1,744,267

3,004,592

3,220,833

3,327,369

3,453,712

3,625,604

1/1930

10/1961

11/1965

6/1967

7/1969

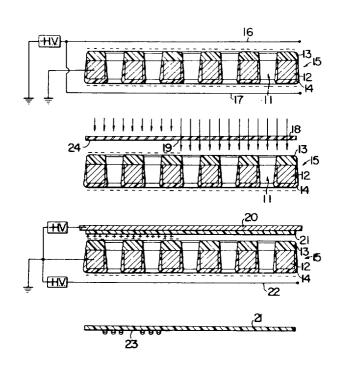
11/1971

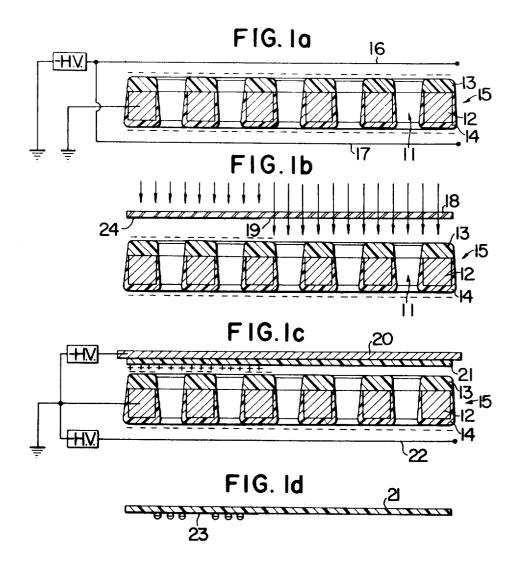
[54]	SCREEN DRUM WITH SCREEN TENSION ADJUSTABLE AXIALLY AND CIRCUMFERENTIALLY				
[75]	Inventors:	Shigeru Suzuki; Yasumori Nagahara, both of Yokohama; Yoshiharu Kagari, Tokyo, all of Japan			
[73]	Assignee:	Electroprint, Inc., Cupertino, Calif.			
[22]	Filed:	Dec. 17, 1973			
[21]	Appl. No.:	425,014			
Related U.S. Application Data					
[63]	Continuatio abandoned.	n of Ser. No. 168,180, Aug. 3, 1971,			
[52]	U.S. Cl				
[51]	Int. Cl	G03g 5/00			
[58]	Field of Se	arch 96/1.5; 355/3; 160/385;			
		29/148.4 D, 119, 123			
[56]		References Cited			
	UNIT	ED STATES PATENTS			

McFarlane 96/1 R

Catlin 29/119

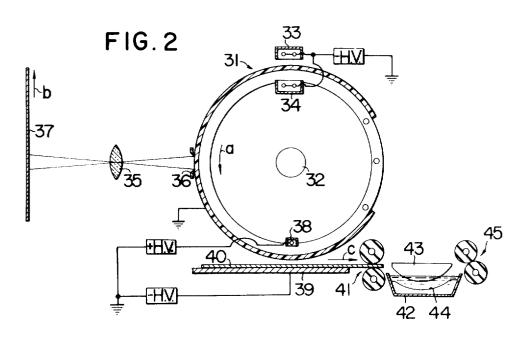
MacKendrick 29/148.4 D

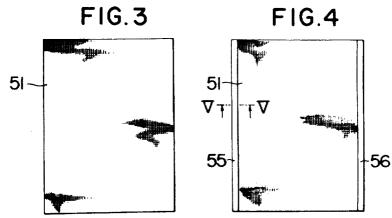

3,645,614	2/1972	McFarlane	355/3
3,680,954	8/1972	Frank	355/3

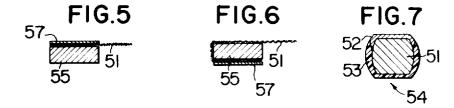

Primary Examiner—Norman G. Torchin
Assistant Examiner—Judson R. Hightower
Attorney, Agent, or Firm—Townsend and Townsend

[57] ABSTRACT

A screen drum apparatus and method of constructing it wherein a pair of attaching strips are secured to the opposite long side marginal portions of a rectangular screen formed with a multitude of very small openings therein, and the screen is mounted on a drum framework comprising a pair of main structural frame members and at least one ring-shaped adjusting frame member. The attaching strips are respectively fastened to the periphery of the adjusting frame member and one of the main frame members so that the screen is circumferentially attached to the drum framework to produce a screen drum in which the attaching strips are interposed between the screen and the drum framework. When the screen is mounted on the drum framework in this way, the screen is spread taut circumferentially of the screen drum, and the spread of the screen across the width of the screen drum can be adjusted by moving the adjusting frame member toward or away from the main structural frame members.

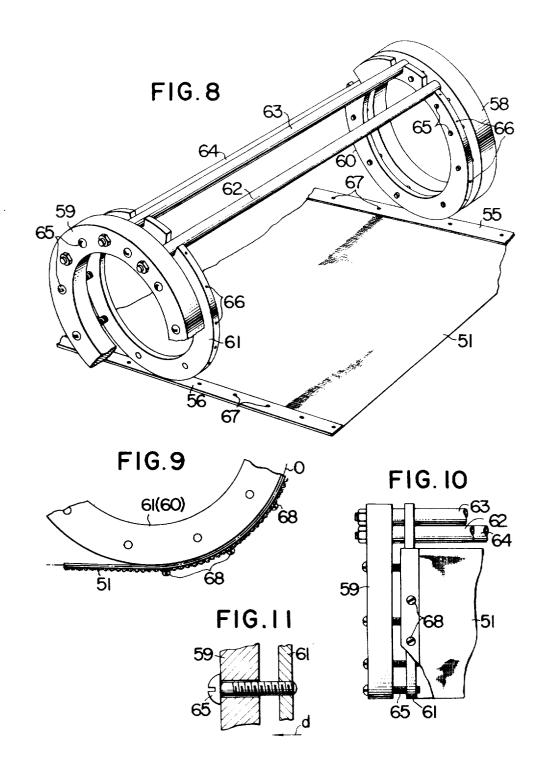

5 Claims, 21 Drawing Figures

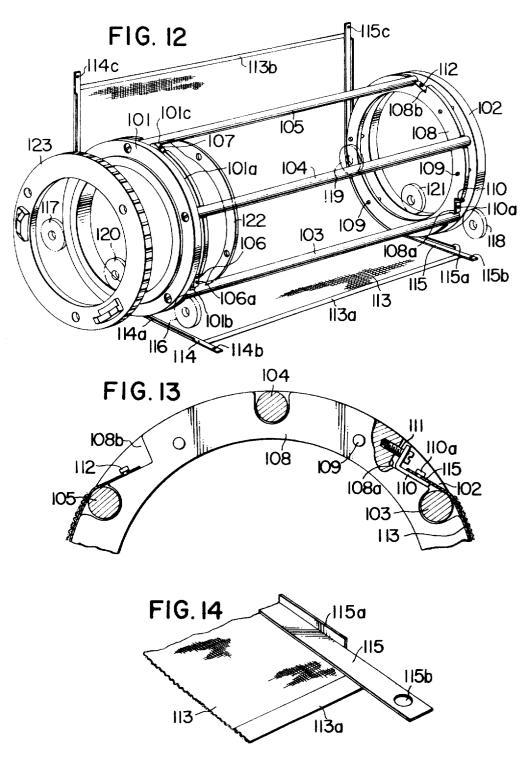




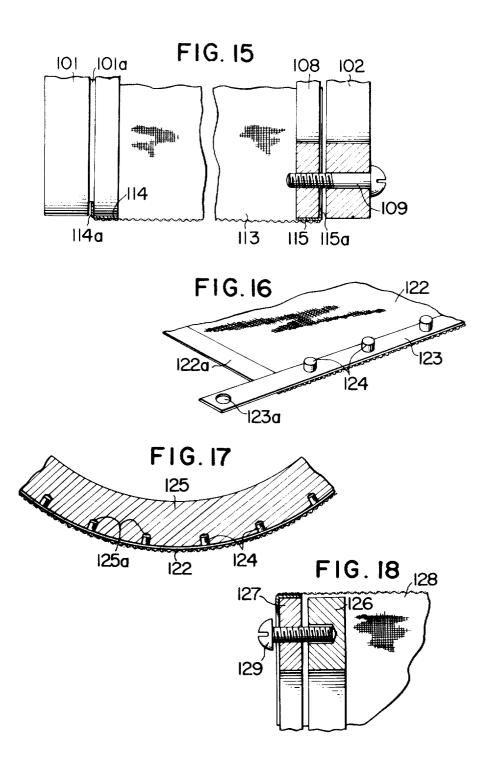
INVENTORS SHIGERU SUZUKI YASUMURI NAGAHARA BY YOSHIHARU KAGARI

Henry J. Bush ATTORNEY




INVENTOR5 SHIGERU YASUMORI NAGAHARA BY YOSHIHARU KAGARI

Henry J. Bush ATTORNEY


SHIGERU SUZUKI YASUMORI NAGAHARI BY YUSHIHARU KAGARI

SHEET 4

INVENTORS SHIGERU SUZUKI YASUMORI NAGAHARA BY YOSHIHARU KAGARI

> Henry O. Wante ATTORNEY

SHIGERU" SUZUKI YASUMORI NAGAHARA BY YOSHIHARU KAGARI

Henry G. Burke ATTORNEY

SCREEN DRUM WITH SCREEN TENSION ADJUSTABLE AXIALLY AND CIRCUMFERENTIALLY

This is a continuation of application Ser. No. 5 168,180, filed Aug. 3, 1971, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates to drums and more particularly to an apparatus and method for tautly mounting a 10 frame members to which the screen is being attached; screen on a drum support.

When a screen member having a multitude of very small openings therein is formed into a drum shape, such as for use as a cylindrical sieve or a photosensitive screen drum, it is required to use a framework for sup- 15 porting the screen because the screen itself lacks a structure for supporting itself. Particularly, in the case of a cylindrical sieve or photosensitive screen drum in which high accuracy and precision is required of the dimensions of the openings or meshes therein, it is nec- 20 essary to spread the screen taut on the support without distorting the correct shape and varying the size of the openings or meshes of the screen.

This invention has as its object the provision of a screen drum producing method and apparatus which 25 permits a screen to be spread readily, smoothly and correctly on its supporting framework so that screen drums of high quality can be produced at reduced cost.

SUMMARY OF THE INVENTION

According to this invention, there is provided a screen drum wherein a screen is formed into a drum shape by attaching each of a pair of attaching strips to the opposite side marginal portions of the screen, and mounting it on a drum framework comprising a pair of 35 main structural frame members and at least one ringshaped adjusting frame member attached to a structural frame member by a plurality of screws by bringing the attaching strips into engagement with the drum framework and securing the same thereto so that the 40 screen may be attached to the drum framework to produce a screen drum in which the attaching strips are interposed between the screen and the drum framework. The screen drum produced by the method according to this invention can have its screen spread taut both circumferentially and across the width of the screen drum, thereby permitting the production of a screen drum without distorting the shape and varying the size of the openings or meshes of the screen. The pair of main structural frame members and at least one ring-shaped adjusting frame member may be formed integrally to provide a drum framework in one piece.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1a-1d are views in explanation of an electrophotographic printing method using a photosensitive screen formed with a multitude of very small openings or meshes therein:

FIG. 2 is a sectional view of one embodiment of the electrophotographic printing apparatus adapted to carry the electrophotographic printing method into practice by using the photosensitive screen of FIG. 1;

FIG. 3 is a plan view of a photosensitive screen used for producing a photosensitive screen drum;

FIG. 4 is a plan view showing the manner in which a pair of attaching strips are secured to the screen of FIG. 1:

FIG. 5 is a sectional view of a portion of FIG. 4 taken along the line V—V thereof;

FIG. 6 is a sectional view showing the manner in which one of the attaching strips forming the pair is drawn inwardly after being secured to the screen;

FIG. 7 is a sectional view of a wire of the photosensitive screen, a multitude of such wires being connected together to form the photosensitive screen;

FIG. 8 is a perspective view of a pair of ring-shaped

FIG. 9 is a fragmentary side view of FIG. 8;

FIG. 10 is a side view showing the construction in part of a screen drum produced by the method according to this invention;

FIG. 11 is a fragmentary sectional view showing means for adjusting the spread of the screen across the width thereof;

FIG. 12 is a developed perspective view of another screen drum produced by a modification of the method according to this invention;

FIG. 13 is a fragmentary sectional view of the ringshaped structural frame member;

FIG. 14 is a fragmentary perspective showing the screen and attaching strip;

FIG. 15 is a front view showing the construction in part of the screen drum of FIG. 12;

FIG. 16 is a fragmentary perspective view showing another form of attaching strip for the screen;

FIG. 17 is a fragmentary sectional view showing the 30 ring-shaped structural support member using the attaching strip of FIG. 16; and

FIG. 18 is a fragmentary sectional view of another screen drum produced by another form of the method according to this invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

The screen drums produced by the method according to this invention may have wide application, for example, as cylindrical sieves used in the chemical industry as well as photosensitive screens used in photocopying. It is to be understood, therefore, that the apparatus and method according to this invention can be carried into practice for producing screen drums used for many other purposes than for that which will be described.

This invention and its modifications will be explained with particular reference to its use with photosensitive screen drums. Photosensitive screen drums have particular utility in electrophotographic printing apparatus for carrying into practice electrophotographic printing methods using the principles summarized below.

In FIG. 1(a), there is shown a photosensitive screen 15 which is produced by providing a photoconductive material layer 13 on one surface of an electrically conducting plate 12 formed with a multitude of very small openings 11 and an insulating material layer 14 on the other surface thereof. The electrically conducting plate 12 formed with the multitude of very small openings 11 may be prepared by connecting together fine wires of iron, steel, stainless steel, aluminum, zinc, copper, nickel or chrome into a screen of 100 to 300 mesh or by adhering a suitable metal on a plastic screen by vaporization in vacuum. The photoconductive material layer 13 may be provided by applying selenium, selenium sulfide, a dispersion of zinc oxide resin, a dispersion of cadmium sulfide, poly-N-vinyl carbazole or other organic photoconductive material, either as it stands or after increasing its photosensitivity, to one surface of the electrically conducting plate 12 by means of a spray gun or vaporization in vacuum, so that the layer may have a thickness of 5 to 200 μ . A suitable electrically insulating resin, such as tetrafluoroethylene resin or Teflon (trade name), or a suitable insulating paint may be used as a material for providing the insulating material layer 14.

The operation of producing a duplicate of an original by using the photosensitive screen 15 constructed as negative printing will be explained step by step.

First Step (See FIG. 1(a)): Wire electrodes 16 and 17 on which a high voltage is impressed are arranged in face-to-face relationship with opposite surfaces of the photosensitive screen 15 for subjecting the latter to a corona discharge while the photoconductive material layer 13 is grounded. The photoconductive material layer 13 and insulating layer 14 are both uniformly charged in the same polarity.

Second Step (See FIG. 1(b)): An original 18 of transparent paper is arranged in face-to-face relationship with the photoconductive material layer 13 and exposed to light as indicated by a number of arrows. The light transmitted through a non-image region 19 of the original 18 reaches the photoconductive material layer 13 but the light impinging on an image region 34 thereof is blocked thereby and does not reach the photoconductive material layer 13. Thus, the charge carried by a region of the photoconductive material layer 30 13 corresponding to the non-image region disappears but the charge on a region of photoconductive material layer 13 corresponding to the image region 24 of the original 18 remains unaffected, so that an electrostatic latent image of the original 18 is formed on the photo- 35 conductive material layer 13. All the charge carried by the insulating material layer 14 remains unaffected.

Third Step (See FIG. 1(c)): An electrically insulating copy sheet 21, such as electrostatic recording sheet, intimately adhered to the back side of an opposite elec- 40 trode plate is arranged in face-to-face relationship with the surface of the photosensitive screen 15 on one surface of which an electrostatic latent image has been formed, and a wire electrode 22 is arranged in face-toface relationship with the other surface of the photo- 45 sensitive screen 15. A voltage of opposite polarity to the voltage impressed on the electrodes 16 and 17 is impressed on the wire electrode 22, and a high voltage of opposite polarity to the voltage impressed on the wire electrode 22 is impressed on the wire electrode 22 $^{-50}$ is impressed on the opposite electrode plate 20, so as to subject the copy sheet 21 to a corona discharge while the electrically conducting plate 12 is grounded. Thus, an electrostatic latent image corresponding to the electrostatic latent image formed on the photosensitive screen 15 but oppositely charged thereto is formed on the copy sheet 21. This is believed to be due to the fact that the movement of a corona discharge current produced by the electrode 22 is blocked by portions of the screen 15 which carry charges only on the insulating material layer but facilitated by portions of the screen 15 which carry charges on both the photoconductive material layer 13 and insulating layer 14 when such current is going to pass through the openings 11 in the screen 15, since the portions of the screen 15 carrying charges on the two layers 13 and 14 behave as if they carried no charge, resulting in the

copy sheet 21 being charged by a current of corona ions that have passed through the openings 11.

Fourth Step (see FIG. 1(d)): The electrostatic latent image formed on the copy sheet 21 as aforementioned is developed with a toner by a known process. In this way, a toner image 23 corresponding to an image 24 of the original is produced on the copy sheet 21.

This duplicating method is suitable to positive-topositive or negative-to-negative printing. When it is deaforementioned in positive-to-positive or negative-to- 10 sired to obtain a duplication in positive-to-negative or negative-to-positive printing, one has only to repeat the aforementioned process by using a photosensitive screen which has no insulating layer provided thereon.

> An electrophotographic copying apparatus will be described with reference to FIG. 2 which permits the continuous production of duplications of an original by using the photosensitive screen 15 arranged in drum shape to provide a photosensitive screen drum. In FIG. 2, there is shown a photosensitive screen drum 31 comprising a photosensitive screen (identical with the photosensitive screen 15 described above) which is produced by providing a photoconductive material layer and an insulating material layer on opposite surfaces of an electrically insulating plate formed therein with a multitude of very small openings, the photoconductive material layer being disposed on the outer side surface of the electrically conducting plate and the insulating layer on the inner side surface thereof. The photosensitive screen drum 31 is supported by a drive shaft 32 for rotation in the direction of the arrow a.

> Electrically charging means 33 and 34 are disposed in the upper portion of FIG. 2 and arranged opposite each other with respect to the photosensitive screen of the photosensitive screen drum 31. High voltages of the same polarity are impressed on the charging means 33 and 34 so as to subject the photosensitive screen drum 31 to a corona discharge to uniformly charge opposite surfaces of the photosensitive screen as the drum 31 rotates.

> Upon completion of charging, the photosensitive screen of the photosensitive screen drum 31 is exposed, through a projection lens 35 and a slit member 36 disposed on the left side of FIG. 2 and in a slit system to an optical image of an original 37 moving in the direction of the arrow b in synchronism with the movement of the photosensitive screen drum 31. Any other exposing means may be used.

> The photosensitive screen on the photosensitive screen drum 31 on which an electrostatic latent image has been formed by the aforementioned process is then passed between charging means 38 disposed inwardly of the lower portion of the drum 31 and an opposite electrode plate 39 disposed outwardly thereof in FIG.

> An insulating copy sheet 40 is delivered to the opposite electrode plate 39 at a rate equal to the peripheral velocity of the drum 31 and in synchronism with the rotation of the drum 31, and conveyed in the direction of the arrow c while being held intimately on the plate 39 by the negative pressure of the latter. During the movement of the copy sheet 40, a high voltage of opposite polarity to the voltages impressed on the charging means 33 and 34 is impressed on the charging means 38 and a bias voltage of opposite polarity to the voltage impressed on the charging means 38 is impressed on the opposite electrode plate 39, so that the copy sheet **40** being conveyed is subjected to a corona discharge.

,

Thus, an electrostatic latent image is formed on the copy sheet 40 which corresponds to the electrostatic latent image on the photosensitive screen of the drum 31 but which is oppositely charged thereto.

The copy sheet 40 on which an electrostatic latent 5 image has been formed is delivered by a pair of conveyor rollers 41 to a developing solution tank 42 in which several rows of guide fins 43 and 44 are provided in the upper and lower portions. The copy sheet 40 is guided by these fins and discharged from the system to 10 outside through a pair of squeeze rollers 45. It is to be understood that the electrostatic latent image on the copy sheet 40 may be developed by any other known dry developing method than the wet developing method described above.

The photosensitive screen drum used in the aforementioned electrostatic copying apparatus is produced as described previously, by spreading a screen with a multitude of very small openings on a drum framework.

The present invention will be explained in detail with 20 reference to FIGS. 3 to 11. In FIG. 3, there is shown a screen 51 which may be 30 to 60 μ thick, and produced by connecting fine wires of stainless steel together at a rate of 150 to 250 wires per inch in screen form and then pressing the product. This screen 51 may be made into a photosensitive screen 54 (see FIG. 7), by applying a photoconductive material layer 52 and an insulating layer 53 as described previously on opposite surfaces of the screen 51. The steps of the method according to this invention will be described with reference to 30 embodiments using the screen 51.

Firstly, attaching strips 55 ad 56 made of bronze or the like are each secured, as by soldering, to the opposite lateral marginal portions of the underside of the screen 51 lengthwise thereof. FIG. 5 shows in section 35 the attaching strip 55 soldered to the screen 51 at 57. The screen 51 with attaching strips 55 and 56 secured thereto is mounted in a manner presently to be described on a pair of ring-shaped adjusting frame members 60 and 61, which are connected to a pair of main 40 structural frame members 58 and 59 as shown in FIG. 8. The structural frame members 58 and 59 which may also be ring-shaped, are firmly connected together by rigid support rods 62, 63 and 64, and may be made of a suitable metal of relatively low resilience having high resistance to forces exerted thereon circumferentially but of relatively low resistance to forces exerted on the end surfaces thereof. The adjusting frame members 60 and 61 are connected to the structural frame members 58 and 59 respectively by a number of screws 65 which are loosely connected to the frame members 58 and 59. Three recesses may be formed in the peripheral edges of each of the frame members 60 and 61 for receiving the support rods 62, 63 and 64 therein. Initially, the adjusting frame members 60 and 61 are not firmly secured but are movable axially of the support rods 62, 63 and 64 by adjusting the screws 65.

A plurality of threaded openings 66 are formed in the peripheral edge of each of the adjusting frame members 60 and 61, and a plurality of threaded openings 67 corresponding in position to the threaded openings 66 are formed in each of the attaching strips 55 and 56 secured to the screen 51. The screen 51 may be spread on a table or other surface with the attaching strips 55 and 56 facing upwardly and mounted on the adjusting frame members 60 and 61 by bringing the threaded openings 66 into index with the corresponding

threaded openings 67 and threadably inserting screws 68 (see FIG. 9) into the openings 66 and 67 to firmly attach the screen 51 to the frame members 60 and 61. In this screen attaching operation, the support rods 62, 63 and 64 are left uncovered with the screen 51.

When the screen 51 is attached to the frame members 60 and 61 as aforementioned, the upper surface of the screen 51 is disposed outwardly of the outer peripheral surface of the resultant drum-shaped member. The screen 51 arranged in drum-shape is disposed outwardly of the attaching strips 55 and 56, so that the screen 51 is subjected to a tensile force which stretches the portion of the screen 51 which is disposed outwardly of the center line 0. As a result, the screen 51 is suitably stretched circumferentially of the drumshaped member.

In securing the attaching strips 55 and 56 to the adjusting frame members 60 and 61, an error which might otherwise occur in attaching the screen 51 to these members 60 and 61 can be obviated or minimized if the center part of the screen 51 is first connected to the frame members 60 and 61 and then successive portions are secured till finally the opposite end portions are connected. If the screen 51 is attached to the adjusting frame members 60 and 61 in the manner described, then the drum-shaped member produced substantially assumes the form of a screen drum, though the screen 51 may be somewhat loose across the width thereof. If any position of the screen 51 of the drum-shaped member produced in this way is loose across the width of the screen, then the screw or screws 65 at such portion of the screen 51 are turned to move the adjusting frame member 60 toward the structural frame member 58. Since the ring-shaped frame member 61 offers a relatively low resistance to a force exerted on an end surface thereof as described previously, the portion of the frame member 61 corresponding to the loose portion of the screen 51 moves in the direction of the arrow das shown in FIG. 11. It is thus possible to locally adjust the spread of the screen 51.

If the screws 65 are adjusted in all the portions of the structural frame members 58 and 59 by taking the spread of the screen 51 on its entire surface, then it is possible to obtain an optimum spread of the screen 51 so that the screen 51 is mounted taut on the frame members without being tightened or slackened. When this condition is obtained, the screen 51 and ringshaped frame members 60 and 61 pull each other in tension and are positively supported by the structural frame members 58 and 59.

In the aforementioned step, if the attaching strips 55 and 56 are drawn inwardly as shown in FIG. 6 by rotation after being secured to the screen 51, it is possible to prevent the soldered portion 57 from being exposed to view. Besides, the screen 51 can be supported by the adjusting frame members more positively if the screen 51 is secured to the ring-shaped frame members 60 and 61 with opposite side portions of the screen 51 being folded into contact with the undersides of the strips, in mounting the screen 51 on the frame members 60 and 61.

Modifications of the photosensitive screen drum and the method of producing it according to this invention will be described with reference to FIGS. 12 to 18. In FIG. 12, a pair of sturdily built structural frame members 101 and 102 are disposed in face-to-face relationship and connected to each other by rigid connecting

6

rods 103, 104 and 105 which are attached to arcuate portions of the structural frame members 101 and 102 which are slightly smaller than semi-circular portions thereof. This arrangement is sufficiently stable to securely support the photosensitive drum as a whole. The 5 connecting rods 103, 104 and 105 are lopsidedly connected to the frame members 101 and 102 as aforementioned in order that the screen 113 may have the greatest possible effective area.

The structural frame member 101 is formed on its 10 outer peripheral surface with a circumferentially disposed groove 101a of a small width, and oppositely facing cutouts 101b and 101c are formed on a portion of the outer peripheral surface of the member 101 disposed inwardly of the groove 101a in positions which 15 correspond to the positions in which the connecting rods 103 and 105 are secured to the member 101. A stopper 106 having a pin 106a is adjustably mounted in the cutout 101b by a screw (not shown), and a pin 107 is attached to the other cutout 101c.

On the opposite side, a ring-shaped adjusting frame member 108 of relatively small width, formed with oppositely facing cutouts 108a and 108b in positions in its outer peripheral surface corresponding to the positions in which the connecting rods 103 and 105 are disposed, 25is arranged inwardly of the structural frame member 102. The adjusting frame member 108 is adjustably connected to the structural frame member 102 by a plurality of equidistantly-spaced adjusting bolts 109. Cutouts are formed in positions on the outer peripheral 30 surface of the ring-shaped adjusting frame member 108, corresponding to the positions in which the connecting rods 103 and 105 are disposed, for receiving the connecting rods therein. A stopper 110 having a pin 110a is adjustably mounted in the cutout 108a of the 35 ring-shaped adjusting frame member 108 by a screw 111 (see FIG. 13) in the same manner as the stopper 106 is mounted in the cutout 101b. Similarly, a pin 112 is attached to the cutout 108b in the manner of pin 107 in cutout 101c.

A screen 113 produced in the same manner as described previously is mounted on the frame members 101 and 108 in a process presently to be described in one modification of the apparatus and method according to this invention, so as to provide a screen drum. Opposite end marginal portions of the screen 113 spaced apart lengthwise of the screen from each other are folded twice or three times to form folded portions 113a and 113b, and attaching strips 114 and 115 of small width which may be made of metal are secured, as by soldering, to opposite side marginal portions of the screen 113 spaced apart across the width of the screen from each other. The attaching strips 114 and 115 which have a length slightly greater than the length 55 of the screen 113 are slightly bent at their outer marginal portions to form engaging portions 114a and 115a (See FIG. 14).

Openings 114b and 114c and 115b and 115c are formed on opposite end portions of the attaching strips 114 and 115, respectively, for receiving the pins 106a and 107, and 110a and 112, respectively. The screen 113 is mounted on the structural frame member 101 and ring-shaped adjusting frame member 108 (see FIG. 13) by first inserting the pins 107 and 112 in the openings 114c and 115c and then fitting the engaging portions 114a and 115a in the circumferential groove 101a in the structural frame member 101 and on the outer

edge of the outer peripheral surface of the frame member 108 respectively.

After the screen 113 is mounted on the structural frame member 101 and ring-shaped adjusting frame member 108, the pins 106a and 110a are inserted in the openings 114b and 115b respectively and the positions of the stoppers 106 and 110 are adjusted as by threading the screw 111 into the cutout 108a, so as to spread the screen taut lengthwise thereof. The screen is thus spread taut lengthwise thereof on the frame members 101 and 108 by the difference in tensile force exerted on its outer peripheral surface and inner peripheral surface.

On the other hand, the screen 113 can be spread taut across the width thereof by moving the adjusting bolts 109 so as to adjust the position of the ring-shaped adjusting frame member 108 with respect to the frame member 101 thereby spreading the screen 113 across its width (see FIG. 15).

The screen drum produced in the manner described above is rotatably supported, when the screen drum is a photosensitive screen drum, by rollers 116, 117, 118, 119, 120 and 121 shown in the dash-and-dot or broken lines in FIG. 12. The rollers 116 and 117 are maintained in pressing engagement with the outer peripheral surface of the structural frame member 101 and the roller 120 is maintained in pressing engagment with the inner peripheral surface thereon so as to hold the frame member 101 therebetween. Similarly, the rollers 118 and 119 are maintained in pressing engagement with the outer peripheral surface of the frame member 108 and the roller 121 is maintained in pressing engagement with the inner peripheral surface thereof so as to hold the member 108 therebetween. The screen drum can be held against movement axially thereof by rollers (not shown) maintained in the engagement with end surfaces of the structural frame members 101 and 102. A relief cam 122 of crescent shape is shown provided on the inner end surface of the structural frame member 101, and a gear 123 is shown mounted on the outer end surface thereof to satisfy other requirements of designing.

In the modification of the apparatus and method according to this invention described above, the structural frame members 101 and 102 are shown and described as ring-shaped or annular in shape. The invention is not limited to this specific form of the frame members 101 and 102, and members of any form may be used as desired. The structural frame member 101 is shown as being integrally formed with a ring-shaped adjusting frame member. However, the frame member 101 and the adjusting frame member may be formed separately in two pieces and connected together in combination as are the other structural frame member 102 and the adjusting support member 108.

The bent outer marginal portions of the attaching strips serving as engaging portions have a height which is greater than the thickness of the attaching strips. However, since the ring-shaped frame member has a large diameter, the screen can be readily mounted on the frame members.

FIG. 16 shows an alternate form of engaging portion wherein a number of pins 124 attached to an attaching strip 123 secured to a screen 122 serve as engaging portions. The pins 124 are adapted to be received in corresponding openings 125a formed in a ring-shaped adjusting frame member 125 (see FIG. 17) when the

screen 122 is mounted on the frame members. The engaging portions of this form are effective to readily produce a screen drum by mounting a screen on the frame members. An opening 123a formed at an end portion of the attaching strip 123 serves the same purpose as 5 the openings 114b, 114c, 115b and 115c formed in the attaching strips 114 and 115. An end portion of the screen 122 is folded like the screen 113 to provide a folded portion 122.

FIG. 18 shows another modification of the apparatus 10 and method according to this invention for producing a screen drum. In FIG. 18, a ring-shaped adjusting frame member 127 is provided outwardly of a main structural frame member 126 so that a screen 128 is mounted on the ring-shaped adjusting frame member 15 127. In this modification, screws 129 for moving the frame member 127 toward or away from the main frame member 126 threadably extend through the frame member 127 into engagement at their front end portion in openings formed in the frame member 126. 20 When it is desired to spread the screen 128 taut across the width thereof, the screws 129 are turned to move the adjusting frame member 127 outwardly away from the main frame member 126. It is to be understood that according to this invention any other means than the 25 screws 129, such as means using springs and pins, for example, may be used for moving the adjusting frame member 127 toward or away from the main frame member 126.

The apparatus and method according to this inven- 30 tion and the modifications thereof which are shown and described herein may be used for producing a screen drum comprising a screen made of a synthetic resinous material as well as stainless steel of aforementioned. The screen drum produced by this invention and the 35 that in circumferential tension of said screen member modifications thereof can be used not only in electrophotographic copying but also in any other fields in which a screen drum formed with a multitude of very small openings in its outer periphery is needed. In case no adjustments of the spread of the screen across the 40 width thereof are required, the structural frame members and ring-shaped frame members may be formed integrally in one piece as a drum framework. The drum framework may be a cylindrical member formed with

openings therein.

What is claimed is:

- 1. A photosensitive screen drum for use in noncontact electrostatic printing comprising:
- a. two main frame members;
- b. spacing means rigidly connecting said main frame members in spaced face-to-face relationship to form a drum framework;
- c. a screen member having a photoconductive material layer on one side thereof;
- d. attaching strips secured to each of two opposite marginal portions of said screen member and having a plurality of engaging means thereon;
- e. at least one circular adjusting frame member;
- f. means spaced on the outer peripheries of said adjusting frame member and one of said two main frame members and cooperating with said engaging means for fastening said attaching strips respectively to said adjusting frame member and to one of said two main frame members whereby said screen may be tensioned circumferentially; and
- g. means for adjustably connecting said adjusting frame member to the other of said two main frame members for axial movement with respect to the drum framework whereby said screen member may be adjustably tensioned across the width of the screen drum.
- 2. A screen drum as in claim 1 in which said screen is provided on the other surface thereof with an insulating material layer.
- 3. A screen drum as in claim 1 wherein said engaging means comprises screw means and said cooperating means comprises receptacles for said screw means, so may be adjusted.
- 4. A screen drum as in claim 3 wherein said screw means are positioned adjacent the opposite ends of said attaching strips.
- 5. A screen drum as in claim 1 further comprising bent portions on the outer edges of said attaching strips for engaging the outer end surfaces of said frame mem-

50

55

60