap, but with the current processor’s bit set to 1.

Otherwise, if a requisite number of local callbacks have not been

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
13

registered since the last grace period, the current processor’ bit value
in the bit map is set to zero. One disadvantage of this implementation is
that it does not gracefully handle large numbers of processors due to need

to process correspondingly large bitmaps.

Fig. 9 illustrates an exemplary sequence of processing steps that
may be performed according to the first above-described embodiment in
which the distributed callback indicator 32 is a count of the number of
processors 4,, 4, . . . 4, that have pending callbacks. The process of
Fig. 9 uses a per-processor local variable called “ebcpus” (shorthand for
“callback cpus”) as the distributed callback indicator. This variable is
a count of processors having callbacks needing processing. Another
per-processor local variable, called “lastcbs” (shorthand for “last
callbacks”), is a flag indicating whether the current processor had
callbacks registered the last time the grace period token left this
processor. A third per-processor variable, called “numcbs” (shorthand for
“number of callbacks”) is a count of the number of callbacks registered at

the current processor since the last grace period.

In step 40 of Fig. 9, the nth processor’s callback indicator
handling mechanism 34 obtains the value of cbepus of the processor n+l
(processor n-1 could also be used depending on the desired propagation
direction). 1In step 42, processor n determines if there are any new
callbacks (numcbs) that meet the criteria for starting a grace period. 1In
some cases, the presence of a single callback will satisfy this criteria.
In other cases, it may be desirable to batch process callbacks by
establishing a callback threshold specifying the number of callbacks
necessary to start a grace period, and an elapsed time threshold that
triggers callback processing even if the callback threshold is not
reached. If in step 42 there are new callbacks requiring processing, then
in step 44 the current processor’s value of cbcpus is set to one greater
than the neighbor processor’s value of cbepus, less the current
processor’s value of lastecbs. The value of lastebs is then set to 1 in
step 46 if and only if the callbacks on the current processor meet the
criteria for starting a grace period. If in step 42 there are no new
callbacks requiring processing, then in step 48 the current processor’s
value of cbcpus is set equal to the neighbor processor’s value of cbepus,
less the current processor’s value of lastecbs. The value of lastcbs is
then set to 0 in step 50 if and only if there are no new callbacks on the

current processor that meet the criteria for starting a grace period.

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
14

As each processor performs the foregoing processing while passing
through a quiescent state, changes due to the registration of new
callbacks or the processing of old callbacks will be quickly reflected by
each of the distributed callback indicators (cbepus in this example). By
testing the propagated distributed callback indicator at each processor,
potentially expensive token processing can be avoided when there are not
enough callbacks warranting grace period token circulation. The table of
Fig. 10 is illustrative of such processing in an exemplary four-processor
system. Fig. 10 is based on Fig. 7 but shows, for each processor 0, 1, 2,
and 3, both a grace period token on the left side of each table element
and a distributed callback indicator (cbecpus in this example) on the right
side of each table element. The shaded cells again indicate that the
corresponding processor is the owner of the grace period token. 1In each
case, the owner is the processor whose quiescent state counter has the
smallest value and whose neighbor has a counter value representing a

discontinuity relative to the token owner’s counter value.

In Fig. 10, processor 3 receives the grace period token from
processor 0. However, no token processing takes place because processor
3’7s distributed callback indicator has a value of 0. In the current
example in which the distributed callback indicator 32 is a count of
callback processors (cbepus), the 0 value means there are no processors
having a requisite number of callbacks warranting processing. Processor 3
thus determines that the read-copy update subsystem for this group of
processors is idle. At time t=1 in Fig. 10, processor 2 determines that
it has had new callback activity and sets its distributed callback
indicator to a value of 1. Processor 3 is unaffected (since it only looks
to processor 0 for callback indicator activity according to the current
example) and again performs no grace period token processing. At time
t=2, processor 2’s distributed callback indicator value is propagated to
processor 1. Processor 3 is unaffected and again performs no grace period
token processing. At time t=3, processor 1l’s distributed callback
indicator value has propagated to processor 0. Processor 3 is unaffected
and again performs no grace period token processing. At time t=4,
processor 0’s distributed callback indicator value has been propagated to
processor 3, causing it to perform grace period token processing and pass
the token to processor 2. At time t=5, processor 2 has performed grace
period token processing and passed the token to processor 1. At time t=6,
processor 1 has performed grace period token processing and passed the
token to processor 0. 1In addition, it is assumed that processor 2 has
determined that its callbacks have been processed and set its distributed

callback indicator to 0. At time t=7, processor 0 has performed grace

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
15

period token processing and passed the token to processor 3. In addition,
processor 2’s distributed callback indicator has been propagated to
processor 1. At time t=8, processor 3 has performed grace period token
processing and passed the token to processor 2. In addition, processor
1’s distributed callback indicator has been propagated to processor 0.
Assuming no new callbacks are registered in the system of Fig. 9, the
grace period token will now idle at processor 2 because its distributed

callback indicator is 0.

Fig. 11 summarizes the foregoing processing. It shows that
processor 3 will obtain the token (T) at times t= 0, 7. The token will
then idle at processor 3 during times t=1, 2 and 3. Processor 2 will then
obtain the token at times 4, 8. Processor 1 will obtain the token at time

t=5. Processor 0 will obtain the processor at time t=6.

Turning now to Fig. 12, an alternative to the distributed callback
indicator processing of Fig. 9 is shown. According to this alternative
approach, step 42a (corresponding to step 42 of Fig. 9) inquires whether
numbcbs is nonzero, without regard to whether a threshold has been
reached. Step 46a (corresponding to step 46 of Fig. 9) sets lastcbs to 1
if and only numcbs is greater than 0. Step 50a (corresponding to step 50
of Fig. 9) sets lastcbs to 0 if and only numcbs is 0. The advantage of
this alternative approach is that it permits processors with only a few
callbacks to “piggyback” their callback processing needs onto another
processor’s grace period token circulation and keep the token moving. The
disadvantage is that additional grace period detection operations can

result.

Fig. 13 illustrates an exemplary sequence of processing steps that
may be performed according to the second above-described embodiment in
which the distributed callback indicator 32 is a count of the number of
pending callbacks. The process of Fig. 13 uses a per-processor local
variable called “cbspen” (shorthand for “callbacks pending”) as the
distributed callback indicator. Another per-processor local variable,
called “lastcbs” (shorthand for “last callbacks”), is a value indicating
the number of callbacks that the current processor had registered the last
time the grace period token left this processor. A third per-processor
variable, called “numcbs” (shorthand for “number of callbacks”) is a count
of the number of callbacks registered at the current processor since the

last grace period.

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
16

In step 60 of Fig. 13, the nth processor’s callback indicator
handling mechanism 34 obtains the value of cbspen of the processor n+l
(processor n-1 could also be used depending on the desired propagation
direction). 1In step 62, the current processor’s value of cbspen is set to
the neighbor processor’s value of cbspen, plus the current processor’s
value of numcbs, less the current processor’s value of lastcbs. The value

of lastcbs is then set to numcbs in step 66.

Fig. 14 illustrates an exemplary sequence of processing steps that
may be performed according to the third above-described embodiment in
which the distributed callback indicator 32 is a bit map showing which
processors have pending callbacks. The process of Fig. 14 uses a
per-processor local bitmap variable called “cbepumap” (shorthand for
“callback cpu map”) as the distributed callback indicator. Another
per-processor local variable, called “numcbs” (shorthand for “number of
callbacks”) is a count of the number of callbacks registered at the

current processor since the last grace period.

In step 80 of Fig. 14, the nth processor’s callback indicator
handling mechanism 34 obtains the value of cbcpumap of the processor n+l
(processor n-1 could also be used depending on the desired propagation
direction). In step 82, processor n determines if there are any new
callbacks (numcbs) registered at this processor that satisfy some
established threshold (e.g., as discussed above relative to Fig. 9). If
in step 82 there are new callbacks requiring processing, then in step 84
the current processor’s cpcumap is set equal to that of processor n+l, but
the nth bit of cbcpumap is set to 1. If in step 82 there are no new
callbacks requiring processing, then in step 86 the current processor’s
value of cpcpumap is set equal to that of processor n+l, but the nth bit

of cbcpumap is set to 0.

Accordingly, a technique for read-copy update grace period detection
has been disclosed that does not require atomic instructions and which can
be implemented to gracefully handle large numbers of processors. It will
be appreciated that the foregoing concepts may be variously embodied in
any of a data processing system, a machine implemented method, and a
computer program product in which programming means are recorded on one or
more data storage media for use in controlling a data processing system to
perform the required functions. Exemplary data storage media for storing
such programming means are shown by reference numeral 100 in Fig. 15. The

media 100 are shown as being portable optical storage disks of the type

10

WO 2006/045704 PCT/EP2005/055240
17

that are conventionally used for commercial software sales. Such media
can store the programming means of the invention either alone or in
conjunction with an operating system or other software product that
incorporates read-copy update functionality. The programming means could
also be stored on portable magnetic media (such as floppy disks, flash
memory sticks, etc.) or on magnetic media combined with drive systems

(e.g. disk drives) incorporated in computer platforms.

While various embodiments of the invention have been described, it
should be apparent that many variations and alternative embodiments could
be implemented in accordance with the invention. It is understood,
therefore, that the invention is not to be in any way limited except in

accordance with the spirit of the appended claims and their equivalents.

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
18

CLAIMS

1. A method for detecting a grace period for deferring removal of a
shared data element until pre-existing references to the data element are

removed, comprising:

establishing a token to be circulated between processing entities

sharing access to said data element;

determining that said grace period has elapsed when said token makes

a round trip through said processing entities;

associating a distributed indicator with each of said processing
entities that is indicative of whether there is a need to perform removal
processing on said data element or on other data elements shared by said

processing entities;

processing said distributed indicator at each of said processing
entities before engaging in token processing at said processing entities;

and

performing token processing at said processing entities only when

warranted by said distributed indicator;

whereby unnecessary token processing can be avoided when said

distributed indicator does not warrant such processing.

2. A method in accordance with claim 1 wherein each of said distributed
indicators is stored as a local variable in a cache memory associated with

one of said processing entities.

3. A method in accordance with claim 1 wherein a distributed indicator
represents a number of said processing entities that have pending requests
to remove data elements shared by said processing entities or a number of
pending requests to remove data elements shared by said processing

entities.

4. A method in accordance with claim 1, 2 or 3 wherein said distributed
indicators represent a bit map identifying said processing entities that
have pending requests to remove data elements shared by said processing

entities.

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
19

5. A method in accordance with any one of claims 1 to 4 wherein a
change made to one of said distributed indicators at one of said
processing entities is propagated to other ones of said processing

entities.

6. A method in accordance with any one of claims 1 to 5 wherein a value
of one of said distributed indicators at first one of said processing
entities reflects a value of a second one of said distributed indicators
at a neighboring second one of said processing entities adjusted as
necessary to reflect data element removal request activity at said first

one of said processing entities.

7. A method in accordance with Claim 1 to 6 wherein said processing of
said distributed indicator includes determining whether there are a
threshold number of pending data element removal requests at one of said
processing entities to warrant circulation of said token or determining
whether there any pending data element removal requests at one of said

processing entities.

8. A method in accordance with any one of Claims 1 to 7 wherein said
method is implemented as part of a read-copy update mutual exclusion
technique, said data element removals are implemented by registering
callbacks at said processing entities, and said distributed indicator is a
distributed callback indicator reflecting callback activity in a read-copy

update subsystem.

9. A data processing system having one or more processors, a memory and
a communication pathway between the one or more processors and the memory,
said system being adapted to detect a grace period for deferring a removal
by one of said processors to a shared data element until pre-existing
references to the data element maintained by other of said processors are

removed, and comprising:

a token to be circulated between said processors;

a token manipulator associated with each of said processors adapted
to circulate said token and determine whether said grace period has
elapsed by virtue of said token making a round trip through said

processors;

a distributed indicator associated with each of said processors that

is indicative of whether there is a need to perform removal processing on

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
20

said data element or on other data elements shared by said processing

entities;

a distributed indicator handling mechanism associated with each of
said processors adapted to process said distributed indicator before token

processing by said token manipulator; and

said distributed indicator handling mechanisms being further adapted
to permit said token manipulators to performing token processing at said

processors only when warranted by said distributed indicator;

whereby unnecessary token processing can be avoided when said

distributed indicator does not warrant such processing.

10. A computer program product for detecting a grace period for
deferring removal of a shared data element until pre-existing references

to the data element are removed, comprising:

one or more data storage media;

means recorded on said data storage media for programming a data

processing platform to operate as by:

establishing a token to be circulated between processors sharing

access to said data element;

determining that said grace period has elapsed when said token makes

a round trip through said processing entities;

associating a distributed indicator with each of said processing
entities that is indicative of whether there is a need to perform removal
processing on said data element or on other data elements shared by said

processing entities;

processing said distributed indicator at each of said processing
entities before engaging in token processing at said processing entities;

and

performing token processing at said processing entities only when

warranted by said distributed indicator;

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
21

whereby unnecessary token processing can be avoided when said
distributed indicator does not warrant such processing.
30. A computer program product in accordance with Claim 21 wherein said
program means are implemented as part of a read-copy update subsystem
computer program product, said data element removals are implemented by
registering callbacks at said processing entities, and said distributed
indicator is a distributed callback indicator reflecting callback activity

in said read-copy update subsystem.

11. A method for detecting a grace period in a read-copy update

subsystem to determine when pending callbacks may be executed, comprising:

implementing a quiescent state counter at each of a set of

processors sharing access to said a data element;

establishing a grace period token as a discontinuity in count values

maintained by said quiescent state counters;

determining that said grace period has elapsed at one of said
processors when said token makes a round trip through said set of

processors to return to said one of said processors;

associating a distributed callback indicator as local variable in a
cache memory associated with each of said processors that is indicative of

whether there is a need to process said callbacks;

processing said distributed callback indicator at each of said
processors before engaging in token processing at said processing

entities; and

performing token processing at said processors only when warranted

by said distributed callback indicator;

whereby unnecessary token processing can be avoided when said

distributed callback indicator does not warrant such processing.

12. A data processing system having one or more processors, a memory and
a communication pathway between the one or more processors and the memory,
said system including a read-copy update subsystem adapted to detect a
grace period to determine when pending callbacks may be executed, and

comprising:

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
22

13. A method for detecting a grace period for deferring removal of a
shared data element until pre-existing references to the data element are

removed, comprising:

establishing a token to be circulated between processing entities

sharing access to said data element;

determining that said grace period has elapsed when said token makes

a round trip through said processing entities;

associating a distributed indicator with each of said processing
entities that represents a number of said processing entities that have
pending requests to remove data elements shared by said processing

entities;

processing said distributed indicator at each of said processing

entities before engaging in token processing at said processing entities;

said processing including modifying said distributed indicator
according to a value of said distributed indicator at a neighboring one of
said processing entities and a modification of said value according to (1)
whether there are removal requests associated with the current grace
period and there were no removal requests associated with the preceding
grace period, in which case the distributed indicator is incremented, or
(2) whether there are no removal requests associated with the current
grace period and there were removal requests associated with the preceding
grace period, in which case the distributed indicator is decremented, or
(3) whether there are removal requests for both the current and preceding
grace periods, or no removal requests for both the current and preceding
grace periods, in which case the distributed indicator remains the same;

and

performing token processing at said processing entities only when

warranted by said distributed indicator;

whereby unnecessary token processing can be avoided when said

distributed indicator does not warrant such processing.

14. A method for detecting a grace period for deferring removal of a
shared data element until pre-existing references to the data element are

removed, comprising:

10

15

20

25

30

35

40

WO 2006/045704 PCT/EP2005/055240
23

establishing a token to be circulated between processing entities

sharing access to said data element;

determining that said grace period has elapsed when said token makes

a round trip through said processing entities;

associating a distributed indicator with each of said processing
entities that represents a total number of pending requests to remove data

elements shared by said processing entities;

processing said distributed indicator at each of said processing

entities before engaging in token processing at said processing entities;

said processing including modifying said distributed indicator
according to a value of said distributed indicator at a neighboring one of
said processing entities and a modification of said value according to a
difference between the number of removal requests added during the current
grace period and the number of removal requests processed during the

previous grace period; and

performing token processing at said processing entities only when

warranted by said distributed indicator;

whereby unnecessary token processing can be avoided when said

distributed indicator does not warrant such processing.

15. A method for detecting a grace period for deferring removal of a
shared data element until pre-existing references to the data element are

removed, comprising:

establishing a token to be circulated between processing entities

sharing access to said data element;

determining that said grace period has elapsed when said token makes

a round trip through said processing entities;

associating a distributed indicator with each of said processing
entities that represents a bitmap of said processing entities that have
pending requests to remove data elements shared by said processing

entities;

10

15

WO 2006/045704 PCT/EP2005/055240
24

processing said distributed indicator at each of said processing

entities before engaging in token processing at said processing entities;

said processing including modifying said distributed indicator
according to a value of said distributed indicator at a neighboring one of
said processing entities and setting a bit corresponding to the evaluating
processing entity according to (1) whether there are removal requests
associated with the current grace period, in which case the bit is set to
one, or (2) whether there are no removal requests associated with the

current grace period, in which case the bit is set to zero; and

performing token processing at said processing entities only when

warranted by said distributed indicator;

whereby unnecessary token processing can be avoided when said

distributed indicator does not warrant such processing.

WO 2006/045704 — PCT/EP2005/055240
A P> B ———» C
r
FIG. 1A (PRIOR ART)
u1
A B C
'y
r1
FIG. 1B (PRIOR ART)
r2
B
+
r
FIG. IC (PRIOR ART)
A —————> B' [————P] C
A
r1

FIG. 1D (PRIOR ART)

WO 2006/045704 PCT/EP2005/055240

2/11

ui

A — 8 —— ¢
)

"
FIG. 24 (PRIOR ART)
ut
- B ———> C

FIG. 2B (PRIOR ART)
A > C
A
r1

FIG. 2C (PRIOR ART)

WO 2006/045704 PCT/EP2005/055240
3/11

GRACE PERIOD

PROCESS 0 H ¥

PROCESS 1 ——b“

PROCESS 2 >

PROCESS 3 “ —»

FIG. 3 (PRIOR ART)

MULTIPROCESSOR COMPUTER SYSTEM
2
PROCESSOR PROCESSOR PROCESSOR
4, 4, 4, SHARED
UPDATER UPDATER UPDATER MEMORY
18, 18, .. 18, 8
SHARED
00 < | RCU SuBSYS RCU SUBSYS RCU SUBSYS OATA SETS
20, 20, 20, 16
CACHE CACHE CACHE
MEMORY MEMORY MEMORY
10, 10, 10, MEMORY
CACHE CACHE CACHE CONTROLLER
CONTROLLER CONTROLLER CONTROLLER 14
12, 12 12,
SYSTEM BUS (6}

FIG. 4

WO 2006/045704 PCT/EP2005/055240

4/11

RCU SUBSYSTEM
20
CALLBACK QUIESCENT STATE
REGISTRATION |22 COUNTER
o4 | MANIPULATION

VY AND POLLING

CALLBACK | . CALLBACK
PROCESSING 26 INDICATOR
34 HANDLING
CACHE MEMORY

10
QUIESCENT
CALLBACK 28\/\ STATE
INDICATOR 32 COUNTER

CALLBACK

YA
QUEUES 30

FIG. 6

PCT/EP2005/055240

WO 2006/045704

9c=1

LV ¥OI1dd) 8 ‘DIA

L'€=}

mmemooma mOmmmoomn_ mOmmmoomn_ HOSS3ID0Yd
_ / é \\
> 8'v‘0=1
(LYV dOI18d) L DI
8 S ¢ £ O0Md
ok) 9 Z 004d
L L L L O0¥d
4} 8 7 \v\\ 14 14 0 00¥dd
8=} =) €=} z=} L=

SAWVLSINIL 1V SINTVA

WO 2006/045704

6/11

PCT/EP2005/055240

PROCESSORN
OBTAINS CBCPUS
FOR PROCESSOR N+1

~ 40

NUMCBS > THRESHOLD?

CBCPUS, = " | CBCPUS,=
CBCPUSp, +1 [V 48 CBCPUS,,

- LASTCBS - LASTCBS
LASTCBS = 1 LASTCBS =0
IFF NUMBCBS > |/ 40 50~ IFF NUMBCBS <
THRESHOLD, THRESHOLD,
ELSE LASTCBS =0 ELSE LASTCBS = 1

FIG. 9

PCT/EP2005/055240

WO 2006/045704

7/11

I1 OIAd

8'v=1 g=1
€ c
H0SS300Hd HOSSID0Ud MOwwwOOm& mmewoom&
mu .N .«."w |@! \\
L'0=1
€ 00dd
Z 00dd
L 00Hd
0 00¥d
SANVYLSIANLL LY SINTVA

WO 2006/045704 PCT/EP2005/055240

8/11

PROCESSOR N
OBTAINS CBCPUS A 40a
FOR PROCESSOR N+1
42a
YES NO
CBCPUS,, = CBCPUS,, =
CBCPUS., +1 v 487 cBCPUS,,,

- LASTCBS - LASTCBS
LASTCBS = 1 464 LASTCBS = 0
IFF NUMBCBS > 0, }\/ 50aM IFF NUMBCBS = 0.
ELSE LASCBS = 0 ELSE LASCBS = 1

FIG. 12

WO 2006/045704

FIG. 13

9/11

PROCESSOR N
OBTAINS CBSPEN
FOR PROCESSOR N+1

l

CBSPEN,, =
CBSPEN,,, + NUMCBS
- LASTCBS

l

LASTCBS = NUMCBS

\/

62

64

PCT/EP2005/055240

WO 2006/045704 PCT/EP2005/055240

10/11

PROCESSOR N
OBTAINS CBCPUMAP j~ 80
FOR PROCESSOR N+1

YES
NUMCBS > THRESHOLD?

CBCPUMAP, [N]=1 |~ 84 867 cBCPUMAP, INJ= 0

FIG. 14

WO 2006/045704

FIG. 15

100

11/11

PCT/EP2005/055240

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2005/055240

A. CLASSIFICATION OF SUBJECT MATTER
G06F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

XP002372599

roceedings.pdf.gz>
[retrieved on 2006-03-161
cited in the application
page 339 - page 343

A the whole document

OTTAWA LINUX SYMPOSIUM 2002, [Online]
29 June 2002 (2002-06-29), pages 338-367,

Retrieved from the Internet:
URL:http://www.1inux.org.uk/{ajh/o152002_p

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X PAUL E. MCKENNEY ET AL: "Read Copy 12
Update"

1-11,
13-15,30

Further documents are listed in the continuation of Box C.

I:I See patent family annex.

* Special categories of cited documents :

"A* document defining the general state of the ar which is not
considered to be of particular relevance

*E" earlier document but published on or afier the international
filing date

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0' document referring to an oral disclosure, use, exhibition or
other means

“P* document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
_m?rr:ls, ﬁuch combination being obvious to a person skilled
inthe art.

& document member of the same patent family

Date of the actual completion of the international search

17 March 2006

Date of mailing of the intemational search report

30/03/2006

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Dewyn, T

Form PCT/ISA/210 {second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2005/055240

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

locality and concurrency in a shared
memory multiprocessor operating system”
OPERATING SYSTEMS REVIEW ACM USA, 1998,
pages 87-100, XP002372503

ISSN: 0163-5980

the whole document

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X PAUL E. MCKENNEY ET AL: "Read-Copy 12
Update"[Online] July 2002 (2002-07),
XP002372502
Retrieved from the Internet:
URL:http://www.rdrop.com/users/paulmck/rci
ock/rcu.2002.07.08.pdf>
[retrieved on 2006-03-15]
page 2
A the whole document 1-11,
13-15,30
A ARCANGELI A ET AL: "Using 1-15,30
read-copy-update techniques for System V
IPC in the Linux 2.5 kernel"
FREENIX TRACK 2003 USENIX ANNUAL TECHNICAL
CONFERENCE. PROCEEDINGS USENIX ASSOC
BERKELEY, CA, USA, 2003, pages 297-309,
XP002372501
ISBN: 1-931971-11-0
the whole document
A GAMSA B ET AL: "Tornado: maximizing 1-15,30

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

