The present invention relates to a method for the diagnosis or the prognosis of metastasis in prostate cancer which comprises determining if the c-MAF gene is amplified in a primary tumor sample. Likewise, the invention also relates to a method for the diagnosis or the prognosis of metastasis in prostate cancer, as well as to a method for determining the tendency to develop bone metastasis with respect to metastasis in other organs, which, comprise determining the c-MAF expression level. Finally, the invention relates to the use of a c-MAF inhibitor as therapeutic target for treating the prostate cancer.
METHOD FOR THE DIAGNOSIS, PROGNOSIS AND TREATMENT OF PROSTATE CANCER METASTASIS

REFERENCE TO SEQUENCE LISTING

[0001] The content of the electronically submitted sequence listing ("3190_0030001_SEQIDListing_ascii.txt", 48,245 bytes, created on October 7, 2013) filed with the application is incorporated herein by reference in its entirety.

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

Field of the Invention

[0003] The present invention relates to the diagnosis or the prognosis of metastasis in prostate cancer based on determining if the c-MAF gene, within the 16q22-24 genomic region, is amplified in a primary tumor sample. Likewise, the invention also relates to a method for the diagnosis or the prognosis of metastasis in prostate cancer, as well as to a method for designing a customized therapy in a subject with prostate cancer, which comprises determining the c-MAF gene expression level or 16q22-24 amplification. Finally, the invention relates to the use of a c-MAF inhibitor as a therapeutic target for the treatment of prostate cancer metastasis.
Background Art

The problem:

[0004] Metastasis, a complex process caused by elaborate interactions between tumor cells and the surrounding normal tissues in different vital organs, accounts for 90 percent of all cancer deaths in patients with solid tumors. The molecular and cellular mechanisms that lead primary tumors to form metastases must be understood in order to better address this major life-threatening problem. The identification of metastasis genes and mechanisms is essential for understanding the basic biology of this lethal condition and its implications for clinical practice.

Introduction and interest: Prostate organ-specific Metastasis

[0005] Prostate cancer is a form of cancer that develops in the prostate, a gland in the male reproductive system. Most prostate cancers are slow growing; however, there are cases of aggressive prostate cancers. The cancer cells may metastasize (spread) from the prostate to other parts of the body, particularly the bones and lymph nodes. Prostate cancer may cause pain, difficulty in urinating, problems during sexual intercourse, or erectile dysfunction. Other symptoms can potentially develop during later stages of the disease.

[0006] Rates of detection of prostate cancers vary widely across the world, with South and East Asia detecting less frequently than in Europe, and especially the United States, Prostate cancer tends to develop in men over the age of fifty and although it is one of the most prevalent types of cancer in men, many never have symptoms, undergo no therapy, and eventually die of other causes. About two-
thirds of cases are slow growing, the other third more
ggressive and fast developing.

[0007] Many factors, including genetics and diet, have been
implicated in the development of prostate cancer. The
presence of prostate cancer may be indicated by symptoms,
physical examination., prostate-specific antigen (PSA), or
biopsy. The PSA test increases cancer detection but does
not decrease mortality. Moreover, prostate test screening
is controversial at the moment and may lead to unnecessary,
even harmful, consequences in some patients. Nonetheless,
suspected prostate cancer is typically confirmed by taking
a biopsy of the prostate and examining it under a
microscope. Further tests, such as CT scans and bone scans,
may be performed to determine whether prostate cancer has
spread.

[0008] Management strategies for prostate cancer should be
guided by the severity of the disease. Many low-risk tumors
can be safely followed with active surveillance. Curative
treatment generally involves surgery, various forms of
radiation therapy, or, less commonly, cryosurgery; hormonal
therapy and chemotherapy are generally reserved for cases
of advanced disease (although hormonal therapy may be given
with radiation in some cases).

[0009] The age and underlying health of the man, the extent
of metastasis, appearance under the microscope and response
of the cancer to initial treatment are important in
determining the outcome of the disease. The decision
whether or not to treat localized prostate cancer (a tumor
that is contained within the prostate) with curative intent
is a patient trade-off between the expected beneficial and
harmful effects in terms of patient survival and quality of
life.

[0010]: The specific causes of prostate cancer remain unknown.
Genetic background may contribute to prostate cancer risk,
as suggested by associations with race, family, and
specific gene variants. No single gene is responsible for prostate cancer; many different genes have been implicated. Mutations in BRCA1 and BRCA2, important risk factors for ovarian cancer and breast cancer in women, have also been implicated in prostate cancer. Other linked genes include the Hereditary Prostate cancer gene (HPC1), the androgen receptor, and the vitamin D receptor. TMPRSS2-ETS gene family fusion, specifically TMPRSS2-ERG or TMPRSS2-ETV1/4 promotes cancer cell growth.

Loss of cancer suppressor genes, early in the prostatic carcinogenesis, have been localized to chromosomes 8p, 10q, 13q, and 16q. P53 mutations in the primary prostate cancer are relatively low and are more frequently seen in metastatic settings, hence, p53 mutations are a late event in pathology of prostate cancer. Other tumor suppressor genes that are thought to play a role in prostate cancer include PTEN (gene) and KAI1. Up to 70 percent of men with prostate cancer have lost one copy of the PTEN gene at the time of diagnosis. Relative frequency of loss of E-cadherin and CD44 has also been observed.

Prostate cancer is classified as an adenocarcinoma, or glandular cancer, that begins when normal semen-secreting prostate gland cells mutate into cancer cells. The region of prostate gland where the adenocarcinoma is most common is the peripheral zone. Initially, small clumps of cancer cells remain confined to otherwise normal prostate glands, a condition known as carcinoma in situ or prostatic intraepithelial neoplasia (PIN). Although there is no proof that PIN is a cancer precursor, it is closely associated with cancer. Over time, these cancer cells begin to multiply and spread to the surrounding prostate tissue (the stroma) forming a tumor. Eventually, the tumor may grow large enough to invade nearby organs such as the seminal vesicles or the rectum, or the tumor cells may develop the
ability to travel in the bloodstream and lymphatic system. Prostate cancer is considered a malignant tumor because it is a mass of cells that can invade other parts of the body. This invasion of other organs is called metastasis—Prostate cancer most commonly metastasizes to the bones, lymph nodes, and may invade rectum, bladder and lower ureters after local progression,

Molecular traits of prostate cancer

[0013] P. UNX2 is a transcription factor that prevents cancer cells from undergoing apoptosis thereby contributing to the development of prostate cancer,

[0014] The PI3K/Akt signaling cascade works with the transforming growth factor beta/SMAD signaling cascade to ensure prostate cancer cell survival and protection against apoptosis, X-linked inhibitor of apoptosis (XIAP) is hypothesized to promote prostate cancer cell survival and growth and is a target of research because if this inhibitor can be shut down then the apoptosis cascade can carry on its function in preventing cancer cell proliferation. Macrophage inhibitory cytokine-1 (MIC-1) stimulates the focal adhesion kinase (FAK) signaling pathway which leads to prostate cancer cell growth and survival.

[0015] The androgen receptor helps prostate cancer cells to survive and is a target for many anti-cancer research studies; so far, inhibiting the androgen receptor has only proven to be effective in mouse studies. Prostate specific membrane antigen (PSMA) stimulates the development of prostate cancer by increasing folate levels for the cancer cells to use to survive and grow; PSMA increases available folates for use by hydrolyzing glutamated folates.
Diagnosis

[0016] The only test that can fully confirm the diagnosis of prostate cancer is a biopsy, the removal of small pieces of the prostate for microscopic examination. However, prior to a biopsy, less invasive testing can be conducted.

[0017] There are also several other tests that can be used to gather more information about the prostate and the urinary tract. Digital rectal examination (DRE) may allow a doctor to detect prostate abnormalities. Cystoscopy shows the urinary tract from inside the bladder, using a thin, flexible camera tube inserted down the urethra. Transrectal ultrasonography creates a picture of the prostate using sound waves from a probe in the rectum.

Prostate imaging

[0018] Ultrasound (US) and Magnetic Resonance Imaging (MRI) are the two main imaging methods used for prostate cancer detection.

Biopsy

[0019] Micrograph showing a prostate cancer (conventional adenocarcinoma! with perineural invasion. H&E stain.

[0020] If cancer is suspected, a biopsy is offered expediently. During a biopsy a urologist or radiologist obtains tissue samples from the prostate via the rectum. A biopsy gun inserts and removes special hollow-core needles (usually three to six on each side of the prostate) in less than a second. Prostate biopsies are routinely done on an outpatient basis and rarely require hospitalization. Fifty-five percent of men report discomfort during prostate biopsy.
Gleason score

[0021] The tissue samples are then examined under a microscope to determine whether cancer cells are present, and to evaluate the microscopic features (or Gleason score) of any cancer found. Prostate specific membrane antigen is a transmembrane carboxypeptidase and exhibits folate hydrolase activity. This protein is overexpressed in prostate cancer tissues and is associated with a higher Gleason score.

Tumor markers

[0022] Tissue samples can be stained for the presence of PSA and other tumor markers in order to determine the origin of malignant cells that have metastasized.

[0023] Small cell carcinoma is a very rare (1%) type of prostate cancer that cannot be diagnosed using the PSA. As of 2009 researchers are trying to determine the best way to screen for this type of prostate cancer because it is a relatively unknown and rare type of prostate cancer but very serious and quick to spread to other parts of the body. Possible methods include chromatographic separation methods by mass spectrometry, or protein capturing by immunoassays or immunized antibodies. The test method will involve quantifying the amount of the biomarker PCI, with reference to the Gleason Score. Not only is this test quick, it is also sensitive. It can detect patients in the diagnostic grey zone, particularly those with a serum free to total Prostate Specific Antigen ratio of 10-20%.

[0024] The expression of Ki-67 by immunohistochemistry may be a significant predictor of patient outcome for men with prostate cancer.
An important part of evaluating prostate cancer is determining the stage, or how far the cancer has spread. Knowing the stage helps define prognosis and is useful when selecting therapies. The most common system is the four-stage TNM system (abbreviated from Tumor/Nodes/Metastases) Its components include the size of the tumor, the number of involved lymph nodes, and the presence of any other metastases.

The most important distinction made by any staging system is whether or not the cancer is still confined to the prostate. In the TNM system, clinical T1 and T2 cancers are found only in the prostate, while T3 and T4 cancers have spread elsewhere. Several tests can be used to look for evidence of spread. These include computed tomography to evaluate spread within the pelvis, bone scans to look for spread to the bones, and endorectal coil magnetic resonance imaging to closely evaluate the prostatic capsule and the seminal vesicles. Bone scans should reveal osteoblastic appearance due to increased bone density in the areas of bone metastasis—opposite to what is found in many other cancers that metastasize.

After a prostate biopsy, a pathologist looks at the samples under a microscope. If cancer is present, the pathologist reports the grade of the tumor. The grade tells how much the tumor tissue differs from normal prostate tissue and suggests how fast the tumor is likely to grow. The Gleason system is used to grade prostate tumors from 2 to 10, where a Gleason score of 10 indicates the most abnormalities. The pathologist assigns a number from 1 to 5 for the most common pattern observed under the microscope, then does, the same for the second-most common pattern. The sum of these two numbers is the Gleason score. The Whitmore-Jewett stage is another method sometimes used.
Screening

[0028] Prostate cancer screening is an attempt to find unsuspected cancers, and may lead to more specific follow-up tests such as a biopsy, with cell samples taken for closer study. Options include the digital rectal exam (DRE) and the prostate-specific antigen (PSA) blood test. Such screening is controversial and, in some patients, may lead to unnecessary, even harmful, consequences. A 2010 analysis concluded that routine screening with either a DRE or PSA is not supported by the evidence as there is no mortality benefit from screening. More recently, the United States Preventive Services Task Force (USPSTF) recommended against the PSA test for prostate cancer screening in healthy men. This USPSTF recommendation, released in October 2011, is based on "review of evidence" studies concluding that "Prostate-specific antigen-based screening results in small or no reduction in prostate cancer-specific mortality and is associated with harms related to subsequent evaluation and treatments, some of which may be unnecessary.

[0029] Modern screening tests have found cancers that might never have developed into serious disease, and that "the slight reduction of risk by surgically removing the prostate or treating it with radiation may not outweigh the substantial side effects of these treatments," an opinion also shared by the CDC.

Aggressive cancer

[0030] If the cancer has spread beyond the prostate, treatment options significantly change, so most doctors that treat prostate cancer use a variety of nomograms to predict the probability of spread. Treatment by watchful waiting/active surveillance, external beam radiation therapy, bracnytherapy, cryosurgery, HIFU, and surgery are,
in general, offered to men whose cancer remains within the prostate. Hormonal therapy and chemotherapy are often reserved for disease that has spread beyond the prostate. However, there are exceptions: radiation therapy may be used for some advanced tumors, and hormonal therapy is used for some early stage tumors. Cryotherapy (the process of freezing the tumor), hormonal therapy, and chemotherapy may also be offered if initial treatment fails and the cancer progresses.

[0031] If the disease has reached clinical stage T3 or T4, it is classified as advanced prostate cancer. Advanced prostate cancer with bone metastasis or lymph node metastasis is more likely to cause Prostate Cancer Symptoms than in an early stage of the disease, Doctors usually check for bone metastasis and lymph node metastasis which are denoted respectively by M and N in clinical staging.

[0032] In clinical stage 13, the tumor has extended beyond the prostatic capsule, possibly into the seminal vesicles, and is specifically called extraprostatic extension. Extraprostatic means "independent of the prostate gland." In clinical stage T4, the disease invades surrounding organs (other than the seminal vesicles) such as the bladder neck, external sphincter, or rectum.

[0033] Metastasis is more likely to occur during advanced prostate cancer. Metastatic disease refers to prostate cancer that has left the prostate gland and its neighboring organs. Advanced prostate cancer bone metastasis and lymph node metastasis, which can be local or distant, are both associated with advanced prostate cancer. Metastases may involve symptoms that are not in the Prostate Cancer Treatment Guide.

[0034] Prostate Cancer Lymph Node Metastasis The body produces a fluid called lymph which contains white blood cells and circulates through the lymphatic system. Lymph nodes are small oval or circular organs that filter this
fluid. Cancerous cells that circulate through the body can become trapped in the lymph nodes. Once trapped, cancerous cells can begin their cycle of unhealthy division and result in lymph node metastasis,

[0035] There are two types of lymph node metastasis: local and distant. Local lymph node metastasis is designated by clinical stage S1. Two lymph nodes lie on either side of the bladder. Because these nodes are close to the prostate gland, metastasis is considered local. If cancerous cells begin to grow in any other lymph node, the metastasis is considered distant. Distant lymph node metastasis is denoted by clinical stage Mia.

[0036] Prostate Cancer Bone Metastasis Primary cases of bone cancer are relatively rare. Patients who develop bone cancer are more likely to develop the disease as a result of advanced prostate cancer metastasis. In prostate cancer, extension leading to bone disease is designated by a clinical stage M1b. If a person develops bone disease as a result of prostate cancer, he does not now have bone cancer. Because the cancer is classified according to where it originated, he has prostate cancer with bone metastasis.

[0037] Skeletal metastases occur in more than 80% of advanced-stage prostate cancer and they confer a high level of morbidity, a 5-year survival rate of 25% and median survival of approximately 40 months. Of the estimated one million annual deaths associated with metastatic bone disease in the USA, EU and Japan, approximately 20% are cases of advanced-stage prostate cancer. Treatment-naive metastatic prostate cancer is largely sensitive to androgen-deprivation therapy but progression to castration-resistant prostate cancer occurs 18-20 months after starting treatment. Metastatic bone disease causes some of the most distressing symptoms of advanced-stage cancer; estimates indicate that treatment of bone pain is required in approximately 30% of men with castration resistant
Prostate cancer and associated with metastatic bone disease; with 22% requiring treatment for singular or multiple pathological skeletal fractures; 7% for spinal-cord compression; 3-4% for hemiparesis or paresis. At first diagnosis of bone metastasis disease therapeutic intervention will usually involve systemic chemotherapy, hormonal therapy and bisphosphonates or Denosumab, which are mostly palliative options with the intention of reducing pain.

[0038] In healthy skeletal bone, an equal balance of new bone matrix formation and old bone matrix resorption is achieved via coordinated activity of bone-degrading osteoclasts and bone-forming osteoblasts. During metastasis bone disease, the normal balance of bone resorption and formation is disrupted by the homotypic and heterotypic cell-cell interactions that occur between invading tumor cells, osteoblasts and osteoclasts. Most patients with secondary bone tumors— including those associated with castration resistant prostate cancer—present with osteolytic lesions. Therefore, most treatment strategies in current use or under evaluation in metastatic bone disease have been designed to protect the bone matrix from increased bone degrading activity of osteoclasts. An additional complication that presents in more than 80% of men with castration-resistant prostate cancer and metastasis bone disease are osteosclerotic lesions— also known as bone-forming or osteoblastic lesions— or a combination of both, osteolytic and osteosclerotic lesions— also referred to as mixed lesions. Osteosclerotic lesions are typified by bone deposits with multiple layers of poorly organised type-I collagen fibrils that have a woven appearance and reduced mechanical strength.

[0039] Prostate cancer cells preserve, among each subtype, genome-aberration-induced transcriptional changes with high fidelity. The resulting dominant genes reveal molecular
events that predict the metastatic outcome despite the existence of substantial genomic, transcriptional, transnational, and biological heterogeneity in the overall system. However, it is unknown whether the developmental history of a cancer would result in different or common mediators of site-specific metastasis. Predisposing factors related to the cell of origin may engender different rate-limiting barriers during metastatic progression. Herein, we proposed the use of a new biomarker as a prognostic factor in primary tumors that predicts future bone metastasis events. Moreover, we also propose the use of this gene as a potential therapeutic target to prevent, stop and cure prostate cancer derived bone metastasis.

SUMMARY OF THE INVENTION

[0040] The present inventors have determined that identifying the balance of signals that affect disseminated prostate cancer cells bone metastasis provides valuable information to establish the prognosis of, and for preventive therapeutic intervention against, disease. Based on c-MAF expression level and 16q22-24 bona fide ER+ breast cancer bone metastasis genomic amplification, including MAF gene, contribution to bone metastasis, and particularly osteolytic bone metastasis, the present inventors identified that 16q22-24, including MAF gene, is also responsible for driving the Prostate bone metastatic lesions, in particular osteolytic Prostate bone metastasis.

[0041] The present inventors have identified c-MAF as marker associated with a greater tendency of Prostate cancer to cause metastasis and, particularly, bone metastasis. This over-expression appears to be due to an amplification of the locus 16q22-q24 in which the c-MAF gene is located.
The c-MAF expression levels were studied in a tissue microarray composed of Prostate primary tumor biopsies including 5 tumors that develop metastasis to the bone at any time, 3 that develop metastasis to other sites except bone and a minimum clinical follow up of 5 years and 29 Prostate primary tumors that never develop metastasis with a minimum clinical follow up of 5 years, the c-MAF protein expression in tumor cells and biopsy correlates positively with different clinical parameters, included metastasis and bone metastasis. Furthermore, the inventors have associated the amplification of the genomic locus 16q22-q24, including the c-MAF gene, with the presence of metastasis in subjects with Prostate cancer and, in particular, in Prostate cancer that form bone metastasis.

Thus, in a first aspect, the invention relates to an in vitro method for the diagnosis of metastasis in a subject with Prostate cancer and/or the prognosis of the tendency to develop metastasis in a subject with Prostate cancer which comprises

(i) quantifying the c-MAF gene or protein expression level or copy number gain in a tumor sample of said subject and

(ii) comparing the expression level or copy number previously obtained with the expression level or copies of said gene in a control sample, wherein if the expression levels of said gene are increased with respect to the expression levels of said gene in the control sample, then said subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.

In a second aspect, the invention relates to an in vitro method for designing a customized therapy for a subject with Prostate cancer which comprises

(i) quantifying the c-MAF gene or protein expression level in a tumor sample of said subject and
(ii) comparing the expression level previously obtained with the expression level of said gene in a control sample,
wherein if the expression levels are increased with respect to the expression levels of said gene in the control sample, then said subject is susceptible to receive a therapy aiming to prevent an/or treat the metastasis. In a particular aspect of this method, the subject is then administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis, and wherein if the expression level is not increased with respect to said reference value, then said subject is not susceptible to receive a therapy aiming to prevent, inhibit and/or treat the bone metastasis. In a particular aspect of this method, the subject is then not administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis.

[0045] In a third aspect, the invention relates to an in vitro method for designing a customized therapy for a subject with Prostate cancer with bone metastasis which comprises

(i) quantifying the c-MAF gene or protein expression level in a bone metastatic tumor sample of said subject and

(ii) comparing the expression level obtained in step (i) with the expression level of said gene in a control sample,
wherein if the c-MAF gene or protein expression levels are increased with respect to the expression levels of said gene or protein in the control sample, then said subject is susceptible to receive a therapy aiming to prevent the bone degradation. In a particular aspect of this method, the subject is then administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis, and
wherein if the c-MAF gene or protein expression level is not increased with respect to said reference value, then said subject is not susceptible to receive a therapy for preventing the bone degradation. In a particular aspect of this method, the subject is then not administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis.

[0046] In a fourth aspect, the invention relates to an in vitro method for the diagnosis of metastasis in a subject with Prostate cancer and/or for the prognosis of the tendency to develop metastasis in a subject with Prostate cancer which comprises determining if the c-MAF gene is amplified in a tumor tissue sample of said subject; wherein if said gene is amplified or translocated with respect to a control sample, then said subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis. In a particular aspect of this method, the subject is then administered at least one therapeutic drug that prevents or inhibits the bone metastasis.

[0047] In another aspect, the invention relates to an in vitro method for predicting the clinical outcome of a patient suffering Prostate cancer, which comprises determining if the c-MAF gene is amplified in a sample of said subject relative to a reference gene copy number wherein an amplification of the c-MAF gene with respect to said reference gene copy number is indicative of a poor clinical outcome. In a particular aspect of this method, the subject is then administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis. If such amplification is not observed then the subject is not administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis. In another embodiment, the invention relates to an in vitro method for predicting the clinical outcome of a patient suffering prostate cancer which comprises determining if
the c-MAF gene is translocated in a sample of said subject-
wherein a translocation of the c-MAF gene (i.e. \(t(14,16) \))
is indicative of a poor clinical outcome.

[0048] In a fifth aspect, the invention relates to the use of
a c-MAF inhibitory agent in the preparation of a medicinal
product for treating and/or preventing Prostate cancer
metastasis, in particular bone metastasis.

[0049] In another aspect, the invention relates to the use of
an agent capable of avoiding or preventing bone degradation
in the preparation of a medicinal product for the treatment
of bone metastasis in a subject suffering Prostate cancer
and having elevated c-MAF levels in a metastatic tumor
tissue sample with respect to a control sample.

[0050] In another aspect, the invention relates to a kit for
predicting bone metastasis of a Prostate cancer in a
subject suffering from said cancer, the kit comprising: a)
means for determining translocation of the c-MAF gene in a
sample of said subject; and b) means for comparing the
translocation of c-MAF in said sample to a reference c-MAF
sample. The invention also relates to the use of such kit
to predict bone metastasis of a Prostate cancer in a
subject suffering from said cancer. In one embodiment, the
subject is then administered or excluded at least one
therapeutic drug that prevents, inhibits and/or treats the
bone metastasis based on the results of using the kit.

[0051] In another aspect, the invention relates to a kit for
predicting bone metastasis of a Prostate cancer in a
subject suffering from said cancer, the kit comprising: a)
means for quantifying the amplification of c-MAF gene,
16q23 or 16q22-24 locus amplification or translocation in a
sample of said subject; and b) means for comparing the
amplified level of c-MAF gene,16q23 or 16q22-24 locus
amplification or translocation in said sample to a
reference.
In another aspect, the invention relates to a kit for predicting the clinical outcome of a subject suffering from bone metastasis from a Prostate cancer, the kit comprising: a) means for quantifying the expression level of c-MAF in a sample of said subject; and b) means for comparing the quantified expression level of c-MAF in said sample to a reference c-MAF expression level. The invention also relates to the use of such kit to predict the clinical outcome of a subject suffering from bone metastasis from a Prostate cancer. In one embodiment, the subject is then administered or excluded at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis based on the results of using the kit.

In another aspect, the invention relates to a kit for determining a therapy for a subject suffering from Prostate cancer, the kit comprising: a) means for quantifying the expression level of c-MAF in a sample of said subject; b) means for comparing the quantified expression level of c-MAF in said sample to a reference c-MAF expression level; and c) means for determining a therapy for preventing and/or reducing bone metastasis in said subject based on the comparison of the quantified expression level to the reference expression level. The invention also relates to the use of such kit to determine a therapy for a subject suffering from Prostate cancer. In one embodiment, the subject is then administered or excluded at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis based on the results of using the kit.

In another aspect, the invention relates to a kit comprising: i) a reagent for quantifying the expression level of c-MAF in a sample of a subject suffering from Prostate cancer, and ii) one or more c-MAF gene expression level indices that have been predetermined to correlate with the risk of bone metastasis. The invention also relates to the use of such kit to predict bone metastasis
of a prostate cancer in a subject suffering from said cancer. In one embodiment, the subject is then administered or excluded at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis based on the results of using the kit.

[0055] In another aspect, the invention relates to an in vitro method for typing a sample of a subject suffering from Prostate cancer, the method comprising:

a) providing a sample from said subject;

b) quantifying the expression level of c-MAF in said sample;

c) typing said sample by comparing the quantified expression level of c-MAF to a predetermined reference level of c-MAF expression;

wherein said typing provides prognostic information related to the risk of bone metastasis in said subject. In one embodiment, the subject is administered or excluded at least one therapeutic agent based on the prognostic information provided by the typing.

[0056] In another aspect, the invention relates to a method for preventing or reducing the risk of bone metastasis in a subject suffering from Prostate cancer, said method comprising administering to said subject an agent that prevents or reduces bone metastasis, wherein said agent is administered in accordance with a treatment regimen determined from quantifying the expression level of c-MAF in said subject.

[0057] In another aspect, the invention relates to a method of classifying a subject suffering from Prostate cancer into a cohort, comprising: a) determining the expression level of c-MAF in a sample of said subject; b) comparing the expression level of c-MAF in said sample to a predetermined reference level of c-MAF expression; and c) classifying said subject into a cohort based on said
expression level of c-MAF in the sample. In a particular aspect, the cohort is used for conducting a clinical trial.

DETAILED DESCRIPTION OF THE INVENTION

Methods for the diagnosis and Prognosis of Prostate cancer metastasis based on c-MAF expression levels

[0058] The inventors have shown that the c-MAF gene and protein is overexpressed in Prostate cancer metastasis, and that the c-MAF expression levels in primary prostate tumors are correlated to different clinical parameters of prostate cancer, particularly with recurrence and metastasis probability. Thus, c-MAF overexpression is associated with the onset and high risk of prostate tumor metastasis, particularly in bone. Therefore, c-MAF can be used as a marker for the diagnosis and/or prognosis of metastasis, in particular bone metastasis, in a subject with Prostate cancer.

[0059] Thus in one aspect, the invention relates to an in vitro method for the diagnosis of metastasis in a subject with Prostate cancer and/or for the prognosis of the tendency to develop metastasis in a subject with Prostate cancer which comprises

(i) quantifying the c-MAF gene expression level in a tumor sample (e.g., prostate tumor tissue, circulating prostate tumor cell, circulating prostate tumor DNA) from said subject and
(ii) comparing the expression level previously obtained with the expression level of said gene in a control sample,

wherein if the expression level of said gene are increased with respect to the expression level of said gene in the control sample, then said subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis, in a preferred site bone metastasis.
The c-MAF gene (v-maf musculus aponeurotic fibrosarcoma oncogene homologue (avian.) also known as MAF or MGC71685) is a transcription factor containing a leucine zipper which acts like a homodimer or a heterodimer. Depending on the DNA binding site, the encoded protein can be a transcriptional activator or repressor. The DNA sequence encoding c-MAF is described in the NCBI database under accession number NG_016440 (SEQ ID NO: 1) (coding). The genomic sequence of c-MAF is set forth in SEQ ID NO: 13. The methods of the present invention may utilize either the coding sequence or the genomic DNA sequence. Two messenger RNA are transcribed from said DNA sequence, each of which will give rise to one of the two c-MAF protein isoforms, the α isoform and the β isoform. The complementary DNA sequences for each of said isoforms are described, respectively, in the NCBI database under accession numbers NM_005360.4 (SEQ ID NO: 2) and NM_00131804.2 (SEQ ID NO: 3). Use of the c-MAF gene to predict the prognosis of triple-negative and ER+ breast cancer is described in Int'l Appl., No. PCT/IB2013/001204, which is incorporated herein by reference in its entirety. Use of the c-MAF gene to predict the prognosis of thyroid cancer is described in U.S.: Prov. Appl., No. 61/801, 769, which is incorporated herein by reference in its entirety. Use of the c-MAF gene to predict the prognosis of renal cell carcinoma is described in D.S. Prov. Appl., No. 61/801, 642, which is incorporated herein by reference in its entirety. The use of a gene of interest, including c-MAF and the c-MAF gene locus, to determine the prognosis of an individual suffering breast cancer is described in U.S. Prov. Appl., No. 61/801, 718, which is incorporated herein by reference in its entirety. Use of the c-MAF gene to predict the prognosis of lung cancer is found in Int'l Appl., No. PCT/US2013/G44534, which is incorporated herein by reference in its entirety.
In the context of the present invention, "metastasis" is understood as the propagation of a cancer from the organ where it started to a different organ. It generally occurs through the blood or lymphatic system. When the cancer cells spread and form a new tumor, the latter is called a secondary or metastatic tumor. The cancer cells forming the secondary tumor are like those of the original tumor. If a Prostate cancer, for example, spreads (metastasizes) to the bone, the secondary tumor is formed of malignant Prostate cancer cells. The disease in the bone is metastatic Prostate cancer and not bone cancer. In a particular embodiment of the method of the invention, the metastasis is Prostate cancer which has spread (metastasized) to the bone.

In the present invention, "diagnosis of metastasis in a subject with Prostate cancer" is understood as identifying a disease (metastasis) by means of studying its signs, i.e., in the contest of the present invention by means of increased c-MAF gene expression levels (i.e., overexpression) in the Prostate cancer tumor tissue with respect to a control sample.

In the present invention, "prognosis of the tendency to develop metastasis in a subject with Prostate cancer" is understood as knowing based on the signs if the Prostate cancer that said subject has will metastasize in the future. In the context of the present invention, the sign is c-MAF gene overexpression in tumor tissue.

The method of the invention comprises in a first step quantifying the c-MAF gene expression level in a tumor tissue sample from a subject.

In a preferred embodiment, the first method of the invention comprises quantifying only the c-MAF gene expression level as a single marker, i.e., the method does not involve determining the expression level of any additional marker.
As used herein, the term "subject" or "patient" refers to all animals classified as mammals and includes but is not limited to domestic and farm animals, primates and humans, for example, human beings, non-human primates, cows, horses, pigs, sheep, goats, dogs, cats, or rodents. Preferably, the subject is a human man or woman of any age or race.

The terms "poor" or "good", as used herein to refer to a clinical outcome, mean that the subject will show a favourable or unfavourable outcome. As will be understood by those skilled in the art, such an assessment of the probability, although preferred to be, may not be correct for 100% of the subjects to be diagnosed. The term, however, requires that a statistically significant portion of subjects can be identified as having a predisposition for a given outcome. Whether a portion is statistically significant can be determined readily by the person skilled in the art using various well known statistic evaluation tools, e.g., determination of confidence intervals, p-value determination, Student's t-test, Mann-Whitney test, etc. Details are found in Dowdy and Wearden, Statistics for Research, John Wiley & Sons, New York 1983. Preferred confidence intervals are at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90% at least about 95%. The p-values are, preferably, 0.05, 0.01, 0.005, or 0.0001 or less. More preferably, at least about 60 percent, at least about 70 percent, at least about 80 percent or at least about 90 percent of the subjects of a population can be properly identified by the method of the present invention.

In the present invention "tumor sample" is understood as a sample (e.g., tumor tissue, circulating tumor cell, circulating tumor DNA) originating from the primary Prostate cancer tumor. Said sample can be obtained by conventional methods, for example biopsy, using methods...
well known by the persons skilled in related medical techniques. The methods for obtaining a biopsy sample include splitting a tumor into large pieces, or microdissection, or other cell separating methods known in the art. The tumor cells can additionally be obtained by means of cytology through aspiration with a small gauge needle. To simplify sample preservation and handling, samples can be fixed in formalin and soaked in paraffin or first frozen and then soaked in a tissue freezing medium such as OCT compound by means of immersion in a highly cryogenic medium which allows rapid freezing.

As understood by the person skilled in the art, the gene expression levels can be quantified by measuring the messenger RNA levels of said gene or of the protein encoded by said gene.

For this purpose, the biological sample can be treated to physically or mechanically break up the tissue or cell structure, releasing the intracellular components into an aqueous or organic solution for preparing nucleic acids... The nucleic acids are extracted by means of commercially available methods known by the person skilled in the art (Sambrook, J., et al., "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, N.Y., Vol. 1-3.)

Thus, the c-MAF gene expression level can be quantified from the RNA resulting from the transcription of said gene (messenger RNA or mRNA) or, alternatively, from the complementary DNA (cDNA) of said gene. Therefore, in a particular embodiment of the invention, the quantification of the c-MAF gene expression levels comprises the quantification of the messenger RNA of the c-MAF gene or a fragment of said mRNA, complementary DNA of the c-MAF gene or a fragment of said cDNA or the mixture thereof.

Virtually any conventional method can be used within the scope of the invention for detecting and quantifying
the mRNA levels encoded by the c-MAF gene or of the corresponding cDNA thereof. By way of non-limiting illustration, the mRNA levels encoded by said gene can be quantified using conventional methods, for example, methods comprising mRNA amplification and the quantification of said mRNA amplification product, such as electrophoresis and staining, or alternatively, by Southern blot and using suitable probes, Northern blot and using specific probes of the mRNA of the gene of interest (c-MAF) or of the corresponding cDNA thereof, mapping with SI nuclease, RT-PCR, hybridization, microarrays, etc., preferably by means of real time quantitative PGR using a suitable marker. Likewise, the cDNA levels corresponding to said mRNA encoded by the c-MAF gene can also be quantified by means of using conventional techniques; in this case, the method of the invention includes a step for synthesizing the corresponding cDNA by means of reverse transcription (RT) of the corresponding mRNA followed by the amplification and quantification of said cDNA amplification product. Conventional methods for quantifying expression levels can be found, for example, in Sambrook et al., 2001. (cited ad supra). These methods are known in the art and a person skilled in the art would be familiar with the normalizations necessary for each technique. For example, the expression measurements generated using multiplex PGR should be normalized by comparing the expression of the genes being measured to so called "housekeeping" genes, the expression of which should be constant over all samples, thus providing a baseline expression to compare against or other control genes whose expression are known to be modulated with cancer.

In a particular embodiment, the c-MAF gene expression levels are quantified by means of quantitative polymerase chain reaction (PGR) or a DNA, RNA array, or nucleotide hybridization technique.
In addition, the c-MAF gene expression level can also be quantified by means of quantifying the expression levels of the protein encoded by said gene, i.e., the c-MAF protein (c-MAF) [NCBI, accession number 075444], or any functionally equivalent variant of the c-MAF protein. There are two c-MAF protein isoforms, the α isoform (NCBI, NP_005351.2) made up of 403 amino acids (SEQ ID NO: 4) and the β isoform (NP_001026974.1) made up of 373 amino acids (SEQ ID NO: 5). The c-MAF gene expression level can be quantified by means of quantifying the expression levels of any of the c-MAF protein isoforms. Thus, in a particular embodiment, the quantification of the levels of the protein encoded by the c-MAF gene comprises the quantification of the c-MAF protein.

In the context of the present invention, "functionally equivalent variant of the c-MAF protein" is understood as:

(i) variants of the c-MAF protein (SEQ ID NO: 4 or SEQ ID NO: 5) in which one or more of the amino acid residues are substituted by a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue), wherein such substituted amino acid residue may or may not be one encoded by the genetic code, or

(ii) variants comprising an insertion or a deletion of one or more amino acids and having the same function as the c-MAF protein, i.e., to act as a DNA binding transcription factor. Variants of the c-MAF protein can be identified using methods based on the capacity of c-MAF for promoting in vitro cell proliferation as shown in international patent application WO2005/046731 (hereby incorporated by reference in its entirety), based on the capacity of the so-called inhibitor for blocking the transcription capacity of a reporter gene under the control of cyclin D2 promoter or of a promoter containing the c-MAF responsive region (MARE or c-MAF responsive element) in cells expressing c-MAF as described in WO20080.98351 (hereby incorporated by reference.
in its entirety), or based on the capacity of the so-called inhibitor for blocking reporter gene expression under the control of the IL-4 promoter in response to the stimulation with PMA/lonzoicin in cells expressing NFATc2 and c-MAF as described in US2009048117A. (hereby incorporated by reference in its entirety).

[0076] The variants according to the invention preferably have sequence similarity with the amino acid sequence of any of the c-MAF protein isoforms (SEQ ID NO: 4 or SEQ ID NO: 5) of at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99%. The degree of similarity between the variants and the specific c-MAF protein sequences defined previously is determined using algorithms and computer processes which are widely known by the persons skilled in the art. The similarity between two amino acid sequences is preferably determined using: the BLASTP algorithm [BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Rev. 20894, Altschul, S., et al., J. Mol. Biol., 215: 403-410 (1990)].

[0077] The c-MAF protein expression level can be quantified by any conventional method—which allows detecting and quantifying said protein in a sample from a subject. By way of non-limiting illustration, said protein levels can be quantified, for example, by using antibodies with c-MAF binding capacity (or a fragment thereof containing an antigenic determinant) and the subsequent quantification of the complexes formed. The antibodies used in these assays may or may not be labeled. Illustrative examples of markers that can be used include radioactive isotopes, enzymes, fluophores, chemiluminescence reagents, enzyme substrates or cofactors, enzyme inhibitors, particles, dyes, etc. There is a wide range of known assays that can be used in
the present invention which use unlabeled antibodies (primary antibody) and labeled antibodies (secondary antibody); these techniques include Western-blot or Western transfer, ELISA (enzyme-linked immunosorbent assay), RIA (radioimmunoassay), competitive EIA (competitive enzyme immunoassay), DAS-ELISA (double antibody sandwich ELISA), immunocytochemical and immunohistochemical techniques, techniques based on the use of protein microarrays or biochips including specific antibodies or assays based on colloidal precipitation in formats such as dipsticks. Other ways for detecting and quantifying said c-MAF protein include affinity chromatography techniques, ligand binding assays, etc. When an immunological method is used, any antibody or reagent that is known to bind to the c-MAF protein with a high affinity can be used for detecting the amount thereof. This would include, but is not limited to, the use of an antibody, for example, polyclonal sera, supernatants of hybridomas or monoclonal antibodies, antibody fragments, Fv, Fab, Fab' and F(ab')2, scFv, humanized diabodies, triabodies, tetrabodies, antibodies, nanobodies, alpabodies, stapled peptides, and cyclpeptides. There are commercial anti-c-MAF protein antibodies on the market which can be used in the context of the present invention, such as for example antibodies ab.427, ab55502, ab55502, ab72584, ab76817, ab77D71 (Abcam plc, 330 Science Park, Cambridge CB4 OFL, United Kingdom), the 075444 monoclonal antibody (Mouse Anti-Human MAF Azide free Monoclonal antibody, Unconjugated, Clone 6b8) of AbD Serotec, etc. There are many commercial companies offering anti-c-MAF antibodies, such as Abnova Corporation, Bethyl Laboratories, Bioworld Technology, GeneTex, etc.

[0078] In a particular embodiment, the c-MAF protein levels are quantified means of western blot, immunohistochemistry, ELISA or a protein array.
The first method of the invention comprises in a second step comparing the c-MAF gene expression level obtained in the tumor sample (including but not limited to a primary tumor biopsy, circulating tumor cells and circulating tumor DNA) from the subject with the expression level of said gene in a control sample.

Once the c-MAF gene expression level in a tumor tissue sample, a circulating tumor cell or circulating tumor DNA from a subject with prostate cancer has been measured and compared with the control sample, if the expression level of said gene is increased with respect to its expression level in the control sample, then it can be concluded that said subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.

The determination of the c-MAF gene expression level must be correlated with values of a control sample or reference sample. Depending on the type of tumor to be analyzed, the exact nature of the control sample may vary. Thus, in the event that a diagnosis is to be evaluated, then the reference sample is a tumor tissue sample from a subject with prostate cancer that has not metastasized or that corresponds to the median value of the c-MAF gene expression levels measured in a tumor tissue collection in biopsy samples from subjects with prostate cancer which have not metastasized.

Said reference sample is typically obtained by combining equal amounts of samples from a subject population. Generally, the typical reference samples will be obtained from subjects who are clinically well documented and in whom the absence of metastasis is well characterized. In such samples, the normal concentrations (reference concentration) of the biomarker (c-MAF gene) can be determined, for example by providing the mean concentration over the reference population. Various considerations are taken into account when determining the
reference concentration of the marker. Among such considerations are the age, weight, sex, general physical condition of the patient and the like. For example, equal amounts of a group of at least about 2, at least about 10, at least about 100 to preferably more than 1000 subjects, preferably classified according to the foregoing considerations, for example according to various age categories, are taken as the reference groups. The sample collection from which the reference level is derived will preferably be formed by subjects suffering from the same type of cancer as the patient object of the study (e.g., prostate cancer). Similarly, the reference value within a cohort of patients can be established using a receiving operating curve (ROC) and measuring the area under the curve for all de sensitivity and specificity pairs to determine which pair provides the best values and what the corresponding reference value is. ROC is a standard statistical concept. A description can be found in Stuart G, Baker "The Central Role of Receiver Operating Characteristic (ROC) curves in Evaluating Tests for the Early Detection of Cancer" Journal of The National Cancer Institute (2003) vol 95, No. 7, 511-515.

[0083] Once this median or reference value has been established, the level of this marker expressed in tumor tissues from patients with this median value can be compared and thus be assigned to the "increased" expression level. Due to the variability among subjects (for example, aspects referring to age, race, etc.) it is very difficult (if not virtually impossible) to establish absolute reference values of c-MAF expression. Thus, in particular embodiments the reference values for "increased" or "reduced" expression of the c-MAF expression are determined by calculating the percentiles by conventional means which involves performing assays in one or several samples isolated from subjects whose disease is well documented by
any of the methods mentioned above the c-MAF expression levels. The "reduced" levels of c-MAF can then preferably be assigned to samples wherein the c-MAF expression levels are equal to or lower than 50th percentile in the normal population including, for example, expression levels equal to or lower than the 60th percentile in the normal population, equal to or lower than the 70th percentile in the normal population, equal to or lower than the 80th percentile in the normal population, equal to or lower than the 90th percentile in the normal population, and equal to or lower than the 95th percentile in the normal population.

The "increased" c-MAF gene expression levels can then preferably be assigned to samples wherein the c-MAF gene expression levels are equal to or greater than the 50th percentile in the normal population including, for example, expression levels equal to or greater than the 60th percentile in the normal population, equal to or greater than the 70th percentile in the normal population, equal to or greater than the 80th percentile in the normal population, equal to or greater than the 90th percentile in the normal population, and equal to or greater than the 95th percentile in the normal population.

[0084] In the present invention "increased expression levels" or "increased expression level" is understood as the expression level when it refers to the levels of the c-MAF gene greater than those in a reference sample or control sample. Particularly, a sample can be considered to have high c-MAF expression levels when the expression levels in the reference sample are at least about 1.1 times, 1.5 times, 5 times, 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, 100 times or even more with respect to the sample isolated from the patient.

[0085] In the context of the present invention, it is understood that "a subject has a positive diagnosis for
metastasis" when the Prostate cancer suffered by said subject has metastasized to other organs of the body, in a particular embodiment, to the bone,

[0086] In yet another embodiment, the metastasis to bone is an osteolytic bone metastasis. As used herein, the expression "osteolytic bone metastasis" refers to a type of metastasis in which bone resorption (progressive loss of the bone density) is produced in the proximity of the metastasis resulting from the stimulation of the osteoclast activity by the tumor cells and is characterized by severe pain, pathological fractures, hypercalcaemia, spinal cord compression and other syndromes resulting from nerve compression.

[0087] On the other hand, it is understood in the present invention that "a subject has a greater tendency to develop metastasis" when the probabilities that the Prostate cancer suffered by the subject will metastasize in the future are high.

[0088] The person skilled in the art will understand that the prediction of the tendency for a primary prostate tumor to metastasize is not intended to be correct for all the subjects to be identified (i.e., for 100% of the subjects). Nevertheless, the term requires enabling the identification of a statistically significant part of the subjects (for example, a cohort in a cohort study). Whether a part is statistically significant can be determined in a simple manner by the person skilled in the art using various well known statistical evaluation tools, for example, the determination of confidence intervals, determination of p values, Student's T test, Mann-Whitney test, etc. Details are provided in Dowdy and Wearden, Statistics for Research, John Wiley and Sons, New York 1983. The preferred confidence intervals are at least about 90%, at least about 95%, at least about 97%, at least 98% or at least 99%. The p values are preferably 0.1, 0.05, 0.01, 0.005 or 0.0001.
More preferably, at least about 60%, at least about 70%, at least about 80% or at least about 90% of the subjects of a population can be suitably identified by the method of the present invention.

[0089] As used herein, "agent for avoiding or preventing bone degradation" refers to any molecule capable of preventing, inhibiting, treating, reducing, or stopping bone degradation either by stimulating the osteoblast proliferation or inhibiting the osteoclast proliferation or fixing the bone structure.

[0090] As used herein, a "c-MAF inhibitory agent" refers to any molecule capable of completely or partially inhibiting the c-MAF gene expression, both by preventing the expression product of said gene from being produced (interrupting the c-MAF gene transcription and/or blocking the translation of the mRNA coming from the c-MAF gene expression) and by directly inhibiting the c-MAF protein activity. C-MAF gene expression inhibitors can be identified using methods based on the capacity of the so-called inhibitor to block the capacity of c-MAF to promote the in vitro cell proliferation, such as shown in the international patent application WO2005/046731 (the entire contents of which are hereby incorporated by reference), based on the capacity of the so-called inhibitor to block the transcription capacity of a reporter gene under the control of the eyelin D2 promoter or of a promoter containing the c-MAF response region (MARE or c-MAF responsive element) in cells which express c-MAF' such as described in WO2009/098351 (the entire contents of which are hereby incorporated by reference) or based on the capacity of the so-called inhibitor to block the expression of a reporter gene under the control of the Il-4 promoter in response to the stimulation with PMA/ionomycin in cells which express NFATc2 and c-MAF such as described in
DS2009048117A (the entire contents of which is hereby incorporated by reference).

[0091] As used herein, Mammalian target of raparaycin (mTOR) or "mTor" refers to those proteins that correspond to EC 2.7.11.1. mTor enzymes are serine/threonine protein kinases and regulate cell proliferation, cell motility, cell growth, cell survival, and transcription.

[0092] As used herein, an "mTor inhibitor" refers to any molecule capable of completely or partially inhibiting the mTor gene expression, both by preventing the expression product of said gene from being produced (interrupting the mTor gene transcription and/or blocking the translation of the mRNA coming from the mTor gene expression) and by directly inhibiting the mTor protein activity. Including inhibitors that have a dual or more targets and among them mTor protein activity.

[0093] As used herein, "Src" refers to those proteins that correspond to EC 2.7.10.2. Src is a non-receptor tyrosine kinase and a proto-oncogene. Src may play a role in cell growth and embryonic development.

[0094] As used herein, a "Src inhibitor" refers to any molecule capable of completely or partially inhibiting the Src gene expression, both by preventing the expression product of said gene from being produced (interrupting the Src gene transcription and/or blocking the translation of the mRNA coming from the Src gene expression.) and by directly inhibiting the Src protein activity.

[0.095] As used herein, "Prostaglandin-endoper oxide synthase 2", "cyclooxygenase-2" or "COX-2" refers to those proteins that correspond to EC 1.14.93.1, COX-2 is responsible for converting arachidonic acid to prostaglandin endoperoxide H2.

[0096] As used herein, a "COX-2 inhibitor" refers to any molecule capable of completely or partially inhibiting the COX-2 gene expression, both by preventing the expression
product of said gene from being produced (interrupting the COX-2 gene transcription and/or blocking the translation of the mRNA coming from the COX-2 gene expression) and by directly inhibiting the COX-2 protein activity.

[0097] As used herein "outcome" or "clinical outcome" refers to the resulting course of disease and/or disease progression and can be characterized for example by recurrence, period of time until recurrence, metastasis, period of time until metastasis, number of metastases, number of sites of metastasis and/or death due to disease. For example a good clinical outcome includes cure, prevention of recurrence, prevention of metastasis and/or survival within a fixed period of time (without recurrence), and... poor clinical outcome includes disease progression, metastasis and/or death within a fixed period of time.

[0098] "Predicting", as used herein, refers to the determination of the likelihood that the subject suffering-lung cancer will develop metastasis to a distant organ. As used herein, "good prognosis" indicates that the subject is expected (e.g. predicted) to survive and/or have no, or is at low risk of having, recurrence or distant metastases within a set time period. The term "low" is a relative term and, in the context of this application, refers to the risk of the "low" expression group with respect to a clinical outcome (recurrence, distant metastases, etc.). A "low" risk can be considered as a risk lower than the average risk for an heterogeneous cancer patient population. In the study of Paik et al. (2001), an overall "low" risk of recurrence was considered to be lower than 15 percent. The risk will also vary in function of the time period. The time period can be, for example, five years, ten years, fifteen years or even twenty years after initial diagnosis of cancer or after the prognosis was made.
As used herein, "poor prognosis" indicates that the subject is expected e.g. predicted to not survive and/or to have, or is at high risk of having, recurrence or distant metastases within a set time period. The term "high" is a relative term and, in the context of this application, refers to the risk of the "high" expression group with respect to a clinical outcome (recurrence, distant metastases, etc.). A "high" risk can be considered as a risk higher than the average risk for a heterogeneous cancer patient population. In the study of Paik et al. (2004), an overall "high" risk of recurrence was considered to be higher than 15 percent. The risk will also vary in function of the time period. The time period can be, for example, five years, ten years, fifteen years or even twenty years of initial diagnosis of cancer or after the prognosis was made.

"Reference value", as used herein, refers to a laboratory value used as a reference for values/data obtained by laboratory examinations of patients or samples collected from patients. The reference value or reference level can be an absolute value; a relative value; a value that has an upper and/or lower limit; a range of values; an average value; a median value, a mean value, or a value as compared to a particular control or baseline value. A reference value can be based on an individual sample value, such as for example, a value obtained from a sample from the subject being tested, but at an earlier point in time. The reference value can be based on a large number of samples, such as from a population of subjects of the chronological age matched group, or based on a pool of samples including or excluding the sample to be tested.

The term "treatment", as used herein, refers to any type of therapy, which aims at terminating, preventing, ameliorating or reducing the susceptibility to a clinical condition as described herein. In a preferred embodiment,
the term treatment relates to prophylactic treatment (i.e. a therapy to reduce the susceptibility to a clinical condition), of a disorder or a condition as defined herein. Thus, "treatment," "treating," and their equivalent terms refer to obtaining a desired pharmacologic or physiologic effect, covering any treatment of a pathological condition or disorder in a mammal, including a human. The effect may be prophylactic in terms of completely or partially preventing a disorder or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disorder and/or adverse effect attributable to the disorder. That is, "treatment" includes (1) preventing the disorder from occurring or recurring in a subject, (2) inhibiting the disorder, such as arresting its development, (3) stopping or terminating the disorder or at least symptoms associated therewith, so that the host no longer suffers from the disorder or its symptoms, such as causing regression of the disorder or its symptoms, for example, by restoring or repairing a lost, missing or defective function, or stimulating an inefficient process, or (4) relieving, alleviating, or ameliorating the disorder, or symptoms associated therewith, where ameliorating is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, such as inflammation, pain, or immune deficiency.

[0102] As used herein, "sample" or "biological sample" means biological material isolated from a subject. The biological sample may contain any biological material suitable for determining the expression level of the c-MAF gene. The sample can be isolated from any suitable biological tissue or fluid such as, for example, tumor tissue, blood, blood plasma, serum, urine or cerebral spinal fluid (CSF).

[0103] As used herein, the term "expression level" of a gene as used herein refers to the measurable quantity of gene product produced by the gene in a sample of the subject,
wherein the gene product can be a transcriptional product or a translational product. Accordingly, the expression level can pertain to a nucleic acid gene product such as mRNA or cDNA or a polypeptide gene product. The expression level is derived from a subject's sample and/or a reference sample or samples, and can for example be detected de novo or correspond to a previous determination. The expression level can be determined or measured, for example, using microarray methods, PCR methods (such as qPCR), and/or antibody based methods, as is known to a person of skill in the art.

[0104] As used herein, the term "gene copy number" refers to the copy number of a nucleic acid molecule in a cell. The gene copy number includes the gene copy number in the genomic (chromosomal) DNA of a cell. In a normal cell (nbn-tumoral cell), the gene copy number is normally two copies (one copy in each member of the chromosome pair). The gene copy number sometimes includes half of the gene copy number taken from samples of a cell population.

[0105] "Increased expression level" is understood as the expression level when it refers to the levels of the c-MAF gene greater than those in a reference sample or control sample. This increased levels can be caused without excluding other mechanisms by a gene or 15q23 or 16q22-24 chromosomal locus amplification or translocation. Particularly, a sample can be considered to have high c-MAF expression level when the expression level in the sample isolated from the patient is at least about 1.1 times, 1.2 times, 1.3 times, 1.4 times, 1.5 times, 2 times, 3 times, 4 times, 5 times, 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, 100 times or even more with respect to the reference or control.

[0106] "Probe", as used herein, refers to an oligonucleotide sequence that is complementary to a specific nucleic acid sequence of interest. In some embodiments, the probes may
be specific to regions of chromosomes which are known to undergo translocations. In some embodiments, the probes have a specific label or tag. In some embodiments, the tag is a fluorophore. In some embodiments, the probe is a DNA. In situ hybridization probe whose labeling is based on the stable coordinative binding of platinum to nucleic acids and proteins. In some embodiments, the probe is described in U.S. Patent Appl. 12/067532 and U.S. Patent Appl. 12/181,393, which are incorporated by reference in their entirety, or as described in Swenrenhuis et al. "Construction of repeat-free fluorescence in situ hybridization probes" Nucleic Acids Research 40(3):e20 (2012).

[0107] "Tag" or "label", as used herein, refers to any physical molecule which is directly or indirectly associated with a probe, allowing the probe or the location of the probed to be visualized, marked, or otherwise captured.

[0108] "Translocation", as used herein, refers to the exchange of chromosomal material in unequal or equal amounts between chromosomes. In some cases, the translocation is on the same chromosome. In some cases, the translocation is between different chromosomes. Translocations occur at a high frequency in many types of cancer, including breast cancer and leukemia. Translocations can be either primary reciprocal translocations or the more complex secondary translocations. There are several primary translocations that involve the immunoglobulin heavy chain (IgH) locus that are believed to constitute the initiating event in many cancers. (Eychene, A., Rocques, N., and Puoponnont, C., A new MAFjia in cancer, 2008. Nature Reviews: Cancer. 8: 683-693.)

[0109] "Polyploid" or "polyploidy", as used herein, indicates that the cell contains more than two copies of a gene of
interest. In some instances, the gene of interest is MAF. In some embodiments, polyploidy is associated with an accumulation of expression of the gene of interest. In some embodiments, polyploidy is associated with genomic instability. In some embodiments, the genomic instability—may lead to chromosome translocations.

[0110] "Whole genome sequencing", as used herein, is a process by which the entire genome of an organism is sequenced at a single time. See, e.g., Ng., P.C. and Kirkness, E.F., Whole Genome Sequencing. 2010, Methods in Molecular Biology. 628; 215-226.

[0111] "Exome sequencing", as used herein, is a process by which the entire coding region of the DNA of an organism is sequenced. In exome sequencing, the mRNA is sequenced. The untranslated regions of the genome are not included in exome sequencing. See, e.g., Choi, M. et al., Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. 2009, PNAS. 106(45) : 19096-19101.

[0112] "Tumor tissue sample" is understood as the tissue sample originating from the prostate cancer tumor, including but not limited to circulating tumor cells and circulating tumor DNA. Said sample can be obtained by conventional methods, for example biopsy, using methods well known by the persons skilled in related medical techniques,

[0113] "Osteolytic bone metastasis" refers to a type of metastasis in which bone resorption (progressive loss of the bone density) is produced in the proximity of the metastasis resulting from the stimulation of the osteoclast activity by the tumor cells and is characterized by severe pain, pathological fractures, hypercalcaemia, spinal cord compression and other syndromes resulting from nerve compression.
Method for designing customized therapy of the invention in patients with prostate tumors

[0114] As is known in the state of the art, the treatment to be administered to a subject suffering from cancer depends on whether the latter is a malignant tumor, i.e., whether it has high probabilities of undergoing metastasis, or whether the latter is a benign tumor. In the first assumption, the treatment of choice is a systemic treatment such as chemotherapy and in the second assumption, the treatment of choice is a localized treatment such as radiotherapy.

[0115] Therefore, as described in the present invention, given that the c-MAF gene overexpression in prostate cancer cells is related to the presence of metastasis, the c-MAF gene expression levels allow making decisions in terms of the most suitable therapy for the subject suffering said cancer.

[0116] Thus, in another aspect the invention relates to an in vitro method for designing a customized therapy for a subject with prostate cancer, which comprises

(i) quantifying the c-MAF gene expression level in a tumor sample of said subject and,

(ii) comparing the expression level previously obtained with the expression level of said gene in a control sample,

wherein if the expression level are increased with respect to the expression levels of said gene in the control sample, then said subject is susceptible to receive a therapy aiming to prevent and/or treat the metastasis. In a particular aspect of this method, the subject is then administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis.

wherein if the c-MAF gene expression level is not increased with respect to said reference value, then said subject is
not susceptible to receive a therapy for preventing the bone degradation. In a particular aspect of this method, the subject is then not administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis.

[0117] In a particular embodiment, the metastasis is a bone metastasis. In a more preferred embodiment, the bone metastasis is osteolytic metastasis.

[0118] The terms and expressions "subject", "prostate cancer", "tumor sample", "metastasis", "determination of expression levels", "c-MAF gene", "increased expression levels" and "control sample" have been described in detail in relation to the first method of the invention and are equally applicable to the second and third method of the invention.

[0119] The second method of the invention comprises in a first step quantifying the c-M&F gene expression level in a tumor sample in a subject suffering from prostate cancer.

[0120] In a preferred embodiment, the second method of the invention comprises quantifying only the c-MAF gene expression level as a single marker, i.e., the method does not involve determining the expression level of any additional marker.

[0121] In the case of the second method of the invention the sample is a primary tumor tissue sample of the subject. In a second step, the c-MAF gene expression level obtained in the tumor sample of the subject is compared with the expression level of said gene in a control sample. The determination of the c-MAF gene expression levels must be related to values of a control sample or reference sample. Depending on the type of tumor to be analysed, the exact nature of the control sample may vary. Thus preferably the reference sample is a tumor tissue sample of a subject with prostate cancer that has not metastasized or that corresponds to the median value of the c-MAF gene.
expression levels measured in a tumor tissue collection in biopsy samples of subjects with prostate cancer which has not metastasized.

[0122] In yet another embodiment, an expression level of c-MAF which is above the average indicates increased risk of bone metastasis, the risk being proportional to the levels of c-MAF expression, Thus, the risk of bone metastasis in a subject suffering lung cancer is dose-dependent.

[0123] Once the c-MAF gene expression level in the sample have been measured and compared with the control sample, if the expression level of said gene are increased with respect to their expression levels in the control sample, then it can be concluded that said subject is susceptible to receiving therapy aiming to prevent (if the subject has yet to undergo metastasis) and/or treat metastasis (if the subject has already experienced metastasis). If such increased expression is not observed then the subject is not administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis.

[0124] As used herein, an "agent for avoiding or preventing bone degradation" refers to any molecule capable of treating or stopping bone degradation either by stimulating the osteoblast proliferation or inhibiting the osteoclast proliferation. Illustrative examples of agents used for avoiding and/or preventing bone degradation include, although not limited to:

- Parathyroid hormone (PTH) and Parathyroid like hormone (PTHLH) inhibitors (including blocking antibodies) or recombinant forms thereof (teriparatide corresponding to the amino acids 7-34 of PTH). This hormone acts by stimulating the osteoclasts and increasing their activity.
- Strontium ranelate: is an alternative oral treatment, and forms part of the group of drugs called "dual
"Estrogen receptor modulators" (SERMs) refers to compounds which interfere or inhibit the binding of estrogens to the receptor, regardless of the mechanism. Examples of estrogen receptor modulators include, among others, estrogens progestagen, estradiol, droloxifene, raloxifene, lasofoxifene, TSE-424, tamoxifen, idoxifene, L Y353381, LY117081, toremifene, fluvestrant, 4-[7-(2,2-dimethyl-1-oxopropoxy)-4-methyl-2-[4-[(2-1-piperidinyl)ethoxy]phenyl]-2H-1-benzopyran-3-yl]-phenyl-2,2-dimethylpropanoate, 4,4'-dihydroxybenzophenone-2,4-dinitrophenyl-hydrazone and SH646.

- Calcitonin: directly inhibits the osteoclast activity through the calcitonin receptor. The calcitonin receptors have been identified on the surface of the osteoclasts.

- Bisphosphonates: are a group of medicinal products used for the prevention and the treatment of diseases with bone resorption and reabsorption such as osteoporosis and cancer with bone metastasis, the latter being with or without hypercalcaemia, associated to breast cancer and prostate cancer. Examples of bisphosphonates which can be used in the therapy designed by means of the fifth method of the invention include, although not limited to, nitrogenous bisphosphonates (such as pamidronate, neridronate, olpadronate, alendronate, ibandronate, risedronate, incadronate, zoledronate or zoledronic acid, etc.) and non-nitrogenous bisphosphonates (such as etidronate, clodronate, tiludronate, etc.).
"Cathepsin K inhibitors" refers to compounds which interfere in the cathepsin K cysteine protease activity. Non-limiting examples of cathepsin K inhibitors include 4-amino-pyrimidine-2-carbonitrile derivatives (described in the International patent application WO 03/020278 under the name of Novartis Pharma GMBK), pyrrolo-pyrimidines described in the publication WO 03/020721 (Novartis Pharma GMBK) and the publication WO 04/000843 (ASTRAZENECA AB) as well as the inhibitors described in the publications PCT WO 00/55126 of Axys Pharmaceuticals, WO 01/49288 of Merck Frosst Canada & Co. and Axys Pharmaceuticals.

"DKK-1 (Dickkopf-1) inhibitor" as used herein refers to any compound which is capable of reducing DKK-1 activity. DKK-1 is a soluble Wnt pathway antagonist expressed predominantly in adult bone and upregulated in myeloma patients with osteolytic lesions. Agents targeting DKK-1 may play a role in preventing osteolytic bone disease in multiple myeloma patients. BHQ880 from Novartis is a first-in-class, fully human, anti-DKK-1 neutralizing antibody. Preclinical studies support the hypothesis that BHQ880 promotes bone formation and thereby inhibits tumor-induced osteolytic disease (Ettenberg S. et al., American Association for Cancer Research Annual Meeting, April 12-16, 2008; San Diego, Calif. Abstract).

"Dual MET and VEGFR2 inhibitor" as used herein refers to any compound which is a potent dual inhibitor of the MET and VEGF pathways designed to block MET driven tumor escape. MET is expressed not only in tumor cells and endothelial cells, but also in osteoblasts (bone-forming cells) and osteoclasts (bone-removing cells). HGF binds to MET on all of these cell types, giving the MET pathway an important role in multiple
autocrine and paracrine loops. Activation of MET in
tumor cells appears to be important in the
establishment of metastatic bone lesions. At the same
time, activation of the MET pathway in osteoblasts and
osteoclasts may lead to pathological features of bone
metastases, including abnormal bone growth (ie, blastic
lesions) or destruction (ie, lytic lesion. Thus, targeting
the MET pathway may be a viable strategy in preventing
the establishment and progression of metastatic bone
lesions. Cabozantinib (Exeixis, Inc), formerly known as XL1S4
(CAS 849217-6S-1), is a potent dual inhibitor of the MET and VEGF
pathways designed to block MET driven tumor escape. In
multiple preclinical studies cabozantinib has been
shown to kill tumor cells, reduce metastases, and
inhibit angiogenesis (the formation of new blood
vessels necessary to support tumor growth), Another
suitable dual inhibitors are E7050 [2-Fluoro-4-((2-
[4-(4-methylpiperazin-1-yl) piperidin-1-yl]
carbonylaminopyridin-4-yl) oxy] phenyl]N'-((4-
fluoro phenyl) cyclopropane-1,1-dicarboxamide (2R,3R)
tartrate) (CAS 928037-13-2) or Foretinib (also known
as GSK1363089, XL880, CAS 849217-64-7).

"RANKL. inhibitors" as used herein refer to any
compound which is capable of reducing the RANK
activity. RANKL is found on the surface of the
osteoblast membrane of the stroma and T-lymphocyte
cells, and these T-lymphocyte cells are the only ones
which have demonstrated the capacity for secreting it.
Its main function is the activation of the
osteoclasts, cells involved in the bone resorption.
The RANKL inhibitors can act by blocking the binding
of RANKL to its receptor (RANK), blocking the RANK-
mediated signaling or reducing the expression of RANKL
by blocking the transcription or the translation of RANKL. RANKL antagonists or inhibitors suitable for use in the present invention include, without limitation:

- a suitable RANK protein which is capable of binding RANKL and which comprises the entire or a fragment of the extracellular domain of a RANK protein. The soluble RANK may comprise the signal peptide and the extracellular domain of the murine or human RANK polypeptides, or alternatively; the mature form of the protein with the signal peptide removed can be used.

- Osteoprotegerin or a variant thereof with RANKL-binding capacity.

- RANKL-specific antisense molecules

- Ribozymes capable of processing the transcribed products of RANKL

- Specific anti-RANKL antibodies. "Anti-RANKL antibody or antibody directed against RANKL" is understood herein as all that antibody which is capable of binding specifically to the ligand of the activating receptor for the nuclear factor κB (RANKL) inhibiting one or more RANKL functions*

The antibodies can be prepared using any of the methods which are known by the person skilled in the art. Thus, the polyclonal antibodies are prepared by means of immunising an animal with the protein to be inhibited. The monoclonal antibodies are prepared using the method described by Kohler, Milstein et al. (Nature, 1975, 256: 495). Antibodies suitable in the context of the present invention include intact antibodies which comprise a variable antigen binding region and a constant region, fragments
"Fab", "F(ab')2" and "Fab", Fv, scFv, diabodies and bispecific antibodies.

Specific anti-RANKL nanobodies. Nanobodies are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. The Nanobody technology was originally developed following the discovery that camelidae (camels and llamas) possess fully functional antibodies that lack light chains. The general structure of nanobodies is FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4

wherein FR1 to FR4 are the framework regions 1 to 4, CDR1 to CDR3 are the complementarity determining regions 1 to 3. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3).

Importantly, the cloned and isolated VHH domain is a perfectly stable polypeptide harbouring the full antigen-binding capacity of the original heavy-chain antibody. These newly discovered VHH domains with their unique structural and functional properties form the basis of a new-generation of therapeutic antibodies which Ablynx has named Nanobodies.

[0125] In one embodiment, the RANKL inhibitor is selected from the group consisting of a RANKL specific antibody, a RANKL specific nanobody and osteoprotegerin. In a specific embodiment, the anti-RANKL antibody is a monoclonal antibody. In a yet more specific embodiment, the anti-RANKL antibody is Denosumab (Pageau, Steven C. (2009). mAbs 1 (3): 210-215, CAS number 615258-40-7) (the entire contents of which are hereby incorporated by reference). Denosumab is a fully human monoclonal antibody which binds to RANKL and prevents its activation (it does not bind to the RANK
Various aspects of Denosumab are covered by U.S. Pat, Nos. 6,740,522; 7,411,050; 7,097,834; 7,364,736 (the entire contents of each of which are hereby incorporated by reference in their entirety). In another embodiment, the RANKL inhibitor an antibody, antibody fragment, or fusion construct that binds the same epitope as Denosumab.

[0126] In a preferred embodiment, the anti-RANKL nanobody is any of the nanobodies as described in WO2008142164, (the contents of which are incorporated in the present application by reference). In a still more preferred embodiment, the anti-RANKL antibody is the ALX-0141 (Ablynx). ALX-0141 has been designed to inhibit bone loss associated with post-menopausal osteoporosis, reumatoid arthritis, cancer and certain medications, and to restore the balance of healthy bone metabolism.

[0127] In a preferred embodiment, the agent preventing the bone degradation is selected from the group consisting of a bisphosphonate, a RANKL inhibitor, PTE and PTEL-1 inhibitor or a PRG analog, strontium ranelate, a DKK-1 inhibitor, a dual MET and VEGFR2 inhibitor, an estrogen receptor modulator, Radium-223, calcitonin, and a cathepsin K inhibitor. In a more preferred embodiment the agent preventing the bone degradation is a bisphosphonate. In a yet more preferred embodiment, the bisphosphonate is the zoledronic acid.

[0128] In one embodiment, a CCR5 antagonist is administered to prevent or inhibit metastasis of the primary prostate cancer tumor to bone. In one embodiment, the CCR5 antagonist is a large molecule. In another embodiment, the CCR5 antagonist is a small molecule. In some embodiments, the CCR5 antagonist is Maraviroc. In some embodiments, the CCR5 antagonist is Vicriviroc. In some aspects, the CCR5 antagonist is Apiaviroc. In some aspects, the CCR5 antagonist is a spiropiperidine OCRS antagonist. (Rotstein

In a preferred embodiment the dual MET and VEGFR2 inhibitor is selected from the group consisting of Cabozantinib, Foretinib and E7050.

In another aspect, the treatment is an mTor inhibitor. In some aspects, the mTor inhibitor is a dual mTor/PI3kinase inhibitor. In some aspects, the mTor inhibitor is used to prevent or inhibit metastasis. In some aspects the mTor inhibitor is selected from the group consisting of: ABT009 (sirolimus), rapamycin (sirolimus), Abraxane (paclitaxel), Absorb (everolimus), Afinitor (everolimus), Afinitor with Gleevec, ASTQ3026 (pimasertib), Axxess (umbraliimus), AED2014, BE2235, Biofreedom (umirilimus), BioMatrix (uirdrolimus), BioMatrix flex (ixm.rirolimus.us), CC115, CC223, Combo Bio-engineered Sirolimus Eluting Stent 0R3USNEICH (sirolimus), Curaxin CBLC102 (mecacriiiae), DE109 (sirolimus), D33078, Endeavor DES (zotarolimus), Endeavor Resolute (zotarolimus), Femara (letrozole), Hocena (antroquinonol), INK128, Inspiron (sirolimus), IFI504 (retaspimycin hydrochloride), KR851 (tivozanib), ME344, MGA031 (teplizumab), MiStent SES (sirolimus), MKC1, Nobori (umirolimus), OSI027, OVI12.3 icordycepin), Palomid 529, PF469152G, Promus Element (everolimus), PWT33597, Rapamune (sirolimus), Resolute DES (zotarolixus; RG7422, SAR245403, SF1126, SGN75 (vorsetuzumab mafodotin), Synergy (everolimus), Talorvic (ridaforolimus), Tarceva (erlotinib), Torisel (temsirolimus), Xience Prime (everolimus), Xierj.ce V (everolimus), Zomaxx (zotarolimus), Zortress (everolimus), Zotarolimus Eluting Peripheral Stent MEDTRONIC (zotarolimus), AP23841, AP24170, ARmTOR26, BN107, BH108,
Canstatin GENZYME (canstatin), CU906, EC0371, EC0565, KI1004, LOR220, NV128, Rapamycin ONCOIMMUNE (sirolimus), SB2602, Sirolimus PNP SAMYANG BIOPHARMACEUTICALS (sirolimus), TOP216, VLI27, VS5584, WYE125132, XL368, Advacan (everolimus), AZD8055, Cypher Select Plus Sirolimus eluting Coronary Stent (sirolimus), Cypher Sirolimus eluting coronary stent (sirolimus), Drug Coated Balloon (sirolimus), E-Magic Plus (sirolimus), Emtor (sirolimus), Esprit (everolimus), Evertor (everolimus), HBF0079, LCP-Siro (sirolimus), Limus CLARIS (sirolimus), mTOR Inhibitor CELLZOME, Nevo Sirolimus eluting Coronary Stent (sirolimus), nPT-mTOR, Rapcan (sirolimus), Renacept (sirolimus), ReZolve (sirolimus), Rocas (sirolimus), SF1126, Sirolim (sirolimus), Sirolimus NORTH CHINA (sirolimus), Sirolimus RANBAXY (sirolimus), Sirolimus WATSON (sirolimus), Siropan (sirolimus), Sirova (sirolimus), Supralimus (sirolimus), Supralimus-Core (sirolimus), Tacrolimus WATSON (tacrolimus), TAFA93, Temsiroimus ACCORD (temsirolimus), Temsiroimus SANDOZ (temsirolimus), TOP216, Xience Prime (everolimus), Xience V (everolimus). In a specific aspect the mTor inhibitor is Afinitor (everolimus) (http://www.afinitur.com/index.jsp?usertrack.filter_applied=true&Novaid=402946206438207963; last accessed 11/28/2012). In another aspect, mTor inhibitors can be identified through methods known in the art. (See, e.g., Zhou, H. et al. Updates of mTor inhibitors. 2010. Anticancer Agents Med. Chem. 10(7): 571-81, which is herein incorporated by reference). In some aspects, the mTor inhibitor is used to treat or prevent or inhibit metastasis in a patient with advanced prostate cancer. In some aspects, the mTor inhibitor is used in combination with a second treatment. In some aspects, the second treatment is any treatment described herein.
In another aspect, the treatment is a Src kinase inhibitor. In some aspects, the Src inhibitor is used to prevent or inhibit metastasis. In some aspects, the Src kinase inhibitor is selected from the group; AZD0530 (saracatinib), Bosutinib (bosutinib), ENMD981693, KD020, KX01, Sprycel (dasatinib), Yervoy (ipilimumab), AP23464, AP23485, AP23588, c-Src Kinase Inhibitor KI33EI, CU201, KX2361, SKSS27, SRN004, SUNK706, TG100435, TG100948, AP23451, Dasatinib HETERO (dasatinib), Dasatinib VALEANT (dasatinib), Fontrax (dasatinib), Src Kinase Inhibitor KINEX, VX680, (tozasertib lactate), XL228, and SUNK706. In some embodiments, the Src kinase inhibitor is dasatinib. In another aspect, Src kinase inhibitors can be identified through methods known in the art (See, e.g., Sen, B, and Johnson, F.M. Regulation of Src Family Kinases in Human Cancers. 2011. J, Signal. Transduction. 2011: 14 pages, which is herein incorporated by reference). In some aspects, the Src kinase inhibitor is used to treat or prevent metastasis in a patient that is positive for the SRC-responsive signature (SRS). In some aspects, the Src kinase inhibitor is used to treat or prevent or inhibit metastasis in a patient with advanced prostate cancer. In some aspects, the Src kinase inhibitor is used in combination with a second treatment. In some aspects, the second treatment is any treatment described herein.

In another aspect, the treatment is a COX-2 inhibitor. In some aspects, the COX-2 inhibitor is used to prevent or inhibit metastasis. In some aspects, the COX-2 inhibitor is selected from the group: ABT963, Acetaminophen ER JOHNSON (acetaminophen), Acular X (ketorolac tromethamine), BAY1019036 (aspirin), BAY987111 (diphenhydramine, naproxen sodium), BAY11902 (piroxicam), BCIBUCHOOl (ibuprofen), Capoxigem (apricoxib), CS5Q2, CS670 (pelubiprofen), Diclofenac HPBCD (diclofenac), Diractin (ketoprofen), GW4Q638I, HCT1026 (nitroflurbiprofen), Hyanalgese-D
(diclofenac), HydrocoDex (acetaminophen, dextromethorphan, hydrocodeine), Ibuprofen Sodium PFIZER (ibuprofen sodium), Ibuprofen with Acetaminophen PFIZER (acetaminophen, ibuprofen), Impraco.r (ketoprofen), IP880 (diclofenac), IP940 (indomethacin), ISV205 (diclofenac sodium), JNS013 (acetaminophen, tramadol hydrochloride), Ketoprofen TDS (ketoprofen), LTNS01 (naproxen etemessil), Mesalamine SALIX (mesalamine), Mesalamine SOFAR (mesalamine), Mesalazine (mesalamine), ML300Q (lidofoelone), MRX7EAT (etodolac), Naproxen IROKO (naproxen), NCX4016 (n-itoaspirin), NCX701 (nitroacetaminophen), Nuprin SOOLR (ibuprofen), OMS103EP (ajnitiptiine hydrochloride, ketoproferi, oxymetazoline hydrochloride), Oralase (diclofenac), OxycoOex (dextromethorphan, oxycodone), 754, PercoDex (acetaminophen, dextromethorphan, oxycodone), PL3100 (naproxen, phosphatidyl choline), PSD508, R-Ketoprofen (ketoprofen), Remura (bromfenac sodium), ROX828 (ketorolac tromethamine), RP19583 (ketoprofen lysine), RQOQ317076, SDX1G1 (R-etodolac), TDS943 (diclofenac sodium)/ TDT070 (ketoprofen), TPR100, TQ1Q11 (ketoprofen), TT063 (Sflurbiprofen), UR8880 (cimicoxib), VQ49TAQ1A (ibuprofen), V7122 (etodolac, propranolol), XP2QB (acetaminophen, dextropropoxyphene), XP21B (diclofenac potassium), XP21L (diclofenac potassium), Zosena (acyethylcysteine, mesalamine), Aephken, Actifed Plus, Actifed-F, Acular, Acular LS, Acular PF, Acular X, Acuvail, Advil, Advil Allergy Sinus, Advil Cold and Sinus, Advil Congestion Relief, Advil PM, Advil PM Capsule, Air Salonpas, Airtal, Alcohol-Free NyQuil Cold & Flu Relief, Aleve, Aleve ABDI IBRAHIM, Al.eve-D, Alka-Seltzer, Alka-Seltzer BAYER, Alka-Seltzer Extra Strength, Alka-Seltzer Lemon-Lime, Alka-Seltzer Original, Alka-Seltzer Plus, Alka-Seltzer plus Cold and Cough, Alka-Seltzer plus Cold and Cough Formula, Alka-Seltzer Plus Day and Night Cold Formula, Alka-Seltzer Plus Day Non-Drowsy Cold Formula, Alka-Seltzer Plus Flu Formula,
Alka-Seltzer Plus Night Cold Formula, Alka-Seltzer Plus Sinus Formula, Alka-Seltzer Plus Sparkling Original Cold Formula, Alka-Seltzer PM, Alka-Seltzer Wake-Up Call, Anacin, Anaprox, Anaprox MINERVA, Ansaid, Apitoxin, Apranax, Apranax afadi, Azicoria, Arthritis Formula Bengay, Arthrotec, Asacol, Asacol HD, Asacol MEDUNA ARZNEIMITTEL, Asacol ORIFARM, Aspirin BAYER, Aspirin Complex, Aspirin Migran, AZD3582, Azuifidine, Baraigan, BAY1G19036, BAY987111, BAY11902, BCIBUCHOQI, Benadryl Allergy, Benadryl Day and Night, Benylin 4 Flu, Benylin Cold and Flu, Benylin Cold and Flu Day and Night, Benylin Cold and Sinus Day and Night, Benylin Cold and Sinus Plus, Benylin Day and Night Cold and Flu Relief, Benylin All-In-One, Brexin, Brexin ANGELINI, Bromday, Bufferin, Buscopan Plus, Caldoior, Calmate, Gambia, Canasa, Capoxigem, Cataflam, Celebrex, Celebrex ORIFARM, Children's Advil Allergy Sinus, Children's Tylenol, Children's Tylenol Cough and Runny Nose, Children's Tylenol plus cold, Children's Tylenol plus Cold and Cough, Children's Tylenol plus cold and stuffy-nose, Children's Tylenol plus Flu, Children's Tylenol plus cold & allergy, Children's Tylenol plus Cough & Runny Nose, Children's Tylenol plus Cough & Sore Throat, Children's Tylenol plus multi Symptom cold, Clinoril, Codral Cold and Flu, Codral Day and Night Day Tablets, Codral Day and Night Night Tablets, Codral Nighttime, Colazai, Combunox, Contac Cold plus Flu, Contac Cold plus Flu Non-Drowsy, Coricidin D, Coricidin HBP Cold and Flu, Coricidin HBP Day and Night Multi-Symptom Cold, Coricidin H3P Maximum Strength Flu, Coricidin HBP Nighttime Multi-Symptom Cold, Coricidin II Extra Strength Cold and Flu, CS502, CS670, Daypro, Daypro Alta, DDS06C, Demazin Cold and Flu, Demazin Cough, Cold and Flu, Demazin day/night Cold and Flu, Demazin PE Cold and Flu, Demazin PE day/night Cold and Flu, Diclofenac HEPBCD, Dimetapp Day Relief, Dimetapp Multi-Symptom Cold and Flu, Dimetapp Night Relief, Dimetapp Pain and Fever Relief,
Percodan-Demi, PercoDex, Percogesic, Perfalgan, PL2200,
PL310G, Ponstel, Prexige, Prolensa, PSD508, R-Ketoprofen,
Rantudil, Relafen, Remura, Eobaxisal, Rotec, Rowasa,
ROX828, P.P19583, RQ00317076, Rubor, Salofaik, Saionpas,
Sardon, SDX101, Seltouch, SFRowasa, Shinbaro, Sinumax,
Sinutab, Sinutab, Sinutab, Spalt, Sprix, Strefen, Sudafed
Cold and Cough, Suda.fed Head Cold and Sinus, Sudafed PE
Cold plus Cough, Sudafed PE Pressure plus Pain, Sudafed PE,
Severe Cold, Sudafed PE Sinus Day plus Night Relief Day
 Tablets, Sudafed PE Sinus Day plus Night Relief Night
 Tablets, Sudafed PE Sinus plus Anti-inflammatory Pain
Relief, Sudafed Sinus Advance, Surga.m, Synaigos-DC,
Syriflex, Tavist allergy/sinus /headache, TDS943, TDTQ70,
Theraflu Cold and Sore Throat, Theraflu Daytime Severe Cold
and Cough, Theraflu Daytime Warming Relief , Therafiu Warming
Relief Caplets Daytime Multi-Symptom Cold, Therafiu Warming
Relief Cold and Chest Congestion, Thomapyrin, Thomapyrin C,
Thomapyrin Effervescent, Thomapyrin Medium, Tiicotil,
Tispol, Tolectin, Tordol, TPR100, TQ1011, Trauma-Salbe,
Trauma-Salbe Kwiza, Treq, Treximet, Trovex, TT063,
Tylenol, Tylenol Allergy- \(\text{m\text{a\text{t\text{i\text{a}}}\text{-Symptom}} \),Tylenol Back Pain,
Tylenol Cold & Cough Daytime, Tylenol Cold & Cough
Nighttime, Tylenol Cold and Sinus Daytime, Tylenol Cold and
Sinus Nighttime, Tylenol Cold Head Congestion Severe,
Tylenol Cold Multi Symptom Daytime, Tylenol Cold Multi
Symptom Nighttime Liquid, Tylenol Cold Multi Symptom
Severe, Tylenol Cold Non-Drowsiness Formula, Tylenol Cold.
Severe Congestion Daytime, Tylenol Complete Cold, Cough and
Flu Night time, Tylenol Flu Nighttime, Tylenol Menstrual,
Tylenol PM, Tylenol Sinus Congestion & Pain Daytime,
Tylenol Sinus Congestion & Pain Nighttime, Tylenol Sinus
Congestion & Pain Severe, Tylenol Sinus Severe Congestion
Daytime, Tylenol Ultra Relief, Tylenol with Caffeine and
Codeine phosphate, Tylenol with Codeine phosphate. Ultra
Strength Bengay Cream, Ultraceet, [JR888], VQ498TAQ1A, Vicks
NyQuil Cold and Flu Relief, Vicoprofen, Vimovo, Voltaren Emulgel, Voltaren GEL, Voltaren NOVARTIS CONSUMER HEALTH GMBH, Voltaren XR, VT122, Xefo, Xefc Rapid, Xefocam, Xibrom, XLS, Xodol, XP203, XP21B, XP21L, Zipsor, and Zoenasa. In another aspect, COX-2 inhibitors can be identified through methods known in the art (See, e.g., Dannhardt, G. and Kiefer, W. Cyclooxygenase inhibitors—current status and future prospects. 2001. Eur. J. Med. Chem. 36: 109-126, which is herein incorporated by reference). In some aspects, the COX-2 inhibitor is used to treat or prevent or inhibit metastasis in a patient with advanced prostate cancer. In some aspects, the COX-2 inhibitor is used in combination with a second treatment. In some aspects, the second treatment is any treatment described herein. In some aspects, the COX-2 inhibitor is used in combination with a second treatment selected from the group consisting of: Denosumafo, Zometa (http://www.us.zometa.com/index.jsp?usertrack.filter apellido=&aoplie d=true&NovaId=2935376934467633633; last accessed 12/2/2012), Carbozantinib or Cabozantinib, Antibody or peptide blocking PTHLH (parathyroid hormone like hormone) or PTHrP (parathyroid hormone related protein).

In one embodiment, the treatment is Radium 223, In a preferred embodiment the Radium 223 therapy is Alpharadin (aka, Xofigo) (radium-223 dichloride) - Alpharadin uses alpha radiation from radium-223 decay to kill cancer cells, Radium-223 naturally self-targets to bone metastases by virtue of its properties as a calcium-mimic. Alpha radiation has a very short range of 2-10 cells (when compared to current radiation therapy which is based on beta or gamma radiation), and therefore causes less damage to surrounding healthy tissues (particularly bone marrow). With similar properties to calcium, radium-223 is drawn to places where calcium is used to build bone in the body, including the site of faster, abnormal bone growth - such
as that seen in the skeletal metastases of men with advanced, castration-resistant prostate cancer. Radium-223, after injection, is carried in the bloodstream to sites of abnormal bone growth. The place where a cancer starts in the body is known as the primary tumor. Some of these cells may break away and be carried in the bloodstream to another part of the body. The cancer cells may then settle in that part of the body and form a new tumor. If this happens it is called a secondary cancer or a metastasis. Most patients with late stage prostate cancer suffer the maximum burden of disease in their bones. The aim with radium-223 is to selectively target this secondary cancer. Any radium-223 not taken-up in the bones is quickly routed to the gut and excreted.

Alternatively a combined treatment can be carried out in which more than one agent from those mentioned above are combined to treat and/or prevent the metastasis or said agents can be combined with other supplements, such as calcium or vitamin D or with a hormone treatment.

When the cancer has metastasized, systemic treatments including but not limited to chemotherapy, hormone treatment, immunotherapy, or a combination thereof are used. Additionally, radiotherapy and/or surgery can be used. The choice of treatment generally depends on the type of primary cancer, the size, the location of the metastasis, the age, the general health of the patient and the types of treatments used previously.

The systemic treatments are those that reach the entire body:
- Chemotherapy is the use of medicaments to destroy cancer cells. The medicaments are generally administered through oral or intravenous route. Sometimes, chemotherapy is used together with radiation treatment.
Hormone therapy is based on the fact that some hormones promote cancer growth. For example, estrogen in women produced by the ovaries sometimes promotes the breast cancer growth. There are several ways for stopping the production of these hormones. A way is to remove the organs producing them: the ovaries in the case of women, the testicles in the case of the men. More frequently, medicaments to prevent these organs from producing the hormones or to prevent the hormones from acting on the cancer cells can be used.

Immunotherapy is a treatment that aids the immune system itself of the patient to combat cancer. There are several types of immunotherapy which are used to treat metastasis patients. These include but are not limited to cytokines, monoclonal antibodies and antitumor vaccines.

Method for designing customized therapy of the invention in prostate cancer patients with bone metastasis

[0137] Patients suffering prostate cancer which has already metastasized to the bone and in which there are elevated c-MAF levels may particularly benefit from therapies aimed at preventing the bone degradation caused by the increased osteoclastic activity.

[0138] Thus, in another aspect, the invention relates to an in vitro method for designing a customized therapy for a subject with prostate cancer with bone metastasis which comprises

(i) quantifying the c-MAF gene expression level in a metastatic tumor sample from bone of said subject, and

(ii) comparing the expression level previously obtained with the expression level of said gene in a control sample,
wherein if the expression levels are increased with respect to the expression levels of said gene in the control sample, then said subject is susceptible to receive a therapy aiming to prevent the bone degradation.

wherein if the expression level is not increased with respect to said reference value, then said subject is not susceptible to receive a therapy aiming to prevent and/or treat the bone metastasis.

[0139] The terms and expressions "subject", "prostate cancer", "tumor sample", "metastasis", "determination of expression levels", "c-MAF gene", "increased expression levels" and "control sample" have been described in detail in relation to the first method of the invention and are equally applicable to the second and third method of the invention.

[0140] In a preferred embodiment, the bone metastasis is osteolytic metastasis.

[0141] The third method of the invention comprises in a first step, quantifying the c-MAF gene expression level in a tumor sample in a subject suffering prostate cancer. In the case of the third method of the invention, the sample is a tissue sample from bone metastasis.

[0142] In a preferred embodiment, the third method of the invention comprises quantifying only the c-MAF gene expression level as a single marker, i.e., the method does not involve determining the expression level of any additional marker.

[0143] In a second step the c-MAF gene expression level obtained in the tumor sample of the subject is compared with the expression level of said gene in a control sample. The determination of the c-MAF gene expression levels must be correlated to values of a control sample or reference sample. Depending on the type of tumor to be analyzed, the exact nature of the control sample may vary. Thus, in the
case involving the third method of the invention, then the reference sample is a tumor tissue sample of subject with prostate cancer who has not suffered metastasis or that correspond to the median value of the c-MAF gene expression level measured in a tumor tissue collection in biopsy samples of, subjects with prostate cancer who has not suffered metastasis.

[0144] Once the C-MAF gene expression level in the sample is measured and compared with the control sample, if the expression level of said gene are increased with respect to its expression level in the control sample, then it can be concluded that said subject is susceptible to receive a therapy aiming to avoid or prevent bone degradation.

[0148] As used herein, an "agent for avoiding or preventing bone degradation" refers to any molecule capable of treating or stopping bone degradation either by stimulating the osteoblast proliferation or inhibiting the osteoclast proliferation. Illustrative examples of agents used for avoiding and/or preventing bone degradation include, although not limited to:

- Parathyroid hormone (PTH) and Parathyroid like hormone (PTKLH) inhibitors (including blocking antibodies) or recombinant forms thereof (teriparatide corresponding to the amino acids 7-34 of PTH). This hormone acts by stimulating the osteoclasts and increasing their activity.

- Strontium ranelate: is an alternative oral treatment, and forms part of the group of drugs called "dual action bone agents" (DABA) because they stimulate the osteoblast proliferation and inhibit the osteoclast proliferation.

- "Estrogen receptor modulators" (SERM) refers to compounds which interfere or inhibit the binding of estrogens to the receptor, regardless of the
mechanism. Examples of estrogen receptor modulators include, among others, estrogens progestagens, estradiol, droloxifene, raloxifene, lasofoxifene, TSE-424, tamoxifen, idoxifene, LY353381, LY117081, toremifene, fluvestrant, 4-[7-(2,2-dimethyl-1-oxoproxy)-4-methyl-2-[4-[(1-piperidinyl)ethoxy]phenyl]-2H-1-benzopyran-3-yl]-phenyl-2,2-dimethylpropanoate 4,4’-dihydroxybenzophenone-2,4-dinitrophenyl-hydrazone and SH646.

- Calcitonin: directly inhibits the osteoclast activity through the calcitonin receptor. The calcitonin receptors have been identified on the surface of the osteoclasts.

- Bisphosphonates: are a group of medicinal products used for the prevention and the treatment of diseases with bone resorption and reabsorption such as osteoporosis and cancer with bone metastasis, the latter being with or without hypercalcaemia, associated to breast cancer and prostate cancer. Examples of bisphosphonates which can be used in the therapy designed by means of the fifth method of the invention include, although not limited to, nitrogenous bisphosphonates (such as pamidronate, neridronate, olpadronate, alendronate, ibandronate, risedronate, incadronate, zoledronate or zoledronic acid, etc.) and non-nitrogenous bisphosphonates (such as etidronate, clodronate, tiludronate, etc.).

- "Cathepsin K inhibitors" refers to compounds which interfere in the cathepsin K cysteine protease activity. Non-limiting examples of cathepsin K inhibitors include 4-amino-pyrimidine-2-carbonitrile derivatives (described in the International patent application WO 03/020279 under the name of Novartis.
Phar
ci
in
ri
in
the
and
as
as
As
and
Fro

Pharma GMBH), pyrrolo-pyrimidines described in the publication WO 03/020721 (Novartis Pharma GMBH) and the publication WO 04/000843 (ASTRAZENCA AB) as well as the inhibitors described in the publications FCT WO 00/55126 of Axys Pharmaceuticals, WO 01/49288 of Merck Frosst Canada & Co. and Axys Pharmaceuticals.

"DKK-1 (Dickkopf-1) inhibitor" as used herein refers to any compound which is capable of reducing DKK-1 activity. DKK-1 is a soluble Wnt pathway antagonist expressed predominantly in adult bone and upregulated in myeloma patients with osteolytic lesions. Agents targeting DKK-1 may play a role in preventing osteolytic bone disease in multiple myeloma patients. BHQ880 from Novartis is a first-in-class, fully human, anti-DKK-1 neutralizing antibody. Preclinical studies support the hypothesis that BHQ880 promotes bone formation and thereby inhibits tumor-induced osteolytic disease (Ettenberg S. et al., American Association for Cancer Research Annual Meeting. April 12-16, 2008; San Diego, Calif. Abstract).

"Dual MET and VSGFR2 inhibitor" as used herein refers to any compound which is a potent dual inhibitor of the MET and VSGF pathways designed to block MET driven tumor escape. MET is expressed not only in tumor cells and endothelial cells, but also in osteoblasts (bone-forming cells) and osteoclasts (bone-removing cells). HGF binds to MET on all of these cell types, giving the MET pathway an important role in multiple autocrine and paracrine loops. Activation of MET in tumor cells appears to be important in the establishment of metastatic bone lesions. At the same time, activation of the MET pathway in osteoblasts and osteoclasts may lead to pathological features of bone metastases, including abnormal bone growth (ie,
biastic lesions) or destruction (is, lytic lesion. Thus, targeting the MET pathway may be a viable strategy in preventing the establishment and progression of metastatic bone lesions. Cabozantinib (Exelixis, Inc), formerly known as XL184 (CAS 849217-68-1), is a potent dual inhibitor of the MET and VEGF pathways designed to block MET driven tumor escape. In multiple preclinical studies cabozantinib has been shown to kill tumor cells, reduce metastases, and inhibit angiogenesis (the formation of new blood vessels necessary to support tumor growth). Another suitable dual inhibitors are E7050 [N-[(2-Fluoro-4-([2-4-methylpiperazin-1-yl)piperidin-1-yl)carbonylaminopyridin -4-yl]oxy]phenyl]-N'-(4-fluorophenyl) cyclopropane-1,1-dicarboxand.de (2R, 3R)-tartrate) (CAS 928037-13-2) or Foretinib (also known as G3K1363Q89, XL880, CAS 849217-64-7).

"RANKL inhibitors" as used herein refer to any compound which is capable of reducing the RANK activity. RANKL is found on the surface of the osteoblast -membrane of the stroma and T-lymphocyte cells, and these T-lymphocyte cells are the only ones which have demonstrated the capacity for secreting it. Its main function is the activation of the osteoclasts, cells involved in the bone resorption. The RANKL inhibitors can act by blocking the binding of RANKL to its receptor (RANK), blocking the RANK-mediated signaling or reducing the expression of RANKL by blocking the transcription or the translation of RANKL. RANKL antagonists or inhibitors suitable for use in the present invention include, without limitation:

- a suitable RANK protein which is capable of binding RANKL and which comprises the entire or a
fragment of the extracellular domain of a RANK protein. The soluble RANK may comprise the signal peptide and the extracellular domain of the murine or human RANK polypeptides, or alternatively, the mature form of the protein with the signal peptide removed can be used.

- Osteoprotegerin or a variant thereof with RANKL-binding capacity.
- RANKL-specific antisense molecules
- Ribozymes capable of processing the transcribed products of RANKL
- Specific anti-RANKL antibodies. "Anti-RANKL antibody or antibody directed against RANKL" is understood herein as all that antibody which is capable of binding specifically to the ligand of the activating receptor for the nuclear factor κ3 (RANKL) inhibiting one or more RANKL functions.

The antibodies can be prepared using any of the methods which are known by the person skilled in the art. Thus, the polyclonal antibodies are prepared by means of immunizing an animal with the protein to be inhibited. The monoclonal antibodies are prepared using the method described by Kohler, Milstein et al. (Nature, 1975, 256: 495) - Antibodies suitable in the context of the present invention include intact antibodies which comprise a variable antigen binding region and a constant region, fragments "Fab", "F(ab\')2" and "Fab"*, Fv, scFv, diabodies and bispecific antibodies.

- Specific anti-RANKL nanobodies. Nanobodies are antibody-derived therapeutic proteins that contain the unique structural and functional properties of naturally-occurring heavy-chain antibodies. The Nanobody technology was
originally developed following the discovery that camelidae (camels and llamas) possess fully functional antibodies that lack light chains. The general structure of nanobodies is FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4 wherein FR1 to FR4 are the framework regions 1 to 4, CDR1 to CDR3 are the complementarity determining regions 1 to 3. These heavy-chain antibodies contain a single variable domain (VHH) and two constant domains (CH2 and CH3). Importantly, the cloned and isolated VHH domain is a perfectly stable polypeptide harbouring the full antigen-binding capacity of the original heavy-chain antibody. These newly discovered VH\textsubscript{H} domains with their unique structural and functional properties form the basis of a new generation of therapeutic antibodies which Ablynx has named Nanobodies.

In one embodiment, the RANKL inhibitor is selected from the group consisting of a RANKL specific antibody, a RANKL specific nanobody and osteoprotegerin. In a specific embodiment, the anti-RANKL antibody is a monoclonal antibody. In a yet more specific embodiment, the anti-RANKL antibody is Denosumab (Page et al., Steven C. (2009), mAbs 1 (3); 210-215, CAS number 615258-40-7) (the entire contents of which are hereby incorporated by reference). Denosumab is a fully human monoclonal antibody which binds to RANKL and prevents its activation (it does not bind to the RANK receptor). Various aspects of Denosumab are covered by U.S. Pat. Nos, 6,740,522; 7,411,050; 7,097,834; 7,364,736 (the entire contents of each of which are hereby incorporated by reference in their entirety). In another embodiment, the RANKL inhibitor is an antibody, antibody fragment, or fusion construct that binds the same epitope as Denosumab.
In a preferred embodiment, the anti-RANKL nanobody is any of the nanobodies as described in WO2008142164, (the contents of which are incorporated in the present application by reference). In a still more preferred embodiment, the anti-RANKL antibody is the ALX-0141 (Ablynx) - ALX-0141 has been designed to inhibit bone loss associated with post-menopausal osteoporosis, reumatoid arthritis, cancer and certain medications, and to restore the balance of healthy bone metabolism.

In a preferred embodiment, the agent preventing the bone degradation is selected from the group consisting of a bisphosphonate, a RANKL inhibitor, ?TH and PTHLH inhibitor or a PRG analog, strontium ranelate, a DKK-1 inhibitor, a dual MET and VEGFR2 inhibitor, an estrogen receptor modulator. Radium-223, calcitonin, and a cathepsin K inhibitor. In a more preferred embodiment the agent preventing the bone degradation is a bisphosphonate. In a yet more preferred embodiment, the bisphosphonate is the zoledronic acid.

In one embodiment, a CCR5 antagonist is administered to prevent or inhibit metastasis of the primary prostate cancer tumor to bone. In one embodiment, the CCR5 antagonist is a large molecule. In another embodiment, the CCR5 antagonist is a small molecule. In some embodiments, the CCR5 antagonist is Maraviroc (Velasco-Velaquez, M. et al, 2012. CCR5 Antagonist Blocks Metastasis of Basal Breast Cancer Cells. Cancer Research. 72:3839-3850.). In some embodiments, the CCR5 antagonist is Vicriviroc. Velasco-Velaquez, M. et al. 2012, CCR5 Antagonist. Blocks Metastasis of Basal Breast Cancer Cells. Cancer Research. 72:3839-3850.), In some aspects, the CCR5 antagonist is Aplaviroc (Demarest J.F. et al. 2005, Update on Aplaviroc: An HIV Entry Inhibitor Targeting CCR5. Retrovirology 2 (Suppl. 1): S13). In some aspects, the CCR5 antagonist is a spiropiperidine CCR5 antagonist. (Roatstein D.M. et al.}
In some embodiments, the CCR5 antagonist is INCB009471 (Kuritzkes, D.R. 2009, HIV-1 entry inhibitors: an overview. Curr. Opin. HIV AIDS. 4(2): 82-7).

In a preferred embodiment the dual MET and VEGFR2 inhibitor is selected from the group consisting of Cabozantinib, Foretinib and E7050.

In another aspect, the treatment is an mTor inhibitor,

In some aspects, the mTor inhibitor is a dual mTor/P13kinase inhibitor. In some aspects, the mTor inhibitor is used to prevent or inhibit metastasis. In some aspects the mTor inhibitor is selected from the group consisting of: ABI009 (sirolimus), rapamycin (sirolimus), Abraxane (paclitaxel), Absorb (everolimus), Afinitor (everolimus), Afinitor with Gleevec, AS703026 (pimasertib), Axxess (umirolimus), AZD2014, BEZ235, Biofreedom (umirolimus), BioMatrix (umirolimus), BioMatrix flex (umirolimus), CC115, CC223, Combo Bio-engineered Sirolimus Eluting Stent ORBUSNEITCH (sirolimus), Curaxin CBLC102 (mepacrine), DE109 (sirolimus), D33G78, Endeavor DBS (zotarolimus), Endeavor Resolute (zotarolimus), Femara (letrozole), Eocena (antroquinonol), INK128, Inspiron (sirolimus), IPI504 (retasipimycin hydrochloride), KRN951 (tivosanib), ME344, MGA31 (teplizumab), MiStent SES (sirolimus), MKC1, Nobori (umirolimus), OSI027, OVI123 (cordycepin), Palcmd 529, PFQ4691502, Promns Element (everolimus), PWT3.3537, Rapamune (sirolimus), Resolute DES (zotarolimus), RG7422, SAR245409, SF126, SGN75 (vorsetuzumab mafodatin), Synergy (everolimus), Taltorvic (ridaforolimus), Tarceva (erlotinib), Torisel (temsirolimus), Xience Prime (everolimus), Xience V (everolimus), Zomaxx (zotarolixaus), fortress (everolimus), Zotarolimus Eluting Peripheral Stent MEDTRONIC (zotarolimus), AP23841, AP24170, ARmTOR26, BN107, BN108,
Canstatin GENZYME (canstatin), CU906, EC0371, EC0565, XI1004, LOR220, NV128, Rapamycin ONCOIMMUNE (sirolimus), SB2602, Sirolimus PNP SAMYANG BIOPHARMACEUTICALS (sirolimus), TOP216, VNI27, VS5584, WYE125132, XL380, Advacan (everolimus), AZD8055, Cypher Select Plus Sirolimus eluting Coronary Stent (sirolimus), Cypher Sirolimus eluting coronary stent (sirolimus), Drug Coated Balloon (sirolimus), E-Magic Plus (sirolimus), Emtor (sirolimus), Esprit (everolimus), Evertor (everolimus), HBP0079, LCP-Siro (sirolimus), Limus CLARIS (sirolimus), mTOR Inhibitor CELLZOME, Nevo Sirolimus eluting Coronary Stent (sirolimus), nPT-mTOR, Rapacan (sirolimus), Renacert (sirolimus), ReZolve (sirolimus), Rocas (sirolimus), SF1126, Sirolim (sirolimus), Sirolimus NORTH CHINA (sirolimus), Sirolimus RANBAXY (sirolimus), Sirolimus WATSON (sirolimus) Siropan (sirolimus), Sirova (sirolimus), Supralimus (sirolimus), Supralimus-Core (sirolimus), Tacrolimus WATSON (tacrolimus), TAFA93, Temsirolimus ACCORD (temsirolimus), Temsirolimus SANDOZ (temsirolimus), TOP216, Xience Prime (everolimus), Xience V (everolimus). In a specific aspect the mTor inhibitor is Afinitor (everolimus) [http://www.afinito.com/index.jsp?usertrack.filter_applied=true&Novoid=4029462064338207963; last accessed 11/28/2012]. In another aspect, mTor inhibitors can be identified through methods known in the art. (See, e.g., Zhou, H. et al. Updates of mTor inhibitors. 2010. Anticancer Agents Med. Chem. 10(7): 571-81, which is herein incorporated by reference). In some aspects, the mTor inhibitor is used to treat or prevent or inhibit metastasis in a patient with advanced prostate cancer. In some aspects, the mTor inhibitor is used in combination with a second treatment. In some aspects, the second treatment is any treatment described herein.
In another aspect, the treatment is a Src kinase inhibitor. In some aspects, the Src inhibitor is used to prevent or inhibit metastasis. In some aspects, the Src kinase inhibitor is selected from the group: AZD0530 (saracatinib), Bosulif (bosutinib), ENMD-2068, KX01, Sprycel (dasatinib), Yervoy (ipilimumab), AP23464, AP23485, AP23588, AZD0424, c-Src Kinase Inhibitor KISSEI, CU201, KX2361, SK927, SRN004, SUNK706, TG100435, TGI 00948, AP234S1, Dasatinib HETERO (dasatinib), Dasatinib VALEANT (dasatinib), Fontrax (dasatinib), Src Kinase Inhibitor KINEX, VX680, (tozasertib lactate), XL228, and SUNK? 06. In some embodiments, the Src kinase inhibitor is dasatinib. In another aspect, Src kinase inhibitors can be identified through methods known in the art (See, e.g., Sen, B. and Johnson, F.M.: Regulation of Src Family Kinases in Human Cancers* 2011. J. Signal Transduction. 2011; 14 pages, which is herein incorporated by reference). In some aspects, the Src kinase inhibitor is used to treat or prevent or inhibit metastasis in a patient that is positive for the SRC-responsive signature (SRS). In some aspects, the Src kinase inhibitor is used to treat or prevent or inhibit metastasis in a patient with advanced prostate cancer. In some aspects, the Src kinase inhibitor is used in combination with a second treatment. In some aspects, the second treatment is any treatment described herein.

In another aspect, the treatment is a COX-2 inhibitor. In some aspects, the COX-2 inhibitor is used to prevent or inhibit metastasis. In some aspects, the COX-2 inhibitor is selected from the group: A3T363, Acetaminophen ER JOHNSON (acetaminophen), Acular X (ketorolac tromethamine), 8AY109036 (aspirin), 3AY987111 (diphenhydramine, naproxen sodium), BAY1902 (piroxicam), BCIBOCHOOl (ibuprofen), Capoxigem (naproxen), CS5Q2, CS670 (naproxen), Diclofenac HPBCD (diclofenac), Diractin (ketoprofen), GW406381, HCT1026 (nitrofurine), Hyalalgese-D
(diclofenac); HydrocoDex (acetaminophen, dextromethorphan, hydrocodone), Ibuprofen Sodium PFIZER (ibuprofen sodium), Ibuprofen with Acetaminophen PFIZER (acetaminophen, ibuprofen), Impracor (ketoprofen), IPS80 (diclofenac), IP940 (indomethacin), ISV205 (diclofenac sodium), JNS013 (acetaminophen, tramadol hydrochloride), Ketoprofen TDS (ketoprofen), LTNS01 (naproxen etemesis), Mesalamine SALIX (mesalamine), Mesalamine SOFAR (mesalamine), Mesalazine (mesalamine), ML30Q0 (licofelone), MRX7EAT (etodolac), Naproxen IROKO (naproxen), NCX4G16 (nitroaspirin), NCX701 (nitroacetaminophen), Nuprin BCOLR (ibuprofen), OMSI03HP (amitr.iptyline hydrochloride, ketoprofen, oxymetazoline hydrochloride), Oralease (diclofenac), OxycoOex (dextromethorphan, oxycodone), P54, PercoDex (acetaminophen, dextromethorphan, oxycodone), PL3100 (naproxen, phosphatidyl choline), PSD508, R-Ketoprofen (ketoprofen), Remura (bromfenac sodium), ROX828 (ketorolac tromethamine), RP195S3 (ketoprofen lysine), RQ00317076, SDX1G1 (etodolac), TD3943 (diclofenac sodium), TDT070 (ketoprofen), TPR100, TQ101X (ketoprofen), TT063 (s-flurbiprofen), DR8880 (cimicoxib), VG4S8TA01A (ibuprofen), VT122 (etodolac, propranolol), XP20B (acetaminophen, dextropropoxyphene), XP21B (diclofenac potassium), XP21L (diclofenac potassium), Zoenasa (acetylcysteine, mesalamine), Acephen, Actifed Plus, Actifed-P, Acular, Acular LS, Acular PF, Acular X, Acuvail, Advil, Advil Allergy Sinus, Advil Cold and Sinus, Advil Congestion Relief, Advil PM, Advil PM Capsule, Air Saisonpas, Airtal, Alcohol-Free NyQuil Cold & Flu Relief, Aleve, Aleve ABDI IBRAHIM, Aleve-D, Aika-Seltzer, Aika-Seltzer BAYER, Aika-Seltzer Extra Strength, Aika-Seltzer Lemon-Lime, Aika-Seltzer Original, Aika-Seltzer Pius, Aika-Seltzer plus Cold and Cough, Aika-Seltzer plus Cold and Cough Formula, Aika-Seltzer Pius Day and Night Cold Formula, Aika-Seltzer Pius Day Non-Drowsy Cold Formula, Alka-Seltzer Plus Flu Formula,
Alka-Seltzer Plus Night Cold Formula, **Alka-Seltzer Plus Sinus Formula**, Alka-Seltzer Plus Sparkling Original Cold Formula, Alka-Seltzer PM, **Alka-Seltzer Wake-Up Call**, Anacin, Anaprox, Anaprox MINERVA, Ansaid, Apitoxin, Apranax, Apranax afodi, Arcoxia, Arthritis Formula Bengay, Arthrotec, Asacol, Asacol HD-, Asacol MEDUNA ARZNEIMITTEL, **Asacol ORIFARM**, Aspirin BAYER, Aspirin Complex, Aspirin Migran, **AZD3582**, Azuifidine, Baralgan M, BAY1019036, BAY98111, BAY119Q2, BCIBDCH001, Benadryl Allergy, Benadryl Day and Night, Benylin 4 Flu, Benylin Cold and Flu, Benylin Cold and Flu Day and Night, Benylin Cold and Sinus Day and Night, Benylin Cold and Sinus Plus, Benylin Day and Night Cold and Flu Relief, Benylin! All-In-One, Brexin, **Brexin ANGELINI**, Bronchay, Bufferin, Buscopan Plus, Caldolor, Galmatel, Gambia, Canasa, Capoxigem, Catafiam, Celebrex, Celebrex ORIFARM, Children's Advil Allergy Sinus, Children's Tylenol, Children's Tylenol Cough and Runny Nose, Children's Tylenol plus cold, Children's Tylenol plus Cold and Cough, Children's Tylenol plus cold and stuffy nose, Children's Tylenol plus Flu, Children's Tylenol plus cold & allergy, Children's Tylenol plus Cough & Runny Nose, Children's Tylenol plus Cough & Sore Throat, Children's Tylenol plus multi symptom cold, Cliñoril, Godrai Cold and Flu, Codral Day and Night Day Tablets, Codral Day and Night Night Tablets, Codral Nighttime, Colazal, Combuñox, Contac Cold plus Flu, Contac Cold plus Flu Non-Drowsy, Coricidin D, Coricidin HBP Cold and Flu, Coricidin HBP Day and Night Multi-Symptom Cold, Coricidin HBP Maximum Strength Flu, Coricidin EBP Nighttime Multi-Symptom Cold, Coricidin HBP Extra Strength Cold and Flu, CS502, CS670, Daypro, Daypro Alta, DDS06C, Demazin Cold and Flu, Demazin Cough, Cold and Flu, Demazin day/night Cold and Flu, Demazin PE Cold and Flu, Demazin PE day/night Cold and Flu, Diclofenac HPBCD, Dimetapp Day Relief, **Dimetapp Multi-Symptom Cold and Flu**, Dimetapp Might Relief, Dimetapp Pain and Fever Relief,
Dinietapp PE Sinus Pain, Dimetapp PE Sinus Pain plus
Allergy, Dipentura, Diractin, Disprin Cold ¾ n Fever,
Disprin Extra, Disprin Forte, Disprin Plus, Dristan Cold,
Dristan Junior, Drixoral Plus, Duexis, Dynastat,
Efferalgan, Efferalgan Plus Vitamin C, Efferalgan Vitamin C,
Elixsure IB, Excedrin Back and Body, Excedrin Migraine,
Excedrin PM, Excedrin Sinus Headache, Excedrin Tension
Headache, Falcol, Fansamac, Feldene, FeverAll, Fiorinal,
Fiorinal with Codeine, Flanax, Fleeter Patch, Flucam,
Fortagesic, Gerbin, Glazio, Gladio, Goody's Back and Body
Pain, Goody's Cool Orange, Goody's Extra Strength, Goody's
PM, Greaseless Bengay, GW406381, HCT1026, He Xing Yi,
Hylanlgese-D, HydroeoDex, Ibuprofen Sodium PFIZER,
Ibuprofen with, Acetaminophen PFIZER, Icy Hot SANOFI
AVENTIS, Impracor, Indocin, Indoiaethacin APP PHARMA,
Indomethacin MYLAN, Infants' Tylenol, IP880, IP940, Iremod,
ISV205, JNS013, Jr. Tylenol, Junifen, Junior Strength
Advil, Junior Strength Motrin, Ketoprofen TDS, Lemsip Max,
Lemsip Max All in One, Lemsip Max Ail Night, Lemsip Max
Cold and Flu, Lialda, Listerine Mouth Wash, Lloyds Cream,
Iodine, Lorfit P,loxonin, LTNS001, Mersyndol, Mesalamine
SALIX, Mesalamine SOFAR, Mesalazine, Mesalal GLAXO, Mesulal
SANOFI, Mesulid, Metsai Heat Rub, Midol Complete, Midol
Extended Relief, Midol Liquid Gels, Midol PM, Midol Teen
Formula, Migrain COATED TABLETS, ML300Q, Mobic, Mohras,
Motrin, Motrin Cold and Sinus Pain, Motrin PM, Movalis
ASPEN, MRX7EAT, Naifon, Nalfon PEDIOLON, Naprelan, Naprosyn,
Naprosyn RPG LIFE SCIENCE, Naproxen IRQKO, NCX4016, NCX701,
NeoProfen LUNDBECK, Nevanac, Nexcede, Niflan, Norgesie
MEDI CIS, Novalgin, Nuprin SCOLR, Nurofen, Nurofen Cold and
Flu, Nurofen Max Strength Migraine, Nurofen Plus, Nuromol,
NyQuil with Vitamin C, Ocufen, OMS103HP, Oralease, Orudis
ABBOTT JAPAN, Oruvail, Osteluc, OxycoDex, P54, Panadol,
Pariadoi Actifast, Paradine, Paramax, Parfenac, Pedea,
Pennsaid, Pentasa, Pentasa ORIFARM, Peon, Percodan,
NyQuil Cold and Flu Relief, Vicoprofen, Vimovo, Voltaren Emulgel, Voltaren GEL, Voltaren NOVARTIS CONSUMER HEALTH GMBH, Voltaren XR, VT122, Xefo, Xefo Rapid, XefoCam, Xibrom, XL3, Xodol, XP20B, XP21B, XP21L, Zipsor, and Zoenasa. In another aspect, COX-2 inhibitors can be identified through methods known in the art (See, e.g., Dannhardt, G. and Kiefer, W. Cyclooxygenase inhibitors—current status and future prospects. 2001. Eur. J. Med. Chem. 36: 109-126, which is herein incorporated by reference). In some aspects, the COX-2 inhibitor is used to treat or prevent or inhibit metastasis in a patient with advanced prostate cancer. In some aspects, the COX-2 inhibitor is used in combination with a second treatment. In some aspects, the second treatment is any treatment described herein. In some aspects, the COX-2 inhibitor is used in combination with a second treatment selected from the group consisting of: Denosumab, Zometa (http://www.us.zometa.com/index.jsp?usertrack.filter_applyd=true&NovaId=2935376934467633633; last accessed 12/2/2012), Carbozantinib or Cabozantinib, Antibody or peptide blocking PTHLH (parathyroid hormone like hormone) or PTHrP (parathyroid hormone related protein).

[0154] In one embodiment, the treatment is Radium 223. In a preferred embodiment the Radium 223 therapy is Alpharadin (aka, Xofgo) (radium-223 dichloride). Alpharadin uses alpha radiation from radium-223 decay to kill cancer cells. Radium-223 naturally self-targets to bone metastases by virtue of its properties as a calcium-mimic. Alpha radiation has a very short range of 2-10 cells (when compared to current radiation therapy which is based on beta or gamma radiation), and therefore causes less damage to surrounding healthy tissues (particularly bone marrow). With similar properties to calcium, radium-223 is drawn to places where calcium is used to build bone in the body, including the site of faster, abnormal bone growth - such
as that seen in the skeleton metastases of men with advanced, castration-resistant prostate cancer. Radium-223, after injection, is carried in the bloodstream to sites of abnormal bone growth. The place where a cancer starts in the body is known as the primary tumor. Some of these cells may break away and be carried in the bloodstream to another part of the body. The cancer cells may then settle in that part of the body and form a new tumor. If this happens it is called a secondary cancer or a metastasis. Most patients with late stage prostate cancer suffer the maximum burden of disease in their bones.* The aim with radium-223 is to selectively target this secondary cancer. Any radium-223 not taken-up in the bones is quickly routed to the gut and excreted.

Alternatively a combined treatment can be carried out in which more than one agent from those mentioned above are combined to treat and/or prevent the metastasis or said-agents can be combined with other supplements, such as calcium or vitamin D or with a hormone treatment.

Method of diagnosis or prognosis of metastasis in prostate cancer based on detecting the amplification of the c-MAF gene

In one aspect, the invention relates to an in vitro method for the diagnosis of metastasis in a subject with prostate cancer (hereinafter, fourth diagnosis method of the invention) and/or for the prognosis of the tendency to develop metastasis in a subject with prostate cancer which comprises determining if the c-MAF gene is amplified in a tumor tissue sample of said subject; wherein if said gene is amplified with respect to a control sample, then said subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.

The terms "c-MAF gene", "metastasis", "tumor sample", "prostate cancer", "diagnosis of metastasis in a subject"
with prostate cancer", "prognosis of the tendency to develop metastasis in a subject with prostate cancer", "subject", "patient", "subject having a positive diagnosis of metastasis", "subject having a greater tendency to develop metastasis" have been described in detail in the context- of the first method of the invention and are equally applicable to the fourth method of the invention.

[0158] In a particular embodiment, the degree of amplification of the c-MAF gene can be determined by means of determining the amplification of a chromosome region containing said gene. Preferably, the chromosome region the amplification of which is indicative of the existence of amplification of the c-MAF gene is the locus 16q22-q24 which includes the c-MAF gene. The locus 16q22-q24 is located in chromosome 16, in the long arm of said chromosome and in a range between band 22 and band 24. This region corresponds in the NCBI database with the contigs NTJJ1Q4S8.15 and NT_010542,15. In another preferred embodiment, the degree of amplification of the c-MAF gene can be determined by means of using a probe specific for said gene.

[0159] The fourth diagnosis/prognosis method of the invention comprises, in a first step, determining if the c-MAF gene is amplified in a tumor sample of a subject. To that end, the amplification of the c-MAF gene in the tumor sample is compared with respect to a control sample.

[0160] The term "amplification of a gene" as understood herein refers to a process through which various copies of a gene or of a gene fragment are formed in an individual cell or a cell line. The copies of the gene are not necessarily located in the same chromosome. The duplicated region is often called an "amplicon". Normally, the amount of mRNA produced, i.e., the gene expression level also increases in proportion to the copy number of a particular gene.
In a particular embodiment, the fourth method of the invention for the diagnoses of metastasis in a subject with prostate cancer and/or for the prognosis of the tendency to develop metastasis in a subject with prostate cancer, comprises determining the c-MAF gene copy number in a tumor sample of said subject and comparing said copy number with the copy number of a control or reference sample, wherein if the c-MAF copy number is greater with respect to the c-MAF copy number of a control sample, then the subject has a positive diagnosis of metastasis or a greater tendency to develop metastasis.

The control sample refers to a tumor sample of a subject with prostate cancer who has not suffered metastasis or that correspond to the median value of the c-MAF gene copy number measured in a tumor tissue collection in biopsy samples of subjects with prostate cancer who have not suffered metastasis. Said reference sample is typically obtained by combining equal amounts of samples from a subject population. If the c-MAF gene copy number is increased with respect to the copy number of said gene in the control sample, then subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.

As used herein, the term "gene copy number" refers to the copy number of a nucleic acid molecule in a cell. The gene copy number includes the gene copy number in the genomic (chromosomal) DNA of a cell. In a normal cell (non-tumoral cell), the gene copy number is normally two copies (one copy in each member of the chromosome pair). The gene copy number sometimes includes half of the gene copy number taken from samples of a cell population.

In the present invention, "increased gene copy number" is understood as when the c-MAF gene copy number is more than the copy number that a reference sample or control sample has. In particular, it can be considered that a sample has an increased c-MAF copy number when the copy
number is more than 2 copies, for example, 3, 4, 5, 6, 7, 8, 9 or 10 copies, and even more than 10 copies of the c-MAF gene.

[0165] In some embodiments, the amplification is in region at the 16q23 locus. In some embodiments, the amplification is in any part of the chromosomal region between Car. 16 - 79,392,959 bp to 79,663,806 bp (from centromere to telomere). In some embodiments, the amplification is in the genomic region between Chr. 16 - 79,392,959 bp to 79,663,806 bp, but excluding DNA repeating elements. In some embodiments, amplification is measured using a probe specific for that region.

[0166] In a particular embodiment, the amplification or the copy number is determined by means of in situ hybridization or PGR.

[0167] Methods for determining whether the c-MAF gene or the chromosome region 16q22-q24 is amplified are widely known in the state of the art. Said methods include, without limitation, in situ hybridization (ISH) (such as fluorescence in situ hybridization (FISH), chromogenic in situ hybridization (CISH) or silver in situ hybridization (SISH)); genomic comparative hybridization or polymerase chain reaction (such as real time quantitative PGR) < For any ISH method, the amplification or the copy number can be determined by counting the number of fluorescent points, colored points or points with silver in the chromosomes or in the nucleus.

[0168] The fluorescence in situ hybridization (FISH) is a cytogenetic technique which is used for detecting and locating the presence or absence of specific DNA sequences in chromosomes, FISH uses fluorescence probes which only bind to some parts of the chromosome with which they show a high degree of sequence similarity. In a typical FISH method, the DNA probe is labeled with a fluorescent molecule or a hapten, typically in the form of fluor-dUTP,
digoxigenin-αUTP, biotin-dUTP or hapten-dUTP which is incorporated in the DNA using enzymatic reactions, such as nick translation or PGR. The sample containing the genetic material (the chromosomes) is placed on glass slides and is denatured by a formamide treatment. The labeled probe is then hybridised with the sample containing the genetic material under suitable conditions which will be determined by the person skilled in the art. After the hybridization; the sample is viewed either directly (in the case of a probe labeled with fluorine) or indirectly (using fluorescently labeled antibodies to detect the hapten).

In the case of CISH, the probe is labeled with digoxigenin, biotin or fluorescein and is hybridized with the sample containing the genetic material in suitable conditions.

Any marking or labeling molecule—which can bind to a DNA can be used to label the probes used in the fourth method of the invention, thus allowing the detection of nucleic acid molecules. Examples of labels for the labeling include, although not limited to, radioactive isotopes, enzyme substrates, cofactors, ligands, cherrailuminescence agents, fluorophores, haptens, enzymes and combinations thereof. Methods for labeling and guideline for selecting suitable labels for different purposes can be found, for example, in Sambrook et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989) and Ausubel et al. (In Current Protocols in Molecular Biology, John Wiley and Sons, New York, 1998).

Once the existence of amplification is determined, either by directly determining the amplification of the c-MAF gene or by determining the amplification of the locus 16q22-q24, and after being compared with the amplification of said gene in the control sample, if amplification in the C-MAF gene is detected, it is indicative of the fact that
the subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.

[0172] The determination of the amplification of the c-MAF gene needs to be correlated with values of a control sample or reference sample that correspond to the level of amplification of the c-MAF gene measured in a tumor tissue sample of a subject with prostate cancer who has not suffered metastasis or that correspond to the median value of the amplification of the c-MAF gene measured in a tumor tissue collection in biopsy samples of subjects with prostate cancer who have not suffered metastasis. Said reference sample is typically obtained by combining equal amounts of samples from a subject population. In general, the typical reference samples will be obtained from subjects who are clinically well documented and in whom the absence of metastasis is well characterized. The sample collection from which the reference level is derived will preferably be made up of subjects suffering the same type of cancer as the patient object of the study. Once this median value has been established, the level of amplification of c-MAF in tumor tissues of patients can be compared with this median value, and thus, if there is amplification, the subject has a positive diagnosis of metastasis or a greater tendency to develop metastasis.

[0173] In a preferred embodiment, the metastasis is bone metastasis. In a yet more preferred embodiment, the bone metastasis is osteolytic bone metastasis. As used herein, the expression "osteolytic bone metastasis" refers to a type of metastasis in which bone resorption (progressive loss of bone density) is produced in the proximity of the metastasis resulting from the stimulation of the osteoclast activity by the tumor cells and is characterized by severe pain, pathological fractures, hyper calcaemia, spinal cord compression and other syndromes resulting from nerve compression.
Method of prognosis of metastasis in prostate cancer based on detecting the translocation of the c-MAF gene

[0174] In another aspect, the invention relates to an in vitro method for predicting the clinical outcome of a patient suffering from prostate cancer, which comprises determining if the c-MAF gene is translocated in a sample of said subject wherein a translocation of the c-MAF gene is indicative of a poor clinical outcome.

[0175] In another aspect, the invention relates to an in vitro method for predicting the clinical outcome of a patient suffering from prostate cancer, which comprises determining if the c-MAF gene is translocated in a sample of said subject wherein a translocation of the c-MAF gene is indicative of a poor clinical outcome.

[0176] In some embodiments, the translocated gene is from the region at the 16q23 locus. In some embodiments, the translocated gene is from any part of the chromosomal region between Chr. 16 - 79,392,959 bp to 79,663,806 bp (from centromere to telomere); In some embodiments, the translocated gene is from the genomic region between Chr. 16 - 79,392,959 bp to 79,663,806 bp, but excluding DNA repeating elements. In some embodiments, the translocation is measured using a probe specific for that region.

[0177] In a particular embodiment, the translocation of the c-MAF gene can be determined by means of determining the translocation of a chromosome region containing said gene. In one embodiment, the translocation is the t(14,16) translocation. In another embodiment, the chromosome region that is translocated is from locus 6q22-q24. The locus 16q22-q24 is located in chromosome 16, in the long arm of said chromosome and in a range between band 22 and band 24. This region corresponds in the NCBI database with the contigs NT_010498 and NT_031054215. In a preferred embodiment, the c-MAF gene translocates to chromosome 14 at
the locus 14q32, resulting in the translocation t(14,16) (q32,q23). This translocation places the MAF gene next to the strong enhancers in the IgH locus, which, in some cases, leads to overexpression of MAF. (Eychene, A., Rocques, N., and Puoponnot, C., A new MAFia in cancer, 2008. Nature Reviews: Cancer. 8: 683-693.)

In a preferred embodiment, the translocation of the c-MAF gene can be determined by means of using a probe specific for said translocation. In some embodiments, the translocation is measured using a dual color probe. In some embodiments, the translocation is measured using a dual fusion probe. In some embodiments, the translocation is measured using a dual color, dual fusion probe. In some embodiments, the translocation is measured using two separate probes.

In another preferred embodiment, the translocation of the c-MAF gene is determined using the Vysis LSI IGH/MAF Dual Color dual fusion probe

(http://www.abbottmolecular.com/us/products/analyte-specific-reagent/fish/vysis-lsi-igh-maf-dual-color-dua1-fusion-probe.html; last accessed 11/5/2012), which comprises a probe against 14q32 and 16q23. In another preferred embodiment, the translocation of the c-MAF gene is determined using a Kreatech diagnostics MAF/IGH gt (14;16) Fusion probe

(http://www.cancergeneticsitalia.com/dna-fish-probe/ighmaf/; last accessed 11/5/2012), a Creative Bioarray IGH/MAF-t (14;16) (q32;q23) FISH probe

(http://www.creative-

[0180] In some embodiments, the label on the probe is a fluorophore. In some embodiments, the fluorophore on the probe is orange. In some embodiments, the fluorophore on
the probe is green. In some embodiments, the fluorophore on the probe is red. In some cases, the fluorophore on the probe is yellow. In some embodiments, one probe is labeled with a red fluorophore, and one with a green fluorophore. In some embodiments, one probe is labeled with a green fluorophore and one with an orange fluorophore. In some cases, the fluorophore on the probe is yellow. For instance, if the MAF-specific probe is labeled with a red fluorophore, and the IGH-specific probe is labeled with a green fluorophore, if white is seen it indicates that the signals overlap and translocation has occurred.

[0181] In some embodiments, the fluorophore is SpectrumOrange. In some embodiments, the fluorophore is SpectrumGreen. In some embodiments, the fluorophore is DAPI. In some embodiments, the fluorophore is PlatinumBright405. In some embodiments, the fluorophore is PlatinumBright415. In some embodiments, the fluorophore is PlatinumBright495. In some embodiments, the fluorophore is PlatinumBright505. In some embodiments, the fluorophore is PlatinumBright550. In some embodiments, the fluorophore is PlatinumBright547. In some embodiments, the fluorophore is PlatinumBright570. In some embodiments, the fluorophore is PlatinumBright590. In some embodiments, the fluorophore is PlatinumSrigi2t495/55G. In some embodiments, the fluorophore is PlatinumBright415/495/550. In some embodiments, the fluorophore is DAPI/PlatinumBrig/3t495/550. In some embodiments, the fluorophore is FITC. In some embodiments, the fluorophore is Texas Red. In some embodiments; the fluorophore is DEAC. In some embodiments, the fluorophore is R6G. In some embodiments, the fluorophore is Cy5. In some embodiments, the fluorophore is FITC, Texas Red and DAPI. In some embodiments, a DAPI counterstain is used to visualize the translocation, amplification or copy number alteration.
One embodiment of the invention comprises a method in which in a first step it is determined if the c-MAF gene is translocated in a sample of a subject. In a preferred embodiment, the sample is a tumor tissue sample.

In a particular embodiment, a method of the invention for the prognosis of the tendency to develop bone metastasis in a subject with prostate cancer comprises determining the c-MAF gene copy number in a sample of said subject wherein the c-MAF gene is translocated and comparing said copy number with the copy number of a control or reference sample, wherein if the c-MAF copy number is greater with respect to the c-MAF copy number of a control sample, then the subject has a greater tendency to develop bone metastasis.

Methods for determining whether the c-MAF' gene or the chromosome region 16q22-q24 is translocated are widely known in the state of the art and include those described previously for the amplification of c-MAF. Said methods include, without limitation, in situ hybridization (ISH) (such as fluorescence in situ hybridization (FISH), chromogenic in situ hybridization (CISH) or silver in situ hybridization (SISH)), genomic comparative hybridization or polymerase chain reaction (such as real time quantitative PCR). For any ISH method, the amplification, the copy number, or the translocation can be determined by counting the number of fluorescent points, colored points or points with silver in the chromosomes or in the nucleus. In other embodiments, the detection of copy number alterations and translocations can be detected through the use of whole genome sequencing, exome sequencing or by the use of any PCR derived technology. For instance, PCR can be performed on samples of genomic DNA to detect translocation. In one embodiment, quantitative PCR is used. In one embodiment, PCR is performed with a primer specific to the c-MAF gene.
and a primer specific to the IGH promoter region; if a product is produced, translocation has occurred.

[0185] In some embodiments, the amplification and copy number of the c-MAF gene are determined after translocation of the c-MAF gene is determined. In some embodiments, the probe is used to determine if the cell is polyploid for the c-MAF gene. In some embodiments, a determination of polyploidy is made by determining if there are more than 2 signals from the gene of interest. In some embodiments, polyploidy is determined by measuring the signal from the probe specific for the gene of interest and comparing it with a centromeric probe or other probe.

Method of prognosis of clinical outcome in prostate cancer based on detecting the amplification or translocation of the c-MAF gene

[0186] In another aspect, the invention relates to an in vitro method (hereinafter seventh method of the invention) for predicting the clinical outcome of a patient suffering prostate cancer, which comprises determining if the c-MAF gene is amplified or translocated in a sample of said subject relative to a reference gene copy number wherein an amplification of the c-MAF gene with respect to said reference gene copy number is indicative of a poor clinical outcome.

[0187] The seventh method of the invention comprises, in a first step, determining if the c-MAF gene is amplified in a sample of a subject. The determination of the amplification of the c-MAF is carried out essentially as described in the fifth method of the invention. In a preferred embodiment the sample is a tumor tissue sample. In a preferred embodiment, the amplification of the c-MAF gene is determined by means of determining the amplification of the locus 16q23 or 16q22-q24. In another preferred embodiment,
the amplification of the c-MAF gene is determined by means of using a c-MAF gene-specific probe.

[0188] In a second step, the seventh method of the invention comprises comparing said copy number with the copy number of a control or reference sample, wherein if the c-MAF copy number is greater with respect to the c-MAF copy number of a control sample, then this is indicative of a poor clinical outcome.

[0189] In a preferred embodiment, the c-MAF gene is amplified with respect to a reference gene copy number when the c-MAF gene copy number is higher than the copy number that a reference sample or control sample has. In one example, the c-MAF gene is said to be "amplified" if the genomic copy number of the c-MAF gene is increased by at least about 2- (i.e., 6 copies), 3- (i.e., 8 copies), 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, or 50-fold in a test sample relative to a control sample. In another example, a c-MAF gene is said to be "amplified" if the genomic copy number of the c-MAF gene per cell is at least about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, and the like.

[0190] In another embodiment, the reference gene copy number is the gene copy number in a sample of prostate cancer, from a subject who has not suffered bone metastasis.

[0191] In another embodiment, the amplification is determined by means of in situ hybridization or PGR.

[0192] In another embodiment and as described in the present invention, given that the chr16q22-24, including the c-MAF gene, is amplified in prostate cancer cells is related to the presence of metastasis, the chr16q22-24, including the c-MAF gene, amplification allow making decisions in terms of the most suitable therapy for the subject suffering said cancer.
Thus, in another aspect the invention relates to an in vitro method for designing a customized therapy for a subject with prostate cancer, which comprises

(i) quantifying the chr16q22-24, including the c-MAF gene, amplification in a tumor sample of said subject and

(ii) comparing the chr16q22-24, including the c-MAF gene, amplification previously obtained with the degree of amplification of said gene in a control sample, wherein if the chr16q22-24, including the c-MAF gene, is amplified with respect to the number of copies of said genomic region in the control sample, then said subject is susceptible to receive a therapy aiming to prevent and/or treat the metastasis. In a particular aspect of this method, the subject is then administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis.

wherein if the chr16q22-24, including the c-MAF gene, is not amplified with respect to the number of copies of said genomic region in the reference sample, then said subject is not susceptible to receive a therapy for preventing the bone degradation. In a particular aspect of this method, the subject is then not administered at least one therapeutic drug that prevents, inhibits and/or treats the bone metastasis.

[0194] The invention relates to a therapeutic drug that prevents, inhibits and/or treats the bone metastasis from those previously listed.
THERAPEUTIC METHODS OF THE INVENTION

Treating bone metastasis using c-MAF inhibitory agents

[0195] A c-MAF gene expression inhibitory agent or an inhibitory agent of the protein encoded by said gene can be used in the treatment and/or the prevention of prostate cancer metastasis.

[0196] Therefore, in another aspect, the invention relates to the use of a c-MAF gene expression inhibitory agent or an inhibitory agent of the protein encoded by said gene (hereinafter, inhibitory agent of the invention) in the preparation of a medicinal product for treating and/or preventing prostate cancer metastasis. Alternatively, the invention relates to a c-MAF gene expression inhibitory agent or an inhibitory agent of the protein encoded by said gene for use in the treatment and/or the prevention of prostate cancer metastasis. Alternatively, the invention relates to a method for treating the prostate cancer metastasis in a subject which comprises administering a c-MAF inhibitor to said subject. As used herein, a "c-MAF inhibitory agent" refers to any molecule capable of completely or partially inhibiting the c-MAF gene expression, both by preventing the expression product of said gene from being produced (interrupting the c-MAF gene transcription and/or blocking the translation of the mRNA coming from the c-MAF gene expression) and by directly inhibiting the c-MAF protein activity, c-MAF gene expression inhibitors can be identified using methods based on the capacity of the so-called inhibitor to block the capacity of c-MAF to promote the in vitro cell proliferation, such as shown in the international patent application WO20G5/046731 (hereby incorporated by reference in its entirety), based on the capacity of the so-called inhibitor to block the transcription capacity of a reporter gene under the control of the cyclin H2 promoter or of a
promoter containing the c-MAF response region (MARE or c-MAF responsive element) in cells which express c-MAF such as described in WO2008098351 (hereby incorporated by reference in its entirety) or based on the capacity of the so-called inhibitor to block the expression of a reporter gene under the control of the IL-4 promoter in response to the stimulation with PMA/İono/mycin in cells which express NFATc2 and c-MAF such as described in US2009048117A (hereby incorporated by reference in its entirety).

By way of non-limiting illustration, c-MAF inhibitory agents suitable for use in the present invention include antisense oligonucleotides, interference RNAs (SiRNAs), catalytic RNAs or specific ribozymes and inhibitory antibodies.

Antisense oligonucleotides

An additional aspect of the invention relates to the use of isolated "antisense" nucleic acids to inhibit expression, for example, for inhibiting transcription and/or translation of a nucleic acid which encodes c-MAF the activity of which is to be inhibited. The antisense nucleic acids can be bound to the target potential of the drug by means of conventional base complementarity or, for example, in the case of binding to Double stranded DNA through specific interaction in the large groove of the double helix, Generally, these methods refer to a range of techniques generally used in the art. and they include any method which is based on the specific binding to oligonucleotide sequences.

An antisense construct of the present invention can be administered, for example, as an expression plasmid which, when is transcribed in cell, produces RNA complementary to at least one unique part of the cellular mRNA encoding c-MAF. Alternatively, the antisense construct is a oligonucleotide probe generated ex vivo which, when
introduced into the cell, produces inhibition of gene expression hybridizing with the mRNA and/or gene sequences of a target nucleic acid. Such oligonucleotide probes are preferably modified oligonucleotides which are resistant to endogenous nucleases, for example, exonucleases and/or endonucleases and are therefore stable in vivo. Examples of nucleic acid molecules for use thereof as an antisense oligonucleotides are DNA analogs of phosphoraraidate, phosphothionate and methylphosphonate (see also US patents Nos. 5176996; 5264564; and 5256775) (hereby incorporated by reference in their entireties). Additionally, the general approximations for constructing oligomers useful in the antisense therapy have been reviewed, for example, in Van der Krol et al., BioTechniques 6: 958-976, 1988; and Stein et al., Cancer Res 48: 2659-2668, 1988.

With respect to the antisense oligonucleotide, the oligodeoxyribonucleotide regions derived from the starting site of the translation, for example, between -10 and +10 of the target gene are preferred. The antisense approximations involve the oligonucleotide design (either DNA or RNA) that are complementary to the mRNA encoding the target polypeptide. The antisense oligonucleotide will be bound to the transcribed mRNA and translation will be prevented.

The oligonucleotides which are complementary to the 5' end of the mRNA, for example the non translated 5' sequence up to and including the start codon AUG must function in the most efficient manner to inhibit translation. Nevertheless, it has been shown that the sequences complementary to the non translated 3' sequences of the mRNA are also efficient for inhibiting mRNA translation (Wagner, Nature 372: 333, 1994). Therefore, complementary oligonucleotides could be used at the non translated 5' or 3' regions, non coding regions of a gene in an antisense approximation to inhibit the translation of that mRNA. The
oligonucleotides complementary to the non translated 5' region of the mRNA must include the complement of the start codon AUG. The oligonucleotides complementary to the coding region of the mRNA are less efficient translation inhibitors but they could also be used according to the invention. If they are designed to hybridise with the 5' region, 3' region or the coding region of the mRNA, the antisense nucleic acids must have at least about six nucleotides long and preferably have less than approximately 100 and more preferably less than approximately 50, 25, 17 or 10 nucleotides long.

[0202] Preferably, in vitro studies are performed first to quantify the capacity of the antisense oligonucleotides for inhibiting gene expression. Preferably these studies use controls which distinguish between antisense gene inhibition and non specific biological effects of the oligonucleotides. Also preferably these studies compared the levels of target RNA or protein with that of an internal control of RNA or protein. The results obtained using the antisense oligonucleotides can be compared with those obtained using a control oligonucleotide. Preferably the control oligonucleotide is approximately of the same length as the oligonucleotide to be assayed and that the oligonucleotide sequence does not differ from the antisense sequence more than it is deemed necessary to prevent the specific hybridisation to the target sequence.

[0203] The antisense oligonucleotide can be a single or double stranded RNA or RNA or chimeric mixtures or derivatives or modified versions thereof. The oligonucleotide can be modified in the base group, the sugar group or the phosphate backbone, for example, to improve the stability of the molecule, its hybridization capacity etc. The oligonucleotide may include other bound groups, such as peptides (for example, for directing them to the receptors of the host cells) or agents for
facilitating transport through the cell membrane (see, for example, Letsinger et al., Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556, 1989; Lemaitre et al., Proc, Natl. Acad. Sci. 84: 648-652, 1987; PCT Publication No. WO 88/09810) or the blood-brain barrier (see, for example, PCT Publication No. WO 89/10134), intercalating agents (see, for example, O. Ron, Pharm. Res. 5: 539-549, 1988). For this purpose, the oligonucleotide can be conjugated to another molecule, for example, a peptide, a transporting agent, hybridization triggered cleaving agent, etc.

[0204] The antisense oligonucleotides may comprise at least one group of modified base. The antisense oligonucleotide may also comprise at least a modified sugar group selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose. The antisense oligonucleotide may also contain a backbone similar to a neutral peptide. Such molecules are known as peptide nucleic acid (PNA) oligomers and are described, for example, in Perry-O'Keefe et al., Proc. Natl. Acad. Sci, U.S.A. 93; 14670, 1996, and in Egelman et al., Nature 365: 566, 1993.

[0205] In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone. In yet another embodiment, the antisense oligonucleotide is an alpha-anomeric oligonucleotide.

[0206] While antisense oligonucleotides complementary to the coding region of the target mRNA sequence can be used, those complementary to the transcribed non translated region can also be used.

[0207] In some cases, it may be difficult to reach the sufficient intracellular concentrations of the antisense to suppress the endogenous mRNA translation. Therefore, a preferred approximation uses a recombinant DNA construct in which the antisense oligonucleotide is placed under the control of a strong pol III or pol II promoter.
Alternatively, the target gene expression can be reduced by directing deoxyribonucleotide sequences complementary to the gene regulating region (i.e., the promoter and/or enhancers) to form triple helix structures preventing gene transcription in the target cells in the body (see in general, Helene, Anticancer Drug Des. 6(6); 569-84, 1991). In certain embodiments, the antisense oligonucleotides are antisense morpholines.

siRNA

Small interfering RNA or siRNA are agents which are capable of inhibiting the expression of a target gene by means of RNA interference. A siRNA can be chemically synthesized, can be obtained by means of in vitro transcription or can be synthesized in vivo in the target cell. Typically, the siRNA consist of a double stranded RNA between 15 and 40 nucleotides long and may contain a 3' and/or 5' protruding region of 1 to 6 nucleotides. The length of the protruding region is independent of the total length of the siRNA molecule. The siRNA act by means of degrading or silencing the target messenger after transcription.

The siRNA of the invention are substantially homologous to the mRNA of the c-MAF encoding gene or to the gene sequence which encodes said protein. "Substantially homologous" is understood as having a sequence which is sufficiently complementary or similar to the target mRNA such that the siRNA is capable of degrading the latter through RNA interference. The siRNA suitable for causing said interference include siRNA formed by RNA, as well as siRNA containing different chemical modifications such as:

- siRNA in which the bonds between the nucleotides are different than those appearing in nature, such as phosphorothionate bonds,
- Conjugates of the RNA strand with a functional reagent, such as a fluorophore.
- Modifications of the ends of the RNA strands, particularly of the 3' end by means of the modification with different hydroxy-functional groups in 2' position.
- Nucleotides with modified sugars such as 0-alkylated residues on 2' position like 2'-0-methylribose or 2'-O-fluororibose.
- Nucleotides with modified bases such as halogenated bases (for example 5-bromouracil and 5-iodouracil), alkylated bases (for example 7-methylguanosine).
- The siRNA can be used as is, i.e., in the form of a double-stranded RNA with the aforementioned characteristics. Alternatively, the use of vectors containing the sense and anti-sense strand sequence of the siRNA is possible under the control of suitable promoters for the expression thereof in the cell of interest.
- Vectors suitable for expressing siRNA are those in which the two DNA regions encoding the two strands of siRNA are arranged in tandem in one and the same DNA strand separated by a spacer region which, upon transcription, forms a loop and wherein a single promoter directs the transcription of the DNA molecule giving rise to siRNA.
- Alternatively, the use of vectors in which each of the strands forming the siRNA is formed from the transcription of a different transcriptional unit is possible. These vectors are in turn divided into divergent and convergent transcription vectors. In divergent transcription vectors, the transcriptional units encoding each of the DNA strands forming the siRNA are located in tandem in a vector such that the
transcription of each DNA strand depends on its own promoter which may be the same or different (Wang, J. et al., 2003, Proc. Natl. Acad. Sci. USA., 100:5103-5106 and Lee, N.S., et al., 2002, Nat. Biotechnol., 20:500-505). In convergent transcription vectors, the DNA regions giving rise to the siRNA form the sense and antisense strands of a DNA region which are flanked by two reverse promoters. After the transcription of the sense and antisense RNA strands, the latter will form the hybrid for forming a functional siRNA. Vectors with reverse promoter systems in which 2 U6 promoters (Iran, N. et al., 2003, 3MC Biotechnol., 3:21), a mouse U6 promoter and a human H1 promoter (Zheng, L., et al., 2004, Proc. Natl. Acad. Sci. USA., 135-140 and WO 2005026322) and a human U6 promoter and a mouse H1 promoter (Kaykas, A. and Moon, R., 2004, BMC Cell Biol., 5:16) are used have been described.

Promoters suitable for use thereof in the expression of siRNA from convergent or divergent expression vectors include any promoter or pair of promoters compatible with the cells in which the siRNA is to be expressed. Thus, promoters suitable for the present invention include but are not necessarily limited to constitutive promoters such as those derived from the genomes of eukaryotic viruses such as the polyoma virus, adenovirus, SV40, CMV, avian sarcoma virus, hepatitis B virus, the metallothionein gene promoter, the thymidine kinase gene promoter of the herpes simplex virus, retrovirus LTR regions, the immunoglobulin gene promoter, the actin gene promoter, the EF-1alpha gene promoter as well as inducible promoters in which the protein expression depends on the addition of a molecule or an exogenous signal such
as the tetracycline system, the NFkappaB/UV light system, the Cre/Lox system and the heat shock gene promoter, the regulatable RNA polymerase II promoters described in WO/2006/135436 as well as specific tissue promoters (for example, the PSA promoter described in WO2006012221). In a preferred embodiment, the promoters are RNA polymerase III promoters which act constitutively. The RNA polymerase III promoters are found in a limited number of genes such as 53 RNA, tRNA, 7SL RNA and U6 snRNA. Unlike other RNA polymerase III promoters, type III promoters do not require any intragenic sequence but rather need sequences in 5' direction comprising a TATA box in positions -34 and -24, a proximal sequence element or PSE between -66 and -47 and, in some cases, a distal sequence element or USE between positions -265 and -149. In a preferred embodiment, the type III RNA polymerase III promoters are the human or murine H1 and U6 gene promoters. In a yet more preferred embodiment, the promoters are 2 human or murine U6 promoters, a mouse U6 promoter and a human H1 promoter or a human U6 promoter and a mouse H1 promoter.

The siRNA can be generated intracellularly from the so called shRNA (short hairpin RNA) characterized in that the antiparallel strands forming the siRNA are connected by a loop or hairpin region. The shRNAs can be encoded by plasmids or viruses, particularly retroviruses, and are under the control of a promoter. Promoters suitable for expressing shRNA are those indicated in the paragraph above for expressing siRNA.

Vectors suitable for expressing siRNA and shRNA include prokaryotic expression vectors such as pUC18, pUC19, Bluescript and the derivatives thereof, mplS, mpl9, PBR322, pMBl, CoIE1, pCR1, RP4, phages and
shuttle vectors such as pSA3 and pAT8, yeast expression vectors such as 2-micron plasmid type vectors, integration plasmids, YE? vectors, centroinergic plasmids and the like, insect cell expression vectors such as pAC series vectors and pVL series vectors, plant expression vectors such as pBI, pEarleyGate, pAVA, PCAMBIA, pGSA, pGWB, pMDC, pMY, pORE series vectors and the like and viral vector-based (adenovirus, viruses associated with adenoviruses as well as retroviruses and particularly lentiviruses) higher eukaryotic cell expression vectors or non-viral vectors such as pcDNA3, pECMV/Zeo, pCR3.1, pEF1/His, pIND/GS, pRc/HCMv2, pSV40/Zeo2, pTRACER-HCMV, pUB6/v5-His, pVAX.1, pZeSV2, PCI, pSVL and pK3V-10, pBPV-1, pML2d and pTDT1. In a preferred embodiment, the vectors are lentiviral vectors.

The siRNA and shRNA of the invention can be obtained using a series of techniques known by the person skilled in the art. The region of the nucleotide sequence taken as a basis for designing the siRNA is not limiting and it may contain a region of the coding sequence (between the start codon and the end codon; or it may alternatively contain sequences of the non-translated 5' or 3' region preferably between 25 and 50 nucleotides long and in any position in 3' direction position with respect to the start codon.

One way of designing an siRNA involves the identification of the AA (N19)TT motifs wherein N can be any nucleotide in the c-MAF gene sequence, and the selection of those having a high G/C content. If said motif is not found, it is possible to identify the NA (N2.1) motif wherein N can be any nucleotide.
c-MAF specific siRNAs include the siRNA described in WO2005046731 (hereby incorporated by reference in its entirety), one of the strands of which is ACGGCUGAGCAGCGACAA (SEQ ID NO: 6). Other c-MAF specific siRNA sequences include but are not limited to CUUACCAGUGGUUCACAA (SEQ ID NO: 7), UGGAAGACUACUACUGGA G (SEQ ID NO: 8), AUUUGCAGUCAUGGAGAAGC (SEQ ID NO: 9), CAGAGGAAAUACGAG3AGU (SEQ ID NO: 10), ACAAGGAAAUACGAGAAAG (SEQ ID NO: 11) and ACCUGGAAGACUACUACUGG (SEQ ID NO: 12).

DNA Enzymes

On the other hand, the invention also contemplates the use of DNA enzymes to inhibit the expression of the c-MAF gene of the invention. DNA enzymes incorporate some of the mechanistic features of both antisense and ribozyme technologies. DNA enzymes are designed such that they recognize a particular target nucleic acid sequence similar to the antisense oligonucleotide, nevertheless like the ribozyme they are catalytic and specifically cleave the target nucleic acid.

Ribozymes

Ribozyme molecules designed for catalytically cleaving transcription products of a target mRNA to prevent the translation of the mRNA which encodes c-MAF the activity of which is to be inhibited, can also be used. Ribozymes are enzymatic RNA molecules capable of catalyzing specific RNA cleaving. (For a review, see, Rossi, Current Biology 4; 469-471, 1994). The mechanism of ribozyme action involves a specific hybridization of a ribozyme molecule sequence to a complementary target RNA followed by an endonucleolytic cleavage event. The composition of the ribozyme molecules preferably includes one or more sequences complementary to the target mRNA and the well known sequence responsible for
cleaving the mRNA or a functionally equivalent sequence (see, for example, US patent No. 5,093,246).

[0214] The ribozymes used in the present invention include hammer-head ribozymes and eridoribonuclease RNA (hereinafter "Cech type ribozymes"; Zaug et al., Science 224:574-578, 1984.

[0215] The ribozymes can be formed by modified oligonucleotides (for example to improve the stability, targeting, etc.) and they should be distributed to cells expressing the target gene in vivo. A preferred distribution method involves using a DNA construct which "encodes" the ribozyme under the control of a strong constitutive pol III or pol II promoter such that the transfected cells will produce sufficient amounts of the ribozyme to destroy the endogenous target messengers and to inhibit translation. Since the ribozymes are catalytic, unlike other antisense molecules, a low intracellular concentration is required for its efficiency.

Inhibitory antibodies

[0216] In the context of the present invention, "inhibitory antibody" is understood as any antibody capable of binding specifically to the c-MAF protein and inhibiting one or more of the functions of said protein, preferably those related to transcription. The antibodies can be prepared using any of the methods which are known by the person skilled in the art, some of which have been mentioned above. Thus, the polyclonal antibodies are prepared by means of immunizing an animal with the protein to be inhibited. The monoclonal antibodies are prepared using the method described by Kohler, Milstein et al. (Nature, 1975, 256: 495). In the context of the present invention, suitable antibodies include intact antibodies comprising a variable antigen binding region and a constant region, "Fab", 'F(ab')2" and "Fab"", Fv, scFv fragments, diabodies,
bispecific antibodies, antibod(ies, cyclcpeptides and stapled peptides. Once antibodies with c-MAF protein binding capacity are identified, those capable of inhibiting the activity of this protein will be selected using an inhibitory agent identification assay.

Inhibitory peptides

[0217] As used herein, the term "inhibitory peptide" refers to those peptides capable of binding to the c-MAF protein and inhibiting its activity as has been explained above, i.e., preventing the c-MAF from being able to activate gene transcription.

Negative c-MAF dominants

[0218] Since the proteins from the maf family are capable of homodimerizing and heterodimerizing with other members of the A.P-2 family such as Fos and Jun, one way of inhibiting c-MAF activity is by means of using negative dominants capable of dimerizing with c-MAF but lacking the capacity for activating transcription. Thus, the negative c-MAF dominants can be any of the small maf proteins existing in the cell and lacking two-thirds of the amino terminal end containing the transactivatin domain (for example, mafK, mafF, mafG and pi 8) (Fujiwara et al. (1993) Oncogene 8, 2371-2380; Igarashi et al. (1995) J. Biol. Chem. 270, 7615-7624; Andrews et al. (1993) Proc. Natl. Acad. Sci. USA 90, 11488-11492; Kataoka et al. (1995) Mol. Cell. Biol. 15, 2180-213 O) (Kataoka et al. (1995) Oncogene 12, 53-62).

[02191] Alternatively, the negative c-MAF dominants include c-MAF variants which maintain the capacity for dimerizing with other proteins but lack the capacity for activating transcription. These variants are, for example, those lacking the c-MAF transact ivation domain located at the N-terminal end of the protein. Thus, negative c-MAF dominant variants include in an illustrative manner the variants in
which at least amino acids 1 to 122, at least amino acids 1-187 or at least amino acids 1 to 257 (by considering the numbering of human c-MAF as described in US6,274,338, hereby incorporated by reference in its entirety) have been removed.

[0220] The invention contemplates the use of both the negative c-MAF dominant variants and of polynucleotides encoding c-MAF under the operative control of a promoter suitable for expression in target cell. The promoters that can be used for regulating the polynucleotide transcription of the invention can be constitutive promoters, i.e., promoters directing the transcription at a basal level, or inducible promoters in which the transcriptional activity requires an external signal—Constitutive promoters suitable for regulating transcription are, among others, the CMV promoter, the SV40 promoter, the DHFR promoter, the mouse mammary tumor virus (MMTV) promoter, the elongation factor (EFla) promoter, the albumin promoter, the ApoAl promoter, the keratin promoter, the CDS promoter, the immunoglobulin heavy or light chain promoter, the neurofilament promoter, the neuron specific enolase promoter, the L7 promoter, the CD2 promoter, the myosin light chain kinase promoter, the HOX gene promoter, the thymidine kinase promoter, the RNA polymerase II promoter, the MyoD gene promoter, the phosphoglyceratekinase (PGK) gene promoter, the low density lipoprotein (LDL) promoter, the actin gene promoter. In a preferred embodiment, the promoter regulating the expression of the transactivator is the PGK gene promoter. In a preferred embodiment, the promoter regulating the polynucleotide transcription of the invention is the RNA polymerase promoter of the T7 phage.

[0221] Preferably, the inducible promoters that can be used in the context of the present invention, are those responding to an inducer agent showing zero or negligible basal expression in the absence of an inducer agent and are

Vectors suitable for expressing the polynucleotide encoding the negative c-MAF dominant variant include vectors derived from prokaryotic expression vectors such as pUC18, pUC19, Bluescript and derivatives thereof, mp18, mp19, pBR322, pMB9, ColEl, pCR1, p4, phages and shuttle vectors such as pSA3 and pAT28, yeast expression vectors such as 2-micron type plasmid vectors, integration plasmids, YEP vectors, centromeric plasmids and the like, insect cell expression vectors such as pAC series vectors and pVL series vectors, plant expression vectors such as pBI1, pEarleyGate, pAVA, pCAMBIA, pGSA, pGW3, pMDC, pMY, pORE series vectors and the like and viral vector-based (adenoviruses, viruses associated with adenoviruses as well as retroviruses and particularly lentiviruses) higher eukaryotic cell expression vectors OR non-viral vectors such as pSilencer 4.1-CMV (Ambion), pcDNA.3, pcDNA3.1/hyg pHCMV/2eo, pCR3.1, pEF1/His, pIND/GS, pRc/HCMV2, pSV40/2eo2, pTRACiSR-HCMV, pUB6/V5-His, pVAX1, p2eoSV2, pCI, pSVL and pKSV-10, pBPV-1, pML2d and pTDT1.
Other inhibitory compounds of the c-MAF protein activity

[0223] Other c-MAF inhibitory confounds suitable for use in the present invention include:
Endiandric acid H derivatives such as those described in WO2004014888 corresponding to the general formula

wherein

R₁ and R₂ are, independently of one another,

1. 0 H or
2.0 a O-C₅-C₆-alkyl, -O-C₅-C₆-alkenyl, -O-C₅-C₆-alkynyl or -O-C₆-C₁₀-aryl group, in which alkyl, alkenyl and alkynyl are straight-chain or branched, and in which the alkyl, alkenyl and alkynyl groups are mono- or disubstituted with:
2.1 -OH,
2.2 =O,
2.3 -O-C₁-C₆-alkyl, in which alkyl is straight-chain or branched,
2.4 -O-C₂-C₆-alkenyl, in which alkenyl is straight-chain or branched,
2.5 C₆-C₁₀-aryl,
2.6 -NH-C₁-C₆-alkyl, in which alkyl is straight-chain or branched,
2.7 -NH-C₂-C₆-alkenyl, in which alkenyl is straight-chain or branched,
2.8 -NH₂ or
2.9 halogen,
and in which the aryl group, is optionally mono- or disubstituted with the substituent 2.1 or 2.3 to 2.9, in which the substituents 2.3, 2.4, 2.6 and 2.7 may be
further substituted with -CN, -amide or -oxime functions,
and 2.5 may be further substituted with -CN or amide
functions, or R₁ and R₂ together form a ring, wherein R₁ and
R₂ mean a -O-[(C₁-C₆)-alkylene]-O- group,
R₁ is
1.0 H or
2.0 a -O-C₁-C₆-alkyl, -O-C₂-C₆-alkenyl, -O-C₂-C₆-alkynyl or
-O-C₆-C₆-aryl group, in which alkyl, alkenyl and alkynyl are
straight-chain or branched, and in which the alkyl, alkenyl
and alkynyl groups are mono- or disubstituted with:
2.1 -OH,
2.2 =O,
2.3 -O-C₁-C₆-alkyl, in which alkyl is straight-chain or
branched,
2.4 -O-C₂-C₆-alkenyl, in which alkenyl is straight-chain or
branched,
2.5 -C₆-C₆-aryl,
2.6 -NH-C₁-C₆-alkyl, in which alkyl is straight-chain or
branched,
2.7 -NH-C₂-C₆-alkenyl, in which alkenyl is straight-chain or
branched,
2.8 -NH₂ or
2.9 halogen,
and in which the aryl group, is optionally mono- or
disubstituted with the substituent 2.1 or 2.3 to 2.9,
in which the substituents 2.3, 2.4, 2.6 and 2.7 may be
further substituted with -CN, -amide or -oxime functions,
and 2.5 may be further substituted with -CN or amide
functions.
R₁ is CO₂R₃, CO₂NH₂R₃, CHO, CH₃OR₃, CH₃OSi(R₃)₃, CH₂Br, CH₂CN,
in which R₃ is as defined above,
and, in particular, the compounds
8-hydroxyquinoline derivatives such as those described in WO2009146546 of general formula

$$\text{II}$$

wherein

- R_1 is selected from the group consisting of NO$_2$, NH$_2$, NH(C$_1$-C$_6$-alkyl) and N(C$_1$-C$_6$-alkyl)(C$_1$-C$_6$-alkyl);
- R_2 is selected from H, halogen, C$_1$-C$_6$ alkyl, and fluoro-substituted C$_1$-C$_6$ alkyl,
 or
- R_1 is Cl and R_2 is Br or H,
 and, preferably, the compounds
III Clioquinol (5-chloro-7-iodoquinolin-8-ol) as described in WO09049410

IV Compounds such as those described in WO08098351 of general formula

\[
\begin{array}{c}
\text{R}^1 \quad \text{R}^2 \quad \text{R}^3 \quad \text{R}^4 \quad \text{R}^5
\end{array}
\]

wherein
is a single or double bond,

\(R^1 \) is selected from the group consisting of H, C\(_1\)-C\(_4\) alkyl, C(O)O C\(_1\)-C\(_4\) alkyl, C(O) C\(_1\)-C\(_4\) alkyl and C(O)NH C\(_1\)-C\(_4\) alkyl;

\(R^2 \) is selected from H and C\(_1\)-C\(_4\) alkyl;

\(R^3 \) is selected from H and C\(_1\)-C\(_4\) alkyl;

or \(R^2 \) and \(R^3 \) are bound together along with the carbon and nitrogen atoms to which they are bound to form a piperidine ring,

\(R^1 \) and \(R^3 \) are independently selected from H, halogen, hydroxy, C\(_1\)-C\(_4\) alkyl, fluoro-substituted C\(_1\)-C\(_3\) alkyl and C\(_1\)-C\(_3\) alkoxy; and

\(X \) is selected from C and N,

and preferred compounds such as

Cyproheptadine (4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-methylpiperidin hydrochloride),

Amitriptyline (3-(10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5-ylidene)-N,N-dimethyl-1-propanamine),

Loratadine (Ethyl 4-{8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene}-1-piperidinecarboxylate,

Cyclobenzaprine (3-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-N,N-dimethyl-1-propanamine).

| V | Nivalenol (12,13-epoxy-3,4,7,15-tetrahydroxytrichothece-9-en-8-one) as described in WO0359249 |

Table 1: small molecules with c-MAF inhibiting capacity

[0224] Other c-MAF inhibitors are described in the patent application WO2005063252, such as shown in the following table (Table 2):
<table>
<thead>
<tr>
<th>Antagonist</th>
<th>Reference for cdk2 inhibitory activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purvalanolis such as 2-(1R-isopropyl-2-hydroxyethylamino)-6-(3-chloroanilino)-9-isopropylpurine having a molecular formula C_{19}H_{23}CIN_{2}O available from Sigma-Aldrich under the trade name Purvalanol A (#P4584, Sigma-Aldrich, St. Louis, MO), Purvalanol B, aminopurvalanol, compound 52 (where isopropyl of purvalanol A is replaced with H)</td>
<td>Gray, N.S. et al., Science, 281, 533-538 (1998); Chang, Y.T. et al., Chem. Biol., 6, 361-375 (1999).</td>
</tr>
<tr>
<td>Purine analog such as NU6102</td>
<td>Davies et al., Nature Structural Biology, 9:10, 745-749, 2002</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>

Nonpurine based agents

Indirubins such as indirubin-3′-monoxime having a molecular formula of C_{18}H_{11}N_{2}O_{2} available from Sigma-Aldrich under the trade name (#I0404), indirubin 5-sulfonate, 5-chloro indirubin	Davies, T.G. *et al.*, *Structure*, 9, 389-397 (2001); Marko, D. *et al.*, *Br. J. Cancer*, 84, 283-289 (2001); Hoessel, R., *et al.*, (1999) *Nat. Cell Biol.*, 1, 60-7; PCT/US02/30059 to Hellberg *et al.*, published as WO 03/027275.
Oxindole 1 of Fischer as referenced in column 2 of this table, (#IN118, JMAR Chemical)	Yugekawa, K., et al., *Tetrahedron*, 56, 4893; *Org. Process Res. Dev.* 2000, 4, 10
Thiazoles such as fused thiazole, 4-[[17-OxO-6,7-dihydro-8H-[1,3]thiazolo[5,4-c]indol-8-ylidene]methyl][amino]-N-(2-pyridyl)benzenesulfonamide having a molecular formula of C_{21}H_{11}N_{9}O_{2}S available from Sigma-Aldrich under the trade name GW8510 (#GG791)	Siedlecki, T.M. *et al.*, Bioorg. Med. Chem. Lett., 11, 1157-1160 (2001); Mettey *et al.*, *J. Med. Chem.* 2003, 46, 222-236.
Flavopiridols such as flavopiridol (L86 8275; NCS 649896, National Cancer Institute, Bethesda, MD) and a dechloro derivative	Davis, S.T. *et al.*, *Science*, 291, 134-137 (2001); PCT/US02/30059 to Hellberg *et al.*, published as WO 03/027275.
Alkaloids such as Stauroporine (#S1016, A.G. Scientific, San Diego, CA) or UCN-01 (7-hydroxystauroporine) National Cancer Institute, Bethesda, MD	Carlson, B.A., *et al.*, (1996) *Cancer Res.*, 56, 2973-8
Table 2: c-MAF inhibitors

[0225] In a preferred embodiment, the c-MAF inhibitory agents are used for the treatment and/or prevention of bone metastasis. In a yet more preferred embodiment, the bone metastasis is osteolytic metastasis.

[0226] The c-MAF inhibitory agents are typically administered in combination with a pharmaceutically acceptable carrier.

[0227] The term “carrier” refers to a diluent or an excipient whereby the active ingredient is administered. Such pharmaceutical carriers can be sterile liquids such as water and oil, including those of a petroleum, animal, plant or synthetic origin such as peanut oil, soy oil, mineral oil, sesame oil and the like. Water or aqueous saline solutions and aqueous dextrose and glycerol solutions, particularly for injectable solutions, are preferably used as carriers. Suitable pharmaceutical carriers are described in “Remington’s Pharmaceutical Sciences” by E.W. Martin, 1995. Preferably, the carriers of the invention are approved by the state or federal government regulatory agency or are listed in the United States Pharmacopeia or
other pharmacopeia generally recognized for use thereof in
animals and more particularly in human beings.

[0228] The carriers and auxiliary substances necessary for
manufacturing the desired pharmaceutical dosage form of the
pharmaceutical composition of the invention will depend,
among other factors, on the pharmaceutical dosage form
chosen. Said pharmaceutical dosage forms of the
pharmaceutical composition will be manufactured according
to the conventional methods known by the person skilled in
the art. A review of the different methods for
administering active ingredients, excipients to be used and
processes for producing them can be found in "Tratado de
Farmacia Galénica", C. Fault i Trillo, Luzán 5, S.A. 1993
Edition. Examples of pharmaceutical compositions include
any solid composition (tablets, pills, capsules, granules,
etc.) or liquid composition (solutions, suspensions or
emulsions) for oral, topical or parenteral administration.
Furthermore, the pharmaceutical composition may contain, as
deemed necessary, stabilizers, suspensions, preservatives,
surfactants and the like,

[0229] For use in medicine, the c-MAP inhibitory agents can
be found in the form of a prodrug, salt, solvate or
elathrate, either isolated or in combination with
additional active agents and can be formulated together
with a pharmaceutically acceptable excipient. Excipients
preferred for use thereof in the present invention include
sugars, starches, celluloses, rubbers and proteins. In a
particular embodiment, the pharmaceutical composition of
the invention will be formulated in a solid pharmaceutical
dosage form (for example tablets, capsules, pills,
granules, suppositories, sterile crystal or amorphous
solids that can be reconstituted to provide liquid forms
etc.), liquid pharmaceutical dosage form (for example
solutions, suspensions, emulsions, elixirs, lotions,
ointments etc.) or semisolid pharmaceutical dosage form
(gels, ointments, creams and the like). The pharmaceutical compositions of the invention can be administered by any route, including but not limited to the oral route, intravenous route, intramuscular route, intraarterial route, intramedullary route, intracranial route, subcutaneous route, intraperitoneal route, intranasal route, enteric route, topical route, sublingual route, or rectal route. A review of the different ways for administering active ingredients, of the excipients to be used and of the manufacturing processes thereof can be found in Iratado de Farmacia Gaienica, C. Fauili Trillo, Lusán 5, S.A., 1993 Edition and in Remington's Pharmaceutical Sciences (A.R. Gennaro, Ed.), 20th edition, Williams & Wilkins PA, USA (2000). Examples of pharmaceutically acceptable carriers are known in the state of art and include phosphate buffered saline solutions, water, emulsions such as oil/water emulsions, different types of wetting agents, sterile solutions, etc. The compositions comprising said carriers can be formulated by conventional processes known in the state of the art.

[0230] In the event that nucleic acids (siRNA, polynucleotides encoding siRNA or shRNA or polynucleotides encoding negative c-MAF dominants; are administered) the invention contemplates pharmaceutical compositions particularly prepared for administering said nucleic acids. The pharmaceutical compositions can comprise said naked nucleic acids, i.e., in the absence of compounds protecting the nucleic acids from degradation by the nucleases of the body, which entails the advantage that the toxicity associated with the reagents used for transfection is eliminated. Administration routes suitable for naked compounds include the intravascular route, intratumor route, intracranial route, intraperitoneal route, intrasplenic route, intramuscular route, subretinal route,

Alternatively, the nucleic acids can be administered forming part of liposomes conjugated to cholesterol or conjugated to compounds capable of promoting the translocation through cell membranes such as the Tat peptide derived from the HIV-1 TAT protein, the third helix of the homeodomain of the D. melanogaster antennapedia protein, the herpes simplex virus VP22 protein, arginine oligomers and peptides as described in WO07069090 (Lindgren, A. et al., 2000, Trends Pharmacol, Sci, 21:99-103, Schwarze, S.R. et al., 2000, Trends Pharmacol. Sci., 21:45-48, Lundberg, M et al., 2003, Mol Therapy 8:143-150 and Snyder, E.L. and Dowdy, S.F., 2004, Pharm, Res. 21:389-393). Alternatively, the polynucleotide can be administered forming part of a plasmid vector or viral vector, preferably adenovirus-based vectors, in adeno-associated viruses or in retroviruses such as viruses based on murine leukemia virus (MLV) or on lentivirus (HIV, FIV, EV).

The c-MAF inhibitory agents or the pharmaceutical compositions containing them can be administered at a dose of less than 10 mg per kilogram of body weight, preferably less than 5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 or 0.00001 mg per kg of body weight. The unit dose can be administered by injection, inhalation or topical administration.

The dose depends on the severity and the response of the condition to be treated and it may vary between several days and months or until the condition subsides. The optimal dosage can be determined by periodically measuring the concentrations of the agent in the body of the patient. The optimal dose can be determined from the EC50 values obtained by means of previous in vitro or in vivo assays in animal models. The unit dose can be administered once a day or less than once a day, preferably less than once every 2,
4, 8 or 30 days. Alternatively, it is possible to administer a starting dose followed by one or several maintenance doses, generally of a lesser amount than the starting dose. The maintenance regimen may involve treating the patient with a dose ranging between 0.01 µg and 1.4 xng/kg of body weight per day, for example 10, 1, 0.1, 0.01, 0.001, or 0.00001 mg per kg of body weight per day. The maintenance doses are preferably administered at the most once every 5, 10 or 30 days. The treatment must be continued for a time that will vary according to the type of disorder the patient suffers, the severity thereof and the condition of the patient. After treatment, the progress of the patient must be monitored to determine if the dose should be increased in the event that the disease does not respond to the treatment or the dose is reduced if an improvement of the disease is observed or if unwanted side effects are observed.

Treatment or prevention of the bone degradation in prostate cancer patients with bone metastasis having elevated c-MAF levels

[0233] Patients suffering prostate cancer which has metastasized in bone and in which there are elevated c-MAF levels in said metastasis may benefit particularly from therapies aimed at preventing the bone degradation caused by the increased osteoclastic activity.

[0234] Thus, in another aspect, the invention relates to the use of an agent for avoiding or preventing bone degradation in the preparation of a medicinal product for the prevention and/or the treatment of the bone metastasis in a subject suffering prostate cancer and having elevated c-MAF levels in a metastatic tumor tissue sample with respect to a control sample.

[0235] Alternatively, the invention relates to an agent for avoiding or preventing bone degradation for use in the
prevention and/or the treatment of the bone metastasis in a subject suffering prostate cancer and has elevated c-MAF levels in a metastatic tumor tissue sample with respect to a control sample.

[0236] Alternatively, the invention relates to a method of prevention and/or treatment of the degradation in a subject suffering prostate cancer and has elevated c-MAF levels in a metastatic tumor tissue sample with respect to a control sample, which comprises administering an agent for avoiding or preventing bone degradation to said subject.

[0237] In a particular embodiment, the bone metastasis is osteolytic metastasis,

[0238] The terms and expressions "subject", "prostate cancer", "tumor sample", "metastasis", "c-MAF gene", "increased or elevated expression levels" and "control sample" have been described in detail in relation with the first method of the invention and are equally applicable to the agent for avoiding or preventing bone degradation.

[0239] Agents capable of avoiding or preventing bone degradation suitable for the therapeutic method described in the present invention have been described in detail in the context of the customised therapy method.

[0240] The reference or control sample is a tumor sample of a subject with prostate cancer who has not suffered metastasis or that corresponds to the median value of the c-MAF gene expression levels measured in a tumor tissue collection in biopsy samples of subjects with prostate cancer who have not suffered metastasis.

[0241] Methods for determining or quantifying if the c-MAF levels are elevated with respect to a control sample have been described in detail in relation with the first method of the invention and are equally applicable to the agent for avoiding or preventing bone degradation.

[0242] Alternatively a combined treatment can be carried out, in which more than one agent for avoiding or preventing
bone degradation from those mentioned above are combined to treat and/or prevent the metastasis or said agents can be combined with other supplements, such as calcium or vitamin D or with a hormone.

[0243] The agents for avoiding or preventing bone degradation are typically administered in combination with a pharmaceutically acceptable carrier. The term "carrier" and the types of carriers have been defined above for the c-MAF inhibitory agent, as well as the form and the dose in which they can be administered and are equally applicable to the agent for avoiding or preventing bone degradation.

[0244] The following examples illustrate the invention and do not limit the scope thereof.

Kits of the invention

[0245] In another aspect, the invention relates to a kit for predicting bone metastasis of a prostate cancer, in a subject suffering from said cancer, the kit comprising: a) means for quantifying the expression level of c-MAF in a sample of said subject; and b) means for comparing the quantified level of expression of c-MAF in said sample to a reference c-MAF expression level,

[0246] In another aspect, the invention relates to a kit for predicting the clinical outcome of a subject suffering from bone metastasis from a prostate cancer, the kit comprising: a) means for quantifying the expression level of c-MAF in a sample of said subject; and b) means for comparing the quantified expression level of c-MAF in said sample to a reference c-MAF expression level.

[0247] In another aspect the invention relates to a kit for determining a therapy for a subject suffering from prostate cancer, the kit comprising: a) means for quantifying the expression level of c-MAF in a sample of said subject; b) means for comparing the quantified expression level of c-MAF in said sample to a reference c-MAF expression level;
and c) means for determining a therapy for preventing and/or reducing bone metastasis in said subject based on the comparison of the quantified expression level to the reference expression level. d) means for excluding a therapy for preventing and/or reducing bone metastasis in said subject based on the comparison of the quantified expression level to the reference expression level.

[0248] In another aspect the invention relates to a kit comprising; i) a reagent for quantifying the expression level of c-MAF in a sample of a subject suffering from prostate cancer, and ii) one or more c-MAF gene expression level indices that have been predetermined to correlate with the risk of bone metastasis.

[0249] Means for quantifying the expression level of c-MAF in a sample of said subject have been previously described in detail including 16q23 and 16q22-24 locus amplification and translocation,

[0250] In a preferred embodiment, means for quantifying expression comprise a set of probes and/or primers that specifically bind and/or amplify the c-MAF gene.

[0251] In particular embodiment the prostate cancer is prostate adenoma or prostate small cell carcinoma cancer,

[0252] In particular embodiment the kit is applied, but not limited, to a prostate cancer biopsy, circulating prostate cancer cell, circulating prostate tumor DNA.

[0253] All the particular embodiments of the methods of the present invention are applicable to the kits of the invention and to their uses.

[0255] In another aspect, the invention relates to an in vitro method for typing a sample of a subject suffering from prostate cancer, the method comprising:

a) providing a sample from said subject;
b) quantifying the expression level of c-MAF in said sample;
c) typing said sample by comparing the quantified expression level of c-MAF to a predetermined reference level of c-MAF expression;

wherein said typing provides prognostic information related to the risk of bone metastasis in said subject.

[0256] Means for quantifying the expression level of c-MAF in a sample of said subject have been previously described in detail including 16q23 and 16q22-24 locus amplification and translocation.

[0257] In a preferred embodiment the sample is a tumor tissue sample, a circulating tumor cell or a circulating tumor DNA.

[0259] In another aspect, the invention relates to a method for classifying a subject suffering from prostate cancer into a cohort, comprising: a) determining the expression level of c-MAF in a sample of said subject; b) comparing the expression level of c-MAF in said sample to a predetermined reference level of c-MAF expression; and c) classifying said subject into a cohort based on said expression level of c-MAF in the sample.

[0260] Means for quantifying the expression level of c-MAF in a sample of said subject have been previously described in detail including 16q23 and 16q22-24 locus amplification and translocation.

[0261] In particular embodiment the prostate cancer is an adenoma or a small cell carcinoma.

[0262] In a preferred embodiment the sample is a tumor tissue sample, a circulating tumor cell or a circulating DNA.

[0263] In a preferred embodiment said cohort comprises at least one other individual who has been determined to have
a comparable expression level of e-MAF in comparison to said reference expression level.

[0264] In another preferred embodiment said expression level of c-MAF in said sample is increased relative to said predetermined reference level, and wherein the members of the cohort are classified as having increased risk of bone metastasis.

[0265] In another preferred embodiment said cohort is for conducting a clinical trial.

[0266] In a preferred embodiment, the sample is a tumor tissue sample.

EXAMPLES

[0267] Clinical relevance and prognostic value of the bone-specific metastasis gene

[0268] c-MAF was tested in a tissue micro array (TMA) including 37 Prostate tumor biopsies for which the the clinical annotations of time to bone metastasis or visceral metastasis ever was known. These tumors are representative of all Prostate cancer subtypes and stages. The levels of c-MAF were determined by iiranunohistochem.ist.ry (IHC) using a c-MAF specific antibody and the association between the levels of c-MAF expression and risk of bone relapse was established by means of Odds ratio (OR) calculations. The OR is a measure of effect size, describing the strength of association or non-independence between two binary data. OR is described in Glas, A.S. "The diagnostic odds ratio: a single indicator of test performance" (2003) J. of Clinical Epidemiology 56: 1129-1135. The Odds ratio describes the strength of association or non-independence between two binary data values (gene of interest positive or negative, bone metastasis positive or negative). In some embodiments, the Odds ratio is at least about 1, 1.2, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 3, 4, or 5. These samples in
The TMA are paraffin embedded primary tumor tissue from Prostate tumors. These samples were collected at the Vail d’Hebron Oncology Institute and Vail d’Hebron Hospital during regular clinical practice together with the relevant clinical data needed and the approval of the clinical committee.

The samples were selected fulfill the following criteria:

5 samples belonged to patients with local disease (M0) at diagnosis with a confirmed bone relapse at any time of follow-up.

29 samples belonged to patients at diagnosis that remain metastasis free after at least 5 years.

The remaining 3 tumors are from patients M0 at diagnosis that latter had a relapse in any location other than bone.

Example 1: c-MAF expression is associated with risk of metastasis, in particular bone metastasis.

ItnraunohistQchetnistry analysis

C-MAF immunestaining was performed on TMAs. This TMA was build on glass slides and IHC was done using the Dako Link Platform according the Operating Procedure.

Briefly, the immunostaining was done on 3μm TMA tumor tissue sections, placed on positively charged glass slides (Superfrost or similar) in a Dako Link platform. After deparaffinization, heat antigen retrieval was performed in pH 6.1, 0.01 mol/L citrate-based buffered solution (Dako). Endogenous peroxidase was quenched. The mouse polyclonal anti-c-MAF antibody (Santa Cruz) 1:100 dilution was used for 30 minutes at room temperature, followed by incubation with an anti-rabbit Ig dextran polymer coupled with peroxidase (Flex+, Dako). Sections were then visualized with 3,3' -diaminobenzidine (DAB) and counterstained with Heniatoxyyiǐŋ.
c-MAF immunostaining was scored by a computerized algorithm. Nine representative images from each specimen were acquired at 10-nm wavelength intervals between 420 and 700 nm, using a DM2000 Leica microscope equipped with the Nuance FX Multi-spectral Imaging System (CRT InC). The positive signals were converted from transmission to optical density units by taking the negative log of the ratio of the sample divided by the reference cube using a Beer law conversion. A computer-aided threshold was set, which created a pseudo-color image that highlighted all of the positive signals. Previous analyses supported the quantitative measurement of c-MAF expression.

Only the nuclei of epithelial cells (normal and malignant), but not stromal cells or lymphocytes, were automatically detected by setting distinct size threshold and confirmed by a pathologist. For each case was calculated the mean value of the signal intensity of all regions of interest for statistical analysis.

Prognostic and predictive value of c-MAF for metastasis and bone metastasis in Prostate cancer

The prognostic and predictive value of c-MAF expression for metastasis of Prostate cancer was evaluated. C-MAF protein levels were determined by immunohistochemistry (IHC), MAF immunostaining was scored by a computerised measurement. The output of the computerized measurement produced a continuous data ranging from 1160 to 99760 optical density units (O.D.) for c-MAF expression. The cut-off (10000 O.D.) for high and low expression was determined based on a receiving operating curve as per standard procedures.

The results are summarized in table 3

<table>
<thead>
<tr>
<th>Bone metastasis</th>
<th>c-MAF expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Based on this values the odds ratio of risk of suffering bone metastasis in the c-MAF high group versus the low was OR (bone metastasis at any time) = 12.60 (95% C.I. 1.93-32.09)

Based on the second cohort analyzed, we extracted some diagnostic clinical features, c-MAF high level of protein expression predicts bone metastasis with a sensitivity of 0.75, a specificity of 0.81. This is summarized and expressed in percentages including the confidence intervals in table 4.

Table 4

<table>
<thead>
<tr>
<th></th>
<th>C.I.</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>75.0%</td>
<td>40.9% 92.9%</td>
</tr>
<tr>
<td>Specificity</td>
<td>80.8%</td>
<td>62.1% 91.5%</td>
</tr>
</tbody>
</table>

The c-MAF gene or protein expression in Prostate tumors identifies a population at risk of metastasis, in particular bone metastasis at any time.

Example of 16q22-24 chromosomal region. (CNA, copy number alteration) is associated with risk of bone metastasis.

We tested whether a gain in chr16q22-q24, which included c-MAF genomic loci, is associated with risk of bone metastasis in Prostate cancer patients. To this end we used a method that identifies chr16q22-q24 amplifications, in this case by means of chr16q23 and chr14q32 dual fluorescence in situ hybridization (FISH) probe to measure the number of copies of the chr16q22-24 region. We also used the chr14q32 probe to normalize tumor polyploidy.
Fluorescent in situ hybridization (FISH) analysis of 16q23, within the 16q22-24 genomic region amplification, including the c-MAF gene, was performed on TMA above described using a fluorescence DM2000 Leica microscope according to the Operating Procedure. We used a SpectrumOrange probe mix that flanks the MAF gene genomic region and is composed of two segments that are each approximately 350 kb with an approximately 2.2 Mb gap. The centromeric segment is located at chr16: 7572-9985-76079705 (March 2006 assembly, DCSC Genome Browser) and the telomeric segment is located at chr16: 78290003-786-35873 (March 2006 assembly, DCSC Genome Browser). This probe flanks five genes VAT1L, CLEC3A, WWOX, 5srRNA and MAF (ordered from centromer to telomer).

Briefly, 16q23 region amplification, including the MAF gene, and 14q32 control region, including the IgH gene, were determined by FISH on 5 μm sections of the TMA using standard procedures. Deparaffinized tissue sections were treated with 0.2 M HCl and then with sodium thiocyanate, to eliminate salt precipitates. Pretreated slides were incubated for 10 min in a solution of proteinase K at 37°C. The slides were then postfixed in buffered forraalin. The 16q23/14q32 DNA probes fluorescently labeled were denatured at 78°C for 5 min and hybridized overnight at 37°C on a hotplate. Washes were performed for 2 min at 72°C in a solution of 2 * SSC/0,3% Nonidet P40. Tissue sections were counterstained with 10μL of 4,6-diamino-2-phenylindole (DAPI counterstain).

Results were captured with a fluorescence DM2000 Leica microscope and analyzed with the Nuance FX Multispectral Imaging System. FISH scoring of fluorescence signals (red for 16q23 and green for control 14q32 region) were carried out by counting the number of each region copies in an average of 50 non-overlapping nuclei for each case. The prognostic and predictive value of chromosomal 16q22-24 CNA...
gain association with bone metastasis in Prostate cancer-
was evaluated. chr16q23 and chr14q32 region number of
copies per nuclei were determined by FISH. The expected
number of each probe signal was two per nuclei.
Amplification was considered when the average 16q23 probe
signals were more than more than 1.5 when normalised per
14q32 region number of copies.

The results are summarized in table 5 and 6.

Table 5: Ratio chr16q23/chr14q32 and risk of metastasis,

<table>
<thead>
<tr>
<th>Ratio 16q23/14q32</th>
<th>Metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td><=1.5</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>>1.5</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 6: Ratio chr16q23/chr14q32 > or = 1.5 and prediction
of risk of bone metastasis.

<table>
<thead>
<tr>
<th>Ratio 16q23/14q32</th>
<th>Bone metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td><=1.5</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>>1.5</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Based on these values we calculated the odds ratio of
risk of suffering metastasis and bone metastasis in the
chr16q22-24 gain or CNA gain positive group versus the
negative. Based on this estimation, the OR for the
chr16q22-24 CNA gain positive patients to suffer a metastasis
was 40.50 (95%CI 4.72-347.82), and the OR for the chr16q22-
24 CNA gain normalized using 14q32 positive patients versus
the control and bone metastasis was 46.50 (95% CI 3.20-676.24). The small size of the cohort made the estimates imprecise but within a clinically relevant OR of at least 4.72 and 3.20 with a 95% confidence in each case.

Based on the data analyzed by FISH, we extracted some diagnostic clinical features, **Chr16q22-24** CNA gain (>=1.5 16q23 copies per cell normalized to chr14q32) predicts prostate cancer risk of metastasis with a sensitivity of 0.75, a specificity of 0.93. This results expressed in percentages are summarized as follows in table 7 including 95% confidence intervals (C.I.)

Table 7. Diagnostic clinical features based on Chr16q22-24 CNA gain (>=1.5 16q23 copies per cell normalized to chr14q32) for the prediction of prostate cancer risk of metastasis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>95% CI</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>75.0%</td>
<td>93.1%</td>
<td>40.9% - 92.9%</td>
<td>78.0% - 98.1%</td>
</tr>
</tbody>
</table>

Based on the data analyzed by FISH, we extracted some diagnostic clinical features, **Chr16q22-24** CNA gain (>=1.5 16q23 copies per cell normalized to chr14q32) predicts prostate cancer risk of bone metastasis with a sensitivity of 0.76, a specificity of 0.97. This results expressed in percentages are summarized as follows in table 8 including 95% confidence intervals (C.I.)

Table 8. Diagnostic clinical features based on Chr16q22-24 CNA gain (>=1.5 16q23 copies per cell normalized to chr14q32) for the prediction of prostate cancer risk of bone metastasis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>95% CI</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>60.0%</td>
<td>96.9%</td>
<td>23.1% - 88.2%</td>
<td>84.3% - 99.4%</td>
</tr>
</tbody>
</table>
The chr16q22-24, and in particularly chr16q23, CNA gain in Prostate tumors strongly predicts and is associated with risk of metastasis and bone metastasis at any time.
CLAIMS

1. An in vitro method for the diagnosis of metastasis in a subject with prostate cancer and/or for the prognosis of the tendency to develop metastasis in a subject with prostate cancer, said method comprising:
 (i) quantifying the c-MAF gene expression level in a prostate tumor sample of said subject and
 (ii) comparing the expression level obtained in (i) with the expression level of the c-MAF gene in a control sample,
 wherein if the expression level of the c-MAF gene in said tumor sample is increased with respect to the expression level of the c-MAF gene in the control sample, then said subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.

2. An in vitro method for designing a customized therapy for a subject with prostate cancer which comprises
 (i) quantifying the c-MAF gene expression level in a prostate tumor sample of said subject, and
 (ii) comparing the expression level obtained in (i) with the expression level of the c-MAF gene in a control sample,
 wherein if the expression level of the c-MAF gene in the tumor sample is increased with respect to the expression level of the c-MAF gene in the control sample, then said subject is susceptible to receive a therapy intended to prevent, inhibit and/or treat metastasis of the cancer.

3. The method according to claim 1 or 2, wherein the metastasis is bone metastasis.

4. The method according to claim 3, wherein the bone metastasis is osteolytic metastasis.
5. An in vitro method for designing a customized therapy for a subject having prostate cancer with bone metastasis which comprises

(i) quantifying the c-MAF gene expression level in a bone metastatic tumor tissue sample of said subject, and
(ii) comparing the expression level obtained in step (i) with the expression level of the c-MAF gene in a control sample,

wherein if the c-MAF gene expression level in the tumor tissue sample is increased with respect to the expression level of the c-MAF gene in the control sample, then said subject is susceptible to receive a therapy intended to prevent or inhibit bone degradation.

6. The method according to claim 5, wherein the agent intended to prevent or inhibit bone degradation is selected from the group consisting of: a bisphosphonate, a RANKL inhibitor, PTH, a FTHLK inhibitor (including neutralizing antibodies and peptides), a PRG analog, strontium ranelate, a DKK-1 inhibitor, a dual MET and VEGFR2 inhibitor, an estrogen receptor modulator, calcitonin, Radium-223, a CCR5 antagonist, a Sr.c kinase inhibitor, a COX-2 inhibitor, an inhibitor inhibitor, and a cathepsin K inhibitor.

7. The method according to claim 6, wherein the RANKL inhibitor is selected from the group consisting of: a RANKL specific antibody, a RANKL-specific nanobody, and osteoprotegerin,

8. The method according to claim 7, wherein the RANKL specific antibody is denosumab.

9. The method according to claim 6, wherein the bisphosphonate is zoledronic acid.
10. The method according to any of claims 1 to 9, wherein the quantification of the c-MAF gene expression level comprises quantifying the messenger RNA (mRNA) of said gene, or a fragment of said mRNA, the complementary DNA (cDNA) of said gene, or a fragment of said cDNA.

11. The method according to claim 10, wherein the expression level is quantified by means of a quantitative polymerase chain reaction (PCR) or a DNA or RNA array or nucleotide hybridization technique.

12. The method according to any of claims 1 to 10, wherein the quantification of the c-MAF gene expression level comprises quantifying the level of protein encoded by said gene or of a variant thereof.

13. The method according to claim 12, wherein the level of protein is quantified by means of western blot, ELISA, immunohistochemistry or a protein array.

14. An in vitro method for diagnosing metastasis in a subject with prostate cancer and/or for the prognosis of the tendency to develop metastasis in a subject with prostate cancer which comprises determining if the c-MAF gene is amplified in a tumor sample of said subject relative to a reference gene copy number, wherein an amplification of the c-MAF gene with respect to said reference gene copy number is indicative of the presence of metastasis or an increased risk of developing metastasis.

15. The method according to claim 14, wherein the amplification of the c-MAF gene is determined by means of determining the amplification of the locus 16q22-q24.

16. The method according to claim 14 or 15, wherein the amplification of the c-MAF gene is determined by means of using a c-MAF gene-specific probe.
17. The method according to any of claims 14-16, wherein the reference gene copy number is that of a tumor tissue sample of prostate cancer from a subject who has not suffered metastasis.

18. The method according to any of claims 14-17, wherein the amplification is determined by means of in situ hybridization or PCR.

19. The method according to any of claims 14-18, wherein the metastasis is bone metastasis.

20. The method according to claim 19, wherein the bone metastasis is osteolytic metastasis.

21. Use of a c-MAF inhibitory agent in the preparation of a medicinal product for treating and/or preventing bone metastasis from prostate cancer.

22. The use according to claim 21, wherein the c-MAF inhibitory agent is selected from the group consisting of; a c-MAF specific siRNA, a c-MAF specific antisense oligonucleotide, a c-MAF specific ribozyme, a c-MAF inhibitory antibody or nanobody, a dominant negative c-MAF variant, a compound from Table 1 or from Table 2, a c-MAF specific small molecule, a c-MAF specific antibody, a c-MAF specific antibody-like molecule, a c-MAF specific structurally constrained (cyclical) peptide, a c-MAF specific stapled peptide, or a c-MAF specific antibody.

23. Use of an agent capable of preventing or inhibiting bone degradation in the preparation of a medicinal product for the treatment of bone metastasis in a subject suffering prostate cancer and having elevated c-MAF levels in a metastatic tumor sample with respect to a control sample.
24. Use according to claim 23, wherein the agent capable of avoiding or preventing bone degradation is selected from the group consisting of: a bisphosphonate, a RANKL inhibitor, PTH, PTH-LH inhibitor (including neutralizing antibodies and peptides), a PRG analog, strontium ranelate, a DKK-1 inhibitor, a dual MET and VEGFR2 inhibitor, an estrogen receptor modulator, an EGFR inhibitor, calcitonin, Radium-223, a CCR5 antagonist, a Src kinase inhibitor, a COX-2 inhibitor, an mTOR inhibitor, and a cathepsin K inhibitor.

25. Use according to claim 25, wherein the RANKL inhibitor is selected from the group of: a RANKL specific antibody, a RANKL specific nanobady, and osteoprotegein.

26. Use according to claim 26, wherein the RANKL specific antibody is denosumab.

27. Use according to claim 24, wherein the bisphosphonate is zoledronic acid.

28. Use according to any of claims 24-27, wherein the bone metastasis is osteolytic metastasis.

29. A kit for predicting bone metastasis of a prostate cancer in a subject suffering from said cancer, the kit comprising: a) means for quantifying the expression level of c-MAF in a tumor sample of said subject; and b) means for comparing the quantified level of expression of c-MAF in said sample to a reference c-MAF expression level,

30. An in vitro method for typing a sample of a subject suffering from prostate cancer, the method comprising: a) providing a sample from said subject; b) quantifying the expression level of c-MAF in said sample;
typing said sample by comparing the quantified expression level of c-MAF to a predetermined reference level of c-MAF expression; wherein said typing provides prognostic information related to the risk of bone metastasis in said subject.

31. A method for preventing, inhibiting or reducing the risk of bone metastasis in a subject suffering from prostate cancer, said method comprising administering to said subject an agent that prevents or reduces bone metastasis, wherein said agent is administered in accordance with a treatment regimen determined from quantifying the expression level of c-MAF in said subject,

32. A method of classifying a subject suffering from prostate cancer into a cohort, comprising: a) determining the expression level of c-MAF in a prostate tumor sample of said subject; b) comparing the expression level of c-MAF in said sample to a predetermined reference level of c-MAF expression; and c) classifying said subject into a cohort based on said expression level of c-MAF in the sample,

33. The method according to claim 6, wherein the RANKL specific nanobody is ALX-0141.

34. The method according to claim 6, wherein the dual MET and VEGFR2 inhibitor is Cabozantinib.

35. The use according to claim 24, wherein the RANKL specific nanobody is ALX-9141,

36. The use according to claim 24, wherein the dual MET and VEGFR2 inhibitor is Cabozantinib.

37. The method according to claim 16, wherein the c-MAF gene-specific probe is Vysis LSI/ISH MAF Dual Color Dual Fusion Probe.
38. A kit for determining a therapy for a subject suffering from prostate cancer, the kit comprising: 3) means for quantifying the expression level of c-MAF in a tumor sample of said subject; b) means for comparing the quantified expression level of c-MAF to a reference c-MAF expression level; and c) means for determining a therapy for preventing, inhibiting and/or reducing bone metastasis in said subject based on the comparison of the quantified expression level to the reference expression level.

39. A kit comprising: i) a reagent for quantifying the expression level of c-MAF in a tumor sample of a subject suffering from prostate cancer, and ii) one or more c-MAF gene expression level indices that have been predetermined to correlate with the risk of bone metastasis,

40. A kit according to claim 38-39 wherein said means for quantifying expression comprise a set of probes and/or primers that specifically bind and/or amplify the c-MAF gene, the 16q23 locus or the 16q22-16q24 chromosomal region.

41. An in vitro method for typing a sample of a subject suffering from prostate cancer, the method comprising:

(i) providing a tumor sample from said subject;

(ii) quantifying the expression level of c-MAF in said sample;

(iii) typing said sample by comparing the quantified expression level of c-MAF to a predetermined reference level of c-MAF expression;

wherein said typing provides prognostic information related to the risk of bone metastasis in said subject,
42. A method for preventing, inhibiting, or reducing the risk of bone metastasis in a subject suffering from prostate cancer, said method comprising administering or not to said subject an agent that prevents or reduces bone metastasis, wherein said agent is administered in accordance with a treatment regimen determined at least in part from quantifying the expression level of c-MAF in said subject.

43. A method of classifying a subject suffering from prostate cancer into a cohort, comprising: a) determining the expression level of e-MAF in a cancer tumor sample of said subject; b) comparing the expression level of c-MAF in said sample to a predetermined reference level of c-MAF expression; and c) classifying said subject into a cohort based on said expression level of c-MAF in said sample.

44. A method according to claim 43, wherein said cohort comprises at least one other individual who has been determined to have a comparable expression level of c-MAF in comparison to said reference expression level.

45. A method according to claim 43 or 44, wherein said expression level of c-MAF in said sample is increased relative to said predetermined reference level, and wherein members of the cohort are classified as having increased risk of bone metastasis-

46. A method according to any of claims 43-4-5, wherein the cohort is for conducting a clinical trial.

47. An in vitro method for predicting bone metastasis of prostate cancer in a subject suffering said cancer, said method comprising determining if the c-MAF gene is translocated in a tumor sample of said subject, wherein translocation of the c-MAF gene is indicative of an increased risk of bone metastasis.
48. An in vitro method for designing a customized therapy for a subject having prostate cancer with bone metastasis which comprises determining if the c-MAF gene is amplified in a tumor sample of said subject relative to a reference gene copy number, wherein an amplification of the c-MAF gene with respect to said reference gene copy number indicates that the subject is a candidate for receiving a therapy intended to prevent or inhibit bone degradation,

49. The method according to claim 48, wherein the agent intended to prevent or inhibit bone degradation is selected from the group consisting of: a bisphosphonate, a RANKL inhibitor, PTH, a PTHLH inhibitor (including neutralizing antibodies and peptides), a PRG analog, strontium ranelate, a DKK-1 inhibitor, a dual MET and VEGFR inhibitor, an estrogen receptor modulator, calcitonin, -Radium-223, a CCR5 antagonist, a Src kinase inhibitor, an COX-2 inhibitor, an mTor inhibitor, and a cathepsin K inhibitor.

50. The method according to claim 49, wherein the RANKL inhibitor is selected from the group consisting of: a RANKL specific antibody, a RANKL-specific nanobody, and osteoprotegerin.

51. The method according to claim 50, wherein the RANKL specific antibody is denosumab.

52. The method according to claim 49, wherein the bisphosphonate is zoledronic acid.

53. The method according to claims 23-28, wherein said means for quantifying expression comprise a set of probes and/or primers that specifically bind and/or amplify the c-MAF gene, the 16q23 locus or the 16q22-16q24 chromosomal region.
54. The method according to claims 29-32, wherein said means for quantifying expression comprise a set of probes and/or primers that specifically bind and/or amplify the c-MAF gene, the 16q23 locus or the 16q22-16q24 chromosomal region.

55. The method according to claims 41-47, wherein said means for quantifying expression comprise a set of probes and/or primers that specifically bind and/or amplify the c-MAF gene, the 16q23 locus or the 16q22-16q24 chromosomal region.