To all whom it may concern:

Be it known that I, ALVA D. JONES, a citizen of the United States, residing at Louisville, in the county of Jefferson and State of Kentucky, have invented certain new and useful Improvements in Systems for Dispensing Beverages; and I do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the art to which it pertains to make and use the same.

This invention relates to dispensing beverages, and particularly to cleaning and dispensing systems wherein the beverage is forced from a keg or a series of kegs through cooled piping to the service bar, and in which means for automatically cleaning the entire system, forms a component part. In such systems the beer is carried through long coils of piping in order to expose a large surface of the same to the cooling medium, whereby no matter how rapid the flow the beer dispensed from the faucets is always cooled sufficiently. But because of the necessary employment of long coils of pipe there is always stored therein after tapping the kegs comparatively large quantities of beer, which if not removed when the bar is closed will spoil as a result of flattening and prolonged chemical action between the beer and the piping.

It is the object of my invention to introduce into such a system means operated from a single controller, which also operates the cleaning means of the system; to automatically cut off the flow of beer from the supply source and return such as remains in the pipe coils back into the kegs for proper preservation for future use; and to provide additional automatically operated means whereby said pipe coils, after the beer has been forced therefrom into the kegs or after a keg has been exhausted, may be blown out at will through the medium of compressed air or gas, and thereby cause any particles of beer adhering to the walls of the piping to be removed through the faucets.

With the above and other objects in view the invention consists in the details of construction and in the arrangement and combination of parts to be hereinafter more fully set forth and claimed.

In describing the invention in detail reference will be had to the accompanying drawings, wherein like characters of reference denote corresponding parts in the several views, and in which—

Figure 1, is a diagrammatic view of a beer dispensing apparatus and its cleaning means with my invention incorporated therein.

Fig. 2, a diagrammatic fragmentary view showing the means for forcing the beer back into the kegs after the flow has been shut off; and the multi-way valve which controls the flow of beer to the faucets; and also controls the cleansing of the system, as well as the means for forcing the beer back into the kegs.

Fig. 3, a longitudinal section of the multi-way valve and its casing taken substantially on a line of the diametrically opposite parts of the said casing when the beer supply and faucets are connected. Fig. 4, a detail section of the controlling lever and its support which actuates the multi-way valve. Fig. 5, a detail view of the means for actuating the mechanism for blowing out any of the pipe coils and faucets, when the connection between the valve and faucets is open or closed. Fig. 6, a longitudinal section of a screened piping utilized in the system illustrated in Fig. 1, Fig. 7, a view in elevation of the multi-way valve and its casing. Fig. 8, a plan view of the same, and Fig. 9, a detail view of the multi-way valve; the same being split longitudinally and flattened out to illustrate the relative position and size of its ports.

T represents the dispensing bar having the usual series of faucets provided at the top; G represents a series of tapped kegs constituting the source of beer supply, and between the kegs G and faucets a, b, c, d, e and f is located the dispensing system to be hereinafter described. A compressed air storage tank A has connected therewith through the medium of a pipe 5 a suitable air pump B for storing air therein. A gage C situated in said pipe 5 records the pressure in tank A and a valve F is adapted to exhaust or reduce the pressure therein, while a valve 9 serves to connect and disconnect the pump B with tank A. The pipe 5 connects with the pipe 13 which in turn is connected with the kegs G by pipes 3, which in turn are connected with the bungs 2 and with the interior of the kegs through the medium of the space between the bungs and the depending stems 14 thereof. Suitable cocks 15 are provided in the pipe 13 for shutting off the air connection of any one of the series of 110
kegs. The beer is transferred from the kegs by suitable valved multi-armed couplings 6 connecting with stem 14 and having one arm of said couplings so connected with a pipe 16 that the contents of all the kegs may be forced through a pipe 4 into a multi-way valve to be described below. A pipe 17 is adapted to transfer the beer from said multi-way valve to a feed pipe 18, which has connected thereto at suitable points and throughout its length pipes a, b', c', d', e' and f' which run to the faucets a, b, c, d, e and f respectively, and are coiled as usual and supported in suitable ice containing receptacles or troughs 19 and 20, which may be adjacent the faucets a, b, c, d, e and f.

The multi-way valve which is adapted to control the transfer of beer from the kegs to the faucets and to control other operations incident to the system comprises a cylindrical hollow casing 21, see Fig. 3, having its ends threaded as at 22 and 23 to receive correspondingly threaded caps 24 and 25, whereby the ends of said casing are closed and a seat for the multi-way valve is formed. Said multi-way valve proper comprises a hollow cylindrical member V cast with one end closed and the other open and adapted to freely rotate in its seat or casing. A shaft 27 penetrates an opening 28 in the cap 25 and has fixed to its end protruding within the valve casing a circular disk adapted to be keyed, as at 29, to the cylindrical wall of the valve V, whereby a rotation of the shaft 27 produces a corresponding rotation of the valve V within its casing 21.

The rotation of the valve V within its casing is controlled through the agency of a mechanism to be now described. The shaft 27 has mounted approximately centrally thereon rigid radial angular fingers 30 and 31, which have secured to their horizontal portions the upper ends of the springs 32 and 33 respectively; said springs having their lower ends suitably fixed, as indicated in Fig. 1, whereby the tendency of said springs is to hold the valve V in a certain normal position with relation to its seat, in which position the various ports of the valve are all closed.

The shaft 27 has secured to its outer end a radial finger 34 which has one end of a flexible connection 35 secured thereto; said connection passing upwardly through a hollow post U mounted adjacent the dispensing bar and having its other end secured to the short arm of a pivoted controlling lever 36. The post U is provided interiorly at one side with a strut 37 over which the connection 35 passes before the same is connected with the short arm of the controlling lever 36; the construction being such that a movement of the lever actuates the connection, which in turn rotates the finger 34, the shaft 27 and the valve V. The top of the post U is provided with an arc-like guide 38 in which the controller 36 travels in its rotative movement. A pawl 39 carried by the controller 36 is adapted to engage notches 40 and maintain said controller in any desired position and likewise the multi-way valve. The various positions of the lever 36 control various operations through the medium of the multi-way valve, as will appear below.

The casing 21 is provided with a plurality of ports arranged longitudinally thereof, some being located on one side and others in the same plane diametrically opposite thereto. These ports are as follows:—Port 41, connects with pipe 4 to receive the beer supply from the kegs G; port 42, connects with the city water supply through the medium of a branch pipe 43 connected to a water main pipe 44; port 45 connects with the main water supply by pipe 44 and constitutes an inlet for water passing through the closed solid end of the valve V, and having no connection with the hollow interior thereof. The outlet for water entering port 45 is port 46 in the diametrically opposite side of said valve casing, which port 46 is connected with a pipe 47 for delivering at the desired moment the city water supply to the hydraulic motor 48 which is included therebetween and is generally associated with a pump 49, for a purpose to be hereinafter described. Port 50 is connected with a receptacle for cleaning material arranged above the valve casing through the medium of a pipe 51, Fig. 2, whereby the material may be deposited in the valve at the proper time by gravity; port 52 is connected through the agency of a pipe 53 to the intake side of the pump 49 while the expelling ports of said pump are suitably connected by piping 54 with the piping 16, thus providing a connection between the pump and the kegs whereby beer stored in the coil pipes a', b', c', d', e' and f' may be pumped back into the kegs G. Port 55 is connected with a drain pipe 56 whereby a draining of the valve may be effected. Port 57 is directly connected with pipe 13 for admitting compressed air to the valve, and port 58 connects the valve with the faucets a, b, c, d, e and f, through the medium of pipes 17, 18, and 19, b', c', d', e' and f'. The ports just enumerated in the valve casing 21 are controlled by the valve V; and in order to accomplish this said valve is likewise provided with a series of ports adapted to register at various times during its rotation with the said corresponding ports in the casing.

As it is essential to maintain the ports of the valve in registration with the ports of the casing for varying angles of rotation of said valve; and that such registration must be brought about at different times, it follows that the ports in the valve must vary in length and that their circumferential dis-
position in the cylindrical wall of the valve must be such as to produce registration with the corresponding ports of the casing at the desired different times. Figs. 3 and 9 best illustrate the construction and disposition of the ports in the valve V. These figures show the port 53' which corresponds to the port 58 in the casing to be of a length greater than any of the other ports, as it is essential that said ports 58' and 58 remain in communication for a longer time throughout the various cycles of operation resulting from the rotation of the valve in the casing, as will appear. Port 41' is so disposed circumferentially of the valve, that when the initial registration between ports 58' and 58 takes place, said port 41' registers with the port 41, but it is of such a size as not to continue to register with port 41 during any of the other cycles of operation resulting from rotation of the valve, so that the beer supply is cut off during said cycles. The port 57', however, is so disposed in the valve as to begin to register with the port 57 the moment 41' has passed clear of port 41, and therefore to admit air under pressure to the interior of said valve. It is essential that this port register with port 57 throughout several cycles of operation performed when valve V is rotated, and it is therefore prolonged in length, as shown.

From what has just been said it is evident, if the valve is so turned as to cause the ports 57 and 57' to just come into register, that air will blow through the ports 58' and 58, which will remain in register; and if the faucets are open, any beer that may be in the pipes will be blown out, but if the faucets are closed the air will be unable to blow through the valve because all other ports will be closed.

Port 55' in the valve is so disposed circumferentially as to just come into register with port 55, immediately after port 57' has registered with port 57, and therefore if the valve is turned sufficiently the compressed air will blow through the multi-way valve and out the drain pipe. Or when in the position just described, if the compressed air is shut off, and the faucets opened any beer that may be in the pipes will flow back into the valve, through the registering ports 58 and 58', and out of the valve into the drain pipe through the ports 55' and 55.

In like manner, port 50' in the valve is adapted to begin to register with port 50 as soon as port 55' has ceased to register with port 55; and simultaneously with this registration of ports 50' and 50 the ports 57 and 57' and 58 and 58' respectively, will remain in registration. At the same time port 42' of the valve will register with the port 42 of the casing. In other words, when the valve has been turned far enough to cause the ports 50 and 50' to register, cleaning fluid will be admitted to the valve, and simultaneously water will likewise enter the valve through the ports 49 and 49'. In this position, the ports 57 and 57' are still in register and admit air under pressure; and the ports 58 and 58' are likewise in register and therefore permit the cleaning fluid to be blown out of the faucets when the latter are opened.

The final movement of the valve V causes the ports 52 and 52' to register and all the other ports except 58 and 58' to be out of register. These ports 52 and 52' connect the interior of the valve and therefore the pipes and faucets with the pump. This final movement, also, causes the channel 59 in the solid end of valve V to register with the ports 45 and 46.

Assuming the parts to be in the position shown in Fig. 1, none of the ports of the 85 valve register with the corresponding ports in the casing and the entire system is inactive or idle.

To produce a flow of beer from the kegs to the faucets it is only necessary to turn on the air pressure from tank A to the kegs by moving the lever until it is held in notch 40 of its guide marked "faucets and beer" which movement of the lever will rotate the valve so that ports 58' and 41' register with 55 ports 58 and 41 respectively, thus permitting the beer to pass up from the kegs through stem 14, couplings 6, pipes 16 and 4 into the multi-way valve and out through pipes 17 and 18, and thence to the faucets through pipes 109 through pipes a', b', c', c', e', and f'.

To effect a simultaneous blow out of all the pipes leading from the multi-way valve to the faucets the lever 36 is moved into notch 40 marked "air and faucets" which movement of the lever further rotates the valve V and causes ports 41 and 41' to move out of register and to shut off the beer supply; port 57 to open by registration with port 57'; and port 58 to remain open by reason of the length of port 58'. Thus the supply of beer is cut off from the valve V and air is admitted by pipe 13 through port 57 into the valve; and it passes out through pipes 17 and 18, and thence to the faucets through pipes a', b', c', c', e', and f'.

To effect a drain at the multi-way valve the lever 36 is moved to notch 40 on its guide marked "air drain and faucets" which will cause the valve to rotate still further in its casing and result in bringing ports 55' and 55 into registration; the ports 57' and 55' remaining respectively in registration with ports 57 and 58 as a result of the length of said ports 57' and 58'. Under these conditions the supply of beer being cut off, as above stated, air is admitted by pipe 13 through port 57 into the valve and serves to blow out the valve and piping through the faucets, as heretofore described, and also
to blow out said valve through the drain pipe 56 by way of ports 55' and 55. During this operation, if desired, the faucets may all be closed and only the valve blown out through drain pipe 56. A further movement of lever 36 to notch 40 marked "air, faucets, cleaning water" will again rotate the valve whereby registration is produced between ports 50' and 50, as well as between the ports 42' and 42; ports 55' and 55 will now cease to register, but the ports 57' and 58' will still register with ports 57 and 58 respectively. As soon as this position of the valve with relation to its casing is assumed, air, cleaning material and water will enter the valve simultaneously and pass out of the faucets in the manner heretofore described. The last rotation of the valve when the lever 36 is situated at the notch 40 marked "pump and water" causes ports 52' and 52 to register and thereby causes the channel 39 to register with both ports 43 and 46, while in the meantime ports 42, 50, 55 and 57 have closed, as above stated. The city water now passes through pipe 44, port 45, channel 59, port 46 and pipe 47 into the hydraulic motor 48, which actuates the pump 49; said pump serving to draw or suck the beer from the pipe and from pipings 17, 18, a', b', c', d', e' and f' into its cylinder, and to force the same through the piping 54, 16, couplings 6 and stems 14 back into the kegs where it may be preserved for an indefinite period. The lever 36 may now be moved back to its normal position shown in Fig. 1, and the valve will be rotated back to its normal or idle position, in which all the ports are closed.

After pumping the beer back into the kegs, in order to prevent the escape of gas, the cocks 6 may be closed by hand if desired, and reopened when the beer is to be again supplied to the bar. Also, during the above cycles of operation, if it is desired for any reason to omit the air pressure, and to pass on immediately to another operation, the compressed air may be cut off by closing by hand the cock 15. In returning the lever 36 backward to its normal position, it will be found convenient to do so quickly and with the beer supply cut off at the cocks 6, which will permit only a small quantity of cleaning fluid and water to enter the valve. Then with the beer supply still off and the air supply on, it may be moved slowly forward until the air thoroughly cleans out the valve and faucets, when the lever may be again moved backward to its normal or inert position, and the beer turned on by opening the cocks 6. Then by moving the lever again forward the beer will flow to the bar through clean connections.

It will be observed, that it is impossible after returning the beer from the pipes to the kegs to again turn on the beer to the bar without opening the ports through which cleaning medium may be forced through the connections. This I regard as an important feature of my invention, in that it absolutely insures clean connections at all times.

From the foregoing it will be obvious that through the instrumentality of the lever 36 several successive operations are produced, first the flow of beer from the kegs to the faucets is effected; second the flow of beer is cut off and air forced through all the faucets simultaneously; third the flow of beer is cut off, air is forced through all the faucets and through a drain; fourth, the flow of beer and the drain are cut off, cleaning material and water are admitted to the valve, and air cleaning material and water are forced through all the faucets; fifth, the flow of beer, cleaning material, water, drain and air are cut off and water passes through the solid end of the valve to a hydraulic motor which in turn operates a pump to force beer in pipes leading from the valve to the faucets back into the kegs. At desired points in the piping employed in the system screened pipe sections 61 are introduced to prevent backflow.

In order that each of the pipes a', b', c', d', e' and f' may be blown out independently, the auxiliary air pipe 8 is connected with air line 13, said pipe 8 being in turn connected with pipes a', b', c', d', e' and f' by the branch pipes a', b', c', d', e' and f' respectively. Each of the pipes a', b', c', d', e' and f' has mounted therein adjacent to the pipe leading thereto from pipe 8 a cock 63, while each of the pipes a', b', c', d', e' and f' has mounted therein a cock 62. The pair of cocks 62 and 63 are so arranged that when their respective operating handles lie approximately horizontal and parallel the pipes a', b', c', d', e' and f' will be open and the pipes a', b', c', d', e' and f' will be closed and the cocks are normally maintained in this position by weights 64 respectively secured to the outer ends of the operating handles of the adjacent pair of cocks 62 and 63. The flexible connections are then carried over suitable pulleys, as shown, up through the hollow post U and have their other ends secured to pivoted levers 66 secured on a flaring portion U' on said post. A circular disk U' is secured to the post U a short distance above the flaring portion U' and is provided along its periphery with spring clips 67 adapted to receive and hold the levers 66 in their extreme elevated positions.

The operation of this feature of the invention it is believed will be apparent. It being only necessary in order to blow out any desired faucet and piping to actuate the
corresponding lever 66 which through the agency of the flexible connection will open cock 62 and close cock 63 and air will immediately blow through the desired piping and faucet. It will thus be seen that when the multi-way valve is actuated to cut off the supply of beer, air is at the same time admitted to said valve, thus enabling the saving of the contents of the coils without connection with the supply, but if there is no demand for the beer remaining in the coils my invention further provides for returning such as remains back into the kegs for preservation, and for flooding the system with a cleansing material comprising soluble powder and water. If no beer remains in the coils after the supply is cut off then the air alone blows therethrough and effects the removal of beer adhering to the walls of the coils. It is to be understood, however, that all the operations above described do not have to take place in the order mentioned, and that one or more of the same may be omitted either by suddenly moving the valve V past the connections it is desired to omit, or by closing the individual cocks in the pipes constituting the connections it is desired to omit. For example, it will be often desirable or necessary to connect the pump immediately after having connected the beer supply, in order that the beer in the pipes and coils may be returned to the kegs. This may be done either by turning the valve V quickly past the intermediate connections; or by closing cocks in the various connections, or by both. Or should it be desired to avoid these intermediate connections altogether, since the specific order of the connections are of little importance, it is evident the pump connection may be changed in its sequence, and made to follow the beer supply, or any other connection that may be desired.

The screen section 61 is of extremely simple construction and effective in operation serving to prevent any foreign bodies from entering the coils. The cleaning of this section is effected by simply unscrewing the same, attaching a rubber hose and passing a stream of water therethrough.

It will be further noted that the beer is cut off slightly above the source, and by so doing, in the system heretofore described, it is possible to serve liquids in small quantities from a very large supply by cutting off the supply and admitting air to the coils through the medium of the multi-way valve and not taking the beer out of the kegs again until all the contents of said coils have been removed, thus preventing contamination brought on by the chemical action of the beer upon the metallic coils.

While I have shown and described the operation of my system as produced in a certain regular order controlled by the disposition of the ports in the multi-way valve, it will be understood that the order of these operations may be varied in any way desired by changing the position of the ports of the multi-way valve without departing from the scope of the invention.

What I claim is:

1. In a system for dispensing beer, the combination of a beer supply, faucets for dispensing the beer, piping connecting the beer supply and faucets, means for forcing the beer from the supply to the faucets, and a pump provided with a cylinder arranged in said piping adapted to suck the beer in the pipes into said cylinder and to force it therethrough back into the supply.

2. In a system for dispensing beer, the combination of a beer supply, faucets for dispensing the beer, piping connecting the beer supply and faucets, means for forcing the beer from the supply to the faucets, a valve arranged in said piping for cutting off the supply of beer to the faucets, and a pump communicating with said valve for sucking the beer from the pipes and forcing the same back into the supply.

3. In a system for dispensing beer, the combination of a beer supply, faucets for dispensing the beer, piping connecting the beer supply and faucets, means for forcing the beer from the supply to the faucets, a valve arranged in said piping for cutting off the supply of beer, a pump communicating with said valve and adapted to suck the beer thenceforth, a motor for operating the pump, and means actuated by the movement of said valve for imparting power to said motor.

4. In a system for dispensing beer, the combination of a beer supply; faucets for dispensing the beer; a series of pipes each provided with coils and connected at one end with one of said faucets and at the other end with connections leading from the beer supply; whereby said faucets and beer supply are connected; means for forcing beer from the supply to the faucets; a multi-way valve in said connections provided with a chamber, means for singly or collectively cutting off the supplies of beer to the faucets; and means for forcing air through said chamber.

5. In a system for dispensing beer, the combination of a beer supply; faucets for dispensing the beer; a series of pipes each provided with coils and connected at one end with one of said faucets and at the other end with connections leading from the beer supply whereby said faucets and beer supply are connected; means for forcing beer from the supply to the faucets; a multi-way valve in said connections provided with a chamber, means associated with said valve for singly or collectively cutting off said connections, and means for simultaneously...
forcing air through said chamber and a plurality of said connections. 6. In a system for dispensing beer, the combination of suitable beer supply; faucets for dispensing the beer; piping connecting the faucets and said supply; means for forcing the beer through the piping to the faucets; an air supply, a drain, a supply for cleaning material, a supply for water; a pump, a multi-way valve adapted to successively communicate with the faucets and beer supply, with the faucets and air supply, with the drain, air supply and faucets, with the cleaning material, water, air supply and faucets; and with the pump, and means for actuating said valve whereby said communications are successively established.

7. In a system for dispensing beer, the combination of a suitable beer supply, faucets for dispensing the beer, piping connecting the faucets and beer supply, means for forcing the beer through the piping to the faucets, a multi-way valve provided with a chamber for controlling the passage of the beer from the supply and for controlling the automatic cleaning of the system; and means for sucking the beer from the chamber and faucet connections and for forcing the same back into the receptacle.

8. In a system for dispensing beer, the combination of a suitable beer supply, faucets for dispensing the beer, piping connecting the faucets and beer supply, means for forcing the beer through the piping to the faucets, a valve provided with a chamber for connecting and disconnecting the beer supply and faucets, and means communicating with said valve and controlled by the movement thereof for sucking the beer from said chamber and pipes and for forcing the same back into said supply.

9. In a system for dispensing beer, the combination of suitable beer supply, faucets for dispensing the beer, piping connecting the faucets and beer supply, means for forcing the beer through the piping to the faucets, a valve provided with a chamber for connecting and disconnecting the supply and faucets, a pump communicating with said valve and means controlled by the movement of said valve for actuating said pump whereby the beverage in the pipes between the faucets and supply may be sucked into said pump and forced back into said supply.

10. In a system for dispensing beer, the combination of suitable beer supply faucets for dispensing the beer; piping connecting the faucets and supply, a valve provided with a chamber for connecting and disconnecting the faucets and supply, a pump communicating with said valve, a motor for actuating said pump, and means operated by the movement of the valve for starting the motor whereby the motor and pump are actuated and the beer in the piping between the faucets and supply is sucked into said pump and forced back into said supply.

11. In a system for dispensing beer, the combination of suitable supply faucets for dispensing the beverage, piping connecting the faucets and supply, a pump communicating chamber for connecting and disconnecting the faucets and supply; a valve having aing with said valve, a hydraulic motor for actuating said pump, and means operated by the movement of the valve for connecting the motor with its operating water supply, whereby the motor and pump are actuated and the beer in the piping between the faucets and supply is sucked into the pump and forced back into said supply.

12. In a system for dispensing beer, the combination of suitable beer supply faucets for dispensing beer, piping connecting the faucets and supply, a valve having a chamber for connecting and disconnecting the faucets and supply, a pump communicating with said valve, a hydraulic motor for actuating said pump, a water supply for the motor, and a channel passing through the valve but independent of said chamber adapted to connect said motor with its water supply whereby the beverage in the piping between the faucets and supply may be sucked into said pump and forced back into said supply.

13. In a system for dispensing beer, the combination of suitable beer supply; faucets for dispensing the beer; piping connecting the faucets and said supply; means for forcing the beer through the piping to the faucets; an air supply; a valve adapted to successively communicate with the faucets and beer supply; and with the faucets and air supply; a drain; a supply for cleaning material; a water supply; means for actuating said valve whereby the same may also communicate successively with said drain, said supply for cleaning material and said water supply; and means for constantly indicating the position of the valve.

14. In a system for dispensing beer, the combination of suitable beer supply; faucets for dispensing the beer; piping connecting the faucets and supply; means for forcing the beer through the piping to the faucets; an air supply; a water supply; a supply for cleaning material; a drain; and a valve adapted to successively communicate with the faucets and beer supply; with the faucets and air supply; with the drain, air supply and faucets; with the cleaning material, water, air supply and faucets; and with the pump; and means actuated by the valve simultaneously with its communication with the pump for operating said pump.

15. In a system for dispensing beer, the combination of suitable beer supply; faucets for dispensing the beer; piping connecting the faucets and supply; means for forcing the beer through the piping to the faucets;
supplies for air; for water; and for cleaning material; a drain; and a valve adapted to successively communicate with the faucets and beer; with the faucets and air supply; with the drain, air supply and faucets; with the cleaning material, water, air supply and faucets; and with the pump; means actuated by the valve simultaneously with its communication with the pump for operating said pump; and lever operated means for actuating the valve, and a graduated dial adjacent said lever operated means for indicating the position of the valve during its operation.

16. In a system for dispensing beer, the combination of a beer supply; faucets for dispensing the beer; piping connecting the beer supply with independent piping to each of said faucets; additional piping connecting said independent piping with an air supply; and a multi-way valve for shutting off the beer and admitting air to said independent piping.

17. In a system for dispensing beer, the combination of a beer supply; faucets for dispensing the beer; piping connecting the beer supply with a series of independent pipes to each of said faucets; additional piping connecting said independent pipes with an air supply; a series of cocks arranged in pairs on which controls the admission of air, and the other the admission of beer to one of said independent pipes; a multi-way valve for controlling said air and beer supplies; and means for actuating said cocks in pairs either singly or collectively for shutting off the beer from and admitting air to the selected independent piping and vice versa.

18. In a system for dispensing beer, the combination of a beer supply; faucets for dispensing the beer; piping connecting the beer supply with a series of independent pipes to each of said faucets; a multi-way valve provided with a chamber controlling said beer supply; additional piping connecting said independent piping with an air supply; a series of cocks arranged in pairs, one cock of each pair controlling the air and the other the admission of beer to one of said independent pipes; and a series of flexible connections each one of which is secured to an operating handle of one of the cocks whereby a movement of one flexible connection operates a pair of cocks simultaneously to shut off the beer from and admit air to the selected independent piping, and a weight secured to the flexible connection for returning the cocks to their normal position whereby the air is cut off and beer turned on.

In testimony whereof, I affix my signature, in presence of two witnesses.

ALVA D. JONES.

Witnesses:
G. C. Terry,
Nellie Sweeney.