发明名称

在线连续制备光纤光栅方法

摘要

一种在线连续制备光纤光栅方法。该方法将预制棒高温拉制裸光纤与裸光纤保护层涂覆及固化分开进行。本方法消除了拉丝工艺与光栅在线写入并涂覆工艺间的相互负面影响，控制更易实现，系统运行更趋稳定。另外，工艺间相互制约因素消除，两套工艺各自在最优工艺条件下进行，很好地解决了传统动态在线成栅的诸多技术难点。
1. 一种光纤光栅制备方法，其特征是：在裸光纤上在线连续写入光栅。

2. 如权利要求1所述的光纤光栅制备方法，其特征是：将光纤拉丝工艺与光纤保护层涂覆及固化工艺分开进行；在光纤拉丝工艺制得的裸光纤上在线连续写入光栅，随即进行保护层涂覆及保护层固化工艺。

3. 如权利要求1所述的光纤光栅制备方法，其特征是：所述的裸光纤为直接拉制的光纤，所述的光纤为直接拉制的光纤，所述的光纤为直接拉制的光纤。

4. 如权利要求2所述的光纤光栅制备方法，其特征是：所述的光纤拉丝工艺在高温条件下进行，所述的光纤拉丝工艺在高温条件下进行，所述的光纤拉丝工艺在高温条件下进行。

5. 如权利要求2所述的光纤光栅制备方法，其特征是：所述的光纤拉丝工艺在高温条件下进行，所述的光纤拉丝工艺在高温条件下进行，所述的光纤拉丝工艺在高温条件下进行。

6. 如权利要求1或2所述的光纤光栅制备方法，其特征是：所述的在线写入光栅在低速移动速度或静止条件下进行。

7. 如权利要求6所述的光纤光栅制备方法，其特征是：所述的在线写入光栅在低速光纤移动速度下进行，对单脉冲激光在线写入光栅，光纤移动速度不高于20米每分钟。

8. 如权利要求7所述的光纤光栅制备方法，其特征是：单脉冲激光在线连续写入光栅改为多脉冲在线连续写入光栅时，光栅刻写时光纤移动速度为零。

9. 如权利要求1-5,7,8任一项所述的光纤光栅制备方法，其特征是：在线写入光栅在室温或受控的恒温条件下进行。
在线连续制备光纤光栅方法

技术领域
[0001] 本发明属于光纤光栅制备领域，涉及光纤制备过程中在线连续写入光栅，尤其是大容量写入全同光栅的方法。

背景技术
[0002] 基于光纤光栅大容量分布式光纤传感系统具有广阔应用前景，其核心制备技术要求在一根长距离光纤上不同位置写入光栅而尽量少地引入接入损耗。传统光纤光栅制备方法是先制备光栅，再采用焊接技术将所有光栅串联起来，此方法造成显著的接入损耗。同时，焊接造成光纤结构损伤，导致系统可靠性变差。所以，很多科研工作者就开始探索在光纤拉制过程中进行光纤光栅制备，预制棒高温拉丝形成裸光纤的同时动态在线写入光栅，随即进行保护层涂覆及固化工艺，该方法有效避免焊接造成的接入损耗；同时避免因焊接引起的光纤结构损伤，系统可靠性明显改善。
[0004] 虽然上述报道实现了动态条件下光栅在线写入，但此成栅方法存在几大难点，造成此方法很难形成成熟的光栅制备技术。一、光栅动态在线写入要求光纤拉丝控制在较低速度条件下；由于受各设备控制精度影啊，低速较难保证光纤拉制稳定运行，裸纤直径波动较大；二、写入一致性较好的光栅要求光栅写入点的光纤芯径温度、应力具有较好的稳定性和一致；由于系统低速运行稳定性差，且光纤温度由熔融拉丝处高温冷却到光栅写入点较低温度的影响因素较多，导致光栅写入点的本底温度、应力一致性并不理想，直接影响到光栅写入的一致性。三、动态在线成栅是否成功写入成为实时监测的难题，由于拉丝炉温度在 1700~1800℃高温，本身就是一个很强光源，本底光沿光纤传入监测器，其强度可能完全淹没光栅反射的信号光，导致对光栅刻写的监测有可能无法实施。
[0005] 针对动态条件下在线写光栅存在诸多难点，美国 Anbo Wang 研究组 [3] 采用了载氢增敏、相位掩模法，静止状态下在成品光纤上大容量写入光栅，报道了一种基于低反射率全同光栅的准分布式传感网络，光纤光栅复用数量接近 1000。由于基于成品光纤上进行成栅工艺，需要先将涂覆层烧蚀干净后写入光栅，再恢复涂覆层。该方法存在两个明显缺陷。二氧化碳激光烧蚀涂覆层同样会损坏光纤包层，造成光纤衰耗增大；由于光纤结构受到损伤，光纤容易折断，一定程度上影响到此方法实施的可靠性。

参考文献：
发明内容

本发明目的旨在针对传统动态在线成栅方法存在诸多技术难点和自身难以克服的技术不足，以及基于成品光纤连续制备光纤光栅可靠性差等问题，提出一种新的在线连续制备光纤光栅方法。本方法将传统光纤制备工艺分阶段实施，即预制棒高温拉制裸纤工艺与裸纤保护层覆盖及固化工艺分开进行，并将在线连续成栅工艺有机结合，以解决拉丝速度与系统运行稳定性之间的矛盾，以及光纤本身温度一致性差等问题。由于分阶段实施光纤制备工艺，能方便地将成熟后的光纤载氯工艺插入到中间环节，解决因光敏光纤预制棒制备及光敏光纤拉制技术不成熟导致的光纤敏化技术难题。

本发明目的采用下述技术方案实现：

一种光纤光栅制备方法，其特征在于：在裸光纤上在线连续写入光栅。

本发明的技术方案：将光纤拉丝工艺与光纤保护层覆盖及固化工艺分开进行；在光纤拉丝工艺制得的裸光纤上在线连续写入光栅，随即进行保护层覆盖及保护层固化工艺。

本发明的技术方案中，所述的裸光纤为直接控制的光敏裸光纤或者载氯型光敏裸光纤。

本发明的技术方案中，所述的光纤拉丝工艺在高拉丝速度条件下进行，以确保裸光纤直径高精度控制，对于高10米的拉丝塔而言，拉丝速度为几十到几百米每分钟；对于拉丝塔高大至或小于10米而言，拉丝速度为几十到几百米每分钟。

本发明的技术方案中，所述的在线写入光栅在低裸光纤移动速度或静止条件下进行，以确保在在线写入光栅具有较好的一致性。对单脉冲激光在线写入光栅，裸光纤移动速度不高于20米每分钟。

本发明的技术方案中，单脉冲激光在线连续写入光栅改为多脉冲在线连续写入光栅时，光栅刻写时裸光纤移动速度为零，以确保强反射率光栅写入成功。由于动态条件下不能进行多激光脉冲刻写强光栅，而只能在静止条件下进行，而以前边拉丝边写光栅是不能实现多脉冲写强光栅。

本发明的技术方案中，在线写入光栅在室温或受控的恒温条件下进行，使光栅写入点的光敏光纤本底温度具有较好的一致性，以确保在在线写入光栅具有较好的一致性。由于拉丝工艺中，光纤由高温降低到光栅写入点的相温度，受外界因素影响较多，会导致光纤在光栅写入点的温度不一致；而分阶段实施后不存在这个问题，光纤温度具有室温的稳定性。

本发明的技术方案中，所述的拉丝工艺与保护层涂覆及固化工艺分阶段实施，其作用一是便于对裸光纤进行高压载氯使其具有光敏性，从而使在涂覆及固化工艺时在裸光纤上连续写入光栅；其作用二是消除拉丝工艺与动态在线写入光栅工艺之间的相互矛盾。
制约，确保两工艺各自在最佳条件下进行。

[0020] 本发明特点：由于将光纤制备工艺分阶段实施，拉丝工艺与光棚在线写入并涂覆工艺分开进行，工艺间的相互负面影响消除，控制更易实现，系统运行更趋稳定。另外，工艺间相互制约因素消除，两套工艺各自在最优工艺条件下进行，如拉丝工艺可在高速度下进行，确保系统稳定运行，裸光纤直径高精控制；而在线成栅及涂覆工艺在室温低速或静止状态下进行，很好地解决传统动态在线成栅的诸多技术难点。

附图说明

[0021] 图 1 为裸光纤拉制及收线示意图
[0022] 图 2 载氢裸光纤在线写光棚并涂覆保护层和固化示意图
[0023] 图中：1- 预制棒送料装置，2- 拉丝炉，3- 裸光纤测径仪，4- 裸光纤，5- 张力测量仪，6- 抽丝轮，7- 抽丝，收线速度匹配装置，8- 收线盘，9- 载氢裸光纤，10- 光纤导向定位轮，11- 光棚写入装置，12- 第一次涂覆，13- 第一次固化，14- 第二次涂覆，15- 第二次固化。

具体实施方案

[0024] 根据附图说明本发明的实施过程。再者，在附图说明中，相同的单元符号相同的标记，并省略重复说明。

[0025] 图 1 为裸光纤拉制及收线示意图。此工艺与常规光纤拉丝基本相同，唯一区别在于没有光纤保护层的涂覆及固化工艺。预制棒在拉丝炉 2 高温作用下，其下端熔融拉锥成丝，经张力测量仪 5 导入抽丝轮 6 抽丝形成裸光纤；通过裸光纤测径仪 3 监测裸光纤直径并实时反馈控制预制成纤装置 1 及裸光纤 4 的速度，实现裸光纤直径的稳定控制。裸光纤 4 在抽丝轮作用下，被经过抽丝、收线速度匹配装置 7 后收集到收线盘 8 上。由于在线刻写全同光棚要求曝光点的光纤应力稳定一致，首先对裸光纤外径稳定性提出高要求，这需预制棒预成纤装置 1 进料速度及裸光纤 4 的拉丝速度稳定且匹配合适，同时拉丝炉 2 温度恒定不变，才能确保裸光纤直径控制在合格范围内。目前通信光纤生产控制范围在目标值±0.7 μm（微米），本发明中将裸光纤外径控制精度提高至目标值±0.4 μm 或更高。

[0026] 由于受各设备运行控制精度影响，系统在低拉丝速度下较难实现稳定控制，裸光纤外径波动大，通常情况下高拉丝速度较好保证各设备运行稳定及精确控制，确保裸光纤直径控制在高精度范围内。然而，由于裸光纤抗弯曲强度低，在收线上盘过程中高速运行的微小波动对裸光纤弯曲冲击较大，易造成裸光纤折断，所以裸光纤拉制及收线上盘需要在最佳拉丝速度条件下进行，以确保裸光纤直径高精控制，同时系统能稳定可靠运行。对于高 10 米左右的拉丝塔而言，最佳裸光纤拉制速度控制在几十到几百米每分钟。

[0027] 图 2 为以载氢裸光纤为例的在线连续写光棚并涂覆保护层和固化示意图。裸光纤收线上盘完成后，经高压载氢使其具有光敏性，重新上塔进行光棚在线连续写入并进行保护层涂覆及固化工艺。载氢裸光纤 9 经导向轮 10，张力测量仪 5 导向定位，在抽丝轮 6 作用下进行光棚刻写与保护层涂覆及固化工艺。受导向轮 10，张力测量仪 5 定位作用，光纤以一定速度运行并保持很好的铅垂状态，光棚写入装置 11 在靠近导向轮 10 等间距地在匀速移动的光纤上写入光棚，随后进入第一次涂敷 12 和第一次固化 13，紧随其后进行与第一次相似的第二次涂覆 14 和第二次固化 15，最后收线上盘。
由于采用248nm激光源结合掩模板单脉冲激光在移动光纤上写入光栅，光纤移动会改变激光作用光纤点的位置，从而影响到光栅周期分布质量，宏观表象是光栅反射峰峰形退化，峰变宽、强度减弱；这对于弱反射光栅而言，非常不利于该端信号处理。解决办法是降低光纤移动速度，使光纤具有合理的移动速度，确保光栅反射峰具有良好的峰形和强度。对于10nm激光脉冲刻写中心波长1550nm光栅而言，光纤移动速度不高于20米每分钟。

由于本发明中的工艺过程分阶段实施，动态在线成栅和保护层涂覆及固化工艺过程中光纤移动速度大小并不受拉丝工艺控制制约，光纤速度可以根据光栅写入要求最佳设定，且速度高度一致，从而能很好地保证光栅中张力长期稳定。进一步拓展此方法，可实现多脉冲强反射光栅的在线连续写入，光栅写入时将光纤移动速度设定为零，完成光栅刻写后，重新移动光纤进行涂覆工艺及准备下一个光栅刻写。由于静止状态下进行光栅刻写，光栅刻写的初始条件更易控制，光栅刻写成功率及光栅间一致性会更高更好；同时可以方便地设定激光刻写脉冲次数，实现不同反射强度的光栅刻写。

由于本发明中的工艺过程分阶段实施，光纤本底温度并不受拉丝工艺中拉丝炉高温因素影响，恒定的工作环境温度能较好地保证光纤本底温度稳定一致，从而为全同光栅在线写入提供便利的初始条件。

由于本发明中的工艺过程分阶段实施，光栅连续成栅和保护层涂覆及固化工艺在室温下进行，有效解决了传统动态在线成栅中拉丝炉本底光源造成实时监测困难的技术难题。另外，由于刻写光栅时载氢光纤衰耗较大，严重影响到光信号传输距离，从光纤一端进行光栅刻写在线监测时，所能刻写的光栅数量有限；由于拉丝工艺过程分阶段实施，分别从光纤两端进行光栅刻写的在线监测成为可能，所以一次连续刻写的光栅数量加倍。