(51) Internationale Patentklassifikation 6 :
G01N 33/68

(11) Internationale Veröffentlichungsnummer: WO 98/07036

(21) Internationales Aktenzeichen: PCT/EP97/04396

(22) Internationales Anmeldedatum: 13. August 1997 (13.08.97)

(30) Prioritätsdaten:
196 32 521.8 13. August 1996 (13.08.96) DE
197 25 362.8 16. Juni 1997 (16.06.97) DE

Veröffentlicht
Mit internationalem Recherchenbericht.
Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

(54) Title: PROCESS FOR DETERMINING THE STATUS OF AN ORGANISM BY Peptide MEASUREMENT

(54) Bezeichnung: VERFAHREN ZUR ERFASSUNG DES STATUS EINES ORGANISMUS DURCH MESSUNG VON PEPTIDEN

(57) Abstract
A process is disclosed for determining the status of an organism by measuring peptides in a sample of the organism which contains high-molecular and low-molecular peptides and acts as an indicator of the organism status. Low-molecular peptides are directly sensed and characterised, and are then correlated with a reference.

(57) Zusammenfassung
Verfahren zur Erfassung des Status eines Organismus durch Messung von Peptiden aus einer Probe des Organismus, die hoch- und niedrigmolekulare Peptide enthält, als Indikator für den Status des Organismus, wobei niedrigmolekulare Peptide direkt erfaßt und charakterisiert und mit einer Referenz in Beziehung gesetzt werden.
<table>
<thead>
<tr>
<th>AL</th>
<th>Albanien</th>
<th>ES</th>
<th>Spanien</th>
<th>LS</th>
<th>Lesotho</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>FI</td>
<td>Finnland</td>
<td>LT</td>
<td>Litauen</td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>FR</td>
<td>Frankreich</td>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
<td>GE</td>
<td>Georgien</td>
<td>MD</td>
<td>Republik Mokau</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>Die ehemalige jugoslawische Republik Mazedonien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Griechenland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>HU</td>
<td>Ungarn</td>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Irland</td>
<td>MR</td>
<td>Mauretanien</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Island</td>
<td>MX</td>
<td>Mexiko</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>IT</td>
<td>Italien</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KE</td>
<td>Kenia</td>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KG</td>
<td>Kirgisistan</td>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>KR</td>
<td>Republik Korea</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kasachstan</td>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
<td>LC</td>
<td>St. Lucia</td>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singsapur</td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

SI	Slowenien
SK	Slowakei
SN	Senegal
SZ	Swasiland
TD	Tschad
TG	Togo
TJ	Tadschikistan
TR	Türkei
TT	Trinidad und Tobago
UA	Ukraine
UG	Uganda
US	Vereinigte Staaten von Amerika
UZ	Usbekistan
VN	Vietnam
YU	Jugoslawien
ZW	Zimbabwe
Verfahren zur Erfassung des Status eines Organismus durch Messung von Peptiden

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Erfassung des Status eines Organismus durch Messung von Peptiden aus einer Probe des Organismus.

oder gar alle auf genetische Fehlfunktionen zurückzuführende Erkrankungen zu diagnostizieren. Ein weiterer Nachteil der zuletzt genannten Methode kann auch darin bestehen, daß eine Mutation auf einem Gen nicht unbedingt zur Expression des damit verbundenen Phänotypen führt.

Es wäre wünschenswert, über ein universell einsetzbares diagnostisches Verfahren zu verfügen, mit welchem es gelingt, die geschilderten Nachteile zu vermeiden und insbesondere eine hypothesenfreie Diagnostik durchführen zu können. Das diagnostische Verfahren sollte darüber hinaus universell einsetzbar sein, nicht beschränkt bleiben auf höher entwickelte Systeme, sondern auch gleichfalls einsetzbar sein, um den Status von niederen Organismen zu erfassen. Es sollte darüber hinaus leicht etablierbar sein und mit an sich bekannten Techniken ausgeführt werden können.

Ein der Erfindung zugrundeliegendes technisches Problem liegt mithin in der Bereitstellung eines solchen Verfahrens.

Überraschenderweise wird das der Erfindung zugrundeliegende technische Problem in einfacher Weise durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Die Unteransprüche betreffen bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens.

Das erfindungsgemäße Verfahren zur Erfassung des Status eines Organismus geht davon aus, daß dem zu untersuchenden Organismus eine Probe entnommen wird. Die Probe kann auch der vollständige Organismus sein. Die Probe muß niedrigmolekulare Peptide enthalten, wobei es nicht stört, wenn die Probe neben niedrigmolekularen Peptiden auch hochmolekulare Peptide oder Proteine enthält. Die niedrigmolekularen Peptide werden dabei erfindungsgemäß direkt erfaßt und charakterisiert und dienen als Indikator für den Status des Organismus. Dabei ist es sowohl möglich, einzelne Peptide direkt meßtechnisch zu erfassen, mehrere Peptide meßtechnisch zu
erfassen bis hin zu allen in der Probe befindlichen und meßtechnisch erfaßbaren niedermolekularen Peptide. Anders als bei herkömmlichen analytischen oder diagnostischen Methoden, wie die Gel-Elektrophorese oder die zweidimensionale Elektrophorese und beispielsweise klinische diagnostische Methoden, werden hier nicht die hochmolekularen Strukturen, wie beispielsweise Proteine untersucht. Im Gegensatz zu an sich bekannten diagnostischen Methoden, wie beispielsweise Radioimmunassay oder anderen Kompetitions-assays zur Messung von Peptidhormonen und ähnlichen, werden erfindungsgemäß die niedermolekularen Peptide direkt meßtechnisch erfaßt und nicht wie in den genannten Methoden indirekt. Als Referenz dient die Verteilung niedrigmolekularer Peptide bei einem repräsentativen Querschnitt von definierten Kontrollen.

Im erfindungsgemäßen Verfahren kann die zu untersuchende Probe von Geweben- oder Flüssigkeitsproben aus dem Organismus, dessen Status aufgenommen werden soll, stammen oder es kann der Organismus selbst oder Teile davon sein. Im Falle der Untersuchung niederer Organismen dient vorzugsweise der Organismus selbst als Probe. Als niedere Organismen kommen insbesondere Einzeller, wie prokaryontische Systeme oder einfache eukaryontische Systeme, wie Hefen oder andere Mikroorganismen, in Betracht.

Erfindungsgemäß sollen die niedrigmolekularen Peptide, die zur Messung herangezogen werden, vorzugsweise ein Molekulargewicht von höchstens 30.000 Dalton aufweisen. Die untere Grenze ist an sich nicht kritisch, jedoch stellen Dipeptide die untere Grenze der niedrigmolekularen Peptide, die erfindungsgemäß erfaßt werden sollen, dar. Insbesondere bevorzugt sind Molekulargewichte der niedrigmolekularen Peptide von 100 bis 10.000 Dalton.

Falls erforderlich, weil beispielsweise durch eine veränderte Messanordnung bedingt, kann es vorteilhaft sein, hochmole-
kulare Peptide oder Proteine sowie andere Biopolymeren, die möglicherweise mit der Messung interferieren, aus der Probe zu entfernen. Dies ist insbesondere dann nicht erforderlich, wenn durch die erfindungsgemäß einzusetzende Mesßmethode die höhermolekularen Peptidverbindungen messtechnisch nicht erfaßt werden.

Vorzugsweise wird erfindungsgemäß die Massenspektroskopie zur Erfassung der niedermolekularen Peptide eingesetzt. Insbesondere bewährt hat sich dabei die sogenannte MALDI-Methode (Matrixunterstützte Laser-Desorptions-Ionisations-Massenpektroskopie). Wird die Massenspektrometrie als Methode eingesetzt, empfiehlt es sich, die durch die Massenspektroskopie ermittelbaren Daten zur Charakterisierung der niedermolekularen Peptide einzusetzen, wie beispielsweise deren Molekulargewicht. Es ist ebenfalls möglich, unter bestimmten Umständen andere Parameter zu analysieren, wie beispielsweise die Ladung der Peptide oder die charakteristische Retentionszeit auf Chromatographiesäulen oder ein Fragmentmuster der niedermolekularen Peptide oder Kombinationen aus Masse der niedrigmolekularen Peptide und deren Ladungen.

Je nach Fragestellung, die mit der Erfassung des Status des Organismus noch verbunden ist, kann es vorteilhaft sein, die Probe auf mehrere Fraktionen zu verteilen und die Proben unter verschiedenen Fragestellungen oder messtechnischen Anordnungen zu analysieren und somit einen Status des Organismus zu erfassen.

Als Organismen dienen insbesondere Prokaryonten, Eukaryonten, vielzellige Organismen, Zellen aus Gewebekulturen, Zellen von Tieren und Menschen. So wird es erfindungsgemäß ermöglicht, den Status von genetisch veränderten oder transformierten und/oder konditionierten Organismen zu untersuchen. Dies kann insbesondere bei Überprüfungen von transformierten Systemen vorteilhaft sein, um zu erkennen, inwie-
weit transformierte Organismen möglicherweise unerwartete oder unerwünschte Eigenschaften entwickelt haben, indem beispielsweise Peptide gebildet werden, die auf unerwünschte oder unerwartete Eigenschaften, wie toxische Eigenschaften, hinweisen.

Insbesondere kann jede bewußt oder unbewußt vorgenommene Manipulation (Konditionierung) eines Organismus dessen Status beeinflussen, sei es im Rahmen der Verabreichung von Medikamenten, der Gentherapie, bei Infektionen, am Arbeitsplatz durch Kontakt mit chemischen Stoffen, bei Versuchstieren, insbesondere transgenen Tieren und knock-out-Mutanten. Insbesondere bei solchen Verfahren kann durch den intra- und inter-individuellen Vergleich, beispielsweise durch chronologische Probenentnahme aus einem Organismus vor und im Verlauf einer der oben genannten Maßnahmen oder durch Vergleich mit nicht behandelten Kontrollorganismen, überprüft werden, ob die vorhergesagten, erwünschten Änderungen im Status tatsächlich eingetreten sind und ob darüberhinaus oder stattdessen nicht vorhergesagte, unerwünschte oder auch erwünschte Änderungen eingetreten sind, die durch das erfindungsgemäße Verfahren hypothesenfrei erfaßt werden.

In der Veterinär- und Humanmedizin entwickelt das erfindungsgemäße Verfahren seine überragende Bedeutung dadurch, daß eine hypothesenfreie Erfassung des Status des betreffenden Organismus ermöglicht wird. Es wird also nicht bereits mit einer vorgefaßten Meinung ein Bestätigungsassay durchgeführt, sondern es wird ein echtes Gesamtbild des Status des untersuchten Organismus erstellbar. Das erfindungsgemäße Verfahren, daß als differentielles Peptiddisplay (Differential

Erkrankungsbild erkennbar ist und eine Hypothese für die Ursache dieser Erkrankung besteht, kann beispielsweise dieses spezifische Peptid in der Analyse gemäß Erfindung ebenfalls abgefragt werden und bei positivem Ausgang entsprechende Therapiepläne eingerichtet werden. So ist es durchaus mög­
lich, zunächst dem Patienten eine Probe zu entnehmen, mit dem erfindungsgemäßen Verfahren einen Status aufzunehmen, um dann bei Feststellen des Vorliegens einer auf pathogene Zustände hinweisenden Abweichung entweder durch an sich bekannte Bestätigungsassays, unter Heranziehung der üblichen klinischen Assays, eine Kontrollmessung durchzuführen oder die Kontrollmessung durch spezifisches Screening nach dem Indikator des pathogenen Zustands durchzuführen.

Peptide können dabei nach dem Fachmann bekannten Verfahren, wie beispielsweise Ultrafiltration des entsprechenden Ausgangsmaterials, gewonnen werden. Dabei werden Filter mit einer molekularen Ausschlußgröße verwendet, die in dem erfindungsgemäßer beanspruchten Bereich liegen, also zwischen denen eines Dipeptides und maximal 30.000 Dalton. Durch geeignete Wahl der jeweiligen Membranen können auch bestimmte Molekulargewichtsfraktionen gewonnen werden. Vorzugsweise werden im Rahmen der Filtration 0,2 ml bis 50 l Filtrat gewon­nen, das beispielsweise sofort nach Abschluß der Filtration durch Ansäuern mit verdünnter Salzsäure auf einen pH-Wert von 2 bis 4 eingestellt wird. Die genannten Mengen dienen insbesondere dazu, gepoolte Proben zu untersuchen, zum einen zur Entwicklung von Referenzproben gesunder Probanden bzw. zur Bestimmung krankheitsspezifischer Peptid­
marker zur Erstellung einer Peptiddatenbank.

Die nach Ultrafiltration im Filtrat vorliegenden Peptide werden durch Adsorption an chromatographische Materialien, insbesondere Kationenaustauscher, wie beispielsweise Fractogel, Anionenaustauscher-Fractogel TMAE und Reverse-Phase-(RP)-Materialien, mit nachfolgender Elution durch lineare Gradienten oder Stufengradienten gewonnen. Zur weiteren
Aufreinigung können gegebenenfalls weitere chromatographische Trennungen, insbesondere über RP-Phasenmaterial durchgeführt werden.

Beispiel 1

Verwendung von Körperflüssigkeiten, hier: Blutfiltrat (Hämofiltrat, HF)

1. Gewinnung von HF

HF wird im Rahmen einer arterio-venösen oder auch veno-venösen Hämofiltration nach dem Fachmann bekannten Techniken an ausgewählten Patienten oder Probanden durchgeführt. Die Gewinnung von HF erfolgt in der Weise, wie sie im Prinzip bei chronisch nierenkranken Patienten routinemäßig durchgeführt wird. Über eine arterielle Ableitung und venöse Zuleitung (arterio-venöse HF) oder eine venöse Ableitung mit venöser Zuleitung (veno-venöse HF) wird das Blut des Patienten unter apparativer Unterstützung durch ein Hämofiltratsgerät (z. B. Hemoprocessor, Sartorius, Göttingen; AK 10 HFM, Gambro, Hechingen) über ein Hämofilter geleitet (z. B. Hemoflow F 60 oder Hemoflow HF 80 S, Fresenius, Bad Homburg; Hemoflow FH 77 H und Hemoflow HF 88 H, Gambro), das eine molekulare Ausschlußgröße von bis zu 30 kDa besitzt. Das dem Patienten entzogene Filtratvolumen wird durch eine Elektrolytlösung substituiert (z. B. SH 01, SH 05, SH 22, SH29, Schiwa, Glandorf).

Im Rahmen des hier vorliegenden Verfahrens wird eine diagnostische Hämofiltration mit dem Ziel durchgeführt, zwischen 1 und 30 l HF bei einem Patienten innerhalb einer Hämofiltration zu gewinnen. Das Hämofiltrat wird zur Vermeidung der Proteolyse sofort mit verdünnter Säure (z. B. 1 M HCl) auf einen pH-Wert zwischen 2 und 4 eingestellt und auf 4°C gekühlt.
2. Gewinnung der HF-Peptide und Auftrennung in Fraktionen

2.1 Peptidextraktion mit stufenweiser Elution

Dabei werden 7 Puffer mit aufsteigendem pH verwendet.

Chromatographiebedingungen:

- Fluß beim Auftrag: 100 ml/min
- Fluß beim Eluieren: 30 ml/min
- Detektion: 214, 280 nm
- Säule: Vantage (Amicon, Witten) 6 cm Durchmesser x 7 cm Füllhöhe
- Säulenmaterial: Fraktogel TSK SP 650 M (Merck, Darmstadt)
- Anlage: BioCAD 250, Perceptive Biosystems, Wiesbaden-Nordenstadt

<table>
<thead>
<tr>
<th>Puffer</th>
<th>pH-Wert</th>
<th>Puffersubstanzen</th>
<th>Molarität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elutionspuffer 1</td>
<td>3,6</td>
<td>Zitronensäure</td>
<td>0,1</td>
</tr>
<tr>
<td>Elutionspuffer 2</td>
<td>4,5</td>
<td>Essigsäure</td>
<td>0,1</td>
</tr>
<tr>
<td>Elutionspuffer 3</td>
<td>5,0</td>
<td>Apfelsäure</td>
<td>0,1</td>
</tr>
<tr>
<td>Elutionspuffer 4</td>
<td>5,6</td>
<td>Bernsteinsäure</td>
<td>0,1</td>
</tr>
<tr>
<td>Elutionspuffer 5</td>
<td>6,6</td>
<td>Natriumhydrogenphosphat</td>
<td>0,1</td>
</tr>
<tr>
<td>Elutionspuffer 6</td>
<td>7,4</td>
<td>Dinatriumhydrogenphosphat</td>
<td>0,1</td>
</tr>
<tr>
<td>Elutionspuffer 7</td>
<td>9,0</td>
<td>Ammoniumcarbonat</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Die Eluate 1 - 7 werden separat gesammelt.
2.2 Zweite chromatographische Auftrennung

Die Eluate 1 - 7 werden separat über eine Reverse-Phase-Säule chromatographiert.

Chromatographiebedingungen:
Fluss beim Auftrag: 10 ml/min
Fluss beim Eluieren: 4 ml/min
Detektion: 214 nm
Säule: HPLC-Stahlsäure, 1 cm Durchmesser, 12,5 Füllhöhe
Säulenmaterial: Source RPC 15 µm (Pharmacia, Freiburg)
Anlage: BioCAD, Perceptive Biosystems, Wiesbaden-Nordenstadt

Das Eluat wird in 4 ml-Fraktionen gesammelt.

3. Kartierung der Peptid-Fraktionen

3.1
Aliquots der in 2.2 gewonnenen Fraktionen werden auf einer Microbore-Reverse-Phase-Säule aufgetragen und im Gradient eluiert. Die Detektion erfolgt mit UV-Detektor und on-line mit einem Elektrospray-Massenspektrometer.

Chromatographiebedingungen:
Fluss beim Auftragen: 20 µl/min
Fluss beim Eluieren: 20 µl/min
Detektion: 220 nm
Säule: C18 AQS, 3 µm, 120 A, 1 mm Durchmesser, 10 cm Länge
(YMC, Schermbeck)
Anlage: ABI 140 B Dual solvent Delivery System

Puffer A: 0,06% Trifluoressigsäure in Wasser
Puffer B: 80% Acetonitril in A
Gradient: 0% B auf 100% B in 90 min
On-Line-Massenspektrometrie:
API III mit Elektrospray-Interface (Perkin-Elmer, Weiterstadt)
Positive Ion Modus
Meßbereich: m/z von 300 bis 2.390
Scan-Zeit: 7 sec
Scan-Fenster: 0,25 m/z

Datenerfassung erfolgt mit MacSpec oder MultiView Software (Perkin-Elmer).

3.2 MALDI-MS Messung der einzelnen Fraktionen

Aliquots der in 2.2 gewonnenen Fraktionen werden mit unterschiedlichen Matrixsubstanzen, z. B. unter Zusatz von L(-) Fucose im MALDI-MS gemessen.

Aus den Rohdaten wird eine mehrdimensionale Tabelle erstellt unter Berücksichtigung der Scan-Nummer, Signalintensität und nach Kalkulation der Massen aus den multipel geladenen Ionen eines Scans.

4. Vergleichende Analyse

4.1 Identifikation neuer, fehlender oder in ihrer Menge deutlich verschiedener Peptide

Durch Vergleich der unter 3.3 erhaltenen Datensätze, die auch als Peptidkarten bezeichnet werden können, werden qualitative und/oder quantitative Unterschiede festgestellt. Dabei werden unter Berücksichtigung von Kontrollen und Proben einzelne Datensätze oder auch Gruppen von Datensätzen zum Vergleich herangezogen.
4.2 Peptidchemische Charakterisierung der identifizierten Targets

Beispiel 2:

Verwendung von Körperflüssigkeiten, hier: Aszites

1. Gewinnung von Aszites

Aszites bildet sich as extravasales Exsudat bei unterschiedlichen Erkrankungen (maligne Tumoren, Leberstörungen etc.). Im Rahmen des hier vorliegenden Verfahrens werden zwischen 10 ml und 10 l Aszites durch Punktion gewonnen und danach zur Vermeidung der Proteolyse sofort mit vrdünnter Säure (z. B. 1 M HCl) auf einen pH-Wert zwischen 2,0 und 4,0 einge-
stellt und auf 4°C gekühlt. Nach einer Ultrafiltration über
eine Cellulose-Triacetat-Membran mit einer Ausschlußgröße
von 30 kDa (Sartocon-Mini-Apparatur, Sartorius) wird das
Filtrat als Quelle von Peptiden im weiteren verwendet.

2. Gewinnung der Aszites-Peptide und Auftrennung in
Fraktionen

2.1. Peptidextraktion mit Gradienten-Elution

5 l Aszites-Filtrat werden auf pH 2,0 eingestellt und über
eine préparative Reverse-Phase-Säule getrennt.

Chromatographiebedingungen:

Fluß beim Auftrag 40 ml/min
Fluß beim Eluieren: 40 ml/min
Detektion: 214 nm, 280 nm
Säule: Waters Kartuschen System, 4,7 cm Durchmesser, 30 cm
Füllhöhe
Säulenmaterial: Vydac RP-C18, 15 - 20 μm
Anlage: BioCAD, Perseptive Biosystems, Wiesbaden-Nordenstadt
Puffer A: 0,1% Trifluorelligsäure in Wasser
Puffer B: 80% Acetonitril in A
Gradient: 0% B auf 100% B in 3,000 ml

Das Eluat wird in 50 ml Fraktionen gesammelt.

Der weitere Verlauf der Charakterisierung entspricht Beispiel
1.

Beispiel 3:
Verwendung von Körperflüssigkeiten, hier: Urin
1. Gewinnung von Urin

Urin wird direkt als Katheterurin oder als Spontanurin von
Patienten in Mengen von 0,5 bis 50 l gewonnen und zur Ver-
meidung der Proteolyse sofort mit verdünnter Säure (z. B. 1 M HCl) auf einen pH-Wert zwischen 2,0 und 4,0 eingestellt und auf 4°C gekühlt. Nach einer Ultrafiltration über eine Cellulose-Triacetat-Membran mit einer Ausschlußgröße von 30 kDa (Sartocon-Mini-Apparatur, Sartorius) wird das Filtrat als Quelle von Peptiden im weiteren verwendet.

2. Gewinnung der Urin-Peptide und Auftrennung in Fraktionen

2.1 Peptidextraktion mit stufenweiser Elution

Chromatographiebedingungen:

Fluss beim Auftrag: 100 ml/min
Fluss beim Eluieren: 30 ml/min
Detektion: 214 nm
Säule: Vantage (Amicon, Witten) 6 cm Durchmesser x 7 cm Füllhöhe
Säulenmaterial: Merck Fraktogel TSK SP 650 M
Anlage: BioCAD 250, Perceptive Biosystems, Wiesbaden-Nordenstadt

Puffer A: 50 mM NaH₂PO₄, pH 3,0
Puffer B: 1,5 M NaCl in A
Gradient: 0% B auf 100% B in 2,000 ml

Das Eluat wird in 10 Pools á 200 ml gesammelt.
2.2 Zweite chromatographische Auftrennung

Die Fraktionen werden separat über eine Reverse-Phase-Säule chromatographiert.

Chromatographiebedingungen:

Fluß beim Auftrag: 10 ml/min
Fluß beim Eluieren: 4 ml/min
Detektion: 214 nm
Säule: HPLC-Stahlsäule, 1 cm Durchmesser, 12,5 cm Füllhöhe
Säulenumaterial: Pharmacia Source RPC 15 µm
Anlage: BioCAD, Perceptive Biosystems, Wiesbaden-Nordenstadt

Puffer A: 0,1% Trifluoressigsäure in Wasser
Puffer B: 80% Acetonitril in A
Gradient: 0% B auf 100% B in 200 ml

Das Eluat wird in 4ml Fraktionen gesammelt.

Der weitere Verlauf der Charakterisierung entspricht Beispiel 1.
Äußerungen

1. Verfahren zur Erfassung des Status eines Organismus durch Messung von Peptiden aus einer Probe des Organismus, die hoch- und niedrigmolekulare Peptide enthält, als Indikator für den Status des Organismus, wobei

 - niedrigmolekulare Peptide direkt erfaßt und charakterisiert und

 - mit einer Referenz in Beziehung gesetzt werden.

2. Verfahren nach Anspruch 1, wobei die Probe Gewebeproben oder Flüssigkeitsproben aus dem Organismus oder der Organismus selbst oder Kombinationen davon ist.

3. Verfahren nach Anspruch 1 und/oder 2, wobei die niedrigmolekularen Peptide, die zur Messung herangezogen werden, ein Molekulargewicht von höchstens 30 000 Dalton aufweisen.

4. Verfahren nach Anspruch 3, wobei die niedrigmolekularen Peptide, die zur Messung herangezogen werden, mindestens ein Molekulargewicht, das dem von Dipeptiden entspricht, aufweisen.

5. Verfahren nach Anspruch 3 und/oder 4, wobei die niedrigmolekularen Peptide, die zur Messung herangezogen werden, ein Molekulargewicht von 100 bis 10 000 Dalton aufweisen.

6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, wobei die hochmolekularen Peptide vor der Messung der niedrigmolekularen Peptide abgetrennt werden oder meßtechnisch oder auswertetechnisch bei der Erfassung der Probe nicht berücksichtigt werden.
7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, wobei die Erfassung der niedrigmolekularen Peptide durch Massenspektrometrie erfolgt.

8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, wobei die niedrigmolekularen Peptide durch die Messung ihres Molekulargewichtes charakterisiert werden.

9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, wobei die Probe vor der Messung der niedrigmolekularen Peptide in verschiedene Fraktionen aufgeteilt wird und unter unterschiedlichen Bedingungen gemessen wird.

10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, wobei als Organismus Prokaryonten, Eukaryonten, vielzellige Organismen, Zellen aus Gewebekulturen, Zellen aus Tieren und Menschen dienen.

11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, wobei die Probe aus genetisch veränderten oder transformierten und/oder konditionierten Organismen stammt.

13. Verfahren nach mindestens einem der Ansprüche 1 bis 11, wobei die Erfassung des Status eines transformierten Organismus zur hypothesefreien Untersuchung und Aufnahme des Status des Gesamtorganismus zur Aufdeckung von Veränderungen des transformierten Organismus dient, zur Aufdeckung von mit der Transformation verbundenem Auftreten von Peptiden, die kausal mit Stoffwechselveränderungen zusammenhängen.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>G01N33/68</th>
</tr>
</thead>
</table>

According to international Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

<table>
<thead>
<tr>
<th>IPC</th>
<th>G01N</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A. HERNANZ ET AL.: "Gastrointestinal peptide profile in children with celiac disease." JOURNAL OF PEDIATRIC GASTROENTEROLOGY, vol. 6, no. 3, 1987, NEW YORK NY USA, pages 341-345, XP002050736</td>
<td>1,2,10, 12</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-9,11, 13</td>
</tr>
<tr>
<td></td>
<td>see the whole document</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-9,11, 13</td>
</tr>
</tbody>
</table>

X

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "S" document member of the same patent family

Date of the actual completion of the international search:

18 December 1997

Date of mailing of the international search report:

14/01/1998

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer:

Van Bohemen, C

Form PCT/ISA/215 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>C.R. JIMÉNEZ ET AL.: "Pattern changes of pituitary peptides in rat after salt-loading as detected by means of direct, semiquantitative mass spectrometric profiling." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES USA, vol. 94, no. 17, 1997, BETHESDA MD USA, pages 9481-9486, XP002050738 see page 9481, column 1, line 1 - column 2, line 19</td>
<td>1-13</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6 GOIN33/68

Nach der internationalen Patentklassifizierung (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 GOIN

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHEN ANGABE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A. HERNANZ ET AL.: "Gastrointestinal peptide profile in children with celiac disease." JOURNAL OF PEDIATRIC GASTROENTEROLOGY, Bd. 6, Nr. 3, 1987, NEW YORK NY USA, Seiten 341-345, XPO02050736</td>
<td>1,2,10, 12</td>
</tr>
<tr>
<td>A</td>
<td>siehe das ganze Dokument</td>
<td>3-9,11, 13</td>
</tr>
<tr>
<td>X</td>
<td>M.J. STAQUET ET AL.: "Keratin polypeptide profile in psoriatic epidermis normalized by treatment with etretinate." ARCHIVES OF DERMATOLOGICAL RESEARCH, Bd. 275, Nr. 2, 1983, BERLIN FRG, Seiten 124-129, XPO02050737</td>
<td>1,2,10, 12</td>
</tr>
<tr>
<td>A</td>
<td>siehe das ganze Dokument</td>
<td>3-9,11, 13</td>
</tr>
</tbody>
</table>

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:
 "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 "L" veröffentlicht, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung beeinflusst werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie angeführt)
 "O" Veröffentlichung, die auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beantragten Prioritätsdatum veröffentlicht worden ist
 "S" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht korreliert, sondern zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
 "X" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allenfalls aufgrund dieser Veröffentlichung, nicht als neu oder auf erfindungsähnlicher Tätigkeit beruhend betrachtet werden
 "Y" Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfindungsähnlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung von einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
 "A" Veröffentlichung, die Mitglied der selben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

18. Dezember 1997

Absende datum des internationalen Recherchenberichts

14/01/1998

Name und Postanschrift der internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-3040, Tx. 31 651 epo nl, Fax: (+31-70) 340-2016

Bevollmächtigter Bediensteter

Van Bohemen, C
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
</table>